GNU tar

GNU tar: an archiver tool
FTP release, version 1.26, 12 March 2011

John Gilmore, Jay Fenlason et al.

This manual is for GNU tar (version 1.26, 12 March 2011), which creates
and extracts files from archives.

Copyright (© 1992, 1994, 1995, 1996, 1997, 1999, 2000, 2001, 2003, 2004,
2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover Texts
being “A GNU Manual”, and with the Back-Cover Texts as in (a)
below. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy
and modify this GNU manual. Buying copies from the FSF sup-
ports it in developing GNU and promoting software freedom.”

Chapter 1: Introduction 1

1 Introduction

GNU tar creates and manipulates archives which are actually collections
of many other files; the program provides users with an organized and sys-
tematic method for controlling a large amount of data. The name “tar”
originally came from the phrase “Tape ARchive”, but archives need not
(and these days, typically do not) reside on tapes.

1.1 What this Book Contains

The first part of this chapter introduces you to various terms that will recur
throughout the book. It also tells you who has worked on GNU tar and its
documentation, and where you should send bug reports or comments.

The second chapter is a tutorial (see Chapter 2 [Tutorial], page 5) which
provides a gentle introduction for people who are new to using tar. It
is meant to be self-contained, not requiring any reading from subsequent
chapters to make sense. It moves from topic to topic in a logical, progressive
order, building on information already explained.

Although the tutorial is paced and structured to allow beginners to learn
how to use tar, it is not intended solely for beginners. The tutorial explains
how to use the three most frequently used operations (‘create’, ‘list’, and
‘extract’) as well as two frequently used options (‘file’ and ‘verbose’).
The other chapters do not refer to the tutorial frequently; however, if a sec-
tion discusses something which is a complex variant of a basic concept, there
may be a cross-reference to that basic concept. (The entire book, including
the tutorial, assumes that the reader understands some basic concepts of
using a Unix-type operating system; see Chapter 2 [Tutorial], page 5.)

The third chapter presents the remaining five operations, and information
about using tar options and option syntax.

The other chapters are meant to be used as a reference. Each chapter
presents everything that needs to be said about a specific topic.

One of the chapters (see Chapter 7 [Date input formats|, page 119) ex-
ists in its entirety in other GNU manuals, and is mostly self-contained. In
addition, one section of this manual (see [Standard], page 185) contains a
big quote which is taken directly from tar sources.

In general, we give both long and short (abbreviated) option names at
least once in each section where the relevant option is covered, so that novice
readers will become familiar with both styles. (A few options have no short
versions, and the relevant sections will indicate this.)

1.2 Some Definitions

The tar program is used to create and manipulate tar archives. An archive
is a single file which contains the contents of many files, while still iden-
tifying the names of the files, their owner(s), and so forth. (In addition,

2 GNU tar 1.26

archives record access permissions, user and group, size in bytes, and data
modification time. Some archives also record the file names in each archived
directory, as well as other file and directory information.) You can use tar
to create a new archive in a specified directory.

The files inside an archive are called members. Within this manual, we
use the term file to refer only to files accessible in the normal ways (by 1s,
cat, and so forth), and the term member to refer only to the members of an
archive. Similarly, a file name is the name of a file, as it resides in the file
system, and a member name is the name of an archive member within the
archive.

The term extraction refers to the process of copying an archive member
(or multiple members) into a file in the file system. Extracting all the mem-
bers of an archive is often called extracting the archive. The term unpack
can also be used to refer to the extraction of many or all the members of
an archive. Extracting an archive does not destroy the archive’s structure,
just as creating an archive does not destroy the copies of the files that exist
outside of the archive. You may also list the members in a given archive
(this is often thought of as “printing” them to the standard output, or the
command line), or append members to a pre-existing archive. All of these
operations can be performed using tar.

1.3 What tar Does

The tar program provides the ability to create tar archives, as well as vari-
ous other kinds of manipulation. For example, you can use tar on previously
created archives to extract files, to store additional files, or to update or list
files which were already stored.

Initially, tar archives were used to store files conveniently on magnetic
tape. The name tar comes from this use; it stands for tape archiver. Despite
the utility’s name, tar can direct its output to available devices, files, or
other programs (using pipes). tar may even access remote devices or files
(as archives).

You can use tar archives in many ways. We want to stress a few of them:
storage, backup, and transportation.

Storage Often, tar archives are used to store related files for convenient
file transfer over a network. For example, the GNU Project dis-
tributes its software bundled into tar archives, so that all the
files relating to a particular program (or set of related programs)
can be transferred as a single unit.

A magnetic tape can store several files in sequence. However,
the tape has no names for these files; it only knows their relative
position on the tape. One way to store several files on one
tape and retain their names is by creating a tar archive. Even
when the basic transfer mechanism can keep track of names, as

Chapter 1: Introduction 3

FTP can, the nuisance of handling multiple files, directories, and
multiple links makes tar archives useful.

Archive files are also used for long-term storage. You can think
of this as transportation from the present into the future. (It is a
science-fiction idiom that you can move through time as well as
in space; the idea here is that tar can be used to move archives
in all dimensions, even time!)

Backup Because the archive created by tar is capable of preserving file
information and directory structure, tar is commonly used for
performing full and incremental backups of disks. A backup
puts a collection of files (possibly pertaining to many users and
projects) together on a disk or a tape. This guards against
accidental destruction of the information in those files. GNU tar
has special features that allow it to be used to make incremental
and full dumps of all the files in a file system.

Transportation
You can create an archive on one system, transfer it to another
system, and extract the contents there. This allows you to trans-
port a group of files from one system to another.

1.4 How tar Archives are Named

Conventionally, tar archives are given names ending with ‘.tar’. This is
not necessary for tar to operate properly, but this manual follows that con-

vention in order to accustom readers to it and to make examples more clear.
)

Often, people refer to tar archives as “tar files,” and archive members as
“files” or “entries”. For people familiar with the operation of tar, this causes
no difficulty. However, in this manual, we consistently refer to “archives”
and “archive members” to make learning to use tar easier for novice users.

1.5 GNU tar Authors

GNU tar was originally written by John Gilmore, and modified by many
people. The GNU enhancements were written by Jay Fenlason, then
Joy Kendall, and the whole package has been further maintained by
Thomas Bushnell, n/BSG, Frangois Pinard, Paul Eggert, and finally Sergey
Poznyakoff with the help of numerous and kind users.

We wish to stress that tar is a collective work, and owes much to all
those people who reported problems, offered solutions and other insights,
or shared their thoughts and suggestions. An impressive, yet partial list
of those contributors can be found in the ‘THANKS’ file from the GNU tar
distribution.

Jay Fenlason put together a draft of a GNU tar manual, borrowing notes

from the original man page from John Gilmore. This was withdrawn in
version 1.11. Thomas Bushnell, n/BSG and Amy Gorin worked on a tutorial

4 GNU tar 1.26

and manual for GNU tar. Frangois Pinard put version 1.11.8 of the manual
together by taking information from all these sources and merging them.
Melissa Weisshaus finally edited and redesigned the book to create version
1.12. The book for versions from 1.14 up to 1.26 were edited by the current
maintainer, Sergey Poznyakoff.

For version 1.12, Daniel Hagerty contributed a great deal of technical
consulting. In particular, he is the primary author of Chapter 5 [Backups],
page 79.

In July, 2003 GNU tar was put on CVS at savannah.gnu.org (see http://
savannah . gnu.org/projects/tar), and active development and mainte-
nance work has started again. Currently GNU tar is being maintained by
Paul Eggert, Sergey Poznyakoff and Jeff Bailey.

Support for POSIX archives was added by Sergey Poznyakoff.

1.6 Reporting bugs or suggestions
If you find problems or have suggestions about this program or manual,
please report them to ‘bug-tar@gnu.org’.

When reporting a bug, please be sure to include as much detail as possible,
in order to reproduce it.

http://savannah.gnu.org/projects/tar
http://savannah.gnu.org/projects/tar

Chapter 2: Tutorial Introduction to tar 5

2 Tutorial Introduction to tar

This chapter guides you through some basic examples of three tar opera-
tions: ‘--create’, ‘--1list’, and ‘--extract’. If you already know how to
use some other version of tar, then you may not need to read this chapter.
This chapter omits most complicated details about how tar works.

2.1 Assumptions this Tutorial Makes

This chapter is paced to allow beginners to learn about tar slowly. At the
same time, we will try to cover all the basic aspects of these three operations.
In order to accomplish both of these tasks, we have made certain assumptions
about your knowledge before reading this manual, and the hardware you will
be using:

e Before you start to work through this tutorial, you should understand
what the terms “archive” and “archive member” mean (see Section 1.2
[Definitions], page 1). In addition, you should understand something
about how Unix-type operating systems work, and you should know
how to use some basic utilities. For example, you should know how
to create, list, copy, rename, edit, and delete files and directories; how
to change between directories; and how to figure out where you are in
the file system. You should have some basic understanding of directory
structure and how files are named according to which directory they
are in. You should understand concepts such as standard output and
standard input, what various definitions of the term ‘argument’ mean,
and the differences between relative and absolute file names.

e This manual assumes that you are working from your own home di-
rectory (unless we state otherwise). In this tutorial, you will create a
directory to practice tar commands in. When we show file names, we
will assume that those names are relative to your home directory. For
example, my home directory is ‘/home/fsf/melissa’. All of my exam-
ples are in a subdirectory of the directory named by that file name; the
subdirectory is called ‘practice’.

e In general, we show examples of archives which exist on (or can be
written to, or worked with from) a directory on a hard disk. In most
cases, you could write those archives to, or work with them on any other
device, such as a tape drive. However, some of the later examples in the
tutorial and next chapter will not work on tape drives. Additionally,
working with tapes is much more complicated than working with hard
disks. For these reasons, the tutorial does not cover working with tape
drives. See Chapter 9 [Medial, page 149, for complete information on
using tar archives with tape drives.

6 GNU tar 1.26

2.2 Stylistic Conventions

In the examples, ‘$’ represents a typical shell prompt. It precedes lines you
should type; to make this more clear, those lines are shown in this font,
as opposed to lines which represent the computer’s response; those lines are
shown in this font, or sometimes ‘like this’.

2.3 Basic tar Operations and Options

tar can take a wide variety of arguments which specify and define the actions
it will have on the particular set of files or the archive. The main types of
arguments to tar fall into one of two classes: operations, and options.

Some arguments fall into a class called operations; exactly one of these
is both allowed and required for any instance of using tar; you may not
specify more than one. People sometimes speak of operating modes. You
are in a particular operating mode when you have specified the operation
which specifies it; there are eight operations in total, and thus there are eight
operating modes.

The other arguments fall into the class known as options. You are not
required to specify any options, and you are allowed to specify more than
one at a time (depending on the way you are using tar at that time). Some
options are used so frequently, and are so useful for helping you type com-
mands more carefully that they are effectively “required”. We will discuss
them in this chapter.

You can write most of the tar operations and options in any of three
forms: long (mnemonic) form, short form, and old style. Some of the op-
erations and options have no short or “old” forms; however, the operations
and options which we will cover in this tutorial have corresponding abbrevi-
ations. We will indicate those abbreviations appropriately to get you used
to seeing them. Note, that the “old style” option forms exist in GNU tar
for compatibility with Unix tar. In this book we present a full discussion
of this way of writing options and operations (see Section 3.3.3 [Old Op-
tions|, page 26), and we discuss the other two styles of writing options (See
Section 3.3.1 [Long Options|, page 24, and see Section 3.3.2 [Short Options],
page 25).

In the examples and in the text of this tutorial, we usually use the long
forms of operations and options; but the “short” forms produce the same
result and can make typing long tar commands easier. For example, instead
of typing

tar --create --verbose --file=afiles.tar apple angst aspic
you can type

tar -c¢ -v -f afiles.tar apple angst aspic
or even

tar -cvf afiles.tar apple angst aspic

Chapter 2: Tutorial Introduction to tar 7

For more information on option syntax, see Section 4.2 [Advanced tar],
page 58. In discussions in the text, when we name an option by its long
form, we also give the corresponding short option in parentheses.

The term, “option”, can be confusing at times, since “operations” are
often lumped in with the actual, optional “options” in certain general class
statements. For example, we just talked about “short and long forms of
options and operations”. However, experienced tar users often refer to these
by shorthand terms such as, “short and long options”. This term assumes
that the “operations” are included, also. Context will help you determine
which definition of “options” to use.

Similarly, the term “command” can be confusing, as it is often used in
two different ways. People sometimes refer to tar “commands”. A tar
command is the entire command line of user input which tells tar what
to do — including the operation, options, and any arguments (file names,
pipes, other commands, etc.). However, you will also sometimes hear the
term “the tar command”. When the word “command” is used specifically
like this, a person is usually referring to the tar operation, not the whole
line. Again, use context to figure out which of the meanings the speaker
intends.

2.4 The Three Most Frequently Used Operations

Here are the three most frequently used operations (both short and long
forms), as well as a brief description of their meanings. The rest of this
chapter will cover how to use these operations in detail. We will present the
rest of the operations in the next chapter.

‘——create’

‘—c’ Create a new tar archive.

‘—-list’
‘—t’ List the contents of an archive.

‘——extract’

‘-x’ Extract one or more members from an archive.

2.5 Two Frequently Used Options

To understand how to run tar in the three operating modes listed previously,
you also need to understand how to use two of the options to tar: ‘--file’
(which takes an archive file as an argument) and ‘--verbose’. (You are
usually not required to specify either of these options when you run tar, but
they can be very useful in making things more clear and helping you avoid
errors.)

The ‘--file’ Option

8 GNU tar 1.26

‘--file=archive-name’
‘~f archive-name’
Specify the name of an archive file.

You can specify an argument for the ‘--file=archive-name’ (‘-f

archive-name’) option whenever you use tar; this option determines the
name of the archive file that tar will work on.

If you don’t specify this argument, then tar will examine the environment
variable TAPE. If it is set, its value will be used as the archive name. Other-
wise, tar will use the default archive, determined at compile time. Usually
it is standard output or some physical tape drive attached to your machine
(you can verify what the default is by running tar --show-defaults, see
Section 3.6 [defaults|, page 49). If there is no tape drive attached, or the
default is not meaningful, then tar will print an error message. The error
message might look roughly like one of the following:

tar: can’t open /dev/rmt8 : No such device or address

tar: can’t open /dev/rsmtO : I/0 error
To avoid confusion, we recommend that you always specify an archive file
name by using ‘--file=archive-name’ (‘-f archive-name’) when writing
your tar commands. For more information on using the ‘--file=archive-
name’ (‘-f archive-name’) option, see Section 6.1 [file], page 93.

The ‘--verbose’ Option

‘——verbose’
¢ b

-v Show the files being worked on as tar is running.

‘~-verbose’ (‘-v’) shows details about the results of running tar. This
can be especially useful when the results might not be obvious. For example,
if you want to see the progress of tar as it writes files into the archive, you
can use the ‘--verbose’ option. In the beginning, you may find it useful
to use ‘--verbose’ at all times; when you are more accustomed to tar, you
will likely want to use it at certain times but not at others. We will use
‘--verbose’ at times to help make something clear, and we will give many
examples both using and not using ‘~-verbose’ to show the differences.

Each instance of ‘--verbose’ on the command line increases the verbosity
level by one, so if you need more details on the output, specify it twice.

When reading archives (‘--1ist’, ‘--extract’, ‘--diff’), tar by default
prints only the names of the members being extracted. Using ‘--verbose’
will show a full, 1s style member listing.

In contrast, when writing archives (‘--create’, ‘-—append’, ‘--update’),
tar does not print file names by default. So, a single ‘--verbose’ option
shows the file names being added to the archive, while two ‘--verbose’
options enable the full listing.

For example, to create an archive in verbose mode:

$ tar -cvf afiles.tar apple angst aspic
apple

Chapter 2: Tutorial Introduction to tar 9

angst
aspic
Creating the same archive with the verbosity level 2 could give:
$ tar -cvvf afiles.tar apple angst aspic
-rw-r--r-- gray/staff 62373 2006-06-09 12:06 apple
-ry-r--r-- gray/staff 11481 2006-06-09 12:06 angst
-rw-r--r-- gray/staff 23152 2006-06-09 12:06 aspic
This works equally well using short or long forms of options. Using long
forms, you would simply write out the mnemonic form of the option twice,
like this:
$ tar --create --verbose --verbose ...
Note that you must double the hyphens properly each time.
Later in the tutorial, we will give examples using ‘--verbose --verbose’.
The full output consists of six fields:

e File type and permissions in symbolic form. These are displayed in the
same format as the first column of 1s -1 output (see Section “Verbose
listing” in GNU file utilities).

e Owner name and group separated by a slash character. If these data are
not available (for example, when listing a ‘v7’ format archive), numeric
ID values are printed instead.

e Size of the file, in bytes.
e File modification date in ISO 8601 format.
e Tile modification time.

e File name. If the name contains any special characters (white space,
newlines, etc.) these are displayed in an unambiguous form using so
called quoting style. For the detailed discussion of available styles and
on how to use them, see Section 6.6 [quoting styles|, page 104.

Depending on the file type, the name can be followed by some additional
information, described in the following table:

‘~> link-name’
The file or archive member is a symbolic link and link-name
is the name of file it links to.

‘link to link-name’
The file or archive member is a hard link and link-name is
the name of file it links to.

‘--Long Link--’
The archive member is an old GNU format long link. You
will normally not encounter this.

‘--Long Name--’
The archive member is an old GNU format long name. You
will normally not encounter this.

10 GNU tar 1.26

‘--Volume Header--’
The archive member is a GNU volume header (see
Section 9.6.2 [Tape Files], page 167).

‘-—Continued at byte n--’
Encountered only at the beginning of a multi-volume
archive (see Section 9.6 [Using Multiple Tapes], page 162).
This archive member is a continuation from the previous
volume. The number n gives the offset where the original
file was split.

‘unknown file type ¢’
An archive member of unknown type. c is the type charac-
ter from the archive header. If you encounter such a mes-
sage, it means that either your archive contains proprietary
member types GNU tar is not able to handle, or the archive
is corrupted.

For example, here is an archive listing containing most of the special
suffixes explained above:
V- 0/0 1536 2006-06-09 13:07 MyVolume--Volume Header-

-rw-r--r-- gray/staff 456783 2006-06-09 12:06 aspic--Continued at byte

-rw-r--r-- gray/staff 62373 2006-06-09 12:06 apple

lrwxrwxrwx gray/staff 0 2006-06-09 13:01 angst -> apple
-rw-r--r-- gray/staff 35793 2006-06-09 12:06 blues
hrw-r--r-- gray/staff 0 2006-06-09 12:06 music link to blues

Getting Help: Using the ‘--help’ Option

‘-=help’
The ‘--help’ option to tar prints out a very brief list of all
operations and option available for the current version of tar
available on your system.

2.6 How to Create Archives

(This message will disappear, once this node revised.)

One of the basic operations of tar is ‘--create’ (‘-c¢’), which you use to
create a tar archive. We will explain ‘--create’ first because, in order to
learn about the other operations, you will find it useful to have an archive
available to practice on.

To make this easier, in this section you will first create a directory con-
taining three files. Then, we will show you how to create an archive (inside
the new directory). Both the directory, and the archive are specifically for
you to practice on. The rest of this chapter and the next chapter will show
many examples using this directory and the files you will create: some of
those files may be other directories and other archives.

32456-

Chapter 2: Tutorial Introduction to tar 11

The three files you will archive in this example are called ‘blues’, ‘folk’,
and ‘jazz’. The archive is called ‘collection.tar’.

This section will proceed slowly, detailing how to use ‘--create’ in
verbose mode, and showing examples using both short and long forms.
In the rest of the tutorial, and in the examples in the next chapter, we will
proceed at a slightly quicker pace. This section moves more slowly to allow
beginning users to understand how tar works.

2.6.1 Preparing a Practice Directory for Examples

To follow along with this and future examples, create a new directory called
‘practice’ containing files called ‘blues’, ‘folk’ and ‘jazz’. The files can
contain any information you like: ideally, they should contain information
which relates to their names, and be of different lengths. Our examples
assume that ‘practice’ is a subdirectory of your home directory.

Now cd to the directory named ‘practice’; ‘practice’ is now your work-
ing directory. (Please note: Although the full file name of this directory is
‘/homedir/practice’, in our examples we will refer to this directory as
‘practice’; the homedir is presumed.)

In general, you should check that the files to be archived exist where you
think they do (in the working directory) by running 1s. Because you just
created the directory and the files and have changed to that directory, you
probably don’t need to do that this time.

It is very important to make sure there isn’t already a file in the
working directory with the archive name you intend to use (in this case,
‘collection.tar’), or that you don’t care about its contents. Whenever
you use ‘create’, tar will erase the current contents of the file named by
‘~-file=archive-name’ (‘-f archive-name’) if it exists. tar will not tell
you if you are about to overwrite an archive unless you specify an option
which does this (see Section 4.5 [backup], page 75, for the information on
how to do so). To add files to an existing archive, you need to use a different
option, such as ‘--append’ (‘-r’); see Section 4.2.2 [append], page 59 for
information on how to do this.

2.6.2 Creating the Archive

To place the files ‘blues’, ‘folk’, and ‘jazz’ into an archive named
‘collection.tar’, use the following command:

$ tar --create --file=collection.tar blues folk jazz

The order of the arguments is not very important, when using long option

forms. You could also say:

$ tar blues --create folk --file=collection.tar jazz
However, you can see that this order is harder to understand; this is why
we will list the arguments in the order that makes the commands easiest to
understand (and we encourage you to do the same when you use tar, to
avoid errors).

12 GNU tar 1.26

Note that the sequence ‘-—-file=collection.tar’ is considered to be

one argument. If you substituted any other string of characters for
collection. tar, then that string would become the name of the archive
file you create.

The order of the options becomes more important when you begin to
use short forms. With short forms, if you type commands in the wrong
order (even if you type them correctly in all other ways), you may end up
with results you don’t expect. For this reason, it is a good idea to get into
the habit of typing options in the order that makes inherent sense. See
Section 2.6.4 [short create], page 13, for more information on this.

In this example, you type the command as shown above: ‘--create’is the
operation which creates the new archive (‘collection.tar’), and ‘--file’
is the option which lets you give it the name you chose. The files, ‘blues’,
‘folk’, and ‘jazz’, are now members of the archive, ‘collection.tar’ (they
are file name arguments to the ‘--create’ operation. See Chapter 6 [Choos-
ing], page 93, for the detailed discussion on these.) Now that they are in
the archive, they are called archive members, not files. (see Section 1.2

[Definitions], page 1).

When you create an archive, you must specify which files you want placed
in the archive. If you do not specify any archive members, GNU tar will
complain.

If you now list the contents of the working directory (1s), you will find
the archive file listed as well as the files you saw previously:

blues folk jazz collection.tar

Creating the archive ‘collection.tar’ did not destroy the copies of the files
in the directory.

Keep in mind that if you don’t indicate an operation, tar will not run
and will prompt you for one. If you don’t name any files, tar will complain.
You must have write access to the working directory, or else you will not be
able to create an archive in that directory.

Caution: Do not attempt to use ‘--create’ (‘-c’) to add files to an ex-
isting archive; it will delete the archive and write a new one. Use ‘--append’
(‘-r’) instead. See Section 4.2.2 [append], page 59.

2.6.3 Running ‘--create’ with ‘--verbose’

If you include the ‘--verbose’ (‘-v’) option on the command line, tar will
list the files it is acting on as it is working. In verbose mode, the create
example above would appear as:

$ tar --create --verbose --file=collection.tar blues folk jazz
blues
folk
jazz

Chapter 2: Tutorial Introduction to tar 13

This example is just like the example we showed which did not use
‘~-verbose’, except that tar generated the remaining lines (note the differ-
ent font styles).

In the rest of the examples in this chapter, we will frequently use verbose
mode so we can show actions or tar responses that you would otherwise not
see, and which are important for you to understand.

2.6.4 Short Forms with ‘create’

As we said before, the ‘--create’ (‘-c’) operation is one of the most basic
uses of tar, and you will use it countless times. Eventually, you will probably
want to use abbreviated (or “short”) forms of options. A full discussion
of the three different forms that options can take appears in Section 3.3
[Styles], page 24; for now, here is what the previous example (including the
‘~-verbose’ (‘-v’) option) looks like using short option forms:

$ tar -cvf collection.tar blues folk jazz

blues

folk

jazz
As you can see, the system responds the same no matter whether you use
long or short option forms.

One difference between using short and long option forms is that, al-
though the exact placement of arguments following options is no more spe-
cific when using short forms, it is easier to become confused and make a
mistake when using short forms. For example, suppose you attempted the
above example in the following way:

$ tar -cfv collection.tar blues folk jazz

In this case, tar will make an archive file called ‘v’, containing the files
‘blues’, ‘folk’, and ‘jazz’, because the ‘v’ is the closest “file name” to the
‘~f’ option, and is thus taken to be the chosen archive file name. tar will
try to add a file called ‘collection.tar’ to the ‘v’ archive file; if the file
‘collection.tar’ did not already exist, tar will report an error indicating
that this file does not exist. If the file ‘collection.tar’ does already exist
(e.g., from a previous command you may have run), then tar will add this
file to the archive. Because the ‘v’ option did not get registered, tar will
not run under ‘verbose’ mode, and will not report its progress.

The end result is that you may be quite confused about what happened,
and possibly overwrite a file. To illustrate this further, we will show you
how an example we showed previously would look using short forms.

This example,
$ tar blues --create folk --file=collection.tar jazz

is confusing as it is. When shown using short forms, however, it becomes
much more so:

$ tar blues -c folk -f collection.tar jazz

14 GNU tar 1.26

It would be very easy to put the wrong string of characters immediately
following the ‘-f’, but doing that could sacrifice valuable data.

For this reason, we recommend that you pay very careful attention to
the order of options and placement of file and archive names, especially
when using short option forms. Not having the option name written out
mnemonically can affect how well you remember which option does what,
and therefore where different names have to be placed.

2.6.5 Archiving Directories

You can archive a directory by specifying its directory name as a file name
argument to tar. The files in the directory will be archived relative to the
working directory, and the directory will be re-created along with its contents
when the archive is extracted.

To archive a directory, first move to its superior directory. If you have

followed the previous instructions in this tutorial, you should type:

$cd ..

$
This will put you into the directory which contains ‘practice’; i.e., your
home directory. Once in the superior directory, you can specify the subdi-
rectory, ‘practice’, as a file name argument. To store ‘practice’ in the
new archive file ‘music.tar’, type:

$ tar --create --verbose --file=music.tar practice

tar should output:

practice/

practice/blues

practice/folk

practice/jazz

practice/collection.tar

Note that the archive thus created is not in the subdirectory ‘practice’,
but rather in the current working directory—the directory from which tar
was invoked. Before trying to archive a directory from its superior directory,
you should make sure you have write access to the superior directory itself,
not only the directory you are trying archive with tar. For example, you
will probably not be able to store your home directory in an archive by
invoking tar from the root directory; See Section 6.10.2 [absolute], page 115.
(Note also that ‘collection.tar’, the original archive file, has itself been
archived. tar will accept any file as a file to be archived, regardless of its
content. When ‘music.tar’ is extracted, the archive file ‘collection.tar’
will be re-written into the file system).
If you give tar a command such as

$ tar --create --file=foo.tar .
tar will report ‘tar: ./foo.tar is the archive; not dumped’. This hap-
pens because tar creates the archive ‘foo.tar’ in the current directory be-
fore putting any files into it. Then, when tar attempts to add all the files
in the directory ‘.’ to the archive, it notices that the file ‘. /foo.tar’ is the

Chapter 2: Tutorial Introduction to tar 15

same as the archive ‘foo.tar’, and skips it. (It makes no sense to put an
archive into itself.) GNU tar will continue in this case, and create the archive
normally, except for the exclusion of that one file. (Please note: Other im-
plementations of tar may not be so clever; they will enter an infinite loop
when this happens, so you should not depend on this behavior unless you
are certain you are running GNU tar. In general, it is wise to always place
the archive outside of the directory being dumped.)

2.7 How to List Archives

Frequently, you will find yourself wanting to determine exactly what a par-
ticular archive contains. You can use the ‘-=1ist’ (‘-t’) operation to get the
member names as they currently appear in the archive, as well as various
attributes of the files at the time they were archived. For example, you can
examine the archive ‘collection.tar’ that you created in the last section
with the command,

$ tar --list --file=collection.tar

The output of tar would then be:

blues
folk
jazz

The archive ‘bfiles.tar’ would list as follows:

./birds
baboon
. /box

Be sure to use a ‘--file=archive-name’ (‘-f archive-name’) option just
as with ‘--create’ (‘-c’) to specify the name of the archive.

If you use the ‘--verbose’ (‘-v’) option with ‘--1ist’, then tar will print
out a listing reminiscent of ‘ls -1’, showing owner, file size, and so forth.
This output is described in detail in [verbose member listing], page 9.

)

If you had used ‘--verbose’ (‘-v’) mode, the example above would look
like:

$ tar --list --verbose --file=collection.tar folk
-rw-r--r-- myself/user 62 1990-05-23 10:55 folk

It is important to notice that the output of tar --1ist --verbose does
not necessarily match that produced by tar --create --verbose while cre-
ating the archive. It is because GNU tar, unless told explicitly not to do so,
removes some directory prefixes from file names before storing them in the
archive (See Section 6.10.2 [absolute], page 115, for more information). In
other words, in verbose mode GNU tar shows file names when creating an
archive and member names when listing it. Consider this example:

16 GNU tar 1.26

$ tar --create --verbose --file archive /etc/mail

tar: Removing leading ¢/’ from member names

/etc/mail/

/etc/mail/sendmail.cf

/etc/mail/aliases

$ tar --test --file archive

etc/mail/

etc/mail/sendmail.cf

etc/mail/aliases

This default behavior can sometimes be inconvenient. You can force

GNU tar show member names when creating archive by supplying
‘~-show-stored-names’ option.

‘--show-stored-names’
Print member (as opposed to file) names when creating the
archive.

You can specify one or more individual member names as arguments
when using ‘1ist’. In this case, tar will only list the names of members you
identify. For example, tar --1list --file=afiles.tar apple would only
print ‘apple’.

Because tar preserves file names, these must be specified as they
appear in the archive (i.e., relative to the directory from which the
archive was created). Therefore, it is essential when specifying member
names to tar that you give the exact member names. For example,
tar --1ist --file=bfiles.tar birds would produce an error message
something like ‘tar: birds: Not found in archive’, because there is no
member named ‘birds’, only one named ‘./birds’. While the names
‘birds’ and ‘./birds’ name the same file, member names by default are
compared verbatim.

However, tar --list --file=bfiles.tar baboon would respond with
‘baboon’, because this exact member name is in the archive file ‘bfiles.tar’.
If you are not sure of the exact file name, use globbing patterns, for example:

$ tar --list --file=bfiles.tar --wildcards ’*b*’
will list all members whose name contains ‘b’. See Section 6.5 [wildcards],
page 101, for a detailed discussion of globbing patterns and related tar
command line options.

Listing the Contents of a Stored Directory

To get information about the contents of an archived directory, use the
directory name as a file name argument in conjunction with ‘--1ist’ (‘-t’).
To find out file attributes, include the ‘--verbose’ (‘-v’) option.

For example, to find out about files in the directory ‘practice’; in the
archive file ‘music.tar’, type:

$ tar --list --verbose --file=music.tar practice

tar responds:

Chapter 2: Tutorial Introduction to tar 17

drwxrwxrwx myself/user 0 1990-05-31 21:49 practice/

-rw-r--r-- myself/user 42 1990-05-21 13:29 practice/blues
-rw-r--r-- myself/user 62 1990-05-23 10:55 practice/folk
-rw-r--r-- myself/user 40 1990-05-21 13:30 practice/jazz

-rw-r--r-- myself/user 10240 1990-05-31 21:49 practice/collection.tar

When you use a directory name as a file name argument, tar acts on all
the files (including sub-directories) in that directory.

2.8 How to Extract Members from an Archive

Creating an archive is only half the job—there is no point in storing files in
an archive if you can’t retrieve them. The act of retrieving members from
an archive so they can be used and manipulated as unarchived files again
is called extraction. To extract files from an archive, use the ‘--extract’
(‘--get’ or ‘-x’) operation. As with ‘--create’, specify the name of the
archive with ‘--file’ (‘-f’) option. Extracting an archive does not modify
the archive in any way; you can extract it multiple times if you want or need
to.

Using ‘--extract’, you can extract an entire archive, or specific files. The
files can be directories containing other files, or not. As with ‘--create’
(‘-¢’) and ‘--1ist’ (‘-t’), you may use the short or the long form of the
operation without affecting the performance.

2.8.1 Extracting an Entire Archive

To extract an entire archive, specify the archive file name only, with no
individual file names as arguments. For example,

$ tar -xvf collection.tar

produces this:

-rw-r--r-- me/user 28 1996-10-18 16:31 jazz
-rw-r--r-- me/user 21 1996-09-23 16:44 blues
-rw-r--r-- me/user 20 1996-09-23 16:44 folk

2.8.2 Extracting Specific Files

To extract specific archive members, give their exact member names as argu-
ments, as printed by ‘--1ist’ (‘-t’). If you had mistakenly deleted one of the
files you had placed in the archive ‘collection.tar’ earlier (say, ‘blues’),
you can extract it from the archive without changing the archive’s structure.
Its contents will be identical to the original file ‘blues’ that you deleted.

First, make sure you are in the ‘practice’ directory, and list the files in
the directory. Now, delete the file, ‘blues’, and list the files in the directory
again.

You can now extract the member ‘blues’ from the archive file
‘collection.tar’ like this:

$ tar --extract --file=collection.tar blues

18 GNU tar 1.26

If you list the files in the directory again, you will see that the file ‘blues’
has been restored, with its original permissions, data modification times,
and owner.! (These parameters will be identical to those which the file had
when you originally placed it in the archive; any changes you may have
made before deleting the file from the file system, however, will not have
been made to the archive member.) The archive file, ‘collection.tar’, is
the same as it was before you extracted ‘blues’. You can confirm this by
running tar with ‘--1list’ (‘-t’).

Remember that as with other operations, specifying the exact member
name is important. tar —-extract --file=bfiles.tar birds will fail, be-
cause there is no member named ‘birds’. To extract the member named
‘./birds’, you must specify tar --extract --file=bfiles.tar ./birds.
If you don’t remember the exact member names, use ‘--list’ (‘-t’) op-
tion (see Section 2.7 [list], page 15). You can also extract those mem-
bers that match a specific globbing pattern. For example, to extract from
‘bfiles.tar’ all files that begin with ‘b’, no matter their directory prefix,
you could type:

$ tar -x -f bfiles.tar --wildcards --no-anchored ’b*’

Here, ‘--wildcards’ instructs tar to treat command line arguments as glob-
bing patterns and ‘--no-anchored’ informs it that the patterns apply to
member names after any ‘/’ delimiter. The use of globbing patterns is dis-
cussed in detail in See Section 6.5 [wildcards], page 101.

You can extract a file to standard output by combining the above options
with the ‘--to-stdout’ (‘-0’) option (see [Writing to Standard Output],
page 72).

If you give the ‘--verbose’ option, then ‘--extract’ will print the names
of the archive members as it extracts them.

2.8.3 Extracting Files that are Directories

Extracting directories which are members of an archive is similar to extract-
ing other files. The main difference to be aware of is that if the extracted di-
rectory has the same name as any directory already in the working directory,
then files in the extracted directory will be placed into the directory of the
same name. Likewise, if there are files in the pre-existing directory with the
same names as the members which you extract, the files from the extracted
archive will replace the files already in the working directory (and possible
subdirectories). This will happen regardless of whether or not the files in
the working directory were more recent than those extracted (there exist,
however, special options that alter this behavior see Section 4.4.2 [Writing],
page 68).

! This is only accidentally true, but not in general. Whereas modification times are
always restored, in most cases, one has to be root for restoring the owner, and use a
special option for restoring permissions. Here, it just happens that the restoring user
is also the owner of the archived members, and that the current umask is compatible
with original permissions.

Chapter 2: Tutorial Introduction to tar 19

However, if a file was stored with a directory name as part of its file name,
and that directory does not exist under the working directory when the file
is extracted, tar will create the directory.

We can demonstrate how to use ‘-—extract’ to extract a directory file
with an example. Change to the ‘practice’ directory if you weren’t there,
and remove the files ‘folk’ and ‘jazz’. Then, go back to the parent di-
rectory and extract the archive ‘music.tar’. You may either extract the
entire archive, or you may extract only the files you just deleted. To extract
the entire archive, don’t give any file names as arguments after the archive
name ‘music.tar’. To extract only the files you deleted, use the following
command:

$ tar -xvf music.tar practice/folk practice/jazz

practice/folk

practice/jazz
If you were to specify two ‘--verbose’ (‘-v’) options, tar would have dis-
played more detail about the extracted files, as shown in the example below:

$ tar -xvvf music.tar practice/folk practice/jazz

-rw-r--r-- me/user 28 1996-10-18 16:31 practice/jazz

-rw-r--r-- me/user 20 1996-09-23 16:44 practice/folk
Because you created the directory with ‘practice’ as part of the file names
of each of the files by archiving the ‘practice’ directory as ‘practice’, you
must give ‘practice’ as part of the file names when you extract those files
from the archive.

2.8.4 Extracting Archives from Untrusted Sources

Extracting files from archives can overwrite files that already exist. If you
receive an archive from an untrusted source, you should make a new di-
rectory and extract into that directory, so that you don’t have to worry
about the extraction overwriting one of your existing files. For example, if
‘untrusted.tar’ came from somewhere else on the Internet, and you don’t
necessarily trust its contents, you can extract it as follows:

$ mkdir newdir
$ cd newdir
$ tar -xvf ../untrusted.tar

It is also a good practice to examine contents of the archive before ex-
tracting it, using ‘--1ist’ (‘-t’) option, possibly combined with ‘~-verbose’

(-v).
2.8.5 Commands That Will Fail

Here are some sample commands you might try which will not work, and
why they won’t work.
If you try to use this command,
$ tar -xvf music.tar folk jazz
you will get the following response:
tar: folk: Not found in archive

20 GNU tar 1.26

tar: jazz: Not found in archive
Y

This is because these files were not originally in the parent directory ‘. .’,
where the archive is located; they were in the ‘practice’ directory, and their
file names reflect this:

$ tar -tvf music.tar

practice/blues

practice/folk

practice/jazz
Likewise, if you try to use this command,

$ tar -tvf music.tar folk jazz
you would get a similar response. Members with those names are not in the
archive. You must use the correct member names, or wildcards, in order to
extract the files from the archive.

If you have forgotten the correct names of the files in the archive, use

tar —-1ist --verbose to list them correctly.

2.9 Going Further Ahead in this Manual

(This message will disappear, once this node revised.)

Chapter 3: Invoking GNU tar 21

3 Invoking GNU tar

This chapter is about how one invokes the GNU tar command, from the
command synopsis (see Section 3.1 [Synopsis|, page 21). There are numerous
options, and many styles for writing them. One mandatory option specifies
the operation tar should perform (see Section 3.4.1 [Operation Summary],
page 28), other options are meant to detail how this operation should be
performed (see Section 3.4.2 [Option Summary], page 29). Non-option ar-
guments are not always interpreted the same way, depending on what the
operation is.

You will find in this chapter everything about option styles and rules
for writing them (see Section 3.3 [Styles|, page 24). On the other hand,
operations and options are fully described elsewhere, in other chapters. Here,
you will find only synthetic descriptions for operations and options, together
with pointers to other parts of the tar manual.

Some options are so special they are fully described right in this chapter.
They have the effect of inhibiting the normal operation of tar or else, they
globally alter the amount of feedback the user receives about what is going
on. These are the ‘--help’ and ‘--version’ (see Section 3.5 [help], page 47),
‘~-verbose’ (see Section 3.7 [verbose|, page 49) and ‘--interactive’ op-
tions (see Section 3.10 [interactive], page 56).

3.1 General Synopsis of tar

The GNU tar program is invoked as either one of:

tar option... [name]...
tar letter... [argument]... [option]... [name]...

The second form is for when old options are being used.

You can use tar to store files in an archive, to extract them from an
archive, and to do other types of archive manipulation. The primary argu-
ment to tar, which is called the operation, specifies which action to take.
The other arguments to tar are either options, which change the way tar
performs an operation, or file names or archive members, which specify the
files or members tar is to act on.

You can actually type in arguments in any order, even if in this manual
the options always precede the other arguments, to make examples easier to
understand. Further, the option stating the main operation mode (the tar
main command) is usually given first.

FEach name in the synopsis above is interpreted as an archive mem-
ber name when the main command is one of ‘--compare’ (‘--diff’, ‘-d’),
‘--delete’, ‘-—extract’ (‘--get’, ‘-x’), ‘--1list’ (‘-t’) or ‘--update’ (‘-u’).
When naming archive members, you must give the exact name of the mem-
ber in the archive, as it is printed by ‘--1ist’. For ‘--append’ (‘-r’) and
‘~-create’ (‘-c’), these name arguments specify the names of either files or

22 GNU tar 1.26

directory hierarchies to place in the archive. These files or hierarchies should
already exist in the file system, prior to the execution of the tar command.

tar interprets relative file names as being relative to the working di-
rectory. tar will make all file names relative (by removing leading slashes
when archiving or restoring files), unless you specify otherwise (using the
‘~-absolute-names’ option). See Section 6.10.2 [absolute], page 115, for
more information about ‘--absolute-names’.

If you give the name of a directory as either a file name or a member
name, then tar acts recursively on all the files and directories beneath that
directory. For example, the name ‘/’ identifies all the files in the file system
to tar.

The distinction between file names and archive member names is espe-
cially important when shell globbing is used, and sometimes a source of
confusion for newcomers. See Section 6.5 [wildcards|, page 101, for more
information about globbing. The problem is that shells may only glob using
existing files in the file system. Only tar itself may glob on archive mem-
bers, so when needed, you must ensure that wildcard characters reach tar
without being interpreted by the shell first. Using a backslash before ‘*’ or
“?’, or putting the whole argument between quotes, is usually sufficient for
this.

Even if names are often specified on the command line, they can also be
read from a text file in the file system, using the ‘--files-from=file-of-
names’ (‘-T file-of-names’) option.

If you don’t use any file name arguments, ‘--append’ (‘-r’), ‘--delete’
and ‘--concatenate’ (‘--catenate’, ‘-A’) will do nothing, while ‘~-create’
(‘=c’) will usually yield a diagnostic and inhibit tar execution. The other
operations of tar (‘--1list’, ‘-—extract’, ‘--compare’, and ‘--update’) will
act on the entire contents of the archive.

4

Besides successful exits, GNU tar may fail for many reasons. Some rea-
sons correspond to bad usage, that is, when the tar command line is improp-
erly written. Errors may be encountered later, while processing the archive
or the files. Some errors are recoverable, in which case the failure is delayed
until tar has completed all its work. Some errors are such that it would be
not meaningful, or at least risky, to continue processing: tar then aborts
processing immediately. All abnormal exits, whether immediate or delayed,
should always be clearly diagnosed on stderr, after a line stating the nature
of the error.

Possible exit codes of GNU tar are summarized in the following table:

0 ‘Successful termination’.
1 ‘Some files differ’. If tar was invoked with ‘--compare’
(‘-=diff’, ‘-d’) command line option, this means that some

files in the archive differ from their disk counterparts (see
Section 4.2.6 [compare], page 65). If tar was given ‘--create’,
‘-—append’ or ‘--update’ option, this exit code means that some

Chapter 3: Invoking GNU tar 23

files were changed while being archived and so the resulting
archive does not contain the exact copy of the file set.

2 ‘Fatal error’. This means that some fatal, unrecoverable error
occurred.

If tar has invoked a subprocess and that subprocess exited with a nonzero
exit code, tar exits with that code as well. This can happen, for example, if
tar was given some compression option (see Section 8.1.1 [gzip|, page 128)
and the external compressor program failed. Another example is rmt failure
during backup to the remote device (see Section 9.2 [Remote Tape Server],
page 151).

3.2 Using tar Options

GNU tar has a total of eight operating modes which allow you to perform a
variety of tasks. You are required to choose one operating mode each time
you employ the tar program by specifying one, and only one operation as
an argument to the tar command (the corresponding options may be found
at Section 2.4 [frequent operations]|, page 7 and Section 4.2.1 [Operations],
page 58). Depending on circumstances, you may also wish to customize how
the chosen operating mode behaves. For example, you may wish to change
the way the output looks, or the format of the files that you wish to archive
may require you to do something special in order to make the archive look
right.

You can customize and control tar’s performance by running tar with
one or more options (such as ‘--verbose’ (‘-v’), which we used in the tuto-
rial). As we said in the tutorial, options are arguments to tar which are (as
their name suggests) optional. Depending on the operating mode, you may
specify one or more options. Different options will have different effects, but
in general they all change details of the operation, such as archive format,
archive name, or level of user interaction. Some options make sense with all
operating modes, while others are meaningful only with particular modes.
You will likely use some options frequently, while you will only use others
infrequently, or not at all. (A full list of options is available in see Section 3.4
[All Options|, page 28.)

The TAR_OPTIONS environment variable specifies default options to
be placed in front of any explicit options. For example, if TAR_OPTIONS
is ‘-v ——unlink-first’, tar behaves as if the two options ‘-v’ and
‘-—unlink-first’ had been specified before any explicit options. Option
specifications are separated by whitespace. A backslash escapes the next
character, so it can be used to specify an option containing whitespace or a
backslash.

Note that tar options are case sensitive. For example, the options ‘-T’
and ‘-t’ are different; the first requires an argument for stating the name of a
file providing a list of names, while the second does not require an argument
and is another way to write ‘--1list’ (‘-t’).

24 GNU tar 1.26

In addition to the eight operations, there are many options to tar, and
three different styles for writing both: long (mnemonic) form, short form,
and old style. These styles are discussed below. Both the options and the
operations can be written in any of these three styles.

3.3 The Three Option Styles

There are three styles for writing operations and options to the command
line invoking tar. The different styles were developed at different times
during the history of tar. These styles will be presented below, from the
most recent to the oldest.

Some options must take an argument!. Where you place the arguments
generally depends on which style of options you choose. We will detail spe-
cific information relevant to each option style in the sections on the different
option styles, below. The differences are subtle, yet can often be very im-
portant; incorrect option placement can cause you to overwrite a number
of important files. We urge you to note these differences, and only use the
option style(s) which makes the most sense to you until you feel comfortable
with the others.

Some options may take an argument. Such options may have at most
long and short forms, they do not have old style equivalent. The rules for
specifying an argument for such options are stricter than those for specifying
mandatory arguments. Please, pay special attention to them.

3.3.1 Long Option Style

Each option has at least one long (or mnemonic) name starting with two
dashes in a row, e.g., ‘--1list’. The long names are more clear than their
corresponding short or old names. It sometimes happens that a single long
option has many different names which are synonymous, such as ‘--compare’
and ‘--diff’. In addition, long option names can be given unique abbrevia-
tions. For example, ‘--cre’ can be used in place of ‘--create’ because there
is no other long option which begins with ‘cre’. (One way to find this out
is by trying it and seeing what happens; if a particular abbreviation could
represent more than one option, tar will tell you that that abbreviation is
ambiguous and you’ll know that that abbreviation won’t work. You may also
choose to run ‘tar --help’ to see a list of options. Be aware that if you run
tar with a unique abbreviation for the long name of an option you didn’t
want to use, you are stuck; tar will perform the command as ordered.)

Long options are meant to be obvious and easy to remember, and their
meanings are generally easier to discern than those of their corresponding
short options (see below). For example:

! For example, ‘--file’ (‘-f’) takes the name of an archive file as an argument. If you
do not supply an archive file name, tar will use a default, but this can be confusing;
thus, we recommend that you always supply a specific archive file name.

Chapter 3: Invoking GNU tar 25

$ tar --create --verbose --blocking-factor=20 --file=/dev/rmt0

gives a fairly good set of hints about what the command does, even for those
not fully acquainted with tar.

Long options which require arguments take those arguments immediately
following the option name. There are two ways of specifying a mandatory ar-
gument. It can be separated from the option name either by an equal sign, or
by any amount of white space characters. For example, the ‘--file’ option
(which tells the name of the tar archive) is given a file such as ‘archive.tar’
as argument by using any of the following notations: ‘--file=archive.tar’
or ‘--file archive.tar’.

In contrast, optional arguments must always be introduced using an equal
sign. For example, the ‘--backup’ option takes an optional argument speci-
fying backup type. It must be used as ‘--backup=backup-type’.

3.3.2 Short Option Style

Most options also have a short option name. Short options start with a
single dash, and are followed by a single character, e.g., ‘-t’ (which is equiv-
alent to ‘--1ist’). The forms are absolutely identical in function; they are
interchangeable.

The short option names are faster to type than long option names.

Short options which require arguments take their arguments immediately
following the option, usually separated by white space. It is also possible to
stick the argument right after the short option name, using no intervening
space. For example, you might write ‘-f archive.tar’ or ‘-farchive.tar’
instead of using ‘--file=archive.tar’. Both ‘-~-file=archive-name’ and
‘~f archive-name’ denote the option which indicates a specific archive, here
named ‘archive.tar’.

Short options which take optional arguments take their arguments im-
mediately following the option letter, without any intervening white space
characters.

Short options’ letters may be clumped together, but you are not required
to do this (as compared to old options; see below). When short options are
clumped as a set, use one (single) dash for them all, e.g., ‘tar -cvf’. Only
the last option in such a set is allowed to have an argument?.

When the options are separated, the argument for each option which
requires an argument directly follows that option, as is usual for Unix pro-
grams. For example:

$ tar -¢ -v -b 20 -f /dev/rmt0

If you reorder short options’ locations, be sure to move any arguments
that belong to them. If you do not move the arguments properly, you may
end up overwriting files.

2 Clustering many options, the last of which has an argument, is a rather opaque way to
write options. Some wonder if GNU getopt should not even be made helpful enough
for considering such usages as invalid.

26 GNU tar 1.26

3.3.3 0Old Option Style

Like short options, old options are single letters. However, old options must
be written together as a single clumped set, without spaces separating them
or dashes preceding them?. This set of letters must be the first to appear on
the command line, after the tar program name and some white space; old
options cannot appear anywhere else. The letter of an old option is exactly
the same letter as the corresponding short option. For example, the old
option ‘t’ is the same as the short option ‘-t’, and consequently, the same
as the long option ‘--1ist’. So for example, the command ‘tar cv’ specifies
the option ‘-v’ in addition to the operation ‘-c’.

When options that need arguments are given together with the command,
all the associated arguments follow, in the same order as the options. Thus,
the example given previously could also be written in the old style as follows:

$ tar cvbf 20 /dev/rmtO
Here, ‘20’ is the argument of ‘-b’ and ‘/dev/rmt0’ is the argument of ‘-f’.

On the other hand, this old style syntax makes it difficult to match
option letters with their corresponding arguments, and is often confus-
ing. In the command ‘tar cvbf 20 /dev/rmt0’, for example, ‘20’ is the
argument for ‘-b’, ‘/dev/rmt0’ is the argument for ‘-f’, and ‘-v’ does
not have a corresponding argument. Even using short options like in
‘tar -¢ -v -b 20 -f /dev/rmt0’ is clearer, putting all arguments next to
the option they pertain to.

If you want to reorder the letters in the old option argument, be sure to
reorder any corresponding argument appropriately.

This old way of writing tar options can surprise even experienced users.
For example, the two commands:

tar cfz archive.tar.gz file

tar -cfz archive.tar.gz file
are quite different. The first example uses ‘archive.tar.gz’ as the value
for option ‘f’ and recognizes the option ‘z’. The second example, however,
uses ‘z’ as the value for option ‘f> — probably not what was intended.

Old options are kept for compatibility with old versions of tar.

This second example could be corrected in many ways, among which the
following are equivalent:
tar -czf archive.tar.gz file
tar -cf archive.tar.gz -z file
tar cf archive.tar.gz -z file
As far as we know, all tar programs, GNU and non-GNU, support old
options. GNU tar supports them not only for historical reasons, but also
because many people are used to them. For compatibility with Unix tar, the
first argument is always treated as containing command and option letters

3 Beware that if you precede options with a dash, you are announcing the short option
style instead of the old option style; short options are decoded differently.

Chapter 3: Invoking GNU tar 27

)

even if it doesn’t start with ‘=’. Thus, ‘tar ¢’ is equivalent to ‘tar -c’: both
of them specify the ‘--create’ (‘-c¢’) command to create an archive.

3.3.4 Mixing Option Styles

All three styles may be intermixed in a single tar command, so long as
the rules for each style are fully respected?. Old style options and either of
the modern styles of options may be mixed within a single tar command.
However, old style options must be introduced as the first arguments only,
following the rule for old options (old options must appear directly after the
tar command and some white space). Modern options may be given only
after all arguments to the old options have been collected. If this rule is not
respected, a modern option might be falsely interpreted as the value of the
argument to one of the old style options.

For example, all the following commands are wholly equivalent, and il-
lustrate the many combinations and orderings of option styles.

tar --create --file=archive.tar
tar —--create -f archive.tar
tar --create -farchive.tar
tar --file=archive.tar --create
tar --file=archive.tar -c
tar -c --file=archive.tar
tar -c¢ -f archive.tar

tar -c -farchive.tar

tar -cf archive.tar

tar -cfarchive.tar

tar -f archive.tar —--create
tar -f archive.tar -c

tar -farchive.tar --create
tar -farchive.tar -c

tar ¢ --file=archive.tar
tar ¢ -f archive.tar

tar ¢ -farchive.tar

tar cf archive.tar

tar f archive.tar --create
tar f archive.tar -c

tar fc archive.tar

On the other hand, the following commands are mot equivalent to the

previous set:

tar -f -c archive.tar

tar -fc archive.tar

tar -fcarchive.tar

tar -farchive.tarc

tar cfarchive.tar
These last examples mean something completely different from what the
user intended (judging based on the example in the previous set which uses

4 Before GNU tar version 1.11.6, a bug prevented intermixing old style options with long
options in some cases.

28 GNU tar 1.26

long options, whose intent is therefore very clear). The first four specify
that the tar archive would be a file named ‘-c’, ‘c’, ‘carchive.tar’ or
‘archive.tarc’, respectively. The first two examples also specify a single
non-option, name argument having the value ‘archive.tar’. The last ex-
ample contains only old style option letters (repeating option ‘c’ twice), not

all of which are meaningful (eg., ‘.’, ‘h’; or ‘i’), with no argument value.

3.4 All tar Options

The coming manual sections contain an alphabetical listing of all tar op-
erations and options, with brief descriptions and cross-references to more
in-depth explanations in the body of the manual. They also contain an
alphabetically arranged table of the short option forms with their corre-
sponding long option. You can use this table as a reference for deciphering
tar commands in scripts.

3.4.1 Operations

‘~—append’

.
Appends files to the end of the archive. See Section 4.2.2 [ap-
pend], page 59.

‘--catenate’

6_A7
Same as ‘--concatenate’. See Section 4.2.4 [concatenate],
page 63.

‘~-compare’

4_d7
Compares archive members with their counterparts in the file
system, and reports differences in file size, mode, owner, modifi-
cation date and contents. See Section 4.2.6 [compare], page 65.

‘--concatenate’

6_A7
Appends other tar archives to the end of the archive. See
Section 4.2.4 [concatenate], page 63.

‘~-—create’

e
Creates a new tar archive. See Section 2.6 [create], page 10.

‘--delete’
Deletes members from the archive. Don’t try this on an archive
on a tape! See Section 4.2.5 [delete|, page 64.

‘=—diff’

‘—q’

Chapter 3: Invoking GNU tar 29

Same ‘--compare’. See Section 4.2.6 [compare], page 65.

‘-—extract’

—x
Extracts members from the archive into the file system. See
Section 2.8 [extract], page 17.

C__get7
‘—x’

Same as ‘-—extract’. See Section 2.8 [extract|, page 17.
‘—-list’
‘g

Lists the members in an archive. See Section 2.7 [list], page 15.
‘~—update’
—w’

Adds files to the end of the archive, but only if they are newer
than their counterparts already in the archive, or if they do not
already exist in the archive. See Section 4.2.3 [update], page 62.

3.4.2 tar Options

‘--absolute-names’
3)
-P
Normally when creating an archive, tar strips an initial ¢/’

from member names. This option disables that behavior. See
Section 6.10.2 [absolute], page 115.

‘-—after-date’
(See ‘-—newer’, see Section 6.8 [after], page 111)

‘~—anchored’
A pattern must match an initial subsequence of the name’s com-
ponents. See [controlling pattern-matching], page 102.

‘-—atime-preserve’

‘-—atime-preserve=replace’

‘-—atime-preserve=system’
Attempt to preserve the access time of files when reading them.
This option currently is effective only on files that you own,
unless you have superuser privileges.

‘-—atime-preserve=replace’ remembers the access time of a
file before reading it, and then restores the access time after-
wards. This may cause problems if other programs are reading
the file at the same time, as the times of their accesses will be
lost. On most platforms restoring the access time also requires
tar to restore the data modification time too, so this option may

30

GNU tar 1.26

also cause problems if other programs are writing the file at the
same time (tar attempts to detect this situation, but cannot do
so reliably due to race conditions). Worse, on most platforms
restoring the access time also updates the status change time,
which means that this option is incompatible with incremental
backups.

‘-—atime-preserve=system’ avoids changing time stamps on
files, without interfering with time stamp updates caused by
other programs, so it works better with incremental backups.
However, it requires a special 0_NOATIME option from the un-
derlying operating and file system implementation, and it also
requires that searching directories does not update their access
times. As of this writing (November 2005) this works only with
Linux, and only with Linux kernels 2.6.8 and later. Worse, there
is currently no reliable way to know whether this feature actually
works. Sometimes tar knows that it does not work, and if you
use ‘--atime-preserve=system’ then tar complains and exits
right away. But other times tar might think that the option
works when it actually does not.

Currently ‘--atime-preserve’ with no operand defaults to

‘-—atime-preserve=replace’, but this may change in the fu-
ture as support for ‘-—atime-preserve=system’ improves.

If your operating or file system does mnot support
‘-—atime-preserve=system’, you might be able to pre-
serve access times reliably by using the mount command. For
example, you can mount the file system read-only, or access
the file system via a read-only loopback mount, or use the
‘noatime’ mount option available on some systems. However,
mounting typically requires superuser privileges and can be a
pain to manage.

‘-—auto-compress’

4

—a

During a ‘--create’ operation, enables automatic compressed

format recognition based on the archive suffix. The effect of this
option is cancelled by ‘--no-auto-compress’. See Section 8.1.1

[gzip], page 128.

‘-—backup=backup-type’

Rather than deleting files from the file system, tar will back
them up using simple or numbered backups, depending upon
backup-type. See Section 4.5 [backup|, page 75.

‘——block-number’

‘R’

Chapter 3: Invoking GNU tar 31

With this option present, tar prints error messages for read
errors with the block number in the archive file. See [block-
number], page 51.

‘-—blocking-factor=blocking’
‘~b blocking’
Sets the blocking factor tar uses to blocking x 512 bytes per
record. See Section 9.4.2 [Blocking Factor|, page 155.
‘-=bzip2’
4_j7
This option tells tar to read or write archives through bzip2.
See Section 8.1.1 [gzip|, page 128.

‘-—check-device’
Check device numbers when creating a list of modified files for
incremental archiving. This is the default. See [device numbers],
page 81, for a detailed description.

‘~—checkpoint [=number]’

This option directs tar to print periodic checkpoint messages as
it reads through the archive. It is intended for when you want
a visual indication that tar is still running, but don’t want to
see ‘--verbose’ output. You can also instruct tar to execute a
list of actions on each checkpoint, see ‘--checkpoint-action’
below. For a detailed description, see Section 3.8 [checkpoints],
page 52.

‘~—checkpoint-action=action’
Instruct tar to execute an action upon hitting a breakpoint.
Here we give only a brief outline. See Section 3.8 [checkpoints],
page 52, for a complete description.

The action argument can be one of the following:
bell Produce an audible bell on the console.

dot
Print a single dot on the standard listing stream.

echo Display a textual message on the standard error,
with the status and number of the checkpoint. This
is the default.

echo=string
Display string on the standard error. Before output,
the string is subject to meta-character expansion.

exec=command

Execute the given command.
sleep=time

Wait for time seconds.

32

GNU tar 1.26

ttyout=string

Output string on the current console (‘/dev/tty’).
Several ‘--checkpoint-action’ options can be specified. The
supplied actions will be executed in order of their appearance in
the command line.

Using ‘~-checkpoint-action’ without ‘--~checkpoint’ assumes
default checkpoint frequency of one checkpoint per 10 records.

‘——check-1links’

-1 If this option was given, tar will check the number of links
dumped for each processed file. If this number does not match
the total number of hard links for the file, a warning message
will be output®.

See Section 8.3.3 [hard links|, page 137.

‘~-—compress’

‘~—uncompress’

4_Z7
tar will use the compress program when reading or writing the
archive. This allows you to directly act on archives while saving
space. See Section 8.1.1 [gzip|, page 128.

‘~—confirmation’

(See ‘--interactive’.) See Section 3.10 [interactive], page 56.

‘-—delay-directory-restore’

Delay setting modification times and permissions of extracted
directories until the end of extraction. See [Directory Modifica-
tion Times and Permissions], page 71.

‘——dereference’

6_h7

When reading or writing a file to be archived, tar accesses the
file that a symbolic link points to, rather than the symlink itself.
See Section 8.3.2 [dereference|, page 136.

‘-—directory=dir’

‘—C dir’

When this option is specified, tar will change its current di-
rectory to dir before performing any operations. When this
option is used during archive creation, it is order sensitive. See
Section 6.10.1 [directory], page 114.

‘~—exclude=pattern’

When performing operations, tar will skip files that match pat-
tern. See Section 6.4 [exclude], page 98.

5 Earlier versions of GNU tar understood ‘-1’ as a synonym for

‘-—one-file-system’.

The current semantics, which complies to UNIX98, was introduced with version
1.15.91. See Appendix A [Changes], page 177, for more information.

Chapter 3: Invoking GNU tar 33

‘-—exclude-backups’
Exclude backup and lock files. See Section 6.4 [exclude-backups],
page 98.

‘~—exclude-from=file’
‘-X file’
Similar to ‘-—exclude’, except tar will use the list of patterns

in the file file. See Section 6.4 [exclude], page 98.

‘-—exclude-caches’
Exclude from dump any directory containing a valid cache di-
rectory tag file, but still dump the directory node and the tag
file itself.

See Section 6.4 [exclude-caches|, page 98.

‘--exclude-caches-under’
Exclude from dump any directory containing a valid cache di-
rectory tag file, but still dump the directory node itself.

See Section 6.4 [exclude], page 98.

‘~—exclude-caches-all’
Exclude from dump any directory containing a valid cache di-
rectory tag file. See Section 6.4 [exclude], page 98.

‘-—exclude-tag=file’
Exclude from dump any directory containing file named file, but
dump the directory node and file itself. See Section 6.4 [exclude-
tag], page 98.

‘-—exclude-tag-under=file’
Exclude from dump the contents of any directory containing file
named file, but dump the directory node itself. See Section 6.4
[exclude-tag-under], page 98.

‘-—exclude-tag-all=file’
Exclude from dump any directory containing file named file. See
Section 6.4 [exclude-tag-all], page 98.

‘--exclude-vcs’
Exclude from dump directories and files, that are internal for
some widely used version control systems.

See Section 6.4 [exclude-vcs], page 98.

‘~-file=archive’

‘-f archive’
tar will use the file archive as the tar archive it performs oper-
ations on, rather than tar’s compilation dependent default. See
[file tutorial], page 7.

‘——files-from=file’
‘T file’

34 GNU tar 1.26

tar will use the contents of file as a list of archive members
or files to operate on, in addition to those specified on the
command-line. See Section 6.3 [files|, page 95.

‘-—force-local’
Forces tar to interpret the file name given to ‘--file’ as a local
file, even if it looks like a remote tape drive name. See [local
and remote archives|, page 94.

‘——format=format’

‘-H format’

Selects output archive format. Format may be one of the fol-

lowing:

v7’ Creates an archive that is compatible with Unix V7
tar.

‘oldgnu’ Creates an archive that is compatible with GNU tar
version 1.12 or earlier.

‘gnu’ Creates archive in GNU tar 1.13 format. Basically
it is the same as ‘oldgnu’ with the only difference
in the way it handles long numeric fields.

‘ustar’ Creates a POSIX.1-1988 compatible archive.

‘posix’ Creates a POSIX.1-2001 archive.

See Chapter 8 [Formats|, page 127, for a detailed discussion of

these formats.

‘——full-time’

This option instructs tar to print file times to their full resolu-
tion. Usually this means 1-second resolution, but that depends
on the underlying file system. The ‘--full-time’ option takes
effect only when detailed output (verbosity level 2 or higher) has
been requested using the ‘--verbose’ option, e.g., when listing
or extracting archives:

$ tar -t -v --full-time -f archive.tar

or, when creating an archive:

$ tar -c¢ -vv --full-time -f archive.tar .

Notice, thar when creating the archive you need to specify
‘~-verbose’ twice to get a detailed output (see [verbose tuto-
rial], page 8).

‘—-—group=group’
Files added to the tar archive will have a group ID of group,
rather than the group from the source file. group is first decoded
as a group symbolic name, but if this interpretation fails, it has
to be a decimal numeric group ID. See Section 4.3.1 [override],
page 65.

Chapter 3: Invoking GNU tar 35

Also see the comments for the ‘--owner=user’ option.

‘__gZip’
‘--gunzip’
‘-—ungzip’

‘_g

This option tells tar to read or write archives through gzip,

allowing tar to directly operate on several kinds of compressed
archives transparently. See Section 8.1.1 [gzip|, page 128.

‘~~hard-dereference’
When creating an archive, dereference hard links and store the
files they refer to, instead of creating usual hard link members.

See Section 8.3.3 [hard links|, page 137.

‘~=help’
)

tar will print out a short message summarizing the operations
and options to tar and exit. See Section 3.5 [help|, page 47.

‘-—ignore-case’
Ignore case when matching member or file names with patterns.
See [controlling pattern-matching], page 102.

‘-—ignore-command-error’
Ignore exit codes of subprocesses. See [Writing to an External
Program]|, page 72.

‘-—ignore-failed-read’
Do not exit unsuccessfully merely because an unreadable file was
encountered. See Section 4.4.1 [Reading], page 67.

‘-—ignore-zeros’
3 *

-1
With this option, tar will ignore zeroed blocks in the archive,
which normally signals EOF. See Section 4.4.1 [Reading],
page 67.

‘~-—incremental’

6_G7

Informs tar that it is working with an old GNU-format incremen-
tal backup archive. It is intended primarily for backwards com-
patibility only. See Section 5.2 [Incremental Dumps], page 80,
for a detailed discussion of incremental archives.

‘~—index-file=file’
Send verbose output to file instead of to standard output.

36

GNU tar 1.26

‘-—info-script=script-file’
‘-—new-volume-script=script-file’
‘-F script-file’

When tar is performing multi-tape backups, script-file is run
at the end of each tape. If script-file exits with nonzero status,
tar fails immediately. See [info-script], page 164, for a detailed
discussion of script-file.

‘——interactive’
‘——confirmation’

[

Specifies that tar should ask the user for confirmation before
performing potentially destructive options, such as overwriting
files. See Section 3.10 [interactive], page 56.

‘-—keep-newer-files’

Do not replace existing files that are newer than their archive
copies when extracting files from an archive.

‘~-keep-old-files’

4_k7

Do not overwrite existing files when extracting files from an
archive. See [Keep Old Files|, page 69.

‘——label=name’

‘-V name’

‘—-level=n’

When creating an archive, instructs tar to write name as a
name record in the archive. When extracting or listing archives,
tar will only operate on archives that have a label matching
the pattern specified in name. See Section 9.6.2 [Tape Files],
page 167.

Force incremental backup of level n. As of GNU tar version 1.26,
the option ‘--1level=0’ truncates the snapshot file, thereby forc-
ing the level 0 dump. Other values of n are effectively ignored.
See [-level=0], page 81, for details and examples.

The use of this option is valid only in conjunction with the
‘--listed-incremental’ option. See Section 5.2 [Incremental
Dumps|, page 80, for a detailed description.

‘--listed-incremental=snapshot-file’
‘-g snapshot-file’

During a ‘--create’ operation, specifies that the archive that
tar creates is a new GNU-format incremental backup, using
snapshot-file to determine which files to backup. With other
operations, informs tar that the archive is in incremental for-
mat. See Section 5.2 [Incremental Dumps|, page 80.

Chapter 3:

‘==1zip’

‘——1zma’

‘==1zop’

Invoking GNU tar 37

This option tells tar to read or write archives through 1zip.
See Section 8.1.1 [gzip|, page 128.

This option tells tar to read or write archives through lzma.
See Section 8.1.1 [gzip|, page 128.

This option tells tar to read or write archives through lzop.
See Section 8.1.1 [gzip|, page 128.

‘-—-mode=permissions’

When adding files to an archive, tar will use permissions for
the archive members, rather than the permissions from the files.
permissions can be specified either as an octal number or as sym-
bolic permissions, like with chmod. See Section 4.3.1 [override],
page 65.

‘——mtime=date’

When adding files to an archive, tar will use date as the modifi-
cation time of members when creating archives, instead of their
actual modification times. The value of date can be either a
textual date representation (see Chapter 7 [Date input formats,
page 119) or a name of the existing file, starting with ‘/” or “.".
In the latter case, the modification time of that file is used. See
Section 4.3.1 [override], page 65.

‘——multi-volume’

M

Informs tar that it should create or otherwise operate on a
multi-volume tar archive. See Section 9.6 [Using Multiple
Tapes|, page 162.

‘-—new-volume-script’

(see ‘--info-script’)

‘——newer=date’
‘——after-date=date’

N

When creating an archive, tar will only add files that have
changed since date. If date begins with ‘/’ or ‘.’, it is taken
to be the name of a file whose data modification time specifies

the date. See Section 6.8 [after]|, page 111.

‘——newer-mtime=date’

Like ‘--newer’, but add only files whose contents have changed
(as opposed to just ‘--newer’, which will also back up files for
which any status information has changed). See Section 6.8
[after], page 111.

38 GNU tar 1.26

‘-—no-anchored’
An exclude pattern can match any subsequence of the name’s
components. See [controlling pattern-matching], page 102.

‘-—no-auto-compress’
Disables automatic compressed format recognition based on the
archive suffix. See [-auto-compress], page 30. See Section 8.1.1

[gzip|, page 128.

‘~-no-check-device’
Do not check device numbers when creating a list of modified
files for incremental archiving. See [device numbers|, page 81,
for a detailed description.

‘-—no-delay-directory-restore’
Modification times and permissions of extracted directories are
set when all files from this directory have been extracted. This
is the default. See [Directory Modification Times and Permis-
sions|, page 71.

‘-—no-ignore-case’
Use case-sensitive matching. See [controlling pattern-matching],
page 102.

‘-—no-ignore-command-error’
Print warnings about subprocesses that terminated with a
nonzero exit code. See [Writing to an External Program],
page 72.

‘--no-null’
If the ‘~-null’ option was given previously, this option cancels
its effect, so that any following ‘--files-from’ options will ex-
pect their file lists to be newline-terminated.

‘--no-overwrite-dir’
Preserve metadata of existing directories when extracting files
from an archive. See [Overwrite Old Files|, page 69.

‘-—no-quote-chars=string’
Remove characters listed in string from the list of quoted charac-
ters set by the previous ‘--quote-chars’ option (see Section 6.6
[quoting styles], page 104).

‘~-no-recursion’
With this option, tar will not recurse into directories. See
Section 6.9 [recurse|, page 113.

‘~-no-same-owner’

‘—o’
When extracting an archive, do not attempt to preserve the
owner specified in the tar archive. This the default behavior for
ordinary users.

Chapter 3: Invoking GNU tar 39

‘--no-same-permissions’

When extracting an archive, subtract the user’s umask from files
from the permissions specified in the archive. This is the default
behavior for ordinary users.

‘——no-seek’

The archive media does not support seeks to arbitrary locations.
Usually tar determines automatically whether the archive can
be seeked or not. Use this option to disable this mechanism.

‘-—no-unquote’

Treat all input file or member names literally, do not interpret
escape sequences. See [input name quoting], page 94.

‘——no-wildcards’

Do not use wildcards. See [controlling pattern-matching],
page 102.

‘—~—no-wildcards-match-slash’

Wildcards do not match ‘/’. See [controlling pattern-matching],
page 102.

‘——null’

When tar is using the ‘--files-from’ option, this option in-

structs tar to expect file names terminated with NUL, so tar
can correctly work with file names that contain newlines. See
Section 6.3.1 [nul], page 97.

‘——numeric-owner’

This option will notify tar that it should use numeric user and
group IDs when creating a tar file, rather than names. See
Section 8.2 [Attributes], page 134.

The function of this option depends on the action tar is
performing. When extracting files, ‘-0’ is a synonym for
‘-—no-same-owner’, i.e., it prevents tar from restoring owner-
ship of files being extracted.

When creating an archive, it is a synonym for ‘--old-archive’.
This behavior is for compatibility with previous versions of GNU
tar, and will be removed in future releases.

See Appendix A [Changes|, page 177, for more information.

‘-—occurrence [=number]’

This option can be used in conjunction with one of the sub-

commands ‘--delete’, ‘—-diff’, ‘-—extract’ or ‘--1list’ when
a list of files is given either on the command line or via ‘-T’
option.

This option instructs tar to process only the numberth occur-
rence of each named file. Number defaults to 1, so

40

GNU tar 1.26

tar -x -f archive.tar --occurrence filename
will extract the first occurrence of the member ‘filename’ from
‘archive.tar’ and will terminate without scanning to the end
of the archive.

‘——old-archive’

Synonym for ‘--format=v7’.

‘-—one-file-system’

Used when creating an archive. Prevents tar from recursing
into directories that are on different file systems from the current
directory.

‘——overwrite’

Overwrite existing files and directory metadata when extracting
files from an archive. See [Overwrite Old Files], page 69.

‘——overwrite-dir’

Overwrite the metadata of existing directories when extracting
files from an archive. See [Overwrite Old Files|, page 69.

‘——owner=user’

Specifies that tar should use user as the owner of members when
creating archives, instead of the user associated with the source
file. user is first decoded as a user symbolic name, but if this
interpretation fails, it has to be a decimal numeric user ID. See
Section 4.3.1 [override], page 65.

This option does not affect extraction from archives.

‘--pax-option=keyword-list’

This option enables creation of the archive in POSIX.1-2001 for-
mat (see Section 8.3.7 [posix|, page 139) and modifies the way
tar handles the extended header keywords. Keyword-list is a
comma-separated list of keyword options. See Section 8.3.7.1
[PAX keywords], page 139, for a detailed discussion.

‘—-—portability’
‘-—old-archive’

‘-—posix’

Synonym for ‘--format=v7’.

Same as ‘--format=posix’.

‘~-—preserve’

Synonymous with specifying both ‘--preserve-permissions’
and ‘--same-order’. See [Setting Access Permissions|, page 70.

‘-—preserve-order’

(See ‘--same-order’; see Section 4.4.1 [Reading], page 67.)

‘~-—preserve-permissions’
‘~-—same-permissions’

4

P

)

Chapter 3: Invoking GNU tar 41

When tar is extracting an archive, it normally subtracts the
users’ umask from the permissions specified in the archive and
uses that number as the permissions to create the destination
file. Specifying this option instructs tar that it should use the
permissions directly from the archive. See [Setting Access Per-
missions|, page 70.

‘-—quote-chars=string’
Always quote characters from string, even if the selected quoting
style would not quote them (see Section 6.6 [quoting styles],
page 104).

‘-—quoting-style=style’
Set quoting style to use when printing member and file names
(see Section 6.6 [quoting styles], page 104). Valid style values
are: literal, shell, shell-always, c, escape, locale, and
clocale. Default quoting style is escape, unless overridden
while configuring the package.

‘~-read-full-records’
4_B7
Specifies that tar should reblock its input, for reading from

pipes on systems with buggy implementations. See Section 4.4.1
[Reading], page 67.

‘--record-size=size[suf]’
Instructs tar to use size bytes per record when accessing the
archive. The argument can be suffixed with a size suffix, e.g.
‘-—record-size=10K’ for 10 Kilobytes. See Table 9.1, for a list
of valid suffixes. See Section 9.4.2 [Blocking Factor|, page 155,
for a detailed description of this option.

‘-—recursion’
With this option, tar recurses into directories (default). See
Section 6.9 [recurse|, page 113.

‘-—recursive-unlink’
Remove existing directory hierarchies before extracting directo-
ries of the same name from the archive. See [Recursive Unlink],
page 70.

‘~-remove-files’
Directs tar to remove the source file from the file system after
appending it to an archive. See [remove files|, page 74.

‘--restrict’
Disable use of some potentially harmful tar options. Currently
this option disables shell invocation from multi-volume menu
(see Section 9.6 [Using Multiple Tapes|, page 162).

42 GNU tar 1.26

‘—-—rmt-command=cmd’
Notifies tar that it should use cmd instead of the default
‘/usr/libexec/rmt’ (see Section 9.2 [Remote Tape Server],
page 151).

‘——rsh-command=cmd’
Notifies tar that is should use cmd to communicate with remote
devices. See Section 9.1 [Device], page 149.

‘-—same-order’

‘~-preserve-order’

—g’
This option is an optimization for tar when running on machines
with small amounts of memory. It informs tar that the list of
file arguments has already been sorted to match the order of files

in the archive. See Section 4.4.1 [Reading], page 67.

‘~-same-owner’
When extracting an archive, tar will attempt to preserve the
owner specified in the tar archive with this option present. This
is the default behavior for the superuser; this option has an effect
only for ordinary users. See Section 8.2 [Attributes|, page 134.

‘-—same-permissions’
(See ‘--preserve-permissions’; see [Setting Access Permis-
sions|, page 70.)

Assume that the archive media supports seeks to arbitrary loca-
tions. Usually tar determines automatically whether the archive
can be seeked or not. This option is intended for use in cases
when such recognition fails. It takes effect only if the archive is
open for reading (e.g. with ‘--1ist’ or ‘--extract’ options).

‘--show-defaults’
Displays the default options used by tar and exits successfully.
This option is intended for use in shell scripts. Here is an exam-
ple of what you can see using this option:
$ tar --show-defaults
--format=gnu -f- -b20 --quoting-style=escape
--rmt-command=/usr/libexec/rmt --rsh-command=/usr/bin/rsh
Notice, that this option outputs only one line. The example
output above has been split to fit page boundaries.

‘~-show-omitted-dirs’
Instructs tar to mention the directories it is skipping when op-
erating on a tar archive. See [show-omitted-dirs|, page 51.

Chapter 3: Invoking GNU tar 43

‘——show-transformed-names’
‘~—show-stored-names’

‘--gparse’
(_S7

Display file or member names after applying any transformations
(see Section 6.7 [transform|, page 108). In particular, when used
in conjunction with one of the archive creation operations it
instructs tar to list the member names stored in the archive, as
opposed to the actual file names. See [listing member and file
names|, page 15.

Invokes a GNU extension when adding files to an archive
that handles sparse files efficiently. See Section 8.1.2 [sparse],
page 132.

‘-—sparse-version=version’

Specifies the format version to use when archiving sparse files.
Implies ‘--sparse’. See Section 8.1.2 [sparse], page 132. For
the description of the supported sparse formats, See [Sparse For-
mats|, page 194.

‘--starting-file=name’

‘-K name’

This option affects extraction only; tar will skip extracting
files in the archive until it finds one that matches name. See
Section 4.4.3 [Scarce], page 74.

)

‘~-strip-components=number’

Strip given number of leading components from file names be-
fore extraction. For example, if archive ‘archive.tar’ contained
‘/some/file/name’, then running

tar --extract --file archive.tar --strip-components=2

would extract this file to file ‘name’.

‘——suffix=suffix’

Alters the suffix tar uses when backing up files from the default
‘=, See Section 4.5 [backup]|, page 75.

‘-—tape-length=num[suf]’
‘-L num[suf]’

Specifies the length of tapes that tar is writing as being
num x 1024 bytes long. If optional suf is given, it specifies a
multiplicative factor to be used instead of 1024. For example,
‘~L2M’ means 2 megabytes. See Table 9.1, for a list of allowed
suffixes. See Section 9.6 [Using Multiple Tapes|, page 162, for a
detailed discussion of this option.

‘——test-label’

Reads the volume label. If an argument is specified, test whether
it matches the volume label. See [~test-label option], page 168.

44 GNU tar 1.26

‘~—to-command=command’
During extraction tar will pipe extracted files to the standard
input of command. See [Writing to an External Program],
page 72.

‘--to-stdout’

(_07
During extraction, tar will extract files to stdout rather than to
the file system. See [Writing to Standard Output], page 72.

‘-—totals[=signo]’
Displays the total number of bytes transferred when processing
an archive. If an argument is given, these data are displayed
on request, when signal signo is delivered to tar. See [totals],
page 50.

‘~—touch’

6_m7
Sets the data modification time of extracted files to the extrac-
tion time, rather than the data modification time stored in the
archive. See [Data Modification Times|, page 70.

‘-—transform=sed-expr’
‘--xform=sed-expr’
Transform file or member names using sed replacement expres-
sion sed-expr. For example,
$ tar cf archive.tar --transform ’s,”\./,usr/,’ .

will add to ‘archive’ files from the current working directory,
replacing initial ‘. /’ prefix with ‘usr/’. For the detailed discus-
sion, See Section 6.7 [transform], page 108.

To see transformed member names in verbose listings, use
‘~-show-transformed-names’ option (see [show-transformed-
names|, page 109).

‘—-—uncompress’
(See ‘--compress’, see Section 8.1.1 [gzip], page 128)

‘—-—ungzip’
(See ‘--gzip’, see Section 8.1.1 [gzip], page 128)
‘~—unlink-first’
6_U7
Directs tar to remove the corresponding file from the file system
before extracting it from the archive. See [Unlink First], page 70.

‘-—unquote’
Enable unquoting input file or member names (default). See
[input name quoting], page 94.

Chapter 3: Invoking GNU tar 45

‘--use-compress-program=prog’

‘-I=prog’
Instructs tar to access the archive through prog, which is
presumed to be a compression program of some sort. See
Section 8.1.1 [gzip], page 128.

‘—-utc’
Display file modification dates in UTC. This option implies
‘--verbose’.

‘——verbose’

—y?
Specifies that tar should be more verbose about the operations
it is performing. This option can be specified multiple times
for some operations to increase the amount of information dis-
played. See Section 3.7 [verbose], page 49.

‘——verify’

4_w7
Verifies that the archive was correctly written when creating an
archive. See Section 9.8 [verify|, page 170.

‘~-version’

Print information about the program’s name, version, origin and
legal status, all on standard output, and then exit successfully.
See Section 3.5 [help], page 47.

‘~—volno-file=file’
Used in conjunction with ‘--multi-volume’. tar will keep track
of which volume of a multi-volume archive it is working in file.
See [volno-file], page 164.

‘-—warning=keyword’
Enable or disable warning messages identified by keyword. The
messages are suppressed if keyword is prefixed with ‘no-’. See
Section 3.9 [warnings|, page 54.

‘--wildcards’
Use wildcards when matching member names with patterns. See
[controlling pattern-matching], page 102.

‘--wildcards-match-slash’
Wildcards match ‘/’. See [controlling pattern-matching],
page 102.

C__XZ’
=J Use xz for compressing or decompressing the archives. See
Section 8.1.1 [gzip], page 128.

46 GNU tar 1.26
3.4.3 Short Options Cross Reference

Here is an alphabetized list of all of the short option forms, matching them
with the equivalent long option.

Short Option Reference

-A [-concatenate|, page 28.

-B [-read-full-records|, page 41.
-C [directory], page 32.

-F [info-script], page 35.

-G [Fincremental], page 35.

-J [-xz], page 45.

-K [-starting-file], page 43.

-L [~tape-length|, page 43.

-M [-multi-volume], page 37.
-N [-newer|, page 37.

-0 [-to-stdout], page 44.

-P [-absolute-names|, page 29.
-R [-block-number]|, page 30.
-S [-sparse], page 43.

-T [-files-from], page 33.

-U [Funlink-first], page 44.

-V [label], page 36.

-W [verify], page 45.

-X [-exclude-from]|, page 33.
-7 [-compress]|, page 32.

-b [-blocking-factor|, page 31.

Chapter 3: Invoking GNU tar 47

[-create], page 28.

[-compare], page 28.

[-file], page 33.

[-listed-incremental], page 36.

[-dereference|, page 32.

[Fignore-zeros|, page 35.

[-bzip2], page 31.

[-keep-old-files|, page 36.

[-check-links]|, page 32.

[~touch], page 44.

When creating, [-no-same-owner|, page 38, when extract-
ir%heilz[auitlt)glIr tﬁé);ggylé %%%iﬁc%ted. It is retained for com-
patibility with the earlier versions of GNU tar. In future
releases ‘—o’ will be equivalent to ‘-—no-same-owner’ only.
[-preserve-permissions|, page 40.

[-append], page 28.

[-same-order|, page 42.

[-list], page 29.

[Fupdate], page 29.

[-verbose], page 45.

[interactive|, page 36.

[-extract], page 29.

[-gzip], page 35.

3.5 GNU tar documentation

Being careful, the first thing is really checking that you are using GNU tar,
indeed. The ‘--version’ option causes tar to print information about its

48 GNU tar 1.26

name, version, origin and legal status, all on standard output, and then exit
successfully. For example, ‘tar --version’ might print:

tar (GNU tar) 1.26

Copyright (C) 2010 Free Software Foundation, Inc.

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Written by John Gilmore and Jay Fenlason.

The first occurrence of ‘tar’ in the result above is the program name in the
package (for example, rmt is another program), while the second occurrence
of ‘tar’ is the name of the package itself, containing possibly many programs.
The package is currently named ‘tar’, after the name of the main program
it contains®.

Another thing you might want to do is checking the spelling or meaning
of some particular tar option, without resorting to this manual, for once you
have carefully read it. GNU tar has a short help feature, triggerable through
the ‘--help’ option. By using this option, tar will print a usage message
listing all available options on standard output, then exit successfully, with-
out doing anything else and ignoring all other options. Even if this is only a
brief summary, it may be several screens long. So, if you are not using some
kind of scrollable window, you might prefer to use something like:

$ tar --help | less
presuming, here, that you like using less for a pager. Other popular pagers
are more and pg. If you know about some keyword which interests you and
do not want to read all the ‘--help’ output, another common idiom is doing;:
tar --help | grep keyword
for getting only the pertinent lines. Notice, however, that some tar options
have long description lines and the above command will list only the first of
them.

The exact look of the option summary displayed by tar --help is con-
figurable. See Appendix B [Configuring Help Summary], page 179, for a
detailed description.

If you only wish to check the spelling of an option, running tar --usage
may be a better choice. This will display a terse list of tar options without
accompanying explanations.

The short help output is quite succinct, and you might have to get back to
the full documentation for precise points. If you are reading this paragraph,
you already have the tar manual in some form. This manual is available
in a variety of forms from http://www.gnu.org/software/tar/manual.
It may be printed out of the GNU tar distribution, provided you have TEX

6 There are plans to merge the cpio and tar packages into a single one which would be
called paxutils. So, who knows if, one of this days, the ‘--version’ would not output
‘tar (GNU paxutils) 3.2’

http://www.gnu.org/software/tar/manual

Chapter 3: Invoking GNU tar 49

already installed somewhere, and a laser printer around. Just configure the
distribution, execute the command ‘make dvi’, then print ‘doc/tar.dvi’
the usual way (contact your local guru to know how). If GNU tar has
been conveniently installed at your place, this manual is also available in
interactive, hypertextual form as an Info file. Just call ‘info tar’ or, if you
do not have the info program handy, use the Info reader provided within
GNU Emacs, calling ‘tar’ from the main Info menu.

There is currently no man page for GNU tar. If you observe such a man
page on the system you are running, either it does not belong to GNU tar,
or it has not been produced by GNU. Some package maintainers convert tar
--help output to a man page, using help2man. In any case, please bear
in mind that the authoritative source of information about GNU tar is this
Texinfo documentation.

3.6 Obtaining GNU tar default values

GNU tar has some predefined defaults that are used when you do not
explicitly specify another values. To obtain a list of such defaults, use
‘-~-show-defaults’ option. This will output the values in the form of tar
command line options:

$ tar --show-defaults

--format=gnu -f- -b20 --quoting-style=escape

—--rmt-command=/etc/rmt --rsh-command=/usr/bin/rsh
Notice, that this option outputs only one line. The example output above
has been split to fit page boundaries.

The above output shows that this version of GNU tar defaults to using
‘gnu’ archive format (see Chapter 8 [Formats], page 127), it uses standard
output as the archive, if no ‘--file’ option has been given (see [file tutorial|,
page 7), the default blocking factor is 20 (see Section 9.4.2 [Blocking Factor],
page 155). It also shows the default locations where tar will look for rmt
and rsh binaries.

3.7 Checking tar progress

Typically, tar performs most operations without reporting any information
to the user except error messages. When using tar with many options, par-
ticularly ones with complicated or difficult-to-predict behavior, it is possible
to make serious mistakes. tar provides several options that make observing
tar easier. These options cause tar to print information as it progresses in
its job, and you might want to use them just for being more careful about
what is going on, or merely for entertaining yourself. If you have encoun-
tered a problem when operating on an archive, however, you may need more
information than just an error message in order to solve the problem. The
following options can be helpful diagnostic tools.

Normally, the ‘--1ist’ (‘-t’) command to list an archive prints just the
file names (one per line) and the other commands are silent. When used

50 GNU tar 1.26

with most operations, the ‘--verbose’ (‘-v’) option causes tar to print the
name of each file or archive member as it is processed. This and the other
options which make tar print status information can be useful in monitoring
tar.

With ‘--create’ or ‘--extract’, ‘~-verbose’ used once just prints the
names of the files or members as they are processed. Using it twice causes
tar to print a longer listing (See [verbose member listing], page 9, for the
description) for each member. Since ‘--1list’ already prints the names of
the members, ‘--verbose’ used once with ‘--1ist’ causes tar to print an
‘1s -1’ type listing of the files in the archive. The following examples both
extract members with long list output:

$ tar --extract --file=archive.tar --verbose --verbose
$ tar xvvf archive.tar

Verbose output appears on the standard output except when an archive
is being written to the standard output, as with ‘tar --create —-file=-
--verbose’ (‘tar cfv -’, or even ‘tar cv'—if the installer let standard out-
put be the default archive). In that case tar writes verbose output to the
standard error stream.

If ‘~-index-file=file’ is specified, tar sends verbose output to file
rather than to standard output or standard error.

The ‘--totals’ option causes tar to print on the standard error the total
amount of bytes transferred when processing an archive. When creating or
appending to an archive, this option prints the number of bytes written to
the archive and the average speed at which they have been written, e.g.:

$ tar -c¢ -f archive.tar --totals /home
Total bytes written: 7924664320 (7.4GiB, 85MiB/s)
When reading an archive, this option displays the number of bytes read:
$ tar -x -f archive.tar --totals
Total bytes read: 7924664320 (7.4GiB, 95MiB/s)

Finally, when deleting from an archive, the ‘--totals’ option displays
both numbers plus number of bytes removed from the archive:

$ tar --delete -f foo.tar --totals --wildcards ’*~’
Total bytes read: 9543680 (9.2MiB, 201MiB/s)

Total bytes written: 3829760 (3.7MiB, 81MiB/s)
Total bytes deleted: 1474048

You can also obtain this information on request. When ‘--totals’ is
used with an argument, this argument is interpreted as a symbolic name of
a signal, upon delivery of which the statistics is to be printed:

‘-—totals=signo’
Print statistics upon delivery of signal signo. Valid arguments
are: SIGHUP, SIGQUIT, SIGINT, SIGUSR1 and SIGUSR2. Short-
ened names without ‘SIG’ prefix are also accepted.

Both forms of ‘--totals’ option can be used simultaneously. Thus, tar
-x ——totals —-totals=USR1 instructs tar to extract all members from its

Chapter 3: Invoking GNU tar 51

default archive and print statistics after finishing the extraction, as well as
when receiving signal SIGUSR1.

The ‘--checkpoint’ option prints an occasional message as tar reads or
writes the archive. It is designed for those who don’t need the more detailed
(and voluminous) output of ‘--block-number’ (‘-R’), but do want visual
confirmation that tar is actually making forward progress. By default it
prints a message each 10 records read or written. This can be changed by
giving it a numeric argument after an equal sign:

$ tar -c --checkpoint=1000 /var
tar: Write checkpoint 1000
tar: Write checkpoint 2000
tar: Write checkpoint 3000

This example shows the default checkpoint message used by tar. If you
place a dot immediately after the equal sign, it will print a ‘.’ at each
checkpoint”. For example:

$ tar -c --checkpoint=.1000 /var

The ‘--checkpoint’ option provides a flexible mechanism for execut-
ing arbitrary actions upon hitting checkpoints, see the next section (see
Section 3.8 [checkpoints], page 52), for more information on it.

The ‘--show-omitted-dirs’ option, when reading an archive—with
‘--list’ or ‘-—extract’, for example—causes a message to be printed for
each directory in the archive which is skipped. This happens regardless of
the reason for skipping: the directory might not have been named on the
command line (implicitly or explicitly), it might be excluded by the use of
the ‘--—exclude=pattern’ option, or some other reason.

If ‘~=block-number’ (‘-R’) is used, tar prints, along with every message
it would normally produce, the block number within the archive where the
message was triggered. Also, supplementary messages are triggered when
reading blocks full of NULs, or when hitting end of file on the archive. As
of now, if the archive is properly terminated with a NUL block, the reading
of the file may stop before end of file is met, so the position of end of file
will not usually show when ‘--block-number’ (‘-R’) is used. Note that GNU
tar drains the archive before exiting when reading the archive from a pipe.

This option is especially useful when reading damaged archives, since it
helps pinpoint the damaged sections. It can also be used with ‘--1ist’ (‘-t’)
when listing a file-system backup tape, allowing you to choose among several
backup tapes when retrieving a file later, in favor of the tape where the file
appears earliest (closest to the front of the tape). See Section 4.5 [backup],
page 75.

" This is actually a shortcut for ‘--checkpoint=n --checkpoint-action=dot’. See
Section 3.8 [checkpoints], page 52.

52 GNU tar 1.26

3.8 Checkpoints

A checkpoint is a moment of time before writing nth record to the archive
(a write checkpoint), or before reading nth record from the archive (a read
checkpoint). Checkpoints allow to periodically execute arbitrary actions.

The checkpoint facility is enabled using the following option:

‘-—checkpoint [=n]’
Schedule checkpoints before writing or reading each nth record.
The default value for n is 10.

A list of arbitrary actions can be executed at each checkpoint. These ac-
tions include: pausing, displaying textual messages, and executing arbitrary
external programs. Actions are defined using the ‘--checkpoint-action’
option.

‘~—checkpoint-action=action’
Execute an action at each checkpoint.

The simplest value of action is ‘echo’. It instructs tar to display the
default message on the standard error stream upon arriving at each check-
point. The default message is (in POSIX locale) ‘Write checkpoint n’, for
write checkpoints, and ‘Read checkpoint n’, for read checkpoints. Here, n
represents ordinal number of the checkpoint.

In another locales, translated versions of this message are used.
This is the default action, so running:
$ tar -c --checkpoint=1000 --checkpoint-action=echo /var

is equivalent to:
$ tar -c --checkpoint=1000 /var

The ‘echo’ action also allows to supply a customized message. You do so
by placing an equals sign and the message right after it, e.g.:
--checkpoint-action="echo=Hit %s checkpoint #/u"

The ‘%s’ and ‘%u’ in the above example are meta-characters. The ‘s’
meta-character is replaced with the type of the checkpoint: ‘write’ or ‘read’
(or a corresponding translated version in locales other than POSIX). The ‘%u’
meta-character is replaced with the ordinal number of the checkpoint. Thus,
the above example could produce the following output when used with the
‘--create’ option:

tar: Hit write checkpoint #10
tar: Hit write checkpoint #20
tar: Hit write checkpoint #30

Aside from meta-character expansion, the message string is subject to
unquoting, during which the backslash escape sequences are replaced with
their corresponding ASCII characters (see [escape sequences], page 104). E.g.
the following action will produce an audible bell and the message described
above at each checkpoint:

—--checkpoint-action=’echo=\aHit %s checkpoint #%u’

Chapter 3: Invoking GNU tar 53

There is also a special action which produces an audible signal: ‘bell’.
It is not equivalent to ‘echo=’\a’’, because ‘bell’ sends the bell directly
to the console (‘/dev/tty’), whereas ‘echo=’\a’’ sends it to the standard
erTor.

The ‘ttyout=string’ action outputs string to ‘/dev/tty’, so it can be
used even if the standard output is redirected elsewhere. The string is
subject to the same modifications as with ‘echo’ action. In contrast to
the latter, ‘ttyout’ does not prepend tar executable name to the string,
nor does it output a newline after it. For example, the following action
will print the checkpoint message at the same screen line, overwriting any
previous message:

—--checkpoint-action="ttyout=\rHit %s checkpoint #Ju"

Another available checkpoint action is ‘dot’ (or *.”). It instructs tar to

print a single dot on the standard listing stream, e.g.:
$ tar -c --checkpoint=1000 --checkpoint-action=dot /var

For compatibility with previous GNU tar versions, this action can be
abbreviated by placing a dot in front of the checkpoint frequency, as shown
in the previous section.

Yet another action, ‘sleep’, pauses tar for a specified amount of seconds.
The following example will stop for 30 seconds at each checkpoint:

$ tar -c --checkpoint=1000 --checkpoint-action=sleep=30

Finally, the exec action executes a given external program. For example:

$ tar -c --checkpoint=1000 --checkpoint-action=exec=/sbin/cpoint

This program is executed using /bin/sh -c, with no additional argu-
ments. Its exit code is ignored. It gets a copy of tar’s environment plus the
following variables:

TAR_VERSION
GNU tar version number.

TAR_ARCHIVE
The name of the archive tar is processing.

TAR_BLOCKING_FACTOR
Current blocking factor (see Section 9.4 [Blocking], page 153).

TAR_CHECKPOINT
Number of the checkpoint.

TAR_SUBCOMMAND
A short option describing the operation tar is executing. See
Section 4.2.1 [Operations|, page 58, for a complete list of sub-
command options.

TAR_FORMAT
Format of the archive being processed. See Chapter 8 [Formats],
page 127, for a complete list of archive format names.

54 GNU tar 1.26

Any number of actions can be defined, by supplying several
‘~—checkpoint-action’ options in the command line. For example, the
command below displays two messages, pauses execution for 30 seconds
and executes the ‘/sbin/cpoint’ script:

$ tar -c -f arc.tar \
--checkpoint-action=’\aecho=Hit J,s checkpoint #/u’ \
-—checkpoint-action=’echo=Sleeping for 30 seconds’ \
--checkpoint-action=’sleep=30’ \
--checkpoint-action=’exec=/sbin/cpoint’

This example also illustrates the fact that ‘~-checkpoint-action’ can be
used without ‘--checkpoint’. In this case, the default checkpoint frequency
(at each 10th record) is assumed.

3.9 Controlling Warning Messages

Sometimes, while performing the requested task, GNU tar notices some
conditions that are not exactly errors, but which the user should be aware of.
When this happens, tar issues a warning message describing the condition.
Warning messages are output to the standard error and they do not affect
the exit code of tar command.

GNU tar allows the user to suppress some or all of its warning messages:

‘--warning=keyword’
Control display of the warning messages identified by keyword.
If keyword starts with the prefix ‘no-’, such messages are sup-
pressed. Otherwise, they are enabled.

Multiple ‘--warning’ messages accumulate.

The tables below list allowed values for keyword along with the
warning messages they control.

Keywords controlling tar operation

all Enable all warning messages. This is the default.
none Disable all warning messages.

filename-with-nuls
‘%s: file name read contains nul character’

alone-zero-block
‘A lone zero block at %s’

Keywords applicable for tar --create
cachedir ~ ‘%s: contains a cache directory tag %s; %s’
file-shrank ‘Ys: File shrank by %s bytes; padding with zeros’

xdev ‘%s: file is on a different filesystem; not dumped’

Chapter 3: Invoking GNU tar 55

file-ignored
‘%s: Unknown file type; file ignored’
‘%s: socket ignored’
‘%s: door ignored’

file-unchanged
‘%s: file is unchanged; not dumped’

ignore-archive
‘%s: file is the archive; not dumped’

file-removed
“%s: File removed before we read it’

file-changed
‘%s: file changed as we read it’

Keywords applicable for tar --extract

timestamp ‘%s: implausibly old time stamp %s’
‘%s: time stamp %s is %s s in the future’

contiguous-cast
‘Extracting contiguous files as regular files’

symlink-cast
‘Attempting extraction of symbolic links as hard links’

unknown-cast
‘%s: Unknown file type ‘%c’, extracted as normal file’

ignore-newer
‘Current %s is newer or same age’

unknown-keyword
‘Ignoring unknown extended header keyword ‘%s’’

decompress-program
Controls verbose description of failures occurring when trying
to run alternative decompressor programs (see [alternative de-
compression programs|, page 129). This warning is disabled by
default (unless ‘--verbose’ is used). A common example of
what you can get when using this warning is:
$ tar --warning=decompress-program -x -f archive.Z
tar (child): cannot run compress: No such file or directory
tar (child): trying gzip

This means that tar first tried to decompress ‘archive.Z’ using
compress, and, when that failed, switched to gzip.

56 GNU tar 1.26

Keywords controlling incremental extraction:

rename-directory
‘%s: Directory has been renamed from %s’
‘%s: Directory has been renamed’

new-directory
‘%s: Directory is new’

xdev ‘%s: directory is on a different device: not purging’

bad-dumpdir
‘Malformed dumpdir: ’X’ never used’

3.10 Asking for Confirmation During Operations

Typically, tar carries out a command without stopping for further instruc-
tions. In some situations however, you may want to exclude some files
and archive members from the operation (for instance if disk or storage
space is tight). You can do this by excluding certain files automatically (see
Chapter 6 [Choosing], page 93), or by performing an operation interactively,
using the ‘--interactive’ (‘-w’) option. tar also accepts ‘--confirmation’
for this option.

When the ‘--interactive’ (‘-w’) option is specified, before reading, writ-
ing, or deleting files, tar first prints a message for each such file, telling what
operation it intends to take, then asks for confirmation on the terminal. The
actions which require confirmation include adding a file to the archive, ex-
tracting a file from the archive, deleting a file from the archive, and deleting
a file from disk. To confirm the action, you must type a line of input be-
ginning with ‘y’. If your input line begins with anything other than ‘y’; tar
skips that file.

If tar is reading the archive from the standard input, tar opens the file
‘/dev/tty’ to support the interactive communications.

Verbose output is normally sent to standard output, separate from other
error messages. However, if the archive is produced directly on standard
output, then verbose output is mixed with errors on stderr. Producing
the archive on standard output may be used as a way to avoid using disk
space, when the archive is soon to be consumed by another process reading
it, say. Some people felt the need of producing an archive on stdout, still
willing to segregate between verbose output and error output. A possible
approach would be using a named pipe to receive the archive, and having
the consumer process to read from that named pipe. This has the advantage
of letting standard output free to receive verbose output, all separate from
errors.

Chapter 4: GNU tar Operations 57

4 GNU tar Operations

4.1 Basic GNU tar Operations

The basic tar operations, ‘--create’ (‘-¢’), ‘--1list’ (‘-t’) and ‘--extract’
(‘--get’, ‘-x’), are currently presented and described in the tutorial chapter
of this manual. This section provides some complementary notes for these
operations.

‘——create’

‘e’
Creating an empty archive would have some kind of elegance.
One can initialize an empty archive and later use ‘--append’
(‘-r’) for adding all members. Some applications would not
welcome making an exception in the way of adding the first
archive member. On the other hand, many people reported that
it is dangerously too easy for tar to destroy a magnetic tape
with an empty archive!. The two most common errors are:

1. Mistakingly using create instead of extract, when the in-
tent was to extract the full contents of an archive. This
error is likely: keys ¢ and x are right next to each other
on the QWERTY keyboard. Instead of being unpacked,
the archive then gets wholly destroyed. When users speak
about exploding an archive, they usually mean something
else :-).

2. Forgetting the argument to file, when the intent was to
create an archive with a single file in it. This error is likely
because a tired user can easily add the f key to the cluster of
option letters, by the mere force of habit, without realizing
the full consequence of doing so. The usual consequence is
that the single file, which was meant to be saved, is rather
destroyed.

So, recognizing the likelihood and the catastrophic nature of
these errors, GNU tar now takes some distance from elegance,
and cowardly refuses to create an archive when ‘--create’
option is given, there are no arguments besides options, and
‘~-files-from’ (‘-T’) option is not used. To get around the
cautiousness of GNU tar and nevertheless create an archive
with nothing in it, one may still use, as the value for the
‘-—files-from’ option, a file with no names in it, as shown
in the following commands:

1 This is well described in Unix-haters Handbook, by Simson Garfinkel, Daniel Weise &
Steven Strassmann, IDG Books, ISBN 1-56884-203-1.

58 GNU tar 1.26

tar --create --file=empty-archive.tar --files-from=/dev/null
tar cfT empty-archive.tar /dev/null

‘--extract’
‘——get’
‘g’
A socket is stored, within a GNU tar archive, as a pipe.

fe--list’ (“-t?)’
GNU tar now shows dates as ‘1996-08-30’, while it used to show
them as ‘Aug 30 1996’. Preferably, people should get used to
ISO 8601 dates. Local American dates should be made available
again with full date localization support, once ready. In the
meantime, programs not being localizable for dates should prefer
international dates, that’s really the way to go.

Look up http://www.cl.cam.ac.uk/ " mgk25/iso-time.html

if you are curious, it contains a detailed explanation of the ISO
8601 standard.

4.2 Advanced GNU tar Operations

Now that you have learned the basics of using GNU tar, you may want to
learn about further ways in which tar can help you.

This chapter presents five, more advanced operations which you probably
won’t use on a daily basis, but which serve more specialized functions. We
also explain the different styles of options and why you might want to use
one or another, or a combination of them in your tar commands. Addi-
tionally, this chapter includes options which allow you to define the output
from tar more carefully, and provide help and error correction in special
circumstances.

4.2.1 The Five Advanced tar Operations

In the last chapter, you learned about the first three operations to tar.
This chapter presents the remaining five operations to tar: ‘--append’,

‘-—update’, ‘--concatenate’, ‘--delete’, and ‘~-compare’.

You are not likely to use these operations as frequently as those covered
in the last chapter; however, since they perform specialized functions, they
are quite useful when you do need to use them. We will give examples using
the same directory and files that you created in the last chapter. As you may
recall; the directory is called ‘practice’, the files are ‘jazz’, ‘blues’, ‘folk’,
and the two archive files you created are ‘collection.tar’ and ‘music.tar’.

We will also use the archive files ‘afiles.tar’ and ‘bfiles.tar’. The
archive ‘afiles.tar’ contains the members ‘apple’, ‘angst’, and ‘aspic’;
‘bfiles.tar’ contains the members ‘. /birds’, ‘baboon’, and ‘./box’.

Unless we state otherwise, all practicing you do and examples you follow
in this chapter will take place in the ‘practice’ directory that you created

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Chapter 4: GNU tar Operations 59

in the previous chapter; see Section 2.6.1 [prepare for examples|, page 11.
(Below in this section, we will remind you of the state of the examples where
the last chapter left them.)

The five operations that we will cover in this chapter are:

‘~—append’

i Add new entries to an archive that already exists.

‘~—update’

-u’ Add more recent copies of archive members to the end of an
archive, if they exist.

‘--concatenate’

‘--catenate’

- Add one or more pre-existing archives to the end of another
archive.

‘--delete’
Delete items from an archive (does not work on tapes).

‘-—compare’

‘——diff’

‘-d’ Compare archive members to their counterparts in the file sys-
tem.

4.2.2 How to Add Files to Existing Archives:

‘~—append’

If you want to add files to an existing archive, you don’t need to create a new
archive; you can use ‘--append’ (‘-r’). The archive must already exist in
order to use ‘--append’. (A related operation is the ‘--update’ operation;
you can use this to add newer versions of archive members to an existing
archive. To learn how to do this with ‘--update’, see Section 4.2.3 [update]
page 62.)

If you use ‘--append’ to add a file that has the same name as an archive
member to an archive containing that archive member, then the old mem-
ber is not deleted. What does happen, however, is somewhat complex. tar
allows you to have infinite number of files with the same name. Some oper-
ations treat these same-named members no differently than any other set of
archive members: for example, if you view an archive with ‘--1ist’ (‘-t’),
you will see all of those members listed, with their data modification times,
owners, etc.

Other operations don’t deal with these members as perfectly as you might
prefer; if you were to use ‘--extract’ to extract the archive, only the most
recently added copy of a member with the same name as other members
would end up in the working directory. This is because ‘--extract’ extracts
an archive in the order the members appeared in the archive; the most
recently archived members will be extracted last. Additionally, an extracted
member will replace a file of the same name which existed in the directory

)

60 GNU tar 1.26

already, and tar will not prompt you about this?>. Thus, only the most
recently archived member will end up being extracted, as it will replace the
one extracted before it, and so on.

There exists a special option that allows you to get around this behavior
and extract (or list) only a particular copy of the file. This is ‘-~occurrence’
option. If you run tar with this option, it will extract only the first copy of
the file. You may also give this option an argument specifying the number
of copy to be extracted. Thus, for example if the archive ‘archive.tar’
contained three copies of file ‘myfile’, then the command

tar --extract --file archive.tar --occurrence=2 myfile

would extract only the second copy. See Section 3.4.2 [Option Summary],
page 29, for the description of ‘--occurrence’ option.

If you want to replace an archive member, use ‘--delete’ to delete the
member you want to remove from the archive, and then use ‘--append’ to
add the member you want to be in the archive. Note that you can not
change the order of the archive; the most recently added member will still
appear last. In this sense, you cannot truly “replace” one member with
another. (Replacing one member with another will not work on certain types
of media, such as tapes; see Section 4.2.5 [delete], page 64 and Chapter 9
[Medial, page 149, for more information.)

4.2.2.1 Appending Files to an Archive

The simplest way to add a file to an already existing archive is the ‘~—append’
(‘-r’) operation, which writes specified files into the archive whether or not
they are already among the archived files.

When you use ‘--append’, you must specify file name arguments, as there
is no default. If you specify a file that already exists in the archive, another
copy of the file will be added to the end of the archive. As with other
operations, the member names of the newly added files will be exactly the
same as their names given on the command line. The ‘--verbose’ (‘-v’)
option will print out the names of the files as they are written into the
archive.

‘——append’ cannot be performed on some tape drives, unfortunately, due
to deficiencies in the formats those tape drives use. The archive must be a
valid tar archive, or else the results of using this operation will be unpre-
dictable. See Chapter 9 [Medial, page 149.

To demonstrate using ‘--append’ to add a file to an archive, create a
file called ‘rock’ in the ‘practice’ directory. Make sure you are in the
‘practice’ directory. Then, run the following tar command to add ‘rock’
to ‘collection.tar”:

$ tar --append --file=collection.tar rock

2 Unless you give it ‘--keep-old-files’ option, or the disk copy is newer than the one
in the archive and you invoke tar with ‘--keep-newer-files’ option.

Chapter 4: GNU tar Operations 61

If you now use the ‘--1list’ (‘-t’) operation, you will see that ‘rock’ has
been added to the archive:

$ tar --list --file=collection.tar

-rw-r--r-- me/user 28 1996-10-18 16:31 jazz
-rw-r--r-- me/user 21 1996-09-23 16:44 blues
-rw-r--r-- me/user 20 1996-09-23 16:44 folk
-rw-r--r-- me/user 20 1996-09-23 16:44 rock

4.2.2.2 Multiple Members with the Same Name

¢

You can use ‘--append’ (‘-r’) to add copies of files which have been up-
dated since the archive was created. (However, we do not recommend doing
this since there is another tar option called ‘~-update’; See Section 4.2.3
[update], page 62, for more information. We describe this use of ‘~-append’
here for the sake of completeness.) When you extract the archive, the older
version will be effectively lost. This works because files are extracted from
an archive in the order in which they were archived. Thus, when the archive
is extracted, a file archived later in time will replace a file of the same name
which was archived earlier, even though the older version of the file will
remain in the archive unless you delete all versions of the file.

Supposing you change the file ‘blues’ and then append the changed ver-
sion to ‘collection.tar’. As you saw above, the original ‘blues’ is in the
archive ‘collection.tar’. If you change the file and append the new ver-
sion of the file to the archive, there will be two copies in the archive. When
you extract the archive, the older version of the file will be extracted first,
and then replaced by the newer version when it is extracted.

You can append the new, changed copy of the file ‘blues’ to the archive
in this way:

$ tar --append --verbose --file=collection.tar blues
blues

Because you specified the ‘--verbose’ option, tar has printed the name of
the file being appended as it was acted on. Now list the contents of the
archive:

$ tar --list --verbose --file=collection.tar

-rw-r--r-- me/user 28 1996-10-18 16:31 jazz
-rw-r--r-— me/user 21 1996-09-23 16:44 blues
-rw-r--r-- me/user 20 1996-09-23 16:44 folk
-rw-r--r-- me/user 20 1996-09-23 16:44 rock
-rw-r--r-- me/user 58 1996-10-24 18:30 blues

The newest version of ‘blues’ is now at the end of the archive (note the
different creation dates and file sizes). If you extract the archive, the older
version of the file ‘blues’ will be replaced by the newer version. You can
confirm this by extracting the archive and running ‘1s’ on the directory.

If you wish to extract the first occurrence of the file ‘blues’ from the
archive, use ‘--occurrence’ option, as shown in the following example:

$ tar --extract -vv --occurrence --file=collection.tar blues
-rw-r--r-- me/user 21 1996-09-23 16:44 blues

62 GNU tar 1.26

See Section 4.4.2 [Writing], page 68, for more information on ‘--extract’
and see Section 3.4.2 [Option Summary], page 29, for a description of
‘-—occurrence’ option.

)

4.2.3 Updating an Archive

In the previous section, you learned how to use ‘-—append’ to add a file to an
existing archive. A related operation is ‘--update’ (‘-u’). The ‘--update’
operation updates a tar archive by comparing the date of the specified
archive members against the date of the file with the same name. If the file
has been modified more recently than the archive member, then the newer
version of the file is added to the archive (as with ‘--append’).

Unfortunately, you cannot use ‘-—update’ with magnetic tape drives. The
operation will fail.

Both ‘--update’ and ‘--append’ work by adding to the end of the archive.
When you extract a file from the archive, only the version stored last will
wind up in the file system, unless you use the ‘--backup’ option. See
Section 4.2.2.2 [multiple], page 61, for a detailed discussion.

4.2.3.1 How to Update an Archive Using ‘--update’

You must use file name arguments with the ‘--update’ (‘-u’) operation. If
you don’t specify any files, tar won’t act on any files and won’t tell you that
it didn’t do anything (which may end up confusing you).

To see the ‘-—update’ option at work, create a new file, ‘classical’, in
your practice directory, and some extra text to the file ‘blues’; using any text
editor. Then invoke tar with the ‘update’ operation and the ‘--verbose’
(‘-v’) option specified, using the names of all the files in the ‘practice’
directory as file name arguments:

$ tar --update -v -f collection.tar blues folk rock classical

blues

classical

$
Because we have specified verbose mode, tar prints out the names of the
files it is working on, which in this case are the names of the files that needed
to be updated. If you run ‘tar --1list’ and look at the archive, you will see
‘blues’ and ‘classical’ at its end. There will be a total of two versions of
the member ‘blues’; the one at the end will be newer and larger, since you
added text before updating it.

The reason tar does not overwrite the older file when updating it is
because writing to the middle of a section of tape is a difficult process.
Tapes are not designed to go backward. See Chapter 9 [Medial, page 149,
for more information about tapes.

‘~-update’ (‘-u’) is not suitable for performing backups for two reasons: it
does not change directory content entries, and it lengthens the archive every
time it is used. The GNU tar options intended specifically for backups

Chapter 4: GNU tar Operations 63

are more efficient. If you need to run backups, please consult Chapter 5
[Backups], page 79.

4.2.4 Combining Archives with ‘--concatenate’

Sometimes it may be convenient to add a second archive onto the end of an
archive rather than adding individual files to the archive. To add one or more
archives to the end of another archive, you should use the ‘--concatenate’
(‘--catenate’, ‘-A’) operation.

To use ‘--concatenate’, give the first archive with ‘--file’ option and
name the rest of archives to be concatenated on the command line. The
members, and their member names, will be copied verbatim from those
archives to the first one®. The new, concatenated archive will be called by
the same name as the one given with the ‘--file’ option. As usual, if you
omit ‘--file’, tar will use the value of the environment variable TAPE, or,

if this has not been set, the default archive name.

To demonstrate how ‘--concatenate’ works, create two small archives

called ‘bluesrock.tar’ and ‘folkjazz.tar’, using the relevant files from
‘practice’:

$ tar -cvf bluesrock.tar blues rock

blues

rock

$ tar -cvf folkjazz.tar folk jazz

folk

jazz
If you like, You can run ‘tar --1ist’ to make sure the archives contain what
they are supposed to:

$ tar -tvf bluesrock.tar

-rw-r--r-- melissa/user 105 1997-01-21 19:42 blues

-rw-r--r-- melissa/user 33 1997-01-20 15:34 rock

$ tar -tvf jazzfolk.tar

-rw-r--r-- melissa/user 20 1996-09-23 16:44 folk

-rw-r--r-- melissa/user 65 1997-01-30 14:15 jazz
We can concatenate these two archives with tar:

$ cd ..

$ tar --concatenate --file=bluesrock.tar jazzfolk.tar

If you now list the contents of the ‘bluesrock.tar’, you will see that now
it also contains the archive members of ‘jazzfolk.tar’
$ tar --list --file=bluesrock.tar
blues
rock
folk
jazz
When you use ‘--concatenate’, the source and target archives must al-
ready exist and must have been created using compatible format parameters.

3 This can cause multiple members to have the same name. For information on how this
affects reading the archive, see Section 4.2.2.2 [multiple], page 61.

64 GNU tar 1.26

Notice, that tar does not check whether the archives it concatenates have
compatible formats, it does not even check if the files are really tar archives.

Like ‘--append’ (‘-r’), this operation cannot be performed on some tape
drives, due to deficiencies in the formats those tape drives use.

It may seem more intuitive to you to want or try to use cat to concatenate
two archives instead of using the ‘--concatenate’ operation; after all, cat
is the utility for combining files.

However, tar archives incorporate an end-of-file marker which must be
removed if the concatenated archives are to be read properly as one archive.
‘--concatenate’ removes the end-of-archive marker from the target archive
before each new archive is appended. If you use cat to combine the archives,
the result will not be a valid tar format archive. If you need to retrieve
files from an archive that was added to using the cat utility, use the
‘~-ignore-zeros’ (‘-i’) option. See [Ignore Zeros|, page 68, for further
information on dealing with archives improperly combined using the cat
shell utility.

4.2.5 Removing Archive Members Using ‘--delete’

You can remove members from an archive by using the ‘--delete’ option.
Specify the name of the archive with ‘--file’ (‘-f’) and then specify the
names of the members to be deleted; if you list no member names, nothing
will be deleted. The ‘--verbose’ option will cause tar to print the names
of the members as they are deleted. As with ‘--extract’, you must give the
exact member names when using ‘tar --delete’. ‘--delete’ will remove
all versions of the named file from the archive. The ‘--delete’ operation
can run very slowly.

Unlike other operations, ‘--delete’ has no short form.

This operation will rewrite the archive. You can only use ‘--delete’ on
an archive if the archive device allows you to write to any point on the media,
such as a disk; because of this, it does not work on magnetic tapes. Do not
try to delete an archive member from a magnetic tape; the action will not
succeed, and you will be likely to scramble the archive and damage your
tape. There is no safe way (except by completely re-writing the archive)
to delete files from most kinds of magnetic tape. See Chapter 9 [Medial
page 149.

To delete all versions of the file ‘blues’ from the archive
‘collection.tar’ in the ‘practice’ directory, make sure you are
in that directory, and then,

)

$ tar --list --file=collection.tar

blues

folk

jazz

rock

$ tar --delete --file=collection.tar blues
$ tar --list --file=collection.tar

Chapter 4: GNU tar Operations 65

folk
jazz
rock
The ‘~-delete’ option has been reported to work properly when tar acts
as a filter from stdin to stdout.

4.2.6 Comparing Archive Members with the File
System

The ‘--compare’ (‘-d’), or ‘--diff’ operation compares specified archive
members against files with the same names, and then reports differences
in file size, mode, owner, modification date and contents. You should only
specify archive member names, not file names. If you do not name any
members, then tar will compare the entire archive. If a file is represented
in the archive but does not exist in the file system, tar reports a difference.

You have to specify the record size of the archive when modifying an
archive with a non-default record size.

tar ignores files in the file system that do not have corresponding mem-
bers in the archive.

The following example compares the archive members ‘rock’, ‘blues’ and
‘funk’ in the archive ‘bluesrock.tar’ with files of the same name in the file
system. (Note that there is no file, ‘funk’; tar will report an error message.)

$ tar --compare --file=bluesrock.tar rock blues funk
rock

blues

tar: funk not found in archive

The spirit behind the ‘--compare’ (‘--diff’, ‘-d’) option is to check
whether the archive represents the current state of files on disk, more than
validating the integrity of the archive media. For this latter goal, see
Section 9.8 [verify], page 170.

4.3 Options Used by ‘--create’

The previous chapter described the basics of how to use ‘--create’ (‘-¢’) to
create an archive from a set of files. See Section 2.6 [create], page 10. This
section described advanced options to be used with ‘--create’.

4.3.1 Overriding File Metadata

As described above, a tar archive keeps, for each member it contains, its
metadata, such as modification time, mode and ownership of the file. GNU
tar allows to replace these data with other values when adding files to the
archive. The options described in this section affect creation of archives of
any type. For POSIX archives, see also Section 8.3.7.1 [PAX keywords],
page 139, for additional ways of controlling metadata, stored in the archive.

66 GNU tar 1.26

‘--mode=permissions’

When adding files to an archive, tar will use permissions for
the archive members, rather than the permissions from the files.
permissions can be specified either as an octal number or as
symbolic permissions, like with chmod (See Section “File per-
missions” in GNU file utilities. This reference also has useful in-
formation for those not being overly familiar with the UNIX per-
mission system). Using latter syntax allows for more flexibility.
For example, the value ‘a+rw’ adds read and write permissions
for everybody, while retaining executable bits on directories or
on any other file already marked as executable:

$ tar -c -f archive.tar --mode=’a+rw’ .

‘~-mtime=date’

When adding files to an archive, tar will use date as the modifi-
cation time of members when creating archives, instead of their
actual modification times. The argument date can be either
a textual date representation in almost arbitrary format (see
Chapter 7 [Date input formats|, page 119) or a name of an ex-
isting file, starting with ¢/’ or ‘.. In the latter case, the modi-
fication time of that file will be used.

The following example will set the modification date to 00:00:00,
January 1, 1970:
$ tar -c¢ -f archive.tar --mtime=’1970-01-01’ .

When used with ‘--verbose’ (see [verbose tutorial], page 8)
GNU tar will try to convert the specified date back to its textual
representation and compare it with the one given with ‘~-mtime’
options. If the two dates differ, tar will print a warning saying
what date it will use. This is to help user ensure he is using the
right date.

For example:

$ tar -c -f archive.tar -v --mtime=yesterday .
tar: Option --mtime: Treating date ‘yesterday’ as 2006-06-20
13:06:29.152478

‘--owner=user’
Specifies that tar should use user as the owner of members when
creating archives, instead of the user associated with the source
file. The argument user can be either an existing user symbolic
name, or a decimal numeric user ID.

There is no value indicating a missing number, and ‘0’ usually
means root. Some people like to force ‘0’ as the value to offer
in their distributions for the owner of files, because the root
user is anonymous anyway, so that might as well be the owner
of anonymous archives. For example:

Chapter 4: GNU tar Operations 67

$ tar -c -f archive.tar --owner=0 .

or:

$ tar -c -f archive.tar --owner=root .

‘-—group=group’
Files added to the tar archive will have a group ID of group,
rather than the group from the source file. The argument group
can be either an existing group symbolic name, or a decimal
numeric group ID.

4.3.2 Ignore Fail Read

‘-—ignore-failed-read’
Do not exit with nonzero on unreadable files or directories.

4.4 Options Used by ‘--extract’

The previous chapter showed how to use ‘--extract’ to extract an archive
into the file system. Various options cause tar to extract more information
than just file contents, such as the owner, the permissions, the modification
date, and so forth. This section presents options to be used with ‘--extract’
when certain special considerations arise. You may review the information
presented in Section 2.8 [extract], page 17 for more basic information about
the ‘--extract’ operation.

4.4.1 Options to Help Read Archives

Normally, tar will request data in full record increments from an archive
storage device. If the device cannot return a full record, tar will report an
error. However, some devices do not always return full records, or do not
require the last record of an archive to be padded out to the next record
boundary. To keep reading until you obtain a full record, or to accept
an incomplete record if it contains an end-of-archive marker, specify the
‘~-read-full-records’ (‘-B’) option in conjunction with the ‘--extract’
or ‘--1list’ operations. See Section 9.4 [Blocking], page 153.

The ‘--read-full-records’ (‘-B’) option is turned on by default when
tar reads an archive from standard input, or from a remote machine. This
is because on BSD Unix systems, attempting to read a pipe returns however
much happens to be in the pipe, even if it is less than was requested. If this
option were not enabled, tar would fail as soon as it read an incomplete
record from the pipe.

If you’re not sure of the blocking factor of an archive, you can
read the archive by specifying ‘--read-full-records’ (‘-B’) and
‘~-blocking-factor=512-size’ (‘-b 512-size’), using a blocking factor
larger than what the archive uses. This lets you avoid having to determine
the blocking factor of an archive. See Section 9.4.2 [Blocking Factor],
page 155.

68 GNU tar 1.26

Reading Full Records

‘--read-full-records’

‘-B’ Use in conjunction with ‘--extract’ (‘--get’, ‘-x’) to read an
archive which contains incomplete records, or one which has a
blocking factor less than the one specified.

Ignoring Blocks of Zeros

Normally, tar stops reading when it encounters a block of zeros between file
entries (which usually indicates the end of the archive). ‘--ignore-zeros’
(‘-1") allows tar to completely read an archive which contains a block of
zeros before the end (i.e., a damaged archive, or one that was created by
concatenating several archives together).

The ‘--ignore-zeros’ (‘-i’) option is turned off by default because many
versions of tar write garbage after the end-of-archive entry, since that part
of the media is never supposed to be read. GNU tar does not write after
the end of an archive, but seeks to maintain compatibility among archiving
utilities.

‘-—ignore-zeros’

-1’ To ignore blocks of zeros (i.e., end-of-archive entries) which may
be encountered while reading an archive. Use in conjunction
with ‘--extract’ or ‘--list’.

4.4.2 Changing How tar Writes Files

(This message will disappear, once this node revised.)

Options Controlling the Overwriting of Existing Files

When extracting files, if tar discovers that the extracted file already exists,
it normally replaces the file by removing it before extracting it, to prevent
confusion in the presence of hard or symbolic links. (If the existing file is a
symbolic link, it is removed, not followed.) However, if a directory cannot
be removed because it is nonempty, tar normally overwrites its metadata
(ownership, permission, etc.). The ‘--overwrite-dir’ option enables this
default behavior. To be more cautious and preserve the metadata of such a
directory, use the ‘~—no-overwrite-dir’ option.

To be even more cautious and prevent existing files from being replaced,
use the ‘--keep-old-files’ (‘-k’) option. It causes tar to refuse to replace
or update a file that already exists, i.e., a file with the same name as an
archive member prevents extraction of that archive member. Instead, it
reports an error.

To be more aggressive about altering existing files, use the ‘--overwrite’
option. It causes tar to overwrite existing files and to follow existing sym-
bolic links when extracting.

Some people argue that GNU tar should not hesitate to overwrite files
with other files when extracting. When extracting a tar archive, they ex-

Chapter 4: GNU tar Operations 69

pect to see a faithful copy of the state of the file system when the archive
was created. It is debatable that this would always be a proper behavior.
For example, suppose one has an archive in which ‘usr/local’ is a link to
‘usr/local?’. Since then, maybe the site removed the link and renamed the
whole hierarchy from ‘/usr/local2’ to ‘/usr/local’. Such things happen
all the time. I guess it would not be welcome at all that GNU tar removes
the whole hierarchy just to make room for the link to be reinstated (unless
it also simultaneously restores the full ‘/usr/local2’, of course!) GNU tar
is indeed able to remove a whole hierarchy to reestablish a symbolic link,
for example, but only if ‘--recursive-unlink’ is specified to allow this
behavior. In any case, single files are silently removed.

Finally, the ‘-—unlink-first’ (‘-U’) option can improve performance in
some cases by causing tar to remove files unconditionally before extracting
them.

Overwrite Old Files

‘-—overwrite’
Overwrite existing files and directory metadata when extracting
files from an archive.

This causes tar to write extracted files into the file system with-
out regard to the files already on the system; i.e., files with
the same names as archive members are overwritten when the
archive is extracted. It also causes tar to extract the ownership,
permissions, and time stamps onto any preexisting files or direc-
tories. If the name of a corresponding file name is a symbolic
link, the file pointed to by the symbolic link will be overwritten
instead of the symbolic link itself (if this is possible). Moreover,
special devices, empty directories and even symbolic links are
automatically removed if they are in the way of extraction.

Be careful when using the ‘--overwrite’ option, particularly
when combined with the ‘--absolute-names’ (‘-P’) option, as
this combination can change the contents, ownership or permis-
sions of any file on your system. Also, many systems do not take
kindly to overwriting files that are currently being executed.

‘-—overwrite-dir’
Overwrite the metadata of directories when extracting files from
an archive, but remove other files before extracting.

Keep Old Files

‘--keep-old-files’

-k’ Do not replace existing files from archive. The
‘--keep-old-files’ (‘-k’) option prevents tar from re-
placing existing files with files with the same name from the
archive. The ‘--keep-old-files’ option is meaningless with

70 GNU tar 1.26

‘--list’ (‘-t’). Prevents tar from replacing files in the file
system during extraction.

Keep Newer Files

‘~~keep-newer-files’
Do not replace existing files that are newer than their archive
copies. This option is meaningless with ‘--1ist’ (‘-t’).

Unlink First

‘~—unlink-first’

=U’ Remove files before extracting over them. This can make tar
run a bit faster if you know in advance that the extracted files
all need to be removed. Normally this option slows tar down
slightly, so it is disabled by default.

Recursive Unlink

‘--recursive-unlink’
When this option is specified, try removing files and directory
hierarchies before extracting over them. This is a dangerous
option!

3

If you specify the ‘--recursive-unlink’ option, tar removes anything
that keeps you from extracting a file as far as current permissions will allow
it. This could include removal of the contents of a full directory hierarchy.

Setting Data Modification Times

Normally, tar sets the data modification times of extracted files to the corre-
sponding times recorded for the files in the archive, but limits the permissions
of extracted files by the current umask setting.

To set the data modification times of extracted files to the time when
the files were extracted, use the ‘~=touch’ (‘-m’) option in conjunction with
‘--extract’ (‘--get’, ‘-x’).

‘~—touch’

‘-m’ Sets the data modification time of extracted archive members
to the time they were extracted, not the time recorded for them
in the archive. Use in conjunction with ‘--extract’ (‘--get’,
‘~x7).

Setting Access Permissions

To set the modes (access permissions) of extracted files to those recorded
for those files in the archive, use ‘~-same-permissions’ in conjunction with
the ‘--extract’ (‘--get’, ‘-x’) operation.

Chapter 4: GNU tar Operations 71

‘--preserve-permissions’

‘~--same-permissions’

‘-p’ Set modes of extracted archive members to those recorded in the
archive, instead of current umask settings. Use in conjunction

with ‘--extract’ (‘--get’, ‘-x’).

Directory Modification Times and Permissions

After successfully extracting a file member, GNU tar normally restores its
permissions and modification times, as described in the previous sections.
This cannot be done for directories, because after extracting a directory
tar will almost certainly extract files into that directory and this will cause
the directory modification time to be updated. Moreover, restoring that
directory permissions may not permit file creation within it. Thus, restoring
directory permissions and modification times must be delayed at least until
all files have been extracted into that directory. GNU tar restores directories
using the following approach.

The extracted directories are created with the mode specified in the
archive, as modified by the umask of the user, which gives sufficient per-
missions to allow file creation. The meta-information about the directory
is recorded in the temporary list of directories. When preparing to extract
next archive member, GNU tar checks if the directory prefix of this file con-
tains the remembered directory. If it does not, the program assumes that all
files have been extracted into that directory, restores its modification time
and permissions and removes its entry from the internal list. This approach
allows to correctly restore directory meta-information in the majority of
cases, while keeping memory requirements sufficiently small. It is based on
the fact, that most tar archives use the predefined order of members: first
the directory, then all the files and subdirectories in that directory.

However, this is not always true. The most important exception are in-
cremental archives (see Section 5.2 [Incremental Dumps], page 80). The
member order in an incremental archive is reversed: first all directory mem-
bers are stored, followed by other (non-directory) members. So, when ex-
tracting from incremental archives, GNU tar alters the above procedure. It
remembers all restored directories, and restores their meta-data only after
the entire archive has been processed. Notice, that you do not need to spec-
ify any special options for that, as GNU tar automatically detects archives
in incremental format.

There may be cases, when such processing is required for normal archives
too. Consider the following example:

$ tar --no-recursion -cvf archive \
foo foo/filel bar bar/file foo/file2
foo/
foo/filel
bar/
bar/file
foo/file2

72 GNU tar 1.26

During the normal operation, after encountering ‘bar’ GNU tar will as-
sume that all files from the directory ‘foo’ were already extracted and will
therefore restore its timestamp and permission bits. However, after extract-
ing ‘foo/file2’ the directory timestamp will be offset again.

To correctly restore directory meta-information in such cases, use the
‘-—delay-directory-restore’ command line option:

‘-—delay-directory-restore’
Delays restoring of the modification times and permissions of
extracted directories until the end of extraction. This way, cor-
rect meta-information is restored even if the archive has unusual
member ordering.

‘--no-delay-directory-restore’
Cancel the effect of the previous ‘--delay-directory-restore’.
Use this option if you have used ‘--delay-directory-restore’
in TAR_OPTIONS variable (see [TAR_OPTIONS], page 23) and
wish to temporarily disable it.

Writing to Standard Output

To write the extracted files to the standard output, instead of creating
the files on the file system, use ‘--to-stdout’ (‘-0’) in conjunction with
‘~-extract’ (‘--get’, ‘-x’). This option is useful if you are extracting files
to send them through a pipe, and do not need to preserve them in the file
system. If you extract multiple members, they appear on standard output
concatenated, in the order they are found in the archive.

‘~—to-stdout’

‘-0’ Writes files to the standard output. Use only in conjunction with
‘~-extract’ (‘--get’, ‘-x’). When this option is used, instead
of creating the files specified, tar writes the contents of the files
extracted to its standard output. This may be useful if you are
only extracting the files in order to send them through a pipe.
This option is meaningless with ‘--1ist’ (‘-t’).

This can be useful, for example, if you have a tar archive containing a
big file and don’t want to store the file on disk before processing it. You can
use a command like this:

tar -x0zf foo.tgz bigfile | process

or even like this if you want to process the concatenation of the files:
tar -x0zf foo.tgz bigfilel bigfile2 | process

However, ‘--to-command’ may be more convenient for use with multiple

files. See the next section.

Writing to an External Program

You can instruct tar to send the contents of each extracted file to the stan-
dard input of an external program:

Chapter 4: GNU tar Operations 73

‘~—to-command=command’

Extract files and pipe their contents to the standard input of
command. When this option is used, instead of creating the
files specified, tar invokes command and pipes the contents of
the files to its standard output. The command may contain
command line arguments. The program is executed via sh -
c. Notice, that command is executed once for each regular file
extracted. Non-regular files (directories, etc.) are ignored when
this option is used.

The command can obtain the information about the file it processes from
the following environment variables:

TAR_FILETYPE

TAR_MODE

Type of the file. It is a single letter with the following meaning:

Block device
Character device

f Regular file

d Directory

1 Symbolic link
h Hard link

b

¢

Currently only regular files are supported.

File mode, an octal number.

TAR_FILENAME

The name of the file.

TAR_REALNAME

TAR_UNAME

TAR_GNAME

TAR_ATIME

TAR_MTIME

TAR_CTIME

TAR_SIZE
TAR_UID

Name of the file as stored in the archive.
Name of the file owner.
Name of the file owner group.

Time of last access. It is a decimal number, representing seconds
since the Epoch. If the archive provides times with nanosecond
precision, the nanoseconds are appended to the timestamp after
a decimal point.

Time of last modification.

Time of last status change.
Size of the file.
UID of the file owner.

74 GNU tar 1.26

TAR_GID GID of the file owner.

Additionally, the following variables contain information about tar mode
and the archive being processed:

TAR_VERSION
GNU tar version number.

TAR_ARCHIVE
The name of the archive tar is processing.

TAR_BLOCKING_FACTOR
Current blocking factor (see Section 9.4 [Blocking], page 153).

TAR_VOLUME
Ordinal number of the volume tar is processing.

TAR_FORMAT
Format of the archive being processed. See Chapter 8 [Formats],
page 127, for a complete list of archive format names.

If command exits with a non-0 status, tar will print an error message
similar to the following:
tar: 2345: Child returned status 1

Here, ‘2345’ is the PID of the finished process.
If this behavior is not wanted, use ‘--ignore-command-error’:

‘-—ignore-command-error’
Ignore exit codes of subprocesses. Notice that if the program
exits on signal or otherwise terminates abnormally, the error
message will be printed even if this option is used.

‘-—no-ignore-command-error’

Cancel the effect of any previous °

--ignore-command-error’

option. This option is wuseful if you have set
‘-—ignore-command-error’ in TAR_OPTIONS (see
[TAR_OPTIONS]|, page 23) and wish to temporarily
cancel it.

Removing Files

‘~-remove-files’
Remove files after adding them to the archive.

4.4.3 Coping with Scarce Resources

(This message will disappear, once this node revised.)

Starting File

‘--starting-file=name’
‘~K name’ Starts an operation in the middle of an archive. Use in conjunc-
tion with ‘--extract’ (‘--get’, ‘-x’) or ‘--list’ (‘-t’).

Chapter 4: GNU tar Operations 75

If a previous attempt to extract files failed due to lack of disk space, you
can use ‘--starting-file=name’ (‘-K name’) to start extracting only after
member name of the archive. This assumes, of course, that there is now free
space, or that you are now extracting into a different file system. (You could
also choose to suspend tar, remove unnecessary files from the file system,
and then resume the same tar operation. In this case, ‘-—-starting-file’is
not necessary.) See also Section 3.10 [interactive], page 56, and Section 6.4
[exclude], page 98.

Same Order

‘~-—same-order’

‘-—preserve-order’

‘-g’ To process large lists of file names on machines with small
amounts of memory. Use in conjunction with ‘--compare’

(‘--diff’, *-d’), ‘--list’ (‘-t’) or ‘--extract’ (‘--get’, ‘-x’).

The ‘--same-order’ (‘--preserve-order’, ‘-s’) option tells tar that the
list of file names to be listed or extracted is sorted in the same order as the
files in the archive. This allows a large list of names to be used, even on
a small machine that would not otherwise be able to hold all the names
in memory at the same time. Such a sorted list can easily be created by
running ‘tar -t’ on the archive and editing its output.

This option is probably never needed on modern computer systems.

4.5 Backup options

GNU tar offers options for making backups of files before writing new ver-
sions. These options control the details of these backups. They may apply
to the archive itself before it is created or rewritten, as well as individual
extracted members. Other GNU programs (cp, install, 1n, and mv, for
example) offer similar options.

Backup options may prove unexpectedly useful when extracting archives
containing many members having identical name, or when extracting
archives on systems having file name limitations, making different members
appear as having similar names through the side-effect of name truncation.

When any existing file is backed up before being overwritten by extrac-
tion, then clashing files are automatically be renamed to be unique, and the
true name is kept for only the last file of a series of clashing files. By using
verbose mode, users may track exactly what happens.

At the detail level, some decisions are still experimental, and may change
in the future, we are waiting comments from our users. So, please do not
learn to depend blindly on the details of the backup features. For example,
currently, directories themselves are never renamed through using these op-
tions, so, extracting a file over a directory still has good chances to fail. Also,
backup options apply to created archives, not only to extracted members.

76 GNU tar 1.26

For created archives, backups will not be attempted when the archive is a
block or character device, or when it refers to a remote file.

For the sake of simplicity and efficiency, backups are made by renaming
old files prior to creation or extraction, and not by copying. The original
name is restored if the file creation fails. If a failure occurs after a partial
extraction of a file, both the backup and the partially extracted file are kept.

‘~—backup [=method]’
Back up files that are about to be overwritten or removed. With-
out this option, the original versions are destroyed.

Use method to determine the type of backups made. If method
is not specified, use the value of the VERSION_CONTROL envi-
ronment variable. And if VERSION_CONTROL is not set, use the
‘existing’ method.

This option corresponds to the Emacs variable
‘version-control’; the same values for method are ac-
cepted as in Emacs. This option also allows more descriptive
names. The valid methods are:

‘t’
‘numbered’
Always make numbered backups.

‘nil’

‘existing’
Make numbered backups of files that already have
them, simple backups of the others.

‘never’
‘simple’ Always make simple backups.

‘~—suffix=suffix’
Append suffix to each backup file made with ‘--backup’. If this
option is not specified, the value of the SIMPLE_BACKUP_SUFFIX
environment variable is used. And if SIMPLE_BACKUP_SUFFIX is
not set, the default is ‘~’, just as in Emacs.

4.6 Notable tar Usages

(This message will disappear, once this node revised.)

You can easily use archive files to transport a group of files from one
system to another: put all relevant files into an archive on one computer
system, transfer the archive to another system, and extract the contents
there. The basic transfer medium might be magnetic tape, Internet FTP, or
even electronic mail (though you must encode the archive with uuencode in
order to transport it properly by mail). Both machines do not have to use
the same operating system, as long as they both support the tar program.

Chapter 4: GNU tar Operations 7

For example, here is how you might copy a directory’s contents from one
disk to another, while preserving the dates, modes, owners and link-structure
of all the files therein. In this case, the transfer medium is a pipe:

$ (cd sourcedir; tar -cf - .) | (cd targetdir; tar -xf -)
You can avoid subshells by using ‘-C’ option:

$ tar -C sourcedir -cf - . | tar -C targetdir -xf -
The command also works using long option forms:

$ (cd sourcedir; tar --create --file=- .) \

| (cd targetdir; tar --extract --file=-)

or

$ tar --directory sourcedir --create --file=- . \

| tar --directory targetdir --extract --file=-

This is one of the easiest methods to transfer a tar archive.

4.7 Looking Ahead: The Rest of this Manual

You have now seen how to use all eight of the operations available to tar,
and a number of the possible options. The next chapter explains how to
choose and change file and archive names, how to use files to store names of
other files which you can then call as arguments to tar (this can help you
save time if you expect to archive the same list of files a number of times),
and so forth.

If there are too many files to conveniently list on the command line, you
can list the names in a file, and tar will read that file. See Section 6.3 [files],
page 95.

There are various ways of causing tar to skip over some files, and not
archive them. See Chapter 6 [Choosing], page 93.

Chapter 5: Performing Backups and Restoring Files 79

5 Performing Backups and Restoring
Files

GNU tar is distributed along with the scripts for performing backups and
restores. Even if there is a good chance those scripts may be satisfying to
you, they are not the only scripts or methods available for doing backups and
restore. You may well create your own, or use more sophisticated packages
dedicated to that purpose.

Some users are enthusiastic about Amanda (The Advanced Maryland Au-
tomatic Network Disk Archiver), a backup system developed by James da
Silva ‘jds@cs.umd.edu’ and available on many Unix systems. This is free
software, and it is available from http://www.amanda.org.

This chapter documents both the provided shell scripts and tar options
which are more specific to usage as a backup tool.

To back up a file system means to create archives that contain all the
files in that file system. Those archives can then be used to restore any or all
of those files (for instance if a disk crashes or a file is accidentally deleted).
File system backups are also called dumps.

5.1 Using tar to Perform Full Dumps

(This message will disappear, once this node revised.)

Full dumps should only be made when no other people or programs are
modifying files in the file system. If files are modified while tar is making
the backup, they may not be stored properly in the archive, in which case
you won’t be able to restore them if you have to. (Files not being modified
are written with no trouble, and do not corrupt the entire archive.)

[4

You will want to use the ‘--label=archive-label’ (‘-V archive-
label’) option to give the archive a volume label, so you can tell what this
archive is even if the label falls off the tape, or anything like that.

Unless the file system you are dumping is guaranteed to fit on one volume,
you will need to use the ‘--multi-volume’ (‘-M’) option. Make sure you have
enough tapes on hand to complete the backup.

If you want to dump each file system separately you will need to use
the ‘--one-file-system’ option to prevent tar from crossing file system
boundaries when storing (sub)directories.

The ‘--incremental’ (‘-G’) (see Section 5.2 [Incremental Dumps],
page 80) option is not needed, since this is a complete copy of everything
in the file system, and a full restore from this backup would only be done
onto a completely empty disk.

Unless you are in a hurry, and trust the tar program (and your tapes),
it is a good idea to use the ‘--verify’ (‘-W’) option, to make sure your files
really made it onto the dump properly. This will also detect cases where the

http://www.amanda.org

80 GNU tar 1.26

file was modified while (or just after) it was being archived. Not all media
(notably cartridge tapes) are capable of being verified, unfortunately.

5.2 Using tar to Perform Incremental Dumps

Incremental backup is a special form of GNU tar archive that stores addi-
tional metadata so that exact state of the file system can be restored when
extracting the archive.

GNU tar currently offers two options for handling incremental back-
ups: ‘--listed-incremental=snapshot-file’ (‘-g snapshot-file’) and
‘~-incremental’ (‘-G’).

The option ‘--1listed-incremental’ instructs tar to operate on an incre-
mental archive with additional metadata stored in a standalone file, called
a snapshot file. The purpose of this file is to help determine which files have
been changed, added or deleted since the last backup, so that the next in-
cremental backup will contain only modified files. The name of the snapshot
file is given as an argument to the option:

‘--listed-incremental=file’
‘-g file’ Handle incremental backups with snapshot data in file.

To create an incremental backup, you would use
‘--listed-incremental’ together with ‘--create’ (see Section 2.6
[create], page 10). For example:

$ tar --create \
--file=archive.1l.tar \
--listed-incremental=/var/log/usr.snar \
/usr

This will create in ‘archive.1.tar’ an incremental backup of the ‘/usr’
file system, storing additional metadata in the file ‘/var/log/usr.snar’. If
this file does not exist, it will be created. The created archive will then be
a level 0 backup; please see the next section for more on backup levels.

Otherwise, if the file ‘/var/log/usr.snar’ exists, it determines which
files are modified. In this case only these files will be stored in the archive.
Suppose, for example, that after running the above command, you delete
file ‘/usr/doc/0ld’ and create directory ‘/usr/local/db’ with the following
contents:

$ 1s /usr/local/db
/usr/local/db/data
/usr/local/db/index
Some time later you create another incremental backup. You will then
see:
$ tar --create \
--file=archive.2.tar \
--listed-incremental=/var/log/usr.snar \
/usr
tar: usr/local/db: Directory is new

Chapter 5: Performing Backups and Restoring Files 81

usr/local/db/
usr/local/db/data
usr/local/db/index

The created archive ‘archive.2.tar’ will contain only these three members.
This archive is called a level 1 backup. Notice that ‘/var/log/usr.snar’
will be updated with the new data, so if you plan to create more ‘level 1’
backups, it is necessary to create a working copy of the snapshot file before
running tar. The above example will then be modified as follows:
$ cp /var/log/usr.snar /var/log/usr.snar-1
$ tar --create \
--file=archive.2.tar \
--listed-incremental=/var/log/usr.snar-1 \
/usr

You can force ‘level 0’ backups either by removing the snapshot file
before running tar, or by supplying the ‘--level=0’ option, e.g.:
$ tar --create \
--file=archive.2.tar \
--listed-incremental=/var/log/usr.snar-0 \
--level=0 \
/usr

Incremental dumps depend crucially on time stamps, so the results are
unreliable if you modify a file’s time stamps during dumping (e.g., with the
‘-—atime-preserve=replace’ option), or if you set the clock backwards.

Metadata stored in snapshot files include device numbers, which, obvi-
ously are supposed to be non-volatile values. However, it turns out that NFS
devices have undependable values when an automounter gets in the picture.
This can lead to a great deal of spurious redumping in incremental dumps,
so it is somewhat useless to compare two NFS devices numbers over time.
The solution implemented currently is to consider all NFS devices as being
equal when it comes to comparing directories; this is fairly gross, but there
does not seem to be a better way to go.

Apart from using NFS, there are a number of cases where relying on
device numbers can cause spurious redumping of unmodified files. For ex-
ample, this occurs when archiving LVM snapshot volumes. To avoid this,
use ‘-—no-check-device’ option:

‘~-no-check-device’
Do not rely on device numbers when preparing a list of changed
files for an incremental dump.

‘~-—check-device’
Use device numbers when preparing a list of changed files for an
incremental dump. This is the default behavior. The purpose
of this option is to undo the effect of the ‘-—no-check-device’

if it was given in TAR_OPTIONS environment variable (see
[TAR_-OPTIONS], page 23).

82 GNU tar 1.26

There is also another way to cope with changing device numbers. It is
described in detail in Appendix C [Fixing Snapshot Files|, page 183.

Note that incremental archives use tar extensions and may not be read-
able by non-GNU versions of the tar program.

To extract from the incremental dumps, use ‘--listed-incremental’ to-
gether with ‘--extract’ option (see Section 2.8.2 [extracting files|, page 17).
In this case, tar does not need to access snapshot file, since all the data nec-
essary for extraction are stored in the archive itself. So, when extracting, you
can give whatever argument to ‘--listed-incremental’, the usual practice
is to use ‘--listed-incremental=/dev/null’. Alternatively, you can use
‘~—incremental’, which needs no arguments. In general, ‘~-incremental’
(‘-G’) can be used as a shortcut for ‘--1listed-incremental’ when listing or
extracting incremental backups (for more information regarding this option,
see [incremental-op|, page 83).

When extracting from the incremental backup GNU tar attempts to re-
store the exact state the file system had when the archive was created. In
particular, it will delete those files in the file system that did not exist in
their directories when the archive was created. If you have created several
levels of incremental files, then in order to restore the exact contents the file
system had when the last level was created, you will need to restore from all
backups in turn. Continuing our example, to restore the state of ‘/usr’ file
system, one would do':

$ tar --extract \
--listed-incremental=/dev/null \
--file archive.1l.tar

$ tar --extract \

--listed-incremental=/dev/null \
--file archive.2.tar

To list the contents of an incremental archive, use ‘--list’ (see
Section 2.7 [list], page 15), as usual. To obtain more information about the
archive, use ‘--listed-incremental’ or ‘--incremental’ combined with
two ‘--verbose’ options?:

tar --list --incremental --verbose --verbose archive.tar

This command will print, for each directory in the archive, the list of files
in that directory at the time the archive was created. This information is

1 Notice, that since both archives were created without ‘~P’ option (see Section 6.10.2
[absolute], page 115), these commands should be run from the root file system.

2 Two ‘--verbose’ options were selected to avoid breaking usual verbose listing output
(‘--1ist --verbose’) when using in scripts.

Versions of GNU tar up to 1.15.1 used to dump verbatim binary contents
of the DUMPDIR header (with terminating nulls) when ‘--incremental’ or
‘--listed-incremental’ option was given, no matter what the verbosity level. This
behavior, and, especially, the binary output it produced were considered inconvenient
and were changed in version 1.16.

Chapter 5: Performing Backups and Restoring Files 83

put out in a format which is both human-readable and unambiguous for a
program: each file name is printed as

x file

where x is a letter describing the status of the file: ‘Y’ if the file is present
in the archive, ‘N’ if the file is not included in the archive, or a ‘D’ if the
file is a directory (and is included in the archive). See [Dumpdir|, page 199,
for the detailed description of dumpdirs and status codes. Each such line is
terminated by a newline character. The last line is followed by an additional
newline to indicate the end of the data.

The option ‘--incremental’ (‘-G’) gives the same behavior as
‘~-listed-incremental’ when used with ‘--list’ and ‘--extract’
options. When used with ‘--create’ option, it creates an incremental

archive without creating snapshot file. Thus, it is impossible to create
several levels of incremental backups with ‘--incremental’ option.

5.3 Levels of Backups

An archive containing all the files in the file system is called a full backup
or full dump. You could insure your data by creating a full dump every day.
This strategy, however, would waste a substantial amount of archive media
and user time, as unchanged files are daily re-archived.

It is more efficient to do a full dump only occasionally. To back up files
between full dumps, you can use incremental dumps. A level one dump
archives all the files that have changed since the last full dump.

A typical dump strategy would be to perform a full dump once a week,
and a level one dump once a day. This means some versions of files will in
fact be archived more than once, but this dump strategy makes it possible
to restore a file system to within one day of accuracy by only extracting two
archives—the last weekly (full) dump and the last daily (level one) dump.
The only information lost would be in files changed or created since the last
daily backup. (Doing dumps more than once a day is usually not worth the
trouble.)

GNU tar comes with scripts you can use to do full and level-one (actually,
even level-two and so on) dumps. Using scripts (shell programs) to perform
backups and restoration is a convenient and reliable alternative to typing
out file name lists and tar commands by hand.

Before you use these scripts, you need to edit the file ‘backup-specs’,
which specifies parameters used by the backup scripts and by the restore
script. This file is usually located in ‘/etc/backup’ directory. See Section 5.4
[Backup Parameters|, page 84, for its detailed description. Once the backup
parameters are set, you can perform backups or restoration by running the
appropriate script.

The name of the backup script is backup. The name of the restore script
is restore. The following sections describe their use in detail.

84 GNU tar 1.26

Please Note: The backup and restoration scripts are designed to be used
together. While it is possible to restore files by hand from an archive which
was created using a backup script, and to create an archive by hand which
could then be extracted using the restore script, it is easier to use the scripts.
See Section 5.2 [Incremental Dumps]|, page 80, before making such an at-
tempt.

5.4 Setting Parameters for Backups and
Restoration

The file ‘backup-specs’ specifies backup parameters for the backup and
restoration scripts provided with tar. You must edit ‘backup-specs’ to fit
your system configuration and schedule before using these scripts.

Syntactically, ‘backup-specs’ is a shell script, containing mainly vari-
able assignments. However, any valid shell construct is allowed in this file.
Particularly, you may wish to define functions within that script (e.g., see
RESTORE_BEGIN below). For more information about shell script syntax,
please refer to the definition of the Shell Command Language. See also
Section “Bash Features” in Bash Reference Manual.

The shell variables controlling behavior of backup and restore are de-
scribed in the following subsections.

5.4.1 General-Purpose Variables

ADMINISTRATOR [Backup variable]
The user name of the backup administrator. Backup scripts sends a
backup report to this address.

BACKUP_HOUR [Backup variable]
The hour at which the backups are done. This can be a number from 0
to 23, or the time specification in form hours:minutes, or the string ‘now’.

This variable is used by backup. Its value may be overridden using
‘~-time’ option (see Section 5.5 [Scripted Backups|, page 88).

TAPE_FILE [Backup variable]
The device tar writes the archive to. If TAPE_FILE is a remote archive
(see [remote-dev], page 94), backup script will suppose that your mt
is able to access remote devices. If RSH (see [RSH|, page 85) is set,
‘~-rsh-command’ option will be added to invocations of mt.

BLOCKING [Backup variable]
The blocking factor tar will use when writing the dump archive. See
Section 9.4.2 [Blocking Factor|, page 155.

BACKUP_DIRS [Backup variable]
A list of file systems to be dumped (for backup), or restored (for restore).
You can include any directory name in the list — subdirectories on that

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#ta g_02

Chapter 5: Performing Backups and Restoring Files 85

file system will be included, regardless of how they may look to other
networked machines. Subdirectories on other file systems will be ignored.

The host name specifies which host to run tar on, and should normally
be the host that actually contains the file system. However, the host
machine must have GNU tar installed, and must be able to access the
directory containing the backup scripts and their support files using the
same file name that is used on the machine where the scripts are run (i.e.,
what pwd will print when in that directory on that machine). If the host
that contains the file system does not have this capability, you can specify
another host as long as it can access the file system through NFS.

If the list of file systems is very long you may wish to put it in a separate
file. This file is usually named ‘/etc/backup/dirs’, but this name may
be overridden in ‘backup-specs’ using DIRLIST variable.

DIRLIST [Backup variable]
The name of the file that contains a list of file systems to backup or
restore. By default it is ‘/etc/backup/dirs’.

BACKUP_FILES [Backup variable]
A list of individual files to be dumped (for backup), or restored (for
restore). These should be accessible from the machine on which the
backup script is run.

If the list of individual files is very long you may wish to store it in a
separate file. This file is usually named ‘/etc/backup/files’, but this
name may be overridden in ‘backup-specs’ using FILELIST variable.

FILELIST [Backup variable]
The name of the file that contains a list of individual files to backup or
restore. By default it is ‘/etc/backup/files’.

MT [Backup variable]
Full file name of mt binary.

RSH [Backup variable]
Full file name of rsh binary or its equivalent. You may wish to set it
to ssh, to improve security. In this case you will have to use public key
authentication.

RSH_COMMAND [Backup variable]
Full file name of rsh binary on remote machines. This will be passed via
‘--rsh-command’ option to the remote invocation of GNU tar.

VOLNO_FILE [Backup variable]
Name of temporary file to hold volume numbers. This needs to be acces-
sible by all the machines which have file systems to be dumped.

XLIST [Backup variable]
Name of exclude file list. An exclude file list is a file located on the remote
machine and containing the list of files to be excluded from the backup.

86 GNU tar 1.26

Exclude file lists are searched in /etc/tar-backup directory. A common
use for exclude file lists is to exclude files containing security-sensitive
information (e.g., ‘/etc/shadow’ from backups).

This variable affects only backup.

SLEEP_TIME [Backup variable]
Time to sleep between dumps of any two successive file systems

This variable affects only backup.

DUMP_REMIND_SCRIPT [Backup variable]
Script to be run when it’s time to insert a new tape in for the next
volume. Administrators may want to tailor this script for their site. If
this variable isn’t set, GNU tar will display its built-in prompt, and will
expect confirmation from the console. For the description of the default
prompt, see [change volume prompt], page 164.

SLEEP_MESSAGE [Backup variable]
Message to display on the terminal while waiting for dump time. Usually
this will just be some literal text.

TAR [Backup variable]
Full file name of the GNU tar executable. If this is not set, backup scripts
will search tar in the current shell path.

5.4.2 Magnetic Tape Control

Backup scripts access tape device using special hook functions. These func-
tions take a single argument — the name of the tape device. Their names
are kept in the following variables:

MT_BEGIN [Backup variable]
The name of begin function. This function is called before accessing the
drive. By default it retensions the tape:

MT_BEGIN=mt_begin

mt_begin() {
mt -f "$1" retemsion

}

MT_REWIND [Backup variable]
The name of rewind function. The default definition is as follows:
MT_REWIND=mt_rewind

mt_rewind() {
mt -f "$1" rewind

}

MT_OFFLINE [Backup variable]
The name of the function switching the tape off line. By default it is
defined as follows:

Chapter 5: Performing Backups and Restoring Files 87

MT_OFFLINE=mt_offline

mt_offline() {
mt -f "$1" offl
}

MT_STATUS [Backup variable]
The name of the function used to obtain the status of the archive device,
including error count. Default definition:

MT_STATUS=mt_status

mt_status() {
mt -f "$1" status
}

5.4.3 User Hooks

User hooks are shell functions executed before and after each tar invocation.
Thus, there are backup hooks, which are executed before and after dumping
each file system, and restore hooks, executed before and after restoring a file
system. Each user hook is a shell function taking four arguments:

hook level host fs fsname [User Hook Function]
Its arguments are:

level Current backup or restore level.

host Name or IP address of the host machine being dumped or
restored.

fs Full file name of the file system being dumped or restored.

fsname File system name with directory separators replaced with

colons. This is useful, e.g., for creating unique files.
Following variables keep the names of user hook functions:

DUMP_BEGIN [Backup variable]
Dump begin function. It is executed before dumping the file system.

DUMP_END [Backup variable]
Executed after dumping the file system.

RESTORE_BEGIN [Backup variable]
Executed before restoring the file system.

RESTORE_END [Backup variable]
Executed after restoring the file system.

88 GNU tar 1.26

5.4.4 An Example Text of ‘Backup-specs’

The following is an example of ‘backup-specs’:
site-specific parameters for file system backup.

ADMINISTRATOR=friedman
BACKUP_HOUR=1
TAPE_FILE=/dev/nrsmt0

Use ssh instead of the less secure rsh
RSH=/usr/bin/ssh
RSH_COMMAND=/usr/bin/ssh

Override MT_STATUS function:
my_status() {
mts -t $TAPE_FILE
}
MT_STATUS=my_status

Disable MT_OFFLINE function
MT_OFFLINE=:

BLOCKING=124

BACKUP_DIRS="
albert:/fs/fsf
apple-gunkies:/gd
albert:/fs/gd2
albert:/fs/gp
geech:/usr/jla
churchy:/usr/roland
albert:/
albert:/usr
apple-gunkies:/
apple-gunkies:/usr
gnu: /hack
gnu:/u
apple-gunkies:/com/mailer/gnu
apple-gunkies:/com/archive/gnu"

BACKUP_FILES="/com/mailer/aliases /com/mailer/league*[a-z]"

5.5 Using the Backup Scripts

The syntax for running a backup script is:
backup --level=level --time=time
The ‘--1evel’ option requests the dump level. Thus, to produce a full
dump, specify —-level=0 (this is the default, so ‘--level’ may be omitted
if its value is 0)3.

3 For backward compatibility, the backup will also try to deduce the requested dump
level from the name of the script itself. If the name consists of a string ‘level-’ followed

Chapter 5: Performing Backups and Restoring Files 89

The ‘~-time’ option determines when should the backup be run. Time
may take three forms:

hh:mm

The dump must be run at hh hours mm minutes.
hh

The dump must be run at hh hours.
now

The dump must be run immediately.

You should start a script with a tape or disk mounted. Once you start
a script, it prompts you for new tapes or disks as it needs them. Media
volumes don’t have to correspond to archive files — a multi-volume archive
can be started in the middle of a tape that already contains the end of
another multi-volume archive. The restore script prompts for media by
its archive volume, so to avoid an error message you should keep track of
which tape (or disk) contains which volume of the archive (see Section 5.6
[Scripted Restoration|, page 90).

The backup scripts write two files on the file system. The first is a
record file in ‘/etc/tar-backup/’, which is used by the scripts to store and
retrieve information about which files were dumped. This file is not meant
to be read by humans, and should not be deleted by them. See [Snapshot
Files], page 197, for a more detailed explanation of this file.

The second file is a log file containing the names of the file systems and
files dumped, what time the backup was made, and any error messages that
were generated, as well as how much space was left in the media volume
after the last volume of the archive was written. You should check this log
file after every backup. The file name is ‘log-mm-dd-yyyy-level-n’, where
mm-dd-yyyy represents current date, and n represents current dump level
number.

The script also prints the name of each system being dumped to the
standard output.

Following is the full list of options accepted by backup script:
‘-1 level
‘~-level=level’
Do backup level level (default 0).
C_f?
‘-—force’ Force backup even if today’s log file already exists.

by a single decimal digit, that digit is taken as the dump level number. Thus, you may
create a link from backup to level-1 and then run level-1 whenever you need to
create a level one dump.

90 GNU tar 1.26

‘~v[levell’

‘--verbose[=levell’
Set verbosity level. The higher the level is, the more debugging
information will be output during execution. Default level is
100, which means the highest debugging level.

‘-t start-time’
‘——time=start-time’
Wait till time, then do backup.

4_h7
‘-=help’ Display short help message and exit.

—y
‘--version’
Display information about the program’s name, version, origin
and legal status, all on standard output, and then exit success-
fully.

5.6 Using the Restore Script

To restore files that were archived using a scripted backup, use the restore
script. Its usage is quite straightforward. In the simplest form, invoke
restore --all, it will then restore all the file systems and files specified
in ‘backup-specs’ (see Section 5.4.1 [General-Purpose Variables|, page 84).

You may select the file systems (and/or files) to restore by giving restore
a list of patterns in its command line. For example, running

restore ’albert:x*’
will restore all file systems on the machine ‘albert’. A more complicated
example:

restore ’albert:*’ ’*:/var’
This command will restore all file systems on the machine ‘albert’ as well
as ‘/var’ file system on all machines.

By default restore will start restoring files from the lowest available
dump level (usually zero) and will continue through all available dump levels.
There may be situations where such a thorough restore is not necessary. For
example, you may wish to restore only files from the recent level one backup.
To do so, use ‘--1level’ option, as shown in the example below:

restore --level=1
The full list of options accepted by restore follows:
gy’
‘--all’ Restore all file systems and files specified in ‘backup-specs’.
‘-1 level’
‘--level=level’

Start restoring from the given backup level, instead of the default
0.

Chapter 5: Performing Backups and Restoring Files 91

‘~v[levell’

‘--verbose[=levell’
Set verbosity level. The higher the level is, the more debugging
information will be output during execution. Default level is
100, which means the highest debugging level.

‘—h’
‘--~help’ Display short help message and exit.

(_V7

‘--version’
Display information about the program’s name, version, origin
and legal status, all on standard output, and then exit success-
fully.

You should start the restore script with the media containing the first
volume of the archive mounted. The script will prompt for other volumes
as they are needed. If the archive is on tape, you don’t need to rewind the
tape to to its beginning—if the tape head is positioned past the beginning
of the archive, the script will rewind the tape as needed. See Section 9.5.1
[Tape Positioning|, page 161, for a discussion of tape positioning.

Warning: The script will delete files from the active file system if
they were not in the file system when the archive was made.

See Section 5.2 [Incremental Dumps|, page 80, for an explanation of how
the script makes that determination.

Chapter 6: Choosing Files and Names for tar 93
6 Choosing Files and Names for tar

Certain options to tar enable you to specify a name for your archive. Other
options let you decide which files to include or exclude from the archive,
based on when or whether files were modified, whether the file names do or
don’t match specified patterns, or whether files are in specified directories.

This chapter discusses these options in detail.

6.1 Choosing and Naming Archive Files

By default, tar uses an archive file name that was compiled when it was
built on the system; usually this name refers to some physical tape drive
on the machine. However, the person who installed tar on the system may
not have set the default to a meaningful value as far as most users are
concerned. As a result, you will usually want to tell tar where to find
(or create) the archive. The ‘--file=archive-name’ (‘-f archive-name’)
option allows you to either specify or name a file to use as the archive instead
of the default archive file location.

‘~-file=archive-name’

‘~-f archive-name’
Name the archive to create or operate on. Use in conjunction
with any operation.

For example, in this tar command,

$ tar -cvf collection.tar blues folk jazz

‘collection.tar’ is the name of the archive. It must directly follow the ‘-f’
option, since whatever directly follows ‘~f’ will end up naming the archive.
If you neglect to specify an archive name, you may end up overwriting a file
in the working directory with the archive you create since tar will use this
file’s name for the archive name.

An archive can be saved as a file in the file system, sent through a pipe
or over a network, or written to an I/O device such as a tape, floppy disk,
or CD write drive.

If you do not name the archive, tar uses the value of the environment
variable TAPE as the file name for the archive. If that is not available, tar
uses a default, compiled-in archive name, usually that for tape unit zero (i.e.,
‘/dev/tu00’).

If you use ‘-’ as an archive-name, tar reads the archive from standard
input (when listing or extracting files), or writes it to standard output (when
creating an archive). If you use ‘-’ as an archive-name when modifying an
archive, tar reads the original archive from its standard input and writes
the entire new archive to its standard output.

The following example is a convenient way of copying directory hierarchy
from ‘sourcedir’ to ‘targetdir’.

94 GNU tar 1.26

$ (cd sourcedir; tar -cf - .) | (cd targetdir; tar -xpf -)
The ‘-C’ option allows to avoid using subshells:
$ tar -C sourcedir -cf - . | tar -C targetdir -xpf -

In both examples above, the leftmost tar invocation archives the contents
of ‘sourcedir’ to the standard output, while the rightmost one reads this
archive from its standard input and extracts it. The ‘-p’ option tells it to
restore permissions of the extracted files.

To specify an archive file on a device attached to a remote machine, use
the following:

--file=hostname:/dev/file-name

tar will set up the remote connection, if possible, and prompt you for a
username and password. If you use ‘--file=Q@hostname:/dev/file-name’,
tar will attempt to set up the remote connection using your username as
the username on the remote machine.

If the archive file name includes a colon (‘:’), then it is assumed to be a
file on another machine. If the archive file is ‘user@host:file’, then file is
used on the host host. The remote host is accessed using the rsh program,
with a username of user. If the username is omitted (along with the ‘@’ sign),
then your user name will be used. (This is the normal rsh behavior.) It is
necessary for the remote machine, in addition to permitting your rsh access,
to have the ‘rmt’ program installed (this command is included in the GNU
tar distribution and by default is installed under ‘prefix/libexec/rmt’,
where prefix means your installation prefix). If you need to use a file whose
name includes a colon, then the remote tape drive behavior can be inhibited
by using the ‘~-force-local’ option.

When the archive is being created to ‘/dev/null’, GNU tar tries to
minimize input and output operations. The Amanda backup system, when
used with GNU tar, has an initial sizing pass which uses this feature.

6.2 Selecting Archive Members

File Name arguments specify which files in the file system tar operates
on, when creating or adding to an archive, or which archive members tar
operates on, when reading or deleting from an archive. See Section 4.2.1
[Operations], page 58.

To specify file names, you can include them as the last arguments on the
command line, as follows:

tar operation [optionl option2 ...] [file name-1 file name-2 ...]

If a file name begins with dash (‘-’), precede it with ‘--add-file’ option
to prevent it from being treated as an option.

By default GNU tar attempts to unquote each file or member name,
replacing escape sequences according to the following table:

Escape Replaced with

Chapter 6: Choosing Files and Names for tar 95

\a Audible bell (ASCII 7)

\b Backspace (ASCII 8)

\f Form feed (ASCII 12)

\n New line (ASCII 10)

\r Carriage return (ASCII 13)

\t Horizontal tabulation (ASCII 9)

\v Vertical tabulation (ASCII 11)

\? ASCIT 127

\n ASCII n (n should be an octal number of up

to 3 digits)
A backslash followed by any other symbol is retained.
This default behavior is controlled by the following command line option:

‘—-—unquote’
Enable unquoting input file or member names (default).

‘-—no-unquote’
Disable unquoting input file or member names.

If you specify a directory name as a file name argument, all the files in
that directory are operated on by tar.

If you do not specify files, tar behavior differs depending on the operation
mode as described below:

When tar is invoked with ‘~-create’ (‘-c’), tar will stop immediately,
reporting the following;:
$ tar cf a.tar
tar: Cowardly refusing to create an empty archive

Try ‘tar --help’ or ‘tar --usage’ for more information.
3

If you specify either ‘--1list’ (‘-t’) or ‘--extract’ (‘--get’, ‘-x’), tar
operates on all the archive members in the archive.

If run with ‘--diff’ option, tar will compare the archive with the contents
of the current working directory.

If you specify any other operation, tar does nothing.

By default, tar takes file names from the command line. However, there
are other ways to specify file or member names, or to modify the manner
in which tar selects the files or members upon which to operate. In gen-
eral, these methods work both for specifying the names of files and archive
members.

6.3 Reading Names from a File

Instead of giving the names of files or archive members on the command line,
you can put the names into a file, and then use the ‘--files-from=file-of-
names’ (‘-T file-of-names’) option to tar. Give the name of the file which
contains the list of files to include as the argument to ‘--files-from’. In
the list, the file names should be separated by newlines. You will frequently

96 GNU tar 1.26

use this option when you have generated the list of files to archive with the
find utility.

‘—~—files-from=file-name’
‘T file-name’
Get names to extract or create from file file-name.

If you give a single dash as a file name for ‘--files-from’, (i.e., you
specify either --files-from=- or -T -), then the file names are read from
standard input.

Unless you are running tar with ‘--create’;, you can not use both --
files-from=- and --file=- (-f -) in the same command.

Any number of ‘-T’ options can be given in the command line.

The following example shows how to use find to generate a list of files
smaller than 400K in length and put that list into a file called ‘small-files’.
You can then use the ‘-T’ option to tar to specify the files from that file,
‘small-files’, to create the archive ‘little.tgz’. (The ‘-z’ option to tar
compresses the archive with gzip; see Section 8.1.1 [gzip], page 128 for more
information.)

$ find . -size -400 -print > small-files

$ tar -¢ -v -z -T small-files -f little.tgz
In the file list given by ‘~T’ option, any file name beginning with ‘-’ character
is considered a tar option and is processed accordingly'. For example, the
common use of this feature is to change to another directory by specifying
‘~C’ option:

$ cat list

-C/etc

passwd

hosts

-C/1lib

libc.a

$ tar -c¢ -f foo.tar --files-from list

In this example, tar will first switch to ‘/etc’ directory and add files ‘passwd’
and ‘hosts’ to the archive. Then it will change to ‘/1ib’ directory and will
archive the file ‘1ibc.a’. Thus, the resulting archive ‘foo.tar’ will contain:
$ tar tf foo.tar
passwd

hosts
libc.a

Notice that the option parsing algorithm used with ‘-T’ is stricter than
the one used by shell. Namely, when specifying option arguments, you should
observe the following rules:

1 Versions of GNU tar up to 1.15.1 recognized only ‘~C’ option in file lists, and only if
the option and its argument occupied two consecutive lines.

Chapter 6: Choosing Files and Names for tar 97

e When using short (single-letter) option form, its argument must imme-
diately follow the option letter, without any intervening whitespace. For
example: -Cdir.

e When using long option form, the option argument must be separated
from the option by a single equal sign. No whitespace is allowed on any
side of the equal sign. For example: ——directory=dir.

e For both short and long option forms, the option argument can be given
on the next line after the option name, e.g.:
--directory
dir
and
-C
dir
If you happen to have a file whose name starts with ‘-’ precede it with
‘--add-file’ option to prevent it from being recognized as an option. For
example: --add-file=--my-file.

6.3.1 NUL-Terminated File Names

The ‘--null’ option causes ‘--files-from=file-of-names’ (‘-T file-of-
names’) to read file names terminated by a NUL instead of a newline, so files
whose names contain newlines can be archived using ‘--files-from’.

‘-—null’ Only consider NUL-terminated file names, instead of files that
terminate in a newline.

‘--no-null’
Undo the effect of any previous ‘--null’ option.

The ‘--null’ option is just like the one in GNU xargs and cpio, and
is useful with the ‘-print0’ predicate of GNU find. In tar, ‘--null’ also
disables special handling for file names that begin with dash.

This example shows how to use find to generate a list of files larger
than 800K in length and put that list into a file called ‘long-files’. The
‘-print0’ option to find is just like ‘-print’, except that it separates files
with a NUL rather than with a newline. You can then run tar with both the
‘--null’ and ‘-T’ options to specify that tar gets the files from that file,
‘long-files’, to create the archive ‘big.tgz’. The ‘--null’ option to tar
will cause tar to recognize the NUL separator between files.

$ find . -size +800 -print0 > long-files
$ tar -¢ -v --null --files-from=long-files --file=big.tar

The ‘--no-null’ option can be used if you need to read both NUL-
terminated and newline-terminated files on the same command line. For
example, if ‘flist’ is a newline-terminated file, then the following command
can be used to combine it with the above command:

$ find . -size +800 -printO |
tar -c¢ -f big.tar --null -T - --no-null -T flist

98 GNU tar 1.26

This example uses short options for typographic reasons, to avoid very
long lines.

GNU tar is able to automatically detect NUL-terminated file lists, so it
is safe to use them even without the ‘--null’ option. In this case tar will
print a warning and continue reading such a file as if ‘--null’ were actually
given:

$ find . -size +800 -print0 | tar -c -f big.tar -T -
tar: -: file name read contains nul character

The null terminator, however, remains in effect only for this particular
file, any following ‘~T’ options will assume newline termination. Of course,
the null autodetection applies to these eventual surplus ‘-T’ options as well.

6.4 Excluding Some Files

To avoid operating on files whose names match a particular pattern, use the
‘-—exclude’ or ‘--exclude-from’ options.

‘-—exclude=pattern’
Causes tar to ignore files that match the pattern.

The ‘--exclude=pattern’ option prevents any file or member whose
name matches the shell wildcard (pattern) from being operated on. For
example, to create an archive with all the contents of the directory ‘src’ ex-
cept for files whose names end in ‘.0o’, use the command ‘tar -cf src.tar
--exclude=’*.0’ src’.

You may give multiple ‘--exclude’ options.

‘-—exclude-from=file’
‘-X file’ Causes tar to ignore files that match the patterns listed in file.

Use the ‘--exclude-from’ option to read a list of patterns, one per line,
from file; tar will ignore files matching those patterns. Thus if tar is called
as ‘tar -c¢ -X foo .’ and the file ‘foo’ contains a single line ‘*.0’, no files
whose names end in ‘.o’ will be added to the archive.

Notice, that lines from file are read verbatim. One of the frequent errors
is leaving some extra whitespace after a file name, which is difficult to catch
using text editors.

However, empty lines are OK.
‘-—exclude-vcs’
Exclude files and directories used by following version

control systems: ‘CVS’, ‘RCS’, ‘SCCS’, ‘SVN’, ‘Arch’, ‘Bazaar’,
‘Mercurial’, and ‘Darcs’.

As of version 1.26, the following files are excluded:
e ‘CVS/’, and everything under it
e ‘RCS/’, and everything under it
e ‘SCCS/’, and everything under it

Chapter 6: Choosing Files and Names for tar 99

e ‘.git/’, and everything under it
e ‘.gitignore’

e ‘.cvsignore’
3

.svn/’, and everything under it
‘.arch-ids/’, and everything under it
‘{arch}/’, and everything under it
‘=RELEASE-ID’

‘=meta-update’

‘=update’
‘.bzr’

3

.bzrignore’
‘.bzrtags’
.hg’

.hgignore’

3

4

‘.hgrags’
e ‘_darcs’

‘-—exclude-backups’
Exclude backup and lock files. This option causes exclusion of
files that match the following shell globbing patterns:

A

Xk~

s

When creating an archive, the ‘--exclude-caches’ option family causes
tar to exclude all directories that contain a cache directory tag. A cache di-
rectory tag is a short file with the well-known name ‘CACHEDIR.TAG’ and
having a standard header specified in http://www .brynosaurus . com/
cachedir/spec.html. Various applications write cache directory tags into
directories they use to hold regenerable, non-precious data, so that such data
can be more easily excluded from backups.

There are three ‘exclude-caches’ options, each providing a different
exclusion semantics:

‘-—exclude-caches’
Do not archive the contents of the directory, but archive the
directory itself and the ‘CACHEDIR.TAG’ file.

‘-—exclude-caches-under’
Do not archive the contents of the directory, nor the
‘CACHEDIR.TAG’ file, archive only the directory itself.

‘-—exclude-caches-all’
Omit directories containing ‘CACHEDIR.TAG’ file entirely.

http://www.brynosaurus.com/cachedir/spec.html
http://www.brynosaurus.com/cachedir/spec.html

100 GNU tar 1.26

Another option family, ‘--exclude-tag’, provides a generalization of this
concept. It takes a single argument, a file name to look for. Any direc-
tory that contains this file will be excluded from the dump. Similarly to
‘exclude-caches’, there are three options in this option family:

‘-—exclude-tag=file’
Do not dump the contents of the directory, but dump the direc-
tory itself and the file.

‘-—exclude-tag-under=file’
Do not dump the contents of the directory, nor the file, archive
only the directory itself.

‘-—exclude-tag-all=file’
Omit directories containing file file entirely.

Multiple ‘--exclude-tag*’ options can be given.

For example, given this directory:
$ find dir
dir
dir/blues
dir/jazz
dir/folk
dir/folk/tagfile
dir/folk/sanjuan
dir/folk/trote
The ‘--exclude-tag’ will produce the following:
$ tar -cf archive.tar --exclude-tag=tagfile -v dir
dir/
dir/blues
dir/jazz
dir/folk/
tar: dir/folk/: contains a cache directory tag tagfile;
contents not dumped
dir/folk/tagfile
Both the ‘dir/folk’ directory and its tagfile are preserved in the archive,
however the rest of files in this directory are not.

Now, using the ‘--exclude-tag-under’ option will exclude ‘tagfile’
from the dump, while still preserving the directory itself, as shown in this
example:

$ tar -cf archive.tar --exclude-tag-under=tagfile -v dir

dir/

dir/blues

dir/jazz

dir/folk/

./tar: dir/folk/: contains a cache directory tag tagfile;
contents not dumped

Finally, using ‘--exclude-tag-all’ omits the ‘dir/folk’ directory en-
tirely:

Chapter 6: Choosing Files and Names for tar 101

$ tar -cf archive.tar --exclude-tag-all=tagfile -v dir

dir/

dir/blues

dir/jazz

./tar: dir/folk/: contains a cache directory tag tagfile;
directory not dumped

Problems with Using the exclude Options

Some users find ‘exclude’ options confusing. Here are some common pitfalls:

e The main operating mode of tar does not act on a file name explic-
itly listed on the command line, if one of its file name components is
excluded. In the example above, if you create an archive and exclude
files that end with ‘x.0’, but explicitly name the file ‘dir.o/foo’ after
all the options have been listed, ‘dir.o/foo’ will be excluded from the

archive.

e You can sometimes confuse the meanings of ‘--exclude’ and

‘-—exclude-from’. Be careful: wuse ‘--exclude’ when files to
be excluded are given as a pattern on the command line. Use
‘-—exclude-from’ to introduce the name of a file which contains a list
of patterns, one per line; each of these patterns can exclude zero, one,
or many files.

e When you use ‘--exclude=pattern’, be sure to quote the pattern pa-
rameter, so GNU tar sees wildcard characters like ‘*x’. If you do not
do this, the shell might expand the ‘*’ itself using files at hand, so tar
might receive a list of files instead of one pattern, or none at all, making
the command somewhat illegal. This might not correspond to what you
want.

For example, write:

$ tar -c¢ -f archive.tar --exclude ’*.0’ directory
rather than:

Wrong!

$ tar -c¢ -f archive.tar --exclude *.o directory

e You must use use shell syntax, or globbing, rather than regexp syntax,
when using exclude options in tar. If you try to use regexp syntax to
describe files to be excluded, your command might fail.

In earlier versions of tar, what is now the ‘--exclude-from’ option was

called ‘--exclude’ instead. Now, ‘-—exclude’ applies to patterns listed
on the command line and ‘--exclude-from’ applies to patterns listed
in a file.

6.5 Wildcards Patterns and Matching

Globbing is the operation by which wildcard characters, ‘*’ or ‘?’ for ex-
ample, are replaced and expanded into all existing files matching the given

102 GNU tar 1.26

pattern. GNU tar can use wildcard patterns for matching (or globbing)
archive members when extracting from or listing an archive. Wildcard pat-
terns are also used for verifying volume labels of tar archives. This section
has the purpose of explaining wildcard syntax for tar.

A pattern should be written according to shell syntax, using wildcard
characters to effect globbing. Most characters in the pattern stand for them-
selves in the matched string, and case is significant: ‘a’ will match only ‘a’,
and not ‘A’. The character ‘7’ in the pattern matches any single character in
the matched string. The character ‘*’ in the pattern matches zero, one, or
more single characters in the matched string. The character ‘\’ says to take
the following character of the pattern literally; it is useful when one needs
to match the ‘?°, ‘¥’ ‘[’ or ‘\’ characters, themselves.

The character ‘[, up to the matching ‘]’, introduces a character class. A
character class is a list of acceptable characters for the next single character
of the matched string. For example, ‘[abcde]’ would match any of the first
five letters of the alphabet. Note that within a character class, all of the
“special characters” listed above other than ‘\’ lose their special meaning;
for example, ‘[-\\ [*7]]’ would match any of the characters, ‘=, ‘\’, ‘[’, ‘*’,
‘2’ or ‘]’. (Due to parsing constraints, the characters ‘-’ and ‘]’ must either
come first or last in a character class.)

L

If the first character of the class after the opening ‘[’ is or ‘°’, then
the meaning of the class is reversed. Rather than listing character to match,
it lists those characters which are forbidden as the next single character of
the matched string.

Other characters of the class stand for themselves. The special construc-
tion ‘[a-e]’, using an hyphen between two letters, is meant to represent all
characters between a and e, inclusive.

Periods (‘.”) or forward slashes (‘/’) are not considered special for wild-
card matches. However, if a pattern completely matches a directory prefix
of a matched string, then it matches the full matched string: thus, excluding
a directory also excludes all the files beneath it.

Controlling Pattern-Matching

For the purposes of this section, we call exclusion members all member names
obtained while processing ‘--exclude’ and ‘--exclude-from’ options, and
inclusion members those member names that were given in the command
line or read from the file specified with ‘--=files-from’ option.

These two pairs of member lists are used in the following operations:
‘--diff’, ‘-—extract’, ‘--1list’, ‘-—update’.

There are no inclusion members in create mode (‘--create’ and
‘~—append’), since in this mode the names obtained from the command line
refer to files, not archive members.

Chapter 6: Choosing Files and Names for tar 103

By default, inclusion members are compared with archive members
literally? and exclusion members are treated as globbing patterns. For ex-
ample:

$ tar tf foo.tar

a.c

b.c

a.txt

[remarks]

Member names are used verbatim:

$ tar -xf foo.tar -v ’[remarks]’
[remarks]

Exclude member names are globbed:
$ tar -xf foo.tar -v --exclude ’*.c’
a.txt

[remarks]

This behavior can be altered by using the following options:

‘——wildcards’
Treat all member names as wildcards.

‘--no-wildcards’
Treat all member names as literal strings.

Thus, to extract files whose names end in ‘.c’, you can use:

$ tar -xf foo.tar -v --wildcards ’*.c’
a.c
b.c

Notice quoting of the pattern to prevent the shell from interpreting it.

The effect of ‘~-wildcards’ option is canceled by ‘--no-wildcards’.
This can be used to pass part of the command line arguments verbatim
and other part as globbing patterns. For example, the following invocation:

$ tar -xf foo.tar --wildcards ’*.txt’ --no-wildcards ’[remarks]’
instructs tar to extract from ‘foo.tar’ all files whose names end in ‘.txt’
and the file named ‘[remarks]’.

Normally, a pattern matches a name if an initial subsequence of the
name’s components matches the pattern, where ‘*’, ‘?’, and ‘[...] are
the usual shell wildcards, ‘\’ escapes wildcards, and wildcards can match
4/7'

Other than optionally stripping leading ‘/’ from names (see Section 6.10.2
[absolute], page 115), patterns and names are used as-is. For example, trail-
ing ‘/’ is not trimmed from a user-specified name before deciding whether
to exclude it.

However, this matching procedure can be altered by the options listed
below. These options accumulate. For example:

2 Notice that earlier GNU tar versions used globbing for inclusion members, which
contradicted to UNIX98 specification and was not documented. See Appendix A
[Changes], page 177, for more information on this and other changes.

104 GNU tar 1.26

--ignore-case --exclude=’makefile’ --no-ignore-case ---exclude=’readme’

ignores case when excluding ‘makefile’, but not when excluding ‘readme’.

‘~—anchored’

‘~-no-anchored’
If anchored, a pattern must match an initial subsequence of the
name’s components. Otherwise, the pattern can match any sub-
sequence. Default is ‘-—no-anchored’ for exclusion members
and ‘--anchored’ inclusion members.

‘-—ignore-case’

‘-—no-ignore-case’
When ignoring case, upper-case patterns match lower-case
names and vice versa. When not ignoring case (the default),
matching is case-sensitive.

‘-—wildcards-match-slash’

‘--no-wildcards-match-slash’
When wildcards match slash (the default for exclusion mem-
bers), a wildcard like ‘*” in the pattern can match a ‘/’ in the
name. Otherwise, ‘/’ is matched only by ‘/’.

The ‘--recursion’ and ‘--no-recursion’ options (see Section 6.9 [re-
curse], page 113) also affect how member patterns are interpreted. If recur-
sion is in effect, a pattern matches a name if it matches any of the name’s
parent directories.

The following table summarizes pattern-matching default values:

Members Default settings

Inclusion ‘-—no-wildcards -—anchored
--no-wildcards-match-slash’

Exclusion ‘--wildcards --no-anchored

--wildcards-match-slash’

6.6 Quoting Member Names

When displaying member names, tar takes care to avoid ambiguities caused
by certain characters. This is called name quoting. The characters in ques-
tion are:

e Non-printable control characters:

Character ASCII Character name
\a 7 Audible bell

\b 8 Backspace

\f 12 Form feed

\n 10 New line

\r 13 Carriage return

Chapter 6: Choosing Files and Names for tar 105

\t 9 Horizontal tabulation
\v 11 Vertical tabulation

e Space (ASCII 32)
e Single and double quotes (>’ and ‘")
e Backslash (‘\’)

The exact way tar uses to quote these characters depends on the quoting
style. The default quoting style, called escape (see below), uses backslash no-
tation to represent control characters, space and backslash. Using this quot-
ing style, control characters are represented as listed in column ‘Character’
in the above table, a space is printed as ‘\ ’ and a backslash as ‘\\’.

GNU tar offers seven distinct quoting styles, which can be selected using
‘-—quoting-style’ option:

‘-—quoting-style=style’
Sets quoting style. Valid values for style argument are: literal,
shell, shell-always, c, escape, locale, clocale.

These styles are described in detail below. To illustrate their effect, we
will use an imaginary tar archive ‘arch.tar’ containing the following mem-
bers:

1. Contains horizontal tabulation character.
a tab

2. Contains newline character

a

newline

3. Contains a space

a space

4. Contains double quotes
a''double'"quote

5. Contains single quotes
a’single’quote

6. Contains a backslash character:
a\backslash

Here is how usual 1s command would have listed them, if they had existed
in the current working directory:

$ 1s

a\ttab
a\nnewline

a\ space
a"double"quote
a’single’quote
a\\backslash

Quoting styles:

‘literal’ No quoting, display each character as is:

106 GNU tar 1.26

$ tar tf arch.tar --quoting-style=literal
./

./a space

./a’single’quote

./a"double"quote

./a\backslash

./a tab

./a

newline

‘shell’ Display characters the same way Bourne shell does: control char-
acters, except ‘\t’ and ‘\n’, are printed using backslash escapes,
‘\t” and ‘\n’ are printed as is, and a single quote is printed as
‘\?’. If a name contains any quoted characters, it is enclosed in
single quotes. In particular, if a name contains single quotes, it
is printed as several single-quoted strings:
$ tar tf arch.tar --quoting-style=shell
./
>./a space’
> /a’\’’single’\’’quote’
>./a"double"quote’
> ./a\backslash’
’./a tab’
> /a

newline’

‘shell-always’
Same as ‘shell’, but the names are always enclosed in single

quotes:
$ tar tf arch.tar --quoting-style=shell-always
) '/)
> ./a space’

>./a’\’’single’\’’quote’
>./a"double"quote’

> . /a\backslash’

>./a tab’

>./a

newline’

c Use the notation of the C programming language. All names
are enclosed in double quotes. Control characters are quoted
using backslash notations, double quotes are represented as ‘\"’,
backslash characters are represented as ‘\\’. Single quotes and
spaces are not quoted:

$ tar tf arch.tar --quoting-style=c

", /u

"./a space"

"./a’single’quote"

"./a\"double\"quote"

"./a\\backslash"

"./a\ttab"

"./a\nnewline"

Chapter 6: Choosing Files and Names for tar 107

‘escape’ Control characters are printed using backslash notation, a space
is printed as ‘\ ’ and a backslash as ‘\\’. This is the default
quoting style, unless it was changed when configured the pack-
age.

$ tar tf arch.tar --quoting-style=escape
./

./a space

./a’single’quote

./a"double"quote

./a\\backslash

./a\ttab

./a\nnewline

‘locale’ Control characters, single quote and backslash are printed using
backslash notation. All names are quoted using left and right
quotation marks, appropriate to the current locale. If it does not
define quotation marks, use ‘‘’ as left and ‘’’ as right quotation
marks. Any occurrences of the right quotation mark in a name
are escaped with ‘\’, for example:

For example:

tar tf arch.tar --quoting-style=locale
WA

./a space’

./a\’single\’quote’

./a"double"quote’

./a\\backslash’

./a\ttab’

./a\nnewline’

N N T PN~

‘clocale’ Same as ‘locale’, but ‘"’ is used for both left and right quotation
marks, if not provided by the currently selected locale:

$ tar tf arch.tar --quoting-style=clocale
n'/u

./a space"

"./a’single’quote"

"./a\"double\"quote"

"./a\\backslash"

"./a\ttab"

./a\nnewline"

You can specify which characters should be quoted in addition to those
implied by the current quoting style:

‘--quote-chars=string’
Always quote characters from string, even if the selected quoting
style would not quote them.

For example, using ‘escape’ quoting (compare with the usual escape
listing above):

108 GNU tar 1.26

$ tar tf arch.tar --quoting-style=escape --quote-chars=’ "’
./

./a\ space

./a’single’quote

./a\"double\"quote

./a\\backslash

./a\ttab

./a\nnewline

To disable quoting of such additional characters, use the following option:

‘--no-quote-chars=string’
Remove characters listed in string from the list of quoted char-
acters set by the previous ‘--quote-chars’ option.

This option is particularly useful if you have added ‘--quote-chars’ to
your TAR_OPTIONS (see [TAR_OPTIONS], page 23) and wish to disable it
for the current invocation.

Note, that ‘-—no-quote-chars’ does not disable those characters that
are quoted by default in the selected quoting style.

6.7 Modifying File and Member Names

Tar archives contain detailed information about files stored in them and full
file names are part of that information. When storing a file to an archive, its
file name is recorded in it, along with the actual file contents. When restoring
from an archive, a file is created on disk with exactly the same name as that
stored in the archive. In the majority of cases this is the desired behavior of
a file archiver. However, there are some cases when it is not.

First of all, it is often unsafe to extract archive members with absolute file
names or those that begin with a ‘../’. GNU tar takes special precautions
when extracting such names and provides a special option for handling them,
which is described in Section 6.10.2 [absolute], page 115.

Secondly, you may wish to extract file names without some leading di-
rectory components, or with otherwise modified names. In other cases it is
desirable to store files under differing names in the archive.

GNU tar provides several options for these needs.

‘~-strip-components=number’
Strip given number of leading components from file names before
extraction.

For example, suppose you have archived whole ‘/usr’ hierarchy to a
tar archive named ‘usr.tar’. Among other files, this archive contains
‘usr/include/stdlib.h’, which you wish to extract to the current work-
ing directory. To do so, you type:

$ tar -xf usr.tar --strip=2 usr/include/stdlib.h

The option ‘~-strip=2’ instructs tar to strip the two leading components
(‘usr/’ and ‘include/’) off the file name.

Chapter 6: Choosing Files and Names for tar 109

If you add the ‘--verbose’ (‘-v’) option to the invocation above, you
will note that the verbose listing still contains the full file name, with the
two removed components still in place. This can be inconvenient, so tar
provides a special option for altering this behavior:

‘-~-show-transformed-names’
Display file or member names with all requested transformations
applied.

For example:
$ tar -xf usr.tar -v --strip=2 usr/include/stdlib.h
usr/include/stdlib.h
$ tar -xf usr.tar -v --strip=2 --show-transformed usr/include/stdlib.h
stdlib.h
Notice that in both cases the file ‘stdlib.h’ is extracted to the current
working directory, ‘--show-transformed-names’ affects only the way its
name is displayed.
This option is especially useful for verifying whether the invocation will
have the desired effect. Thus, before running
$ tar -x --strip=n
it is often advisable to run
$ tar -t -v --show-transformed --strip=n

to make sure the command will produce the intended results.

In case you need to apply more complex modifications to the file name,
GNU tar provides a general-purpose transformation option:

‘-—transform=expression’
‘~-—xform=expression’
Modify file names using supplied expression.

The expression is a sed-like replace expression of the form:
s/regexp/replace/ [flags]

where regexp is a regular expression, replace is a replacement for each file

name part that matches regexp. Both regexp and replace are described in

detail in Section “The ‘s’ Command” in GNU sed.

Any delimiter can be used in lieu of ‘/’, the only requirement being that it
be used consistently throughout the expression. For example, the following
two expressions are equivalent:

s/one/two/
s,one,two,

Changing delimiters is often useful when the regex contains slashes. For
example, it is more convenient to write s,/,-, than s/\//-/.

As in sed, you can give several replace expressions, separated by a semi-
colon.

Supported flags are:

Cd

g Apply the replacement to all matches to the regexp, not just
the first.

GNU tar 1.26

Use case-insensitive matching.

regexp is an extended regular expression (see Section “Extended
regular expressions” in GNU sed).

Only replace the numberth match of the regexp.

Note: the POSIX standard does not specify what should happen
when you mix the ‘g’ and number modifiers. GNU tar follows
the GNU sed implementation in this regard, so the interaction
is defined to be: ignore matches before the numberth, and then
match and replace all matches from the numberth on.

In addition, several transformation scope flags are supported, that control
to what files transformations apply. These are:

Apply transformation to regular archive members.

Do not apply transformation to regular archive members.
Apply transformation to symbolic link targets.

Do not apply transformation to symbolic link targets.
Apply transformation to hard link targets.

Do not apply transformation to hard link targets.

Default is ‘rsh’, which means to apply tranformations to both archive
members and targets of symbolic and hard links.

Default scope flags can also be changed using ‘flags=’ statement in the
transform expression. The flags set this way remain in force until next
‘flags="statement or end of expression, whichever occurs first. For example:

--transform ’flags=S;s|”|/usr/local/|’

Here are several examples of ‘~-transform’ usage:

1. Extract ‘usr/’ hierarchy into ‘usr/local/’:

$ tar --transform=’s,usr/,usr/local/,’ -x -f arch.tar

2. Strip

two leading directory = components (equivalent to

‘~-strip-components=2’):

$ tar --transform=’s,/*["/1*/["/]1*/,,’ -x -f arch.tar

3. Convert each file name to lower case:

$ tar --transform ’s/.*/\L&/’ -x -f arch.tar

4. Prepend ‘/prefix/’ to each file name:

$ tar --transform ’s,”,/prefix/,’ -x -f arch.tar

5. Archive the ‘//1ib’ directory, prepending ‘/usr/local’ to each archive
member:

$ tar --transform ’s,”,/usr/local/,S’ -c -f arch.tar /1ib

Notice the use of flags in the last example. The ‘/1ib’ directory often
contains many symbolic links to files within it. It may look, for example,

like this:

Chapter 6: Choosing Files and Names for tar 111

$ 1s -1

drwxr-xr-x root/root 0 2008-07-08 16:20 /1ib/

-rwxr-xr-x root/root 1250840 2008-05-25 07:44 /1lib/libc-2.3.2.s0

lrwxrwxrwx root/root 0 2008-06-24 17:12 /1ib/libc.so0.6 —-> 1libc-2.3.2.s0

Using the expression ‘s,”,/usr/local/,” would mean adding
‘/usr/local’ to both regular archive members and to link targets. In this
case, ‘/1ib/1libc.so.6’ would become:

/usr/local/lib/libc.so.6 -> /usr/local/libc-2.3.2.s0
This is definitely not desired. To avoid this, the ‘S’ flag is used, which
excludes symbolic link targets from filename transformations. The result is:

$ tar --transform ’s,”,/usr/local/,S’, -c -v -f arch.tar \
--show-transformed /1ib

drwxr-xr-x root/root 0 2008-07-08 16:20 /usr/local/lib/
-rwxr-xr-x root/root 1250840 2008-05-25 07:44 /usr/local/lib/libc-2.3.2.so0
lrwxrwxrwx root/root 0 2008-06-24 17:12 /usr/local/lib/libc.so.6 \

-> 1ibc-2.3.2.s0

Unlike ‘--strip-components’, ‘-—transform’ can be used in any GNU
tar operation mode. For example, the following command adds files to the
archive while replacing the leading ‘usr/’ component with ‘var/’:

$ tar -cf arch.tar --transform=’s, usr/,var/,’ /

To test ‘--transform’ effect we suggest using ‘--show-transformed-names’
option:
$ tar -cf arch.tar --transform=’s, usr/,var/,’ \
--verbose --show-transformed-names /
If both ‘--strip-components’ and ‘--transform’ are used together, then
‘-—transform’ is applied first, and the required number of components is
then stripped from its result.

You can use as many ‘--transform’ options in a single command line as
you want. The specified expressions will then be applied in order of their
appearance. For example, the following two invocations are equivalent:

$ tar -cf arch.tar --transform=’s,/usr/var,/var/’ \
--transform=’s,/usr/local, /usr/,’
$ tar -cf arch.tar \
--transform=’s,/usr/var,/var/;s,/usr/local, /usr/,’

6.8 Operating Only on New Files

The ‘--after-date=date’ (‘--newer=date’, ‘-N date’) option causes tar to
only work on files whose data modification or status change times are newer
than the date given. If date starts with ‘/” or ‘.’, it is taken to be a file
name; the data modification time of that file is used as the date. If you use
this option when creating or appending to an archive, the archive will only
include new files. If you use ‘--after-date’ when extracting an archive,
tar will only extract files newer than the date you specify.

112 GNU tar 1.26

If you only want tar to make the date comparison based on mod-
ification of the file’s data (rather than status changes), then use the
‘-—newer-mtime=date’ option.

You may use these options with any operation. Note that these options
differ from the ‘--update’ (‘-u’) operation in that they allow you to specify
a particular date against which tar can compare when deciding whether or
not to archive the files.

‘——after-date=date’
‘——newer=date’
‘-N date’ Only store files newer than date.

Acts on files only if their data modification or status change
times are later than date. Use in conjunction with any operation.

If date starts with ‘/” or ‘.’, it is taken to be a file name; the
data modification time of that file is used as the date.

‘--newer-mtime=date’
Acts like ‘-—after-date’, but only looks at data modification
times.

These options limit tar to operate only on files which have been modified
after the date specified. A file’s status is considered to have changed if its
contents have been modified, or if its owner, permissions, and so forth, have
been changed. (For more information on how to specify a date, see Chapter 7
[Date input formats|, page 119; remember that the entire date argument
must be quoted if it contains any spaces.)

Gurus would say that ‘--after-date’ tests both the data modification
time (mtime, the time the contents of the file were last modified) and the
status change time (ctime, the time the file’s status was last changed: owner,
permissions, etc.) fields, while ‘--newer-mtime’ tests only the mtime field.

To be precise, ‘-—after-date’ checks both mtime and ctime and processes
the file if either one is more recent than date, while ‘~-newer-mtime’ only
checks mtime and disregards ctime. Neither does it use atime (the last time
the contents of the file were looked at).

Date specifiers can have embedded spaces. Because of this, you may need
to quote date arguments to keep the shell from parsing them as separate
arguments. For example, the following command will add to the archive all
the files modified less than two days ago:

$ tar -cf foo.tar --newer-mtime ’2 days ago’

3

When any of these options is used with the option ‘--verbose’ (see
[verbose tutorial], page 8) GNU tar will try to convert the specified date
back to its textual representation and compare that with the one given with
the option. If the two dates differ, tar will print a warning saying what
date it will use. This is to help user ensure he is using the right date. For
example:

Chapter 6: Choosing Files and Names for tar 113

$ tar -c¢ -f archive.tar --after-date=’10 days ago’ .

tar: Option --after-date: Treating date ‘10 days ago’ as 2006-06-11
13:19:37.232434

Please Note: ‘--after-date’ and ‘-—-newer-mtime’ should not be
used for incremental backups. See Section 5.2 [Incremental Dumps,
page 80, for proper way of creating incremental backups.

6.9 Descending into Directories

Usually, tar will recursively explore all directories (either those given on the
command line or through the ‘--files-from’ option) for the various files
they contain. However, you may not always want tar to act this way.

The ‘--no-recursion’ option inhibits tar’s recursive descent into speci-
fied directories. If you specify ‘--no-recursion’, you can use the find (see
Section “find” in GNU Find Manual) utility for hunting through levels of
directories to construct a list of file names which you could then pass to tar.
find allows you to be more selective when choosing which files to archive;
see Section 6.3 [files|, page 95, for more information on using find with tar.

‘-—no-recursion’
Prevents tar from recursively descending directories.

‘--recursion’
Requires tar to recursively descend directories. This is the de-
fault.

When you use ‘--no-recursion’, GNU tar grabs directory entries them-
selves, but does not descend on them recursively. Many people use find
for locating files they want to back up, and since tar wsually recursively
descends on directories, they have to use the ‘-not -type d’ test in their
find invocation (see Section “Type test” in Finding Files), as they usually
do not want all the files in a directory. They then use the ‘--files-from’
option to archive the files located via find.

The problem when restoring files archived in this manner is that the
directories themselves are not in the archive; so the ‘--same-permissions’
(‘--preserve-permissions’, ‘-p’) option does not affect them—while users
might really like it to. Specifying ‘~-no-recursion’ is a way to tell tar to
grab only the directory entries given to it, adding no new files on its own. To
summarize, if you use find to create a list of files to be stored in an archive,
use it as follows:

$ find dir tests | \
tar -cf archive -T - --no-recursion

The ‘--no-recursion’ option also applies when extracting: it causes
tar to extract only the matched directory entries, not the files under those
directories.

The ‘--no-recursion’ option also affects how globbing patterns are in-
terpreted (see [controlling pattern-matching], page 102).

114 GNU tar 1.26

3

The ‘--no-recursion’ and ‘--recursion’ options apply to later
options and operands, and can be overridden by later occurrences of
‘-—no-recursion’ and ‘--recursion’. For example:

$ tar -cf jams.tar --no-recursion grape --recursion grape/concord

creates an archive with one entry for ‘grape’, and the recursive contents of
‘grape/concord’, but no entries under ‘grape’ other than ‘grape/concord’.

6.10 Crossing File Systemm Boundaries

tar will normally automatically cross file system boundaries in order to
archive files which are part of a directory tree. You can change this behav-
ior by running tar and specifying ‘~-one-file-system’. This option only
affects files that are archived because they are in a directory that is being
archived; tar will still archive files explicitly named on the command line or
through ‘--files-from’, regardless of where they reside.

‘-—one-file-system’
Prevents tar from crossing file system boundaries when archiv-
ing. Use in conjunction with any write operation.

The ‘--one-file-system’ option causes tar to modify its normal behav-
ior in archiving the contents of directories. If a file in a directory is not on
the same file system as the directory itself, then tar will not archive that
file. If the file is a directory itself, tar will not archive anything beneath it;
in other words, tar will not cross mount points.

This option is useful for making full or incremental archival backups of
a file system. If this option is used in conjunction with ‘--verbose’ (‘-v’),
files that are excluded are mentioned by name on the standard error.

6.10.1 Changing the Working Directory

To change the working directory in the middle of a list of file names, either
on the command line or in a file specified using ‘--files-from’ (‘-T’), use
‘~-directory’ (‘-C’). This will change the working directory to the specified
directory after that point in the list.

‘-—directory=directory’
‘~C directory’
Changes the working directory in the middle of a command line.

For example,
$ tar -c -f jams.tar grape prune -C food cherry

will place the files ‘grape’ and ‘prune’ from the current directory into the
archive ‘jams.tar’, followed by the file ‘cherry’ from the directory ‘food’.
This option is especially useful when you have several widely separated files
that you want to store in the same archive.

Note that the file ‘cherry’ is recorded in the archive under the precise
name ‘cherry’, not ‘food/cherry’. Thus, the archive will contain three

Chapter 6: Choosing Files and Names for tar 115

files that all appear to have come from the same directory; if the archive is
extracted with plain ‘tar --extract’, all three files will be written in the
current directory.

Contrast this with the command,
$ tar -c -f jams.tar grape prune -C food red/cherry

which records the third file in the archive under the name ‘red/cherry’ so
that, if the archive is extracted using ‘tar --extract’, the third file will be
written in a subdirectory named ‘red’.

You can use the ‘--directory’ option to make the archive independent of
the original name of the directory holding the files. The following command
places the files ‘/etc/passwd’, ‘/etc/hosts’, and ‘/1ib/libc.a’ into the
archive ‘foo.tar’:

$ tar -c¢ -f foo.tar -C /etc passwd hosts -C /1ib libc.a

However, the names of the archive members will be exactly what they were
on the command line: ‘passwd’, ‘hosts’, and ‘libc.a’. They will not appear
to be related by file name to the original directories where those files were
located.

Note that ‘--directory’ options are interpreted consecutively. If
‘-—directory’ specifies a relative file name, it is interpreted relative to the
then current directory, which might not be the same as the original current
working directory of tar, due to a previous ‘--directory’ option.

When using ‘--files-from’ (see Section 6.3 [files|, page 95), you can put
various tar options (including ‘-C’) in the file list. Notice, however, that in
this case the option and its argument may not be separated by whitespace.
If you use short option, its argument must either follow the option letter
immediately, without any intervening whitespace, or occupy the next line.
Otherwise, if you use long option, separate its argument by an equal sign.

For instance, the file list for the above example will be:

-C/etc
passwd
hosts
--directory=/1ib
libc.a
To use it, you would invoke tar as follows:
$ tar -c¢c -f foo.tar --files-from list

The interpretation of ‘--directory’ is disabled by ‘--null’ option.

6.10.2 Absolute File Names

By default, GNU tar drops a leading ‘/’ on input or output, and complains
about file names containing a ‘..’ component. There is an option that turns
off this behavior:

‘--absolute-names’
‘~P’ Do not strip leading slashes from file names, and permit file
names containing a ‘..’ file name component.

116 GNU tar 1.26

When tar extracts archive members from an archive, it strips any leading
slashes (‘/’) from the member name. This causes absolute member names
in the archive to be treated as relative file names. This allows you to have
such members extracted wherever you want, instead of being restricted to
extracting the member in the exact directory named in the archive. For
example, if the archive member has the name ‘/etc/passwd’, tar will extract
it as if the name were really ‘etc/passwd’.

File names containing ‘..’ can cause problems when extracting, so tar

normally warns you about such files when creating an archive, and rejects
attempts to extracts such files.

Other tar programs do not do this. As a result, if you create an archive
whose member names start with a slash, they will be difficult for other
people with a non-GNU tar program to use. Therefore, GNU tar also strips
leading slashes from member names when putting members into the archive.
For example, if you ask tar to add the file ‘/bin/1s’ to an archive, it will
do so, but the member name will be ‘bin/1s’.

If you use the ‘--absolute-names’ (‘-P’) option, tar will do none of these
transformations.

To archive or extract files relative to the root directory, specify the
‘~-absolute-names’ (‘-P’) option.

Normally, tar acts on files relative to the working directory—ignoring
superior directory names when archiving, and ignoring leading slashes when
extracting.

When you specify ‘--absolute-names’ (‘-P’), tar stores file names in-
cluding all superior directory names, and preserves leading slashes. If
you only invoked tar from the root directory you would never need the
‘~—absolute-names’ option, but using this option may be more convenient
than switching to root.

‘-—absolute-names’
Preserves full file names (including superior directory names)
when archiving files. Preserves leading slash when extracting
files.

tar prints out a message about removing the ¢/’ from file names. This
message appears once per GNU tar invocation. It represents something
which ought to be told; ignoring what it means can cause very serious sur-
prises, later.

Some people, nevertheless, do not want to see this message. Wanting to
play really dangerously, one may of course redirect tar standard error to the
sink. For example, under sh:

3 A side effect of this is that when ‘--create’ is used with ‘--verbose’ the resulting
output is not, generally speaking, the same as the one you’d get running tar --list
command. This may be important if you use some scripts for comparing both outputs.
See [listing member and file names|, page 15, for the information on how to handle this
case.

Chapter 6: Choosing Files and Names for tar 117

$ tar -c -f archive.tar /home 2> /dev/null
Another solution, both nicer and simpler, would be to change to the ‘/’
directory first, and then avoid absolute notation. For example:
$ tar -c¢ -f archive.tar -C / home
See Section 10.2.2 [Integrity], page 175, for some of the security-related

implications of using this option.

Chapter 7: Date input formats

7 Date input formats

First, a quote:

Our units of temporal measurement, from seconds on up to months,
are so complicated, asymmetrical and disjunctive so as to make co-
herent mental reckoning in time all but impossible. Indeed, had
some tyrannical god contrived to enslave our minds to time, to
make it all but impossible for us to escape subjection to sodden
routines and unpleasant surprises, he could hardly have done better
than handing down our present system. It is like a set of trape-
zoidal building blocks, with no vertical or horizontal surfaces, like a
language in which the simplest thought demands ornate construc-
tions, useless particles and lengthy circumlocutions. Unlike the
more successful patterns of language and science, which enable us
to face experience boldly or at least level-headedly, our system of
temporal calculation silently and persistently encourages our terror
of time.

... It is as though architects had to measure length in feet, width
in meters and height in ells; as though basic instruction manuals
demanded a knowledge of five different languages. It is no wonder
then that we often look into our own immediate past or future, last
Tuesday or a week from Sunday, with feelings of helpless confusion.

— Robert Grudin, Time and the Art of Living.

119

This section describes the textual date representations that GNU programs

accept. These are the strings you, as a user, can supply as arguments to the
various programs. The C interface (via the parse_datetime function) is not
described here.

7.1 General date syntax

A date is a string, possibly empty, containing many items separated by
whitespace. The whitespace may be omitted when no ambiguity arises. The
empty string means the beginning of today (i.e., midnight). Order of the
items is immaterial. A date string may contain many flavors of items:

calendar date items
time of day items
time zone items

day of the week items
relative items

pure numbers.

We describe each of these item types in turn, below.

A few ordinal numbers may be written out in words in some contexts.

This is most useful for specifying day of the week items or relative items

120 GNU tar 1.26

(see below). Among the most commonly used ordinal numbers, the word
‘last’ stands for —1, ‘this’ stands for 0, and ‘first’ and ‘next’ both stand
for 1. Because the word ‘second’ stands for the unit of time there is no
way to write the ordinal number 2, but for convenience ‘third’ stands for 3,
‘fourth’ for 4, ‘fifth’ for 5, ‘sixth’ for 6, ‘seventh’ for 7, ‘eighth’ for §,
‘ninth’ for 9, ‘tenth’ for 10, ‘eleventh’ for 11 and ‘twelfth’ for 12.

When a month is written this way, it is still considered to be written nu-
merically, instead of being “spelled in full”; this changes the allowed strings.

In the current implementation, only English is supported for words and
abbreviations like ‘AM’, ‘DST’, ‘EST’, ‘first’, ‘January’, ‘Sunday’, ‘tomorrow’,
and ‘year’.

The output of the date command is not always acceptable as a date
string, not only because of the language problem, but also because there is
no standard meaning for time zone items like ‘IST’. When using date to
generate a date string intended to be parsed later, specify a date format that
is independent of language and that does not use time zone items other than
‘UTC’ and ‘Z’. Here are some ways to do this:

$ LC_ALL=C TZ=UTCO date

Mon Mar 1 00:21:42 UTC 2004

$ TZ=UTCO date +’%Y-Ym-%d %H:%M:%SZ’

2004-03-01 00:21:427Z

$ date —-is0-8601=ns | tr T > ’ # --is0-8601 is a GNU extension.
2004-02-29 16:21:42,692722128-0800

$ date —-rfc-2822 # a GNU extension

Sun, 29 Feb 2004 16:21:42 -0800

$ date +’%Y-Ym-%d %H:%M:%S %z’ # %z is a GNU extension.
2004-02-29 16:21:42 -0800

$ date +°0@%s.%N’ # %s and %N are GNU extensions.
@1078100502.692722128

Alphabetic case is completely ignored in dates. Comments may be in-
troduced between round parentheses, as long as included parentheses are
properly nested. Hyphens not followed by a digit are currently ignored.
Leading zeros on numbers are ignored.

Invalid dates like ‘2005-02-29’ or times like ‘24:00° are rejected. In
the typical case of a host that does not support leap seconds, a time like
‘23:59:60’ is rejected even if it corresponds to a valid leap second.

7.2 Calendar date items

A calendar date item specifies a day of the year. It is specified differently,
depending on whether the month is specified numerically or literally. All
these strings specify the same calendar date:

1972-09-24 # 1SO 8601.

72-9-24 # Assume 19xx for 69 through 99,
20xx for 00 through 68.

Chapter 7: Date input formats 121

72-09-24 # Leading zeros are ignored.

9/24/72 # Common U.S. writing.

24 September 1972

24 Sept 72 # September has a special abbreviation.

24 Sep 72 # Three-letter abbreviations always allowed.
Sep 24, 1972

24-sep-T72

24sep72

The year can also be omitted. In this case, the last specified year is used,
or the current year if none. For example:

9/24
sep 24
Here are the rules.

For numeric months, the 150 8601 format ‘year-month-day’ is allowed,
where year is any positive number, month is a number between 01 and 12,
and day is a number between 01 and 31. A leading zero must be present
if a number is less than ten. If year is 68 or smaller, then 2000 is added
to it; otherwise, if year is less than 100, then 1900 is added to it. The
construct ‘month/day/year’, popular in the United States, is accepted. Also
‘month/day’, omitting the year.

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’,
‘April’, ‘May’, ‘June’; ‘July’, ‘August’, ‘September’, ‘October’, ‘November’
or ‘December’. Literal months may be abbreviated to their first three letters,
possibly followed by an abbreviating dot. It is also permitted to write ‘Sept’
instead of ‘September’.

When months are written literally, the calendar date may be given as any
of the following:

day month year
day month

month day year
day-month-year

Or, omitting the year:

month day

7.3 Time of day items

A time of day item in date strings specifies the time on a given day. Here
are some examples, all of which represent the same time:

20:02:00.000000
20:02
8:02pm
20:02-0500 # In EST (U.S. Eastern Standard Time).
More generally, the time of day may be given as ‘hour:minute: second’,
where hour is a number between 0 and 23, minute is a number between 0

122 GNU tar 1.26

and 59, and second is a number between 0 and 59 possibly followed by .’
or ‘,” and a fraction containing one or more digits. Alternatively, ‘: second’
can be omitted, in which case it is taken to be zero. On the rare hosts that
support leap seconds, second may be 60.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is re-

stricted to run from 1 to 12, and ‘:minute’ may be omitted (taken to be
zero). ‘am’ indicates the first half of the day, ‘pm’ indicates the second half
of the day. In this notation, 12 is the predecessor of 1: midnight is ‘12am’
while noon is ‘12pm’. (This is the zero-oriented interpretation of ‘12am’ and
‘12pm’, as opposed to the old tradition derived from Latin which uses ‘12m’
for noon and ‘12pm’ for midnight.)

The time may alternatively be followed by a time zone correction, ex-
pressed as ‘shhmm’, where s is ‘+’ or ‘=’, hh is a number of zone hours and
mm is a number of zone minutes. The zone minutes term, mm, may be omit-
ted, in which case the one- or two-digit correction is interpreted as a number
of hours. You can also separate hh from mm with a colon. When a time
zone correction is given this way, it forces interpretation of the time relative
to Coordinated Universal Time (UTC), overriding any previous specification
for the time zone or the local time zone. For example, ‘40530’ and ‘+05:30’
both stand for the time zone 5.5 hours ahead of UTC (e.g., India). This is
the best way to specify a time zone correction by fractional parts of an hour.
The maximum zone correction is 24 hours.

Either ‘am’/‘pm’ or a time zone correction may be specified, but not both.

7.4 Time zone items

A time zone item specifies an international time zone, indicated by a small set
of letters, e.g., ‘UTC’ or ‘Z’ for Coordinated Universal Time. Any included
periods are ignored. By following a non-daylight-saving time zone by the
string ‘DST’ in a separate word (that is, separated by some white space), the
corresponding daylight saving time zone may be specified. Alternatively, a
non-daylight-saving time zone can be followed by a time zone correction,
to add the two values. This is normally done only for ‘UTC’; for example,
‘UTC+05:30’ is equivalent to ‘+05:30’.

Time zone items other than ‘UTC’ and ‘Z’ are obsolescent and are not
recommended, because they are ambiguous; for example, ‘EST’ has a different
meaning in Australia than in the United States. Instead, it’s better to use
unambiguous numeric time zone corrections like ‘-0500’, as described in the
previous section.

If neither a time zone item nor a time zone correction is supplied,
time stamps are interpreted using the rules of the default time zone (see
Section 7.9 [Specifying time zone rules|, page 125).

Chapter 7: Date input formats 123

7.5 Day of week items

The explicit mention of a day of the week will forward the date (only if
necessary) to reach that day of the week in the future.

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’,
‘Wednesday’, ‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated
to their first three letters, optionally followed by a period. The special
abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’ for ‘Wednesday’ and ‘Thur’ or
‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supple-
mentary weeks. It is best used in expression like ‘third monday’. In this
context, ‘last day’ or ‘next day’ is also acceptable; they move one week
before or after the day that day by itself would represent.

A comma following a day of the week item is ignored.

7.6 Relative items in date strings

Relative items adjust a date (or the current date if none) forward or back-
ward. The effects of relative items accumulate. Here are some examples:

1 year

1 year ago
3 years

2 days

The unit of time displacement may be selected by the string ‘year’ or
‘month’ for moving by whole years or months. These are fuzzy units, as years
and months are not all of equal duration. More precise units are ‘fortnight’
which is worth 14 days, ‘week’ worth 7 days, ‘day’ worth 24 hours, ‘hour’
worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and ‘second’ or ‘sec’
worth one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally
signed number. Unsigned numbers are taken as positively signed. No number
at all implies 1 for a multiplier. Following a relative item by the string ‘ago’
is equivalent to preceding the unit by a multiplier with value —1.

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’),
the string ‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-
valued time displacement, these strings come from the fact a zero-valued
time displacement represents the current time when not otherwise changed
by previous items. They may be used to stress other items, like in ‘12:00
today’. The string ‘this’ also has the meaning of a zero-valued time dis-
placement, but is preferred in date strings like ‘this thursday’.

When a relative item causes the resulting date to cross a boundary where
the clocks were adjusted, typically for daylight saving time, the resulting
date and time are adjusted accordingly.

124 GNU tar 1.26

The fuzz in units can cause problems with relative items. For example,
‘2003-07-31 -1 month’ might evaluate to 2003-07-01, because 2003-06-31 is
an invalid date. To determine the previous month more reliably, you can ask
for the month before the 15th of the current month. For example:

$ date -R

Thu, 31 Jul 2003 13:02:39 -0700

$ date --date=’-1 month’ +’Last month was %B?’

Last month was July?

$ date --date="$(date +%Y-%m-15) -1 month" +’Last month was
Last month was June!

Also, take care when manipulating dates around clock changes such as
daylight saving leaps. In a few cases these have added or subtracted as much
as 24 hours from the clock, so it is often wise to adopt universal time by
setting the TZ environment variable to ‘UTCO’ before embarking on calendrical
calculations.

7.7 Pure numbers in date strings

The precise interpretation of a pure decimal number depends on the context
in the date string.

If the decimal number is of the form yyyymmdd and no other calendar
date item (see Section 7.2 [Calendar date items], page 120) appears before it
in the date string, then yyyy is read as the year, mm as the month number
and dd as the day of the month, for the specified calendar date.

If the decimal number is of the form hhmm and no other time of day item
appears before it in the date string, then hh is read as the hour of the day
and mm as the minute of the hour, for the specified time of day. mm can
also be omitted.

If both a calendar date and a time of day appear to the left of a number
in the date string, but no relative item, then the number overrides the year.

7.8 Seconds since the Epoch

If you precede a number with ‘@, it represents an internal time stamp as a
count of seconds. The number can contain an internal decimal point (either
“.7or ‘,”); any excess precision not supported by the internal representation
is truncated toward minus infinity. Such a number cannot be combined with
any other date item, as it specifies a complete time stamp.

Internally, computer times are represented as a count of seconds since an
epoch—a well-defined point of time. On GNU and POSIX systems, the epoch
is 1970-01-01 00:00:00 uTcC, so ‘@0’ represents this time, ‘@1’ represents 1970-
01-01 00:00:01 urc, and so forth. GNU and most other POSIX-compliant
systems support such times as an extension to POSIX, using negative counts,
so that ‘@-1’ represents 1969-12-31 23:59:59 UTC.

%B!’

Chapter 7: Date input formats 125

Traditional Unix systems count seconds with 32-bit two’s-complement
integers and can represent times from 1901-12-13 20:45:52 through 2038-01-
19 03:14:07 uTC. More modern systems use 64-bit counts of seconds with
nanosecond subcounts, and can represent all the times in the known lifetime
of the universe to a resolution of 1 nanosecond.

On most hosts, these counts ignore the presence of leap seconds. For
example, on most hosts ‘0915148799’ represents 1998-12-31 23:59:59 UTC,
‘@915148800’ represents 1999-01-01 00:00:00 uTc, and there is no way to
represent the intervening leap second 1998-12-31 23:59:60 uUTC.

7.9 Specifying time zone rules

Normally, dates are interpreted using the rules of the current time zone,
which in turn are specified by the TZ environment variable, or by a sys-
tem default if TZ is not set. To specify a different set of default time zone
rules that apply just to one date, start the date with a string of the form
‘TZ="rule"’. The two quote characters (‘"’) must be present in the date,
and any quotes or backslashes within rule must be escaped by a backslash.

For example, with the GNU date command you can answer the question
“What time is it in New York when a Paris clock shows 6:30am on October
31, 2004?7” by using a date beginning with ‘TZ="Europe/Paris"’ as shown
in the following shell transcript:

$ export TZ="America/New_York"
$ date --date=’TZ="Europe/Paris" 2004-10-31 06:30°
Sun Oct 31 01:30:00 EDT 2004

In this example, the ‘--date’ operand begins with its own TZ setting,
so the rest of that operand is processed according to ‘Europe/Paris’ rules,
treating the string ‘2004-10-31 06:30’ as if it were in Paris. However, since
the output of the date command is processed according to the overall time
zone rules, it uses New York time. (Paris was normally six hours ahead of
New York in 2004, but this example refers to a brief Halloween period when
the gap was five hours.)

A TZ value is a rule that typically names a location in the ‘tz’ database.
A recent catalog of location names appears in the TWiki Date and Time
Gateway. A few non-GNU hosts require a colon before a location name in a
TZ setting, e.g., ‘TZ=":America/New_York"’.

The ‘tz’ database includes a wide variety of locations ranging from
‘Arctic/Longyearbyen’ to ‘Antarctica/South_Pole’, but if you are at sea
and have your own private time zone, or if you are using a non-GNU host
that does not support the ‘tz’ database, you may need to use a POSIX rule
instead. Simple POSIX rules like ‘UTCO’ specify a time zone without daylight
saving time; other rules can specify simple daylight saving regimes. See
Section “Specifying the Time Zone with TZ” in The GNU C Library.

http://www.twinsun.com/tz/tz-link.htm
http://twiki.org/cgi-bin/xtra/tzdate
http://twiki.org/cgi-bin/xtra/tzdate

126 GNU tar 1.26

7.10 Authors of parse_datetime

parse_datetime started life as getdate, as originally implemented by
Steven M. Bellovin (smb@research.att.com) while at the University of
North Carolina at Chapel Hill. The code was later tweaked by a couple of
people on Usenet, then completely overhauled by Rich $alz (rsalz@bbn.com)
and Jim Berets (jberets@bbn.com) in August, 1990. Various revisions
for the GNU system were made by David MacKenzie, Jim Meyering, Paul
Eggert and others, including renaming it to get_date to avoid a conflict
with the alternative Posix function getdate, and a later rename to parse_
datetime. The Posix function getdate can parse more locale-specific dates
using strptime, but relies on an environment variable and external file, and
lacks the thread-safety of parse_datetime.

This chapter was originally produced by Francois Pinard
(pinard@iro.umontreal.ca) from the ‘parse_datetime.y’ source
code, and then edited by K. Berry (kb@cs.umb.edu).

mailto:smb@research.att.com
mailto:rsalz@bbn.com
mailto:jberets@bbn.com
mailto:pinard@iro.umontreal.ca
mailto:kb@cs.umb.edu

Chapter 8: Controlling the Archive Format 127

8 Controlling the Archive Format

Due to historical reasons, there are several formats of tar archives. All of
them are based on the same principles, but have some subtle differences that
often make them incompatible with each other.

GNU tar is able to create and handle archives in a variety of formats.
The most frequently used formats are (in alphabetical order):

gnu Format used by GNU tar versions up to 1.13.25. This format de-
rived from an early POSIX standard, adding some improvements
such as sparse file handling and incremental archives. Unfortu-
nately these features were implemented in a way incompatible
with other archive formats.

Archives in ‘gnu’ format are able to hold file names of unlimited

length.
oldgnu Format used by GNU tar of versions prior to 1.12.
v7 Archive format, compatible with the V7 implementation of tar.

This format imposes a number of limitations. The most impor-
tant of them are:

1. The maximum length of a file name is limited to 99 charac-
ters.

2. The maximum length of a symbolic link is limited to 99
characters.

3. It is impossible to store special files (block and character
devices, fifos etc.)

4. Maximum value of user or group ID is limited to 2097151
(TTTTTTT octal)

5. V7 archives do not contain symbolic ownership information
(user and group name of the file owner).

This format has traditionally been used by Automake when pro-
ducing Makefiles. This practice will change in the future, in
the meantime, however this means that projects containing file
names more than 99 characters long will not be able to use GNU
tar 1.26 and Automake prior to 1.9.

ustar Archive format defined by POSIX.1-1988 specification. It stores
symbolic ownership information. It is also able to store special
files. However, it imposes several restrictions as well:

1. The maximum length of a file name is limited to 256 charac-
ters, provided that the file name can be split at a directory
separator in two parts, first of them being at most 155 bytes
long. So, in most cases the maximum file name length will
be shorter than 256 characters.

128 GNU tar 1.26
2. The maximum length of a symbolic link name is limited to
100 characters.
3. Maximum size of a file the archive is able to accommodate
is 8GB
4. Maximum value of UID/GID is 2097151.
5. Maximum number of bits in device major and minor num-
bers is 21.
star Format used by Jorg Schilling star implementation. GNU tar
is able to read ‘star’ archives but currently does not produce
them.
posix Archive format defined by POSIX.1-2001 specification. This is

the most flexible and feature-rich format. It does not impose
any restrictions on file sizes or file name lengths. This format is
quite recent, so not all tar implementations are able to handle
it properly. However, this format is designed in such a way that
any tar implementation able to read ‘ustar’ archives will be able
to read most ‘posix’ archives as well, with the only exception
that any additional information (such as long file names etc.)
will in such case be extracted as plain text files along with the
files it refers to.

This archive format will be the default format for future versions
of GNU tar.

The following table summarizes the limitations of each of these formats:

Format UID File Size File Name Devn

gnu 1.8e19 Unlimited Unlimited 63

oldgnu 1.8el9 Unlimited Unlimited 63

v7 2097151 8GB 99 n/a

ustar 2097151 8GB 256 21

posix Unlimited Unlimited Unlimited Unlimited

The default format for GNU tar is defined at compilation time. You may
check it by running tar --help, and examining the last lines of its output.
Usually, GNU tar is configured to create archives in ‘gnu’ format, however,
future version will switch to ‘posix’.

8.1 Using Less Space through Compression

8.1.1 Creating and Reading Compressed Archives

GNU tar is able to create and read compressed archives. It supports a wide
variety of compression programs, namely: gzip, bzip2, 1zip, lzma, 1zop,
xz and traditional compress. The latter is supported mostly for backward

Chapter 8: Controlling the Archive Format 129

compatibility, and we recommend against using it, because it is by far less
effective than the other compression programs!.

Creating a compressed archive is simple: you just specify a compres-
sion option along with the usual archive creation commands. The com-
pression option is ‘-z’ (‘--gzip’) to create a gzip compressed archive, ‘~j’
(‘-=bzip2’) to create a bzip2 compressed archive, ‘-=1zip’ to create an lzip
compressed archive, ‘=J’ (‘--xz’) to create an XZ archive, ‘-=1zma’ to create
an LZMA compressed archive, ‘-=1zop’ to create an LSOP archive, and ‘-7’
(‘--compress’) to use compress program. For example:

$ tar cfz archive.tar.gz .

You can also let GNU tar select the compression program based on the
suffix of the archive file name. This is done using ‘--auto-compress’ (‘-a’)
command line option. For example, the following invocation will use bzip2
for compression:

$ tar cfa archive.tar.bz2 .

whereas the following one will use 1zma:
$ tar cfa archive.tar.lzma .

For a complete list of file name suffixes recognized by GNU tar, see [auto-
compress|, page 131.

Reading compressed archive is even simpler: you don’t need to specify any
additional options as GNU tar recognizes its format automatically. Thus,
the following commands will list and extract the archive created in previous
example:

List the compressed archive

$ tar tf archive.tar.gz

Extract the compressed archive
$ tar xf archive.tar.gz

The format recognition algorithm is based on signatures, a special byte
sequences in the beginning of file, that are specific for certain compression
formats. If this approach fails, tar falls back to using archive name suffix to
determine its format (see [auto-compress|, page 131, for a list of recognized
suffixes).

Some compression programs are able to handle different compression for-
mats. GNU tar uses this, if the principal decompressor for the given format
is not available. For example, if compress is not installed, tar will try to
use gzip. As of version 1.26 the following alternatives are tried?:

Format Main decompressor Alternatives
compress compress gzip

lzma, lzma X7

bzip2 bzip2 1bzip2

I 1t also had patent problems in the past.
2 To verbosely trace the decompressor selection, use the ‘--warning=decompress-program’
option (see Section 3.9 [warnings|, page 54).

130 GNU tar 1.26

The only case when you have to specify a decompression option while
reading the archive is when reading from a pipe or from a tape drive that
does not support random access. However, in this case GNU tar will indicate
which option you should use. For example:

$ cat archive.tar.gz | tar tf -
tar: Archive is compressed. Use -z option
tar: Error is not recoverable: exiting now

If you see such diagnostics, just add the suggested option to the invocation
of GNU tar:

$ cat archive.tar.gz | tar tfz -

Notice also, that there are several restrictions on operations on com-
pressed archives. First of all, compressed archives cannot be modified, i.e.,
you cannot update (‘--update’, alias ‘-u’) them or delete (‘-~delete’) mem-
bers from them or add (‘--append’, alias ‘-r’) members to them. Like-
wise, you cannot append another tar archive to a compressed archive using
‘~-concatenate’ (‘-A’). Secondly, multi-volume archives cannot be com-
pressed.

The following options allow to select a particular compressor program:

4 i

-z
4__g21p7
‘—-—ungzip’

Filter the archive through gzip.
o
‘——xz’ Filter the archive through xz.
c_j)

‘—-=bzip2’ Filter the archive through bzip2.
‘-=1zip’ Filter the archive through 1zip.
‘--1zma’ Filter the archive through lzma.
‘-=1zop’ Filter the archive through 1zop.
oz

‘-—compress’

‘~—uncompress’
Filter the archive through compress.

When any of these options is given, GNU tar searches the compressor bi-
nary in the current path and invokes it. The name of the compressor program
is specified at compilation time using a corresponding ‘--with-compname’
option to configure, e.g. ‘~—with-bzip2’ to select a specific bzip2 binary.
See Section 8.1.1.1 [Ibzip2], page 132, for a detailed discussion.

The output produced by tar --help shows the actual compressor names
along with each of these options.

You can use any of these options on physical devices (tape drives, etc.)
and remote files as well as on normal files; data to or from such devices

Chapter 8: Controlling the Archive Format 131

or remote files is reblocked by another copy of the tar program to enforce
the specified (or default) record size. The default compression parameters
are used. Most compression programs allow to override these by setting a
program-specific environment variable. For example, when using gzip you
can use GZIP as in the example below:

$ GZIP=--best tar cfz archive.tar.gz subdir
Another way would be to use the ‘-I’ option instead (see below), e.g.:

$ tar -cf archive.tar.gz -I ’gzip --best’ subdir

Finally, the third, traditional, way to achieve the same result is to use pipe:

$ tar cf - subdir | gzip --best -c¢ - > archive.tar.gz

About corrupted compressed archives: compressed files have no redun-
dancy, for maximum compression. The adaptive nature of the compression
scheme means that the compression tables are implicitly spread all over the
archive. If you lose a few blocks, the dynamic construction of the compres-
sion tables becomes unsynchronized, and there is little chance that you could
recover later in the archive.

Another compression options provide a better control over creating com-
pressed archives. These are:

‘-—auto-compress’
3)

-a Select a compression program to use by the archive file name
suffix. The following suffixes are recognized:

Suffix Compression program
‘gz’ gzip
‘tgz’ gzip
‘.taz’ gzip

A compress
‘.tazZ’ compress
‘. bz2’ bzip2
‘otz2’ bzip2

‘. tbz2’ bzip2
‘.tbz’ bzip2
‘.1z’ 1zi
‘.1zma’ lzmg
‘.tlz’ lzma
‘.1zo’ 1zop
‘.xz’ XZ

‘~-—use-compress-program=prog’

‘~-I=prog’ Use external compression program prog. Use this option if you
are not happy with the compression program associated with
the suffix at compile time or if you have a compression program
that GNU tar does not support. There are two requirements to
which prog should comply:

132 GNU tar 1.26

First, when called without options, it should read data from
standard input, compress it and output it on standard output.

Secondly, if called with ‘-d’ argument, it should do exactly the
opposite, i.e., read the compressed data from the standard input
and produce uncompressed data on the standard output.

The ‘--use-compress-program’ option, in particular, lets you implement

your own filters, not necessarily dealing with compression/decompression.
For example, suppose you wish to implement PGP encryption on top of

compression, using gpg (see Section “gpg —- encryption and signing tool”
in GNU Privacy Guard Manual). The following script does that:

#! /bin/sh

case $1 in

-d) gpg --decrypt - | gzip -d -c;;

’’) gzip —c | gpg -s;;

*x) echo "Unknown option $1">&2; exit 1;;

esac

Suppose you name it ‘gpgz’ and save it somewhere in your PATH. Then

the following command will create a compressed archive signed with your
private key:

$ tar -cf foo.tar.gpgz -Igpgz .
Likewise, the command below will list its contents:

$ tar -tf foo.tar.gpgz -Igpgz .

8.1.1.1 Using lbzip2 with GNU tar.

Lbzip2 is a multithreaded utility for handling ‘bzip2’ compression, written
by Laszlo Ersek. It makes use of multiple processors to speed up its oper-
ation and in general works considerably faster than bzip2. For a detailed
description of 1bzip2 see http://freshmeat.net/projects/lbzip2 and
Ibzip2: parallel bzip2 utility.

Recent versions of 1bzip2 are mostly command line compatible with
bzip2, which makes it possible to automatically invoke it via the ‘--bzip2’
GNU tar command line option. To do so, GNU tar must be configured with
the ‘——with-bzip2’ command line option, like this:

$./configure --with-bzip2=1bzip2 [other-options]
Once configured and compiled this way, tar --help will show the follow-
ing:
$ tar --help | grep -- --bzip2
-j, ——bzip2 filter the archive through 1lbzip2
which means that running tar --bzip2 will invoke 1bzip2.

8.1.2 Archiving Sparse Files

Files in the file system occasionally have holes. A hole in a file is a section of
the file’s contents which was never written. The contents of a hole reads as
all zeros. On many operating systems, actual disk storage is not allocated for

http://freshmeat.net/projects/lbzip2
http://www.linuxinsight.com/lbzip2-parallel-bzip2-utility.html

Chapter 8: Controlling the Archive Format 133

holes, but they are counted in the length of the file. If you archive such a file,
tar could create an archive longer than the original. To have tar attempt
to recognize the holes in a file, use ‘--sparse’ (‘-S’). When you use this
option, then, for any file using less disk space than would be expected from
its length, tar searches the file for consecutive stretches of zeros. It then
records in the archive for the file where the consecutive stretches of zeros
are, and only archives the “real contents” of the file. On extraction (using
‘~-sparse’ is not needed on extraction) any such files have holes created
wherever the continuous stretches of zeros were found. Thus, if you use
‘-—sparse’, tar archives won’t take more space than the original.

‘g’
‘--sparse’
This option instructs tar to test each file for sparseness before
attempting to archive it. If the file is found to be sparse it is
treated specially, thus allowing to decrease the amount of space
used by its image in the archive.

This option is meaningful only when creating or updating
archives. It has no effect on extraction.

Consider using ‘--sparse’ when performing file system backups, to avoid
archiving the expanded forms of files stored sparsely in the system.

Even if your system has no sparse files currently, some may be created
in the future. If you use ‘--sparse’ while making file system backups as a
matter of course, you can be assured the archive will never take more space
on the media than the files take on disk (otherwise, archiving a disk filled
with sparse files might take hundreds of tapes). See Section 5.2 [Incremental
Dumps], page 80.

However, be aware that ‘--sparse’ option presents a serious drawback.
Namely, in order to determine if the file is sparse tar has to read it before
trying to archive it, so in total the file is read twice. So, always bear in mind
that the time needed to process all files with this option is roughly twice the
time needed to archive them without it.

When using ‘POSIX’ archive format, GNU tar is able to store sparse
files using in three distinct ways, called sparse formats. A sparse format
is identified by its number, consisting, as usual of two decimal numbers,
delimited by a dot. By default, format ‘1.0’ is used. If, for some reason, you
wish to use an earlier format, you can select it using ‘~-sparse-version’
option.

‘~-sparse-version=version’
Select the format to store sparse files in. Valid version values
are: ‘0.0’, ‘0.1” and ‘1.0’. See [Sparse Formats|, page 194, for
a detailed description of each format.

Using ‘--sparse-format’ option implies ‘--sparse’.

134

GNU tar 1.26

8.2 Handling File Attributes

When tar reads files, it updates their access times. To avoid this, use
the ‘--—atime-preserve [=METHOD]’ option, which can either reset the access
time retroactively or avoid changing it in the first place.

‘-—atime-preserve’
‘-—atime-preserve=replace’
‘-—atime-preserve=system’

(-~

‘—=—touch’

Preserve the access times of files that are read. This works only
for files that you own, unless you have superuser privileges.

‘-—atime-preserve=replace’ works on most systems, but it
also restores the data modification time and updates the sta-
tus change time. Hence it doesn’t interact with incremental
dumps nicely (see Section 5.2 [Incremental Dumps|, page 80),
and it can set access or data modification times incorrectly if
other programs access the file while tar is running.

‘-—atime-preserve=system’ avoids changing the access time in
the first place, if the operating system supports this. Unfortu-
nately, this may or may not work on any given operating system
or file system. If tar knows for sure it won’t work, it complains
right away.

Currently ‘--atime-preserve’ with no operand defaults

to ‘--atime-preserve=replace’, but this is intended to
change to ‘--atime-preserve=system’ when the latter is
better-supported.

Do not extract data modification time.

When this option is used, tar leaves the data modification times
of the files it extracts as the times when the files were extracted,
instead of setting it to the times recorded in the archive.

This option is meaningless with ‘--1ist’ (‘-t’).

‘~-—same-owner’

Create extracted files with the same ownership they have in the
archive.

This is the default behavior for the superuser, so this option
is meaningful only for non-root users, when tar is executed on
those systems able to give files away. This is considered as a
security flaw by many people, at least because it makes quite
difficult to correctly account users for the disk space they occupy.
Also, the suid or sgid attributes of files are easily and silently
lost when files are given away.

When writing an archive, tar writes the user ID and user name
separately. If it can’t find a user name (because the user ID

Chapter 8: Controlling the Archive Format 135

is not in ‘/etc/passwd’), then it does not write one. When
restoring, it tries to look the name (if one was written) up in
‘/etc/passwd’. If it fails, then it uses the user ID stored in the
archive instead.

‘-—no-same-owner’

3

-0

)

Do not attempt to restore ownership when extracting. This is
the default behavior for ordinary users, so this option has an
effect only for the superuser.

‘——numeric-owner’

The ‘--numeric-owner’ option allows (ANSI) archives to be
written without user/group name information or such informa-
tion to be ignored when extracting. It effectively disables the
generation and/or use of user/group name information. This
option forces extraction using the numeric ids from the archive,
ignoring the names.

This is useful in certain circumstances, when restoring a backup
from an emergency floppy with different passwd/group files for
example. It is otherwise impossible to extract files with the
right ownerships if the password file in use during the extraction
does not match the one belonging to the file system(s) being ex-
tracted. This occurs, for example, if you are restoring your files
after a major crash and had booted from an emergency floppy
with no password file or put your disk into another machine to
do the restore.

The numeric ids are always saved into tar archives. The iden-
tifying names are added at create time when provided by the
system, unless ‘--format=oldgnu’ is used. Numeric ids could
be used when moving archives between a collection of machines
using a centralized management for attribution of numeric ids
to users and groups. This is often made through using the NIS
capabilities.

When making a tar file for distribution to other sites, it is some-
times cleaner to use a single owner for all files in the distribu-
tion, and nicer to specify the write permission bits of the files as
stored in the archive independently of their actual value on the
file system. The way to prepare a clean distribution is usually to
have some Makefile rule creating a directory, copying all needed
files in that directory, then setting ownership and permissions
as wanted (there are a lot of possible schemes), and only then
making a tar archive out of this directory, before cleaning ev-
erything out. Of course, we could add a lot of options to GNU
tar for fine tuning permissions and ownership. This is not the
good way, I think. GNU tar is already crowded with options and
moreover, the approach just explained gives you a great deal of
control already.

136 GNU tar 1.26

(0
P

‘--same-permissions’

‘--preserve-permissions’

Extract all protection information.

This option causes tar to set the modes (access permissions) of
extracted files exactly as recorded in the archive. If this option
is not used, the current umask setting limits the permissions on
extracted files. This option is by default enabled when tar is
executed by a superuser.

This option is meaningless with ‘--1ist’ (‘-t’).

‘-—preserve’
Same as both ‘--same-permissions’ and ‘--same-order’.

This option is deprecated, and will be removed in GNU tar
version 1.23.

8.3 Making tar Archives More Portable

Creating a tar archive on a particular system that is meant to be useful later
on many other machines and with other versions of tar is more challenging
than you might think. tar archive formats have been evolving since the
first versions of Unix. Many such formats are around, and are not always
compatible with each other. This section discusses a few problems, and gives
some advice about making tar archives more portable.

One golden rule is simplicity. For example, limit your tar archives to
contain only regular files and directories, avoiding other kind of special files.
Do not attempt to save sparse files or contiguous files as such. Let’s discuss
a few more problems, in turn.

8.3.1 Portable Names

Use portable file and member names. A name is portable if it contains only
ASCII letters and digits, /7, .7, *_’, and ‘~’; it cannot be empty, start with
‘=7 or ‘//’, or contain ‘/-’. Avoid deep directory nesting. For portability to
old Unix hosts, limit your file name components to 14 characters or less.

If you intend to have your tar archives to be read under MSDOS, you
should not rely on case distinction for file names, and you might use the GNU
doschk program for helping you further diagnosing illegal MSDOS names,
which are even more limited than System V’s.

8.3.2 Symbolic Links

Normally, when tar archives a symbolic link, it writes a block to the archive
naming the target of the link. In that way, the tar archive is a faithful
record of the file system contents. When ‘--dereference’ (‘-h’) is used
with ‘--create’ (‘-¢’), tar archives the files symbolic links point to, instead
of the links themselves.

Chapter 8: Controlling the Archive Format 137

When creating portable archives, use ‘--dereference’ (‘-h’): some sys-
tems do not support symbolic links, and moreover, your distribution might
be unusable if it contains unresolved symbolic links.

When reading from an archive, the ‘-~dereference’ (‘-h’) option causes
tar to follow an already-existing symbolic link when tar writes or reads
a file named in the archive. Ordinarily, tar does not follow such a link,
though it may remove the link before writing a new file. See [Dealing with
Old Files], page 68.

The ‘--dereference’ option is unsafe if an untrusted user can modify
directories while tar is running. See Section 10.2 [Security|, page 174.

8.3.3 Hard Links

Normally, when tar archives a hard link, it writes a block to the archive
naming the target of the link (a ‘1’ type block). In that way, the actual file
contents is stored in file only once. For example, consider the following two
files:

$1s -1

-rw-r--r-- 2 gray staff 4 2007-10-30 15:11 one

-rw-r--r-- 2 gray staff 4 2007-10-30 15:11 jeden

Here, ‘jeden’ is a link to ‘one’. When archiving this directory with a

verbose level 2, you will get an output similar to the following:

$ tar cfvv ../archive.tar .

druxr-xr-x gray/staff 0 2007-10-30 15:13 ./
-rw-r--r-- gray/staff 4 2007-10-30 15:11 ./jeden
hrw-r--r-- gray/staff 0 2007-10-30 15:11 ./one link to ./jeden

The last line shows that, instead of storing two copies of the file, tar
stored it only once, under the name ‘jeden’, and stored file ‘one’ as a hard
link to this file.

It may be important to know that all hard links to the given file are stored
in the archive. For example, this may be necessary for exact reproduction
of the file system. The following option does that:

‘~-check-links’

-1’ Check the number of links dumped for each processed file. If
this number does not match the total number of hard links for
the file, print a warning message.

For example, trying to archive only file ‘jeden’ with this option produces

the following diagnostics:
$ tar -c -f ../archive.tar -1 jeden
tar: Missing links to ‘jeden’.

Although creating special records for hard links helps keep a faithful
record of the file system contents and makes archives more compact, it
may present some difficulties when extracting individual members from the
archive. For example, trying to extract file ‘one’ from the archive created in
previous examples produces, in the absense of file ‘jeden’:

138 GNU tar 1.26

$ tar xf archive.tar ./one
tar: ./one: Cannot hard link to ¢./jeden’: No such file or directory
tar: Error exit delayed from previous errors
The reason for this behavior is that tar cannot seek back in the archive
to the previous member (in this case, ‘one’), to extract it®. If you wish to
avoid such problems at the cost of a bigger archive, use the following option:

‘--hard-dereference’
Dereference hard links and store the files they refer to.

For example, trying this option on our two sample files, we get two copies
in the archive, each of which can then be extracted independently of the
other:

$ tar -c -vv -f ../archive.tar --hard-dereference .

druxr-xr-x gray/staff 0 2007-10-30 15:13 ./
-rw-r--r-- gray/staff 4 2007-10-30 15:11 ./jeden
-rw-r--r-- gray/staff 4 2007-10-30 15:11 ./one

8.3.4 Old V7 Archives

Certain old versions of tar cannot handle additional information recorded
by newer tar programs. To create an archive in V7 format (not ANSI),
which can be read by these old versions, specify the ‘-—format=v7’ option in
conjunction with the ‘--create’ (‘-c’) (tar also accepts ‘~-portability’
or ‘--old-archive’ for this option). When you specify it, tar leaves out
information about directories, pipes, fifos, contiguous files, and device files,
and specifies file ownership by group and user IDs instead of group and user

names.

When updating an archive, do not use ‘--format=v7’ unless the archive
was created using this option.

In most cases, a new format archive can be read by an old tar program
without serious trouble, so this option should seldom be needed. On the
other hand, most modern tars are able to read old format archives, so it
might be safer for you to always use ‘--format=v7’ for your distributions.
Notice, however, that ‘ustar’ format is a better alternative, as it is free from
many of ‘v7”’s drawbacks.

8.3.5 Ustar Archive Format

Archive format defined by POSIX.1-1988 specification is called ustar. Al-
though it is more flexible than the V7 format, it still has many restrictions
(see Chapter 8 [Formats|, page 127, for the detailed description of ustar
format). Along with V7 format, ustar format is a good choice for archives
intended to be read with other implementations of tar.

To create archive in ustar format, use ‘-——format=ustar’ option in con-
junction with the ‘--create’ (‘-c’).

3 There are plans to fix this in future releases.

Chapter 8: Controlling the Archive Format 139

8.3.6 GNU and old GNU tar format

GNU tar was based on an early draft of the POSIX 1003.1 ustar standard.
GNU extensions to tar, such as the support for file names longer than 100
characters, use portions of the tar header record which were specified in
that POSIX draft as unused. Subsequent changes in POSIX have allocated
the same parts of the header record for other purposes. As a result, GNU
tar format is incompatible with the current POSIX specification, and with
tar programs that follow it.

In the majority of cases, tar will be configured to create this format by
default. This will change in future releases, since we plan to make ‘POSIX’
format the default.

To force creation a GNU tar archive, use option ‘--format=gnu’.

8.3.7 GNU tar and POSIX tar

Starting from version 1.14 GNU tar features full support for POSIX.1-2001
archives.

A POSIX conformant archive will be created if tar was given
‘~—format=posix’ (‘--format=pax’) option. No special option is required
to read and extract from a POSIX archive.

8.3.7.1 Controlling Extended Header Keywords

‘--pax-option=keyword-list’
Handle keywords in PAX extended headers. This option is equiv-
alent to ‘-0’ option of the pax utility.

Keyword-list is a comma-separated list of keyword options, each keyword
option taking one of the following forms:

delete=pattern
When used with one of archive-creation commands, this option
instructs tar to omit from extended header records that it pro-
duces any keywords matching the string pattern.

When used in extract or list mode, this option instructs tar to
ignore any keywords matching the given pattern in the extended
header records. In both cases, matching is performed using the
pattern matching notation described in POSIX 1003.2, 3.13 (see
Section 6.5 [wildcards], page 101). For example:

--pax-option delete=security.*

would suppress security-related information.

exthdr.name=string
This keyword allows user control over the name that is written
into the ustar header blocks for the extended headers. The name
is obtained from string after making the following substitutions:

140

GNU tar 1.26

Meta-character Replaced By

%d The directory name of the file, equiva-
lent to the result of the dirname utility
on the translated file name.

%ot The name of the file with the directory
information stripped, equivalent to the
result of the basename utility on the
translated file name.

%p The process ID of the tar process.

%% A “) character.

Any other ‘Y%’ characters in string produce undefined results.

If no option ‘exthdr.name=string’ is specified, tar will use the
following default value:

%d/PaxHeaders.%p/%E

exthdr.mtime=value

This keyword defines the value of the ‘mtime’ field that is writ-
ten into the ustar header blocks for the extended headers. By
default, the ‘mtime’ field is set to the modification time of the
archive member described by that extended headers.

globexthdr .name=string

This keyword allows user control over the name that is written
into the ustar header blocks for global extended header records.
The name is obtained from the contents of string, after making
the following substitutions:

Meta-character Replaced By

%on An integer that represents the sequence
number of the global extended header
record in the archive, starting at 1.

%p The process ID of the tar process.

%% A ‘%’ character.

Any other ‘Y%’ characters in string produce undefined results.

If no option ‘globexthdr.name=string’ is specified, tar will
use the following default value:
$TMPDIR/GlobalHead. %p.%n

where ‘$TMPDIR’ represents the value of the TMPDIR environ-
ment variable. If TMPDIR is not set, tar uses ‘/tmp’.

globexthdr .mtime=value

This keyword defines the value of the ‘mtime’ field that is written
into the ustar header blocks for the global extended headers. By
default, the ‘mtime’ field is set to the time when tar was invoked.

Chapter 8: Controlling the Archive Format 141

keyword=value
When used with one of archive-creation commands, these key-
word /value pairs will be included at the beginning of the archive
in a global extended header record. When used with one of
archive-reading commands, tar will behave as if it has encoun-
tered these keyword/value pairs at the beginning of the archive
in a global extended header record.

keyword:=value
When used with one of archive-creation commands, these key-
word /value pairs will be included as records at the beginning of
an extended header for each file. This is effectively equivalent to
keyword=value form except that it creates no global extended
header records.

When used with one of archive-reading commands, tar will be-
have as if these keyword/value pairs were included as records at
the end of each extended header; thus, they will override any
global or file-specific extended header record keywords of the
same names. For example, in the command:
tar --format=posix --create \
--file archive --pax-option gname:=user .

the group name will be forced to a new value for all files stored
in the archive.

In any of the forms described above, the value may be a string enclosed
in curly braces. In that case, the string between the braces is understood
either as a textual time representation, as described in Chapter 7 [Date input
formats|, page 119, or a name of the existing file, starting with ‘/” or *.”. In
the latter case, the modification time of that file is used.

For example, to set all modification times to the current date, you use
the following option:

--pax-option="mtime:={now}’

Note quoting of the option’s argument.

As another example, here is the option that ensures that any two archives
created using it, will be binary equivalent if they have the same contents:

--pax-option=exthdr.name=%d/PaxHeaders/%f,atime:=0

8.3.8 Checksumming Problems

SunOS and HP-UX tar fail to accept archives created using GNU tar and
containing non-ASCII file names, that is, file names having characters with
the eight bit set, because they use signed checksums, while GNU tar uses
unsigned checksums while creating archives, as per POSIX standards. On
reading, GNU tar computes both checksums and accepts any. It is somewhat
worrying that a lot of people may go around doing backup of their files using
faulty (or at least non-standard) software, not learning about it until it’s time
to restore their missing files with an incompatible file extractor, or vice versa.

142 GNU tar 1.26

GNU tar computes checksums both ways, and accept any on read, so GNU
tar can read Sun tapes even with their wrong checksums. GNU tar produces
the standard checksum, however, raising incompatibilities with Sun. That
is to say, GNU tar has not been modified to produce incorrect archives to
be read by buggy tar’s. I’ve been told that more recent Sun tar now read
standard archives, so maybe Sun did a similar patch, after all?

The story seems to be that when Sun first imported tar sources on their
system, they recompiled it without realizing that the checksums were com-
puted differently, because of a change in the default signing of char’s in their
compiler. So they started computing checksums wrongly. When they later
realized their mistake, they merely decided to stay compatible with it, and
with themselves afterwards. Presumably, but I do not really know, HP-UX
has chosen that their tar archives to be compatible with Sun’s. The current
standards do not favor Sun tar format. In any case, it now falls on the
shoulders of SunOS and HP-UX users to get a tar able to read the good
archives they receive.

8.3.9 Large or Negative Values

(This message will disappear, once this node revised.)

The above sections suggest to use ‘oldest possible’ archive format if in
doubt. However, sometimes it is not possible. If you attempt to archive a
file whose metadata cannot be represented using required format, GNU tar
will print error message and ignore such a file. You will than have to switch
to a format that is able to handle such values. The format summary table
(see Chapter 8 [Formats|, page 127) will help you to do so.

In particular, when trying to archive files larger than 8GB or with time-
stamps not in the range 1970-01-01 00:00:00 through 2242-03-16 12:56:31
UTC, you will have to chose between GNU and POSIX archive formats. When
considering which format to choose, bear in mind that the GNU format uses
two’s-complement base-256 notation to store values that do not fit into stan-
dard ustar range. Such archives can generally be read only by a GNU tar
implementation. Moreover, they sometimes cannot be correctly restored on
another hosts even by GNU tar. For example, using two’s complement rep-
resentation for negative time stamps that assumes a signed 32-bit time_t
generates archives that are not portable to hosts with differing time_t rep-
resentations.

On the other hand, POSIX archives, generally speaking, can be extracted
by any tar implementation that understands older ustar format. The only
exception are files larger than 8GB.

8.3.10 How to Extract GNU-Specific Data Using Other
tar Implementations

In previous sections you became acquainted with various quirks necessary to
make your archives portable. Sometimes you may need to extract archives

Chapter 8: Controlling the Archive Format 143

containing GNU-specific members using some third-party tar implementa-
tion or an older version of GNU tar. Of course your best bet is to have GNU
tar installed, but if it is for some reason impossible, this section will explain
how to cope without it.

When we speak about GNU-specific members we mean two classes of
them: members split between the volumes of a multi-volume archive and
sparse members. You will be able to always recover such members if the
archive is in PAX format. In addition split members can be recovered from
archives in old GNU format. The following subsections describe the required
procedures in detail.

8.3.10.1 Extracting Members Split Between Volumes

If a member is split between several volumes of an old GNU format archive
most third party tar implementation will fail to extract it. To extract it,
use tarcat program (see Section 9.6.3 [Tarcat|, page 167). This program is
available from GNU tar home page. It concatenates several archive volumes
into a single valid archive. For example, if you have three volumes named
from ‘vol-1.tar’ to ‘vol-3.tar’, you can do the following to extract them
using a third-party tar:
$ tarcat vol-1.tar vol-2.tar vol-3.tar | tar xf -

You could use this approach for most (although not all) PAX format
archives as well. However, extracting split members from a PAX archive is a
much easier task, because PAX volumes are constructed in such a way that
each part of a split member is extracted to a different file by tar implemen-
tations that are not aware of GNU extensions. More specifically, the very
first part retains its original name, and all subsequent parts are named using
the pattern:

%d/GNUFileParts.%p/%f . %n

where symbols preceeded by ‘%’ are macro characters that have the following
meaning:

Meta-character Replaced By

%d The directory name of the file, equiva-
lent to the result of the dirname utility
on its full name.

%t The file name of the file, equivalent to
the result of the basename utility on its
full name.

%p The process ID of the tar process that
created the archive.

%on Ordinal number of this particular part.

For example, if the file ‘var/longfile’ was split during archive creation
between three volumes, and the creator tar process had process ID ‘27962’,
then the member names will be:

http://www.gnu.org/software/tar/utils/tarcat.html

144 GNU tar 1.26

var/longfile
var/GNUFileParts.27962/longfile.1
var/GNUFileParts.27962/longfile.2
When you extract your archive using a third-party tar, these files will be
created on your disk, and the only thing you will need to do to restore your
file in its original form is concatenate them in the proper order, for example:
$ cd var
$ cat GNUFileParts.27962/longfile.1 \
GNUFileParts.27962/longfile.2 >> longfile
$ rm -f GNUFileParts.27962
Notice, that if the tar implementation you use supports PAX format
archives, it will probably emit warnings about unknown keywords during
extraction. They will look like this:
Tar file too small
Unknown extended header keyword ’GNU.volume.filename’ ignored.
Unknown extended header keyword ’GNU.volume.size’ ignored.
Unknown extended header keyword ’GNU.volume.offset’ ignored.

You can safely ignore these warnings.

If your tar implementation is not PAX-aware, you will get more warnings
and more files generated on your disk, e.g.:
$ tar xf vol-1.tar
var/PaxHeaders.27962/longfile: Unknown file type ’x’, extracted as
normal file
Unexpected EOF in archive
$ tar xf vol-2.tar
tmp/GlobalHead.27962.1: Unknown file type ’g’, extracted as normal file
GNUFileParts.27962/PaxHeaders.27962/sparsefile.1: Unknown file type
’x’, extracted as normal file
Ignore these warnings. The ‘PaxHeaders.*’ directories created will con-
tain files with extended header keywords describing the extracted files. You
can delete them, unless they describe sparse members. Read further to learn
more about them.

8.3.10.2 Extracting Sparse Members

Any tar implementation will be able to extract sparse members from a
PAX archive. However, the extracted files will be condensed, i.e., any zero
blocks will be removed from them. When we restore such a condensed file
to its original form, by adding zero blocks (or holes) back to their original
locations, we call this process expanding a compressed sparse file.

To expand a file, you will need a simple auxiliary program called xsparse.
It is available in source form from GNU tar home page.

Let’s begin with archive members in sparse format version 1.0*, which
are the easiest to expand. The condensed file will contain both file map
and file data, so no additional data will be needed to restore it. If the

4 See [PAX 1], page 197.

http://www.gnu.org/software/tar/utils/xsparse.html

Chapter 8: Controlling the Archive Format 145

original file name was ‘dir/name’, then the condensed file will be named
‘dir/GNUSparseFile.n/name’, where n is a decimal number®.

To expand a version 1.0 file, run xsparse as follows:
$ xsparse ‘cond-file’

where ‘cond-file’ is the name of the condensed file. The utility will deduce
the name for the resulting expanded file using the following algorithm:

1. If ‘cond-file’ does not contain any directories, ‘. ./cond-file’ will be
used;

2. If ‘cond-file’ has the form ‘dir/t/name’, where both t and name are
simple names, with no ‘/’ characters in them, the output file name will
be ‘dir/name’.

3. Otherwise, if ‘cond-file’ has the form ‘dir/name’, the output file name
will be ‘name’.

In the unlikely case when this algorithm does not suit your needs, you can
explicitly specify output file name as a second argument to the command:

$ xsparse ‘cond-file’ ‘out-file’

It is often a good idea to run xsparse in dry run mode first. In this
mode, the command does not actually expand the file, but verbosely lists all
actions it would be taking to do so. The dry run mode is enabled by ‘-n’
command line argument:

$ xsparse -n /home/gray/GNUSparseFile.6058/sparsefile
Reading v.1.0 sparse map

Expanding file ‘/home/gray/GNUSparseFile.6058/sparsefile’ to
‘/home/gray/sparsefile’

Finished dry run

To actually expand the file, you would run:
$ xsparse /home/gray/GNUSparseFile.6058/sparsefile

The program behaves the same way all UNIX utilities do: it will keep quiet
unless it has simething important to tell you (e.g. an error condition or
something). If you wish it to produce verbose output, similar to that from
the dry run mode, use ‘-v’ option:

$ xsparse -v /home/gray/GNUSparseFile.6058/sparsefile

Reading v.1.0 sparse map

Expanding file ‘/home/gray/GNUSparseFile.6058/sparsefile’ to

‘/home/gray/sparsefile’

Done

Additionally, if your tar implementation has extracted the extended

headers for this file, you can instruct xstar to use them in order to ver-
ify the integrity of the expanded file. The option ‘-x’ sets the name of the
extended header file to use. Continuing our example:

5 Technically speaking, n is a process ID of the tar process which created the archive
(see Section 8.3.7.1 [PAX keywords], page 139).

146 GNU tar 1.26

$ xsparse -v -x /home/gray/PaxHeaders.6058/sparsefile \
/home/gray/GNUSparseFile.6058/sparsefile

Reading extended header file

Found variable GNU.sparse.major = 1

Found variable GNU.sparse.minor = 0

Found variable GNU.sparse.name = sparsefile

Found variable GNU.sparse.realsize = 217481216

Reading v.1.0 sparse map

Expanding file ¢/home/gray/GNUSparseFile.6058/sparsefile’ to

‘/home/gray/sparsefile’

Done

An extended header is a special tar archive header that precedes an
archive member and contains a set of variables, describing the member prop-
erties that cannot be stored in the standard ustar header. While optional
for expanding sparse version 1.0 members, the use of extended headers is
mandatory when expanding sparse members in older sparse formats: v.0.0
and v.0.1 (The sparse formats are described in detail in [Sparse Formats],
page 194.) So, for these formats, the question is: how to obtain extended
headers from the archive?

If you use a tar implementation that does not support PAX format,
extended headers for each member will be extracted as a separate file. If
we represent the member name as ‘dir/name’, then the extended header file
will be named ‘dir/PaxHeaders.n/name’, where n is an integer number.

Things become more difficult if your tar implementation does support
PAX headers, because in this case you will have to manually extract the
headers. We recommend the following algorithm:

1. Consult the documentation of your tar implementation for an option
that prints block numbers along with the archive listing (analogous to
GNU tar’s ‘-R’ option). For example, star has ‘~block-number’.

2. Obtain verbose listing using the ‘block number’ option, and find block
numbers of the sparse member in question and the member immediately
following it. For example, running star on our archive we obtain:

$ star -t -v -block-number -f arc.tar

star: Unknown extended header keyword ’GNU.sparse.size’ ignored.

star: Unknown extended header keyword ’GNU.sparse.numblocks’ ignored.

star: Unknown extended header keyword ’GNU.sparse.name’ ignored.

star: Unknown extended header keyword ’GNU.sparse.map’ ignored.

block 56: 425984 -rw-r--r-- gray/users Jun 25 14:46 2006 GNUSparseFile.28!
block 897: 65391 -rw-r--r-- gray/users Jun 24 20:06 2006 README

(as usual, ignore the warnings about unknown keywords.)
3. Let size be the size of the sparse member, Bs be its block number and
Bn be the block number of the next member. Compute:
N = Bs - Bn - size/512 - 2
This number gives the size of the extended header part in tar blocks.
In our example, this formula gives: 897 - 56 - 425984 / 512 - 2 = 7.

Chapter 8: Controlling the Archive Format 147

4. Use dd to extract the headers:
dd if=archive of=hname bs=512 skip=Bs count=N

where archive is the archive name, hname is a name of the file to store
the extended header in, Bs and N are computed in previous steps.

In our example, this command will be
$ dd if=arc.tar of=xhdr bs=512 skip=56 count=7

Finally, you can expand the condensed file, using the obtained header:

$ xsparse -v -x xhdr GNUSparseFile.6058/sparsefile

Reading extended header file

Found variable GNU.sparse.size = 217481216

Found variable GNU.sparse.numblocks = 208

Found variable GNU.sparse.name = sparsefile

Found variable GNU.sparse.map = 0,2048,1050624,2048,...
Expanding file ‘GNUSparseFile.28124/sparsefile’ to ‘sparsefile’
Done

8.4 Comparison of tar and cpio

(This message will disappear, once this node revised.)

The cpio archive formats, like tar, do have maximum file name lengths.
The binary and old ASCII formats have a maximum file length of 256, and
the new ASCII and CRC ASCII formats have a max file length of 1024. GNU
cpio can read and write archives with arbitrary file name lengths, but other
cpio implementations may crash unexplainedly trying to read them.

tar handles symbolic links in the form in which it comes in BSD; cpio
doesn’t handle symbolic links in the form in which it comes in System V
prior to SVR4, and some vendors may have added symlinks to their system
without enhancing cpio to know about them. Others may have enhanced
it in a way other than the way I did it at Sun, and which was adopted by
AT&T (and which is, T think, also present in the cpio that Berkeley picked
up from AT&T and put into a later BSD release—I think I gave them my
changes).

(SVR4 does some funny stuff with tar; basically, its cpio can handle tar
format input, and write it on output, and it probably handles symbolic links.
They may not have bothered doing anything to enhance tar as a result.)

cpio handles special files; traditional tar doesn’t.

tar comes with V7, System III, System V, and BSD source; cpio comes
only with System III, System V, and later BSD (4.3-tahoe and later).

tar’s way of handling multiple hard links to a file can handle file systems
that support 32-bit i-numbers (e.g., the BSD file system); cpios way requires
you to play some games (in its “binary” format, i-numbers are only 16 bits,
and in its “portable ASCII” format, they’re 18 bits—it would have to play
games with the "file system ID" field of the header to make sure that the
file system ID/i-number pairs of different files were always different), and I
don’t know which cpios, if any, play those games. Those that don’t might

148 GNU tar 1.26

get confused and think two files are the same file when they’re not, and make
hard links between them.

tars way of handling multiple hard links to a file places only one copy
of the link on the tape, but the name attached to that copy is the only one
you can use to retrieve the file; cpios way puts one copy for every link, but
you can retrieve it using any of the names.

What type of check sum (if any) is used, and how is this calculated.

See the attached manual pages for tar and cpio format. tar uses a
checksum which is the sum of all the bytes in the tar header for a file; cpio
uses no checksum.

If anyone knows why cpio was made when tar was present at the
unix scene,

It wasn’t. cpio first showed up in PWB/UNIX 1.0; no generally-available
version of UNIX had tar at the time. I don’t know whether any version that
was generally available within ATéT had tar, or, if so, whether the people
within AT&T who did cpio knew about it.

On restore, if there is a corruption on a tape tar will stop at that point,
while cpio will skip over it and try to restore the rest of the files.

The main difference is just in the command syntax and header format.

tar is a little more tape-oriented in that everything is blocked to start
on a record boundary.

Is there any differences between the ability to recover crashed
archives between the two of them. (Is there any chance of recover-
ing crashed archives at all.)

Theoretically it should be easier under tar since the blocking lets you
find a header with some variation of ‘dd skip=nn’. However, modern cpio’s
and variations have an option to just search for the next file header after
an error with a reasonable chance of resyncing. However, lots of tape driver
software won’t allow you to continue past a media error which should be the
only reason for getting out of sync unless a file changed sizes while you were
writing the archive.

If anyone knows why cpio was made when tar was present at the
unix scene, please tell me about this too.

Probably because it is more media efficient (by not blocking everything
and using only the space needed for the headers where tar always uses 512
bytes per file header) and it knows how to archive special files.

You might want to look at the freely available alternatives. The major
ones are afio, GNU tar, and pax, each of which have their own extensions
with some backwards compatibility.

Sparse files were tarred as sparse files (which you can easily test, because
the resulting archive gets smaller, and GNU cpio can no longer read it).

Chapter 9: Tapes and Other Archive Media 149

9 Tapes and Other Archive Media

(This message will disappear, once this node revised.)

A few special cases about tape handling warrant more detailed descrip-
tion. These special cases are discussed below.

Many complexities surround the use of tar on tape drives. Since the
creation and manipulation of archives located on magnetic tape was the
original purpose of tar, it contains many features making such manipulation
easier.

Archives are usually written on dismountable media—tape cartridges,
mag tapes, or floppy disks.

The amount of data a tape or disk holds depends not only on its size,
but also on how it is formatted. A 2400 foot long reel of mag tape holds
40 megabytes of data when formatted at 1600 bits per inch. The physically
smaller EXABYTE tape cartridge holds 2.3 gigabytes.

Magnetic media are re-usable—once the archive on a tape is no longer
needed, the archive can be erased and the tape or disk used over. Media
quality does deteriorate with use, however. Most tapes or disks should be
discarded when they begin to produce data errors. EXABYTE tape car-
tridges should be discarded when they generate an error count (number of
non-usable bits) of more than 10k.

Magnetic media are written and erased using magnetic fields, and should
be protected from such fields to avoid damage to stored data. Sticking a
floppy disk to a filing cabinet using a magnet is probably not a good idea.

9.1 Device Selection and Switching
(This message will disappear, once this node revised.)

‘~f [hostname:]file’
‘——file=[hostname:]file’
Use archive file or device file on hostname.

This option is used to specify the file name of the archive tar works on.

If the file name is ‘-’, tar reads the archive from standard input (when
listing or extracting), or writes it to standard output (when creating). If the
‘=’ file name is given when updating an archive, tar will read the original
archive from its standard input, and will write the entire new archive to its
standard output.

0

If the file name contains a ‘:’, it is interpreted as ‘hostname:file
name’. If the hostname contains an at sign (‘@"), it is treated as
‘user@hostname:file name’. In either case, tar will invoke the command
rsh (or remsh) to start up an /usr/libexec/rmt on the remote machine.
If you give an alternate login name, it will be given to the rsh. Naturally,
the remote machine must have an executable /usr/libexec/rmt. This
program is free software from the University of California, and a copy of

150 GNU tar 1.26

the source code can be found with the sources for tar; it’s compiled and
installed by default. The exact path to this utility is determined when
configuring the package. It is ‘prefix/libexec/rmt’, where prefix stands
for your installation prefix. This location may also be overridden at runtime
by using the ‘--rmt-command=command’ option (See Section 3.4.2 [Option
Summary]|, page 29, for detailed description of this option. See Section 9.2
[Remote Tape Server], page 151, for the description of rmt command).

If this option is not given, but the environment variable TAPE is set, its
value is used; otherwise, old versions of tar used a default archive name
(which was picked when tar was compiled). The default is normally set up
to be the first tape drive or other transportable I/O medium on the system.

Starting with version 1.11.5, GNU tar uses standard input and standard
output as the default device, and I will not try anymore supporting auto-
matic device detection at installation time. This was failing really in too
many cases, it was hopeless. This is now completely left to the installer to
override standard input and standard output for default device, if this seems
preferable. Further, I think most actual usages of tar are done with pipes
or disks, not really tapes, cartridges or diskettes.

Some users think that using standard input and output is running after
trouble. This could lead to a nasty surprise on your screen if you forget to
specify an output file name—especially if you are going through a network
or terminal server capable of buffering large amounts of output. We had so
many bug reports in that area of configuring default tapes automatically,
and so many contradicting requests, that we finally consider the problem to
be portably intractable. We could of course use something like ‘/dev/tape’
as a default, but this is also running after various kind of trouble, going from
hung processes to accidental destruction of real tapes. After having seen all
this mess, using standard input and output as a default really sounds like
the only clean choice left, and a very useful one too.

GNU tar reads and writes archive in records, I suspect this is the main
reason why block devices are preferred over character devices. Most proba-
bly, block devices are more efficient too. The installer could also check for
‘DEFTAPE’ in ‘<sys/mtio.h>’.

‘—~—force-local’
Archive file is local even if it contains a colon.

‘-—rsh-command=command’
Use remote command instead of rsh. This option exists so that
people who use something other than the standard rsh (e.g., a
Kerberized rsh) can access a remote device.

When this command is not used, the shell command found when
the tar program was installed is used instead. This is the first
found of ‘/usr/ucb/rsh’, ‘/usr/bin/remsh’, ‘/usr/bin/rsh’,
‘/usr/bsd/rsh’ or ‘/usr/bin/nsh’. The installer may have

Chapter 9: Tapes and Other Archive Media 151

overridden this by defining the environment variable RSH at in-
stallation time.

‘~[0-7] [1mh]’
Specify drive and density.
6_M7
‘--multi-volume’
Create/list/extract multi-volume archive.

This option causes tar to write a multi-volume archive—one
that may be larger than will fit on the medium used to hold it.
See Section 9.6.1 [Multi-Volume Archives], page 163.

‘L num’

‘-—tape-length=size[suf]’
Change tape after writing size units of data. Unless suf is given,
size is treated as kilobytes, i.e. ‘size x 1024’ bytes. The follow-
ing suffixes alter this behavior:

Suffix Units Byte Equivalent
b Blocks size x 512

B Kilobytes size x 1024

c Bytes size

G Gigabytes size x 1024°3
K Kilobytes size x 1024

k Kilobytes size x 1024
M Megabytes size x 102472
P Petabytes size x 102475
T Terabytes size x 102474
w Words size X 2

Table 9.1: Size Suffixes

This option might be useful when your tape drivers do not prop-
erly detect end of physical tapes. By being slightly conservative
on the maximum tape length, you might avoid the problem en-
tirely.

‘~F file’

‘-—info-script=file’

‘~-new-volume-script=rfile’
Execute ‘file’ at end of each tape. This implies
‘~-multi-volume’ (‘-M’). See [info-script|, page 164, for a
detailed description of this option.

9.2 Remote Tape Server

In order to access the tape drive on a remote machine, tar uses the re-
mote tape server written at the University of California at Berkeley. The

152 GNU tar 1.26

remote tape server must be installed as ‘prefix/libexec/rmt’ on any ma-
chine whose tape drive you want to use. tar calls rmt by running an rsh or
remsh to the remote machine, optionally using a different login name if one
is supplied.

A copy of the source for the remote tape server is provided. It is Copyright
(© 1983 by the Regents of the University of California, but can be freely
distributed. It is compiled and installed by default.

Unless you use the ‘--absolute-names’ (‘-P’) option, GNU tar will not
allow you to create an archive that contains absolute file names (a file name
beginning with ‘/’.) If you try, tar will automatically remove the leading
¢/’ from the file names it stores in the archive. It will also type a warning
message telling you what it is doing.

When reading an archive that was created with a different tar program,
GNU tar automatically extracts entries in the archive which have absolute
file names as if the file names were not absolute. This is an important feature.
A visitor here once gave a tar tape to an operator to restore; the operator
used Sun tar instead of GNU tar, and the result was that it replaced large
portions of our ‘/bin’ and friends with versions from the tape; needless to
say, we were unhappy about having to recover the file system from backup
tapes.

For example, if the archive contained a file ‘/usr/bin/computoy’, GNU
tar would extract the file to ‘usr/bin/computoy’, relative to the current
directory. If you want to extract the files in an archive to the same absolute
names that they had when the archive was created, you should do a ‘cd
/’ before extracting the files from the archive, or you should either use the
‘--absolute-names’ option, or use the command ‘tar -C / ...".

Some versions of Unix (Ultrix 3.1 is known to have this problem), can
claim that a short write near the end of a tape succeeded, when it actually
failed. This will result in the -M option not working correctly. The best
workaround at the moment is to use a significantly larger blocking factor
than the default 20.

In order to update an archive, tar must be able to backspace the archive
in order to reread or rewrite a record that was just read (or written). This is
currently possible only on two kinds of files: normal disk files (or any other
file that can be backspaced with ‘lseek’), and industry-standard 9-track
magnetic tape (or any other kind of tape that can be backspaced with the
MTIOCTOP ioctl).

This means that the ‘--append’, ‘--concatenate’, and ‘--delete’ com-
mands will not work on any other kind of file. Some media simply cannot
be backspaced, which means these commands and options will never be able
to work on them. These non-backspacing media include pipes and cartridge
tape drives.

Some other media can be backspaced, and tar will work on them once
tar is modified to do so.

Chapter 9: Tapes and Other Archive Media 153

Archives created with the ‘--multi-volume’, ‘--label’, and
‘~-incremental’ (‘-G’) options may not be readable by other version of
tar. In particular, restoring a file that was split over a volume boundary
will require some careful work with dd, if it can be done at all. Other
versions of tar may also create an empty file whose name is that of the
volume header. Some versions of tar may create normal files instead of
directories archived with the ‘--incremental’ (‘-G’) option.

9.3 Some Common Problems and their Solutions

errors from system:
permission denied

no such file or directory
not owner

errors from tar:
directory checksum error
header format error

errors from media/system:
i/o error
device busy

9.4 Blocking

Block and record terminology is rather confused, and it is also confusing
to the expert reader. On the other hand, readers who are new to the field
have a fresh mind, and they may safely skip the next two paragraphs, as the
remainder of this manual uses those two terms in a quite consistent way.

John Gilmore, the writer of the public domain tar from which GNU tar
was originally derived, wrote (June 1995):

The nomenclature of tape drives comes from IBM, where I believe
they were invented for the IBM 650 or so. On IBM mainframes,
what is recorded on tape are tape blocks. The logical organiza-
tion of data is into records. There are various ways of putting
records into blocks, including F (fixed sized records), V (variable
sized records), FB (fixed blocked: fixed size records, n to a block), VB
(variable size records, n to a block), VSB (variable spanned blocked:
variable sized records that can occupy more than one block), etc.
The JCL ‘DD RECFORM=" parameter specified this to the operating
system.

The Unix man page on tar was totally confused about this. When I
wrote PD TAR, I used the historically correct terminology (tar writes
data records, which are grouped into blocks). It appears that the
bogus terminology made it into POSIX (no surprise here), and now

154 GNU tar 1.26

Francois has migrated that terminology back into the source code
too.

The term physical block means the basic transfer chunk from or to a
device, after which reading or writing may stop without anything being
lost. In this manual, the term block usually refers to a disk physical block,
assuming that each disk block is 512 bytes in length. It is true that some
disk devices have different physical blocks, but tar ignore these differences
in its own format, which is meant to be portable, so a tar block is always
512 bytes in length, and block always mean a tar block. The term logical
block often represents the basic chunk of allocation of many disk blocks as
a single entity, which the operating system treats somewhat atomically; this
concept is only barely used in GNU tar.

The term physical record is another way to speak of a physical block,
those two terms are somewhat interchangeable. In this manual, the term
record usually refers to a tape physical block, assuming that the tar archive
is kept on magnetic tape. It is true that archives may be put on disk or
used with pipes, but nevertheless, tar tries to read and write the archive
one record at a time, whatever the medium in use. One record is made up of
an integral number of blocks, and this operation of putting many disk blocks
into a single tape block is called reblocking, or more simply, blocking. The
term logical record refers to the logical organization of many characters into
something meaningful to the application. The term unit record describes a
small set of characters which are transmitted whole to or by the application,
and often refers to a line of text. Those two last terms are unrelated to what
we call a record in GNU tar.

When writing to tapes, tar writes the contents of the archive in
chunks known as records. To change the default blocking factor, use the
‘~-blocking-factor=512-size’ (‘-b 512-size’) option. Each record will
then be composed of 512-size blocks. (Each tar block is 512 bytes. See
[Standard], page 185.) Each file written to the archive uses at least one full
record. As a result, using a larger record size can result in more wasted
space for small files. On the other hand, a larger record size can often be
read and written much more efficiently.

Further complicating the problem is that some tape drives ignore the
blocking entirely. For these, a larger record size can still improve perfor-
mance (because the software layers above the tape drive still honor the
blocking), but not as dramatically as on tape drives that honor blocking.

When reading an archive, tar can usually figure out the record size on
itself. When this is the case, and a non-standard record size was used when
the archive was created, tar will print a message about a non-standard
blocking factor, and then operate normally. On some tape devices, however,
tar cannot figure out the record size itself. On most of those, you can
specify a blocking factor (with ‘--blocking-factor’) larger than the actual
blocking factor, and then use the ‘--read-full-records’ (‘-B’) option. (If
you specify a blocking factor with ‘~-blocking-factor’ and don’t use the

Chapter 9: Tapes and Other Archive Media 155

‘--read-full-records’ option, then tar will not attempt to figure out the
recording size itself.) On some devices, you must always specify the record
size exactly with ‘--blocking-factor’ when reading, because tar cannot
figure it out. In any case, use ‘--1list’ (‘-t’) before doing any extractions
to see whether tar is reading the archive correctly.

tar blocks are all fixed size (512 bytes), and its scheme for putting them
into records is to put a whole number of them (one or more) into each
record. tar records are all the same size; at the end of the file there’s a
block containing all zeros, which is how you tell that the remainder of the
last record(s) are garbage.

In a standard tar file (no options), the block size is 512 and the record
size is 10240, for a blocking factor of 20. What the ‘--blocking-factor’
option does is sets the blocking factor, changing the record size while leaving
the block size at 512 bytes. 20 was fine for ancient 800 or 1600 bpi reel-to-
reel tape drives; most tape drives these days prefer much bigger records in
order to stream and not waste tape. When writing tapes for myself, some
tend to use a factor of the order of 2048, say, giving a record size of around
one megabyte.

If you use a blocking factor larger than 20, older tar programs might
not be able to read the archive, so we recommend this as a limit to use
in practice. GNU tar, however, will support arbitrarily large record sizes,
limited only by the amount of virtual memory or the physical characteristics
of the tape device.

9.4.1 Format Variations

(This message will disappear, once this node revised.)

Format parameters specify how an archive is written on the archive media.
The best choice of format parameters will vary depending on the type and
number of files being archived, and on the media used to store the archive.

To specify format parameters when accessing or creating an archive, you
can use the options described in the following sections. If you do not specify
any format parameters, tar uses default parameters. You cannot modify a
compressed archive. If you create an archive with the ‘--blocking-factor’
option specified (see Section 9.4.2 [Blocking Factor|, page 155), you must
specify that blocking-factor when operating on the archive. See Chapter 8
[Formats], page 127, for other examples of format parameter considerations.

9.4.2 The Blocking Factor of an Archive

(This message will disappear, once this node revised.)

The data in an archive is grouped into blocks, which are 512 bytes. Blocks
are read and written in whole number multiples called records. The num-
ber of blocks in a record (i.e., the size of a record in units of 512 bytes) is
called the blocking factor. The ‘~-blocking-factor=512-size’ (‘-b 512~
size’) option specifies the blocking factor of an archive. The default blocking

156 GNU tar 1.26

factor is typically 20 (i.e., 10240 bytes), but can be specified at installa-
tion. To find out the blocking factor of an existing archive, use ‘tar --1ist
--file=archive-name’. This may not work on some devices.

Records are separated by gaps, which waste space on the archive media.
If you are archiving on magnetic tape, using a larger blocking factor (and
therefore larger records) provides faster throughput and allows you to fit
more data on a tape (because there are fewer gaps). If you are archiving on
cartridge, a very large blocking factor (say 126 or more) greatly increases
performance. A smaller blocking factor, on the other hand, may be useful
when archiving small files, to avoid archiving lots of nulls as tar fills out the
archive to the end of the record. In general, the ideal record size depends on
the size of the inter-record gaps on the tape you are using, and the average
size of the files you are archiving. See Section 2.6 [create], page 10, for
information on writing archives.

Archives with blocking factors larger than 20 cannot be read by very old
versions of tar, or by some newer versions of tar running on old machines
with small address spaces. With GNU tar, the blocking factor of an archive
is limited only by the maximum record size of the device containing the
archive, or by the amount of available virtual memory.

Also, on some systems, not using adequate blocking factors, as some-
times imposed by the device drivers, may yield unexpected diagnostics. For
example, this has been reported:

Cannot write to /dev/dlt: Invalid argument

In such cases, it sometimes happen that the tar bundled by the system is
aware of block size idiosyncrasies, while GNU tar requires an explicit speci-
fication for the block size, which it cannot guess. This yields some people to
consider GNU tar is misbehaving, because by comparison, the bundle tar
works OK. Adding -b 256, for example, might resolve the problem.

If you use a non-default blocking factor when you create an archive, you
must specify the same blocking factor when you modify that archive. Some
archive devices will also require you to specify the blocking factor when
reading that archive, however this is not typically the case. Usually, you
can use ‘--list’ (‘-t’) without specifying a blocking factor—tar reports a
non-default record size and then lists the archive members as it would nor-
mally. To extract files from an archive with a non-standard blocking factor
(particularly if you're not sure what the blocking factor is), you can usually
use the ‘--read-full-records’ (‘-B’) option while specifying a blocking
factor larger then the blocking factor of the archive (i.e., ‘tar --extract
--read-full-records --blocking-factor=300’). See Section 2.7 [list],
page 15, for more information on the ‘--list’ (‘-t’) operation. See
Section 4.4.1 [Reading|, page 67, for a more detailed explanation of that
option.

Chapter 9: Tapes and Other Archive Media 157

‘-—blocking-factor=number’

‘~b number’
Specifies the blocking factor of an archive. Can be used with
any operation, but is usually not necessary with ‘--1ist’ (‘-t’).

Device blocking

‘~b blocks’
‘--blocking-factor=blocks’
Set record size to blocks * 512 bytes.

This option is used to specify a blocking factor for the archive.
When reading or writing the archive, tar, will do reads and
writes of the archive in records of block x 512 bytes. This is true
even when the archive is compressed. Some devices requires that
all write operations be a multiple of a certain size, and so, tar
pads the archive out to the next record boundary.

The default blocking factor is set when tar is compiled, and
is typically 20. Blocking factors larger than 20 cannot be read
by very old versions of tar, or by some newer versions of tar
running on old machines with small address spaces.

With a magnetic tape, larger records give faster throughput and
fit more data on a tape (because there are fewer inter-record
gaps). If the archive is in a disk file or a pipe, you may want to
specify a smaller blocking factor, since a large one will result in
a large number of null bytes at the end of the archive.

When writing cartridge or other streaming tapes, a much larger
blocking factor (say 126 or more) will greatly increase perfor-
mance. However, you must specify the same blocking factor
when reading or updating the archive.

Apparently, Exabyte drives have a physical block size of 8K
bytes. If we choose our blocksize as a multiple of 8k bytes,
then the problem seems to disappear. Id est, we are using block
size of 112 right now, and we haven’t had the problem since we
switched. . .

With GNU tar the blocking factor is limited only by the maxi-
mum record size of the device containing the archive, or by the
amount of available virtual memory.
However, deblocking or reblocking is virtually avoided in a spe-
cial case which often occurs in practice, but which requires all
the following conditions to be simultaneously true:

e the archive is subject to a compression option,

e the archive is not handled through standard input or out-
put, nor redirected nor piped,

e the archive is directly handled to a local disk, instead of any
special device,

158

3

]

GNU tar 1.26

e ‘—-blocking-factor’ is not explicitly specified on the tar
invocation.

If the output goes directly to a local disk, and not through std-
out, then the last write is not extended to a full record size.
Otherwise, reblocking occurs. Here are a few other remarks on
this topic:

e gzip will complain about trailing garbage if asked to un-
compress a compressed archive on tape, there is an option
to turn the message off, but it breaks the regularity of sim-
ply having to use ‘prog -d’ for decompression. It would
be nice if gzip was silently ignoring any number of trailing
zeros. T'll ask Jean-loup Gailly, by sending a copy of this
message to him.

e compress does not show this problem, but as Jean-loup
pointed out to Michael, ‘compress -d’ silently adds garbage
after the result of decompression, which tar ignores because
it already recognized its end-of-file indicator. So this bug
may be safely ignored.

e ‘gzip -d -q’ will be silent about the trailing zeros indeed,
but will still return an exit status of 2 which tar reports in
turn. tar might ignore the exit status returned, but I hate
doing that, as it weakens the protection tar offers users
against other possible problems at decompression time. If
gzip was silently skipping trailing zeros and also avoiding
setting the exit status in this innocuous case, that would
solve this situation.

9

e tar should become more solid at not stopping to read a pipe
at the first null block encountered. This inelegantly breaks
the pipe. tar should rather drain the pipe out before exiting
itself.

‘-—ignore-zeros’

Ignore blocks of zeros in archive (means EOF).

The ‘--ignore-zeros’ (‘-i’) option causes tar to ignore blocks
of zeros in the archive. Normally a block of zeros indicates the
end of the archive, but when reading a damaged archive, or one
which was created by concatenating several archives together,
this option allows tar to read the entire archive. This option is
not on by default because many versions of tar write garbage
after the zeroed blocks.

Note that this option causes tar to read to the end of the archive
file, which may sometimes avoid problems when multiple files are
stored on a single physical tape.

Chapter 9: Tapes and Other Archive Media 159

‘B’
‘~-read-full-records’
Reblock as we read (for reading 4.2BSD pipes).

If ‘~-read-full-records’ is used, tar will not panic if an at-
tempt to read a record from the archive does not return a full
record. Instead, tar will keep reading until it has obtained a
full record.

This option is turned on by default when tar is reading an
archive from standard input, or from a remote machine. This
is because on BSD Unix systems, a read of a pipe will return
however much happens to be in the pipe, even if it is less than
tar requested. If this option was not used, tar would fail as
soon as it read an incomplete record from the pipe.

This option is also useful with the commands for updating an
archive.

Tape blocking

When handling various tapes or cartridges, you have to take care of se-
lecting a proper blocking, that is, the number of disk blocks you put together
as a single tape block on the tape, without intervening tape gaps. A tape
gap is a small landing area on the tape with no information on it, used for
decelerating the tape to a full stop, and for later regaining the reading or
writing speed. When the tape driver starts reading a record, the record has
to be read whole without stopping, as a tape gap is needed to stop the tape
motion without losing information.

Using higher blocking (putting more disk blocks per tape block) will use
the tape more efficiently as there will be less tape gaps. But reading such
tapes may be more difficult for the system, as more memory will be required
to receive at once the whole record. Further, if there is a reading error on a
huge record, this is less likely that the system will succeed in recovering the
information. So, blocking should not be too low, nor it should be too high.
tar uses by default a blocking of 20 for historical reasons, and it does not re-
ally matter when reading or writing to disk. Current tape technology would
easily accommodate higher blockings. Sun recommends a blocking of 126
for Exabytes and 96 for DATs. We were told that for some DLT drives, the
blocking should be a multiple of 4Kb, preferably 64Kb (-b 128) or 256 for
decent performance. Other manufacturers may use different recommenda-
tions for the same tapes. This might also depends of the buffering techniques
used inside modern tape controllers. Some imposes a minimum blocking, or
a maximum blocking. Others request blocking to be some exponent of two.

So, there is no fixed rule for blocking. But blocking at read time should
ideally be the same as blocking used at write time. At one place I know,
with a wide variety of equipment, they found it best to use a blocking of 32
to guarantee that their tapes are fully interchangeable.

160 GNU tar 1.26

I was also told that, for recycled tapes, prior erasure (by the same drive
unit that will be used to create the archives) sometimes lowers the error
rates observed at rewriting time.

I might also use ‘~-number-blocks’ instead of ‘--block-number’, so

‘-=block’ will then expand to ‘--blocking-factor’ unambiguously.

9.5 Many Archives on One Tape

Most tape devices have two entries in the ‘/dev’ directory, or entries that
come in pairs, which differ only in the minor number for this device. Let’s
take for example ‘/dev/tape’, which often points to the only or usual tape
device of a given system. There might be a corresponding ‘/dev/nrtape’
or ‘/dev/ntape’. The simpler name is the rewinding version of the device,
while the name having ‘nr’ in it is the no rewinding version of the same
device.

A rewinding tape device will bring back the tape to its beginning point
automatically when this device is opened or closed. Since tar opens the
archive file before using it and closes it afterwards, this means that a simple:

$ tar cf /dev/tape directory

will reposition the tape to its beginning both prior and after saving directory
contents to it, thus erasing prior tape contents and making it so that any
subsequent write operation will destroy what has just been saved.

So, a rewinding device is normally meant to hold one and only one file.
If you want to put more than one tar archive on a given tape, you will
need to avoid using the rewinding version of the tape device. You will also
have to pay special attention to tape positioning. Errors in positioning may
overwrite the valuable data already on your tape. Many people, burnt by
past experiences, will only use rewinding devices and limit themselves to one
file per tape, precisely to avoid the risk of such errors. Be fully aware that
writing at the wrong position on a tape loses all information past this point
and most probably until the end of the tape, and this destroyed information
cannot be recovered.

To save directory-1 as a first archive at the beginning of a tape, and leave
that tape ready for a second archive, you should use:
$ mt -f /dev/nrtape rewind
$ tar cf /dev/nrtape directory-1
Tape marks are special magnetic patterns written on the tape media,
which are later recognizable by the reading hardware. These marks are used
after each file, when there are many on a single tape. An empty file (that
is to say, two tape marks in a row) signal the logical end of the tape, after
which no file exist. Usually, non-rewinding tape device drivers will react to
the close request issued by tar by first writing two tape marks after your
archive, and by backspacing over one of these. So, if you remove the tape
at that time from the tape drive, it is properly terminated. But if you write

Chapter 9: Tapes and Other Archive Media 161

another file at the current position, the second tape mark will be erased by
the new information, leaving only one tape mark between files.

So, you may now save directory-2 as a second archive after the first on
the same tape by issuing the command:
$ tar cf /dev/nrtape directory-2
and so on for all the archives you want to put on the same tape.

Another usual case is that you do not write all the archives the same day,
and you need to remove and store the tape between two archive sessions. In
general, you must remember how many files are already saved on your tape.
Suppose your tape already has 16 files on it, and that you are ready to write
the 17th. You have to take care of skipping the first 16 tape marks before
saving directory-17, say, by using these commands:

$ mt -f /dev/nrtape rewind
$ mt -f /dev/nrtape fsf 16
$ tar cf /dev/nrtape directory-17

In all the previous examples, we put aside blocking considerations, but
you should do the proper things for that as well. See Section 9.4 [Blocking],
page 153.

9.5.1 Tape Positions and Tape Marks

(This message will disappear, once this node revised.)

Just as archives can store more than one file from the file system, tapes
can store more than one archive file. To keep track of where archive files (or
any other type of file stored on tape) begin and end, tape archive devices
write magnetic tape marks on the archive media. Tape drives write one tape
mark between files, two at the end of all the file entries.

If you think of data as a series of records "rrrr"’s, and tape marks as
wkn’ga tape might look like the following;:

TYYT*ITYTYT¥I YT r* YT rrrrrkk——————— _—

Tape devices read and write tapes using a read/write tape head—a phys-
ical part of the device which can only access one point on the tape at a
time. When you use tar to read or write archive data from a tape device,
the device will begin reading or writing from wherever on the tape the tape
head happens to be, regardless of which archive or what part of the archive
the tape head is on. Before writing an archive, you should make sure that no
data on the tape will be overwritten (unless it is no longer needed). Before
reading an archive, you should make sure the tape head is at the beginning
of the archive you want to read. You can do it manually via mt utility (see
Section 9.5.2 [mt], page 162). The restore script does that automatically
(see Section 5.6 [Scripted Restoration], page 90).

If you want to add new archive file entries to a tape, you should advance
the tape to the end of the existing file entries, backspace over the last tape
mark, and write the new archive file. If you were to add two archives to the
example above, the tape might look like the following:

162 GNU tar 1.26

rYYr¥rrYYYr*rrrYr*rr¥rrrrrxrrr rrrrkf————————————————

9.5.2 The mnt Utility

(This message will disappear, once this node revised.)

See Section 9.4.2 [Blocking Factor], page 155.

You can use the mt utility to advance or rewind a tape past a specified
number of archive files on the tape. This will allow you to move to the
beginning of an archive before extracting or reading it, or to the end of all
the archives before writing a new one.

The syntax of the mt command is:

mt [-f tapename] operation [number]

where tapename is the name of the tape device, number is the number
of times an operation is performed (with a default of one), and operation is
one of the following:

‘eof’

‘weof’ Writes number tape marks at the current position on the tape.
‘fsf’ Moves tape position forward number files.

‘bsf’ Moves tape position back number files.

‘rewind’ Rewinds the tape. (Ignores number.)

‘offline’

‘rewoffl’ Rewinds the tape and takes the tape device off-line. (Ignores
number.)

‘status’ Prints status information about the tape unit.

If you don’t specify a tapename, mt uses the environment variable TAPE; if
TAPE is not set, mt will use the default device specified in your ‘sys/mtio.h’
file (DEFTAPE variable). If this is not defined, the program will display a
descriptive error message and exit with code 1.

mt returns a 0 exit status when the operation(s) were successful, 1 if the
command was unrecognized, and 2 if an operation failed.

9.6 Using Multiple Tapes

Often you might want to write a large archive, one larger than will fit on
the actual tape you are using. In such a case, you can run multiple tar
commands, but this can be inconvenient, particularly if you are using options
like ‘--exclude=pattern’ or dumping entire file systems. Therefore, tar
provides a special mode for creating multi-volume archives.

Multi-volume archive is a single tar archive, stored on several media
volumes of fixed size. Although in this section we will often call ‘volume’
a tape, there is absolutely no requirement for multi-volume archives to be
stored on tapes. Instead, they can use whatever media type the user finds
convenient, they can even be located on files.

Chapter 9: Tapes and Other Archive Media 163

When creating a multi-volume archive, GNU tar continues to fill current
volume until it runs out of space, then it switches to next volume (usually
the operator is queried to replace the tape on this point), and continues
working on the new volume. This operation continues until all requested
files are dumped. If GNU tar detects end of media while dumping a file,
such a file is archived in split form. Some very big files can even be split
across several volumes.

Each volume is itself a valid GNU tar archive, so it can be read without
any special options. Consequently any file member residing entirely on one
volume can be extracted or otherwise operated upon without needing the
other volume. Sure enough, to extract a split member you would need all
volumes its parts reside on.

Multi-volume archives suffer from several limitations. In particular, they
cannot be compressed.

GNU tar is able to create multi-volume archives of two formats (see
Chapter 8 [Formats|, page 127): ‘GNU’ and ‘POSIX’.

9.6.1 Archives Longer than One Tape or Disk

To create an archive that is larger than will fit on a single unit of the media,
use the ‘--multi-volume’ (‘-M’) option in conjunction with the ‘--create’
option (see Section 2.6 [create], page 10). A multi-volume archive can be
manipulated like any other archive (provided the ‘--multi-volume’ option
is specified), but is stored on more than one tape or file.

When you specify ‘-—multi-volume’, tar does not report an error when
it comes to the end of an archive volume (when reading), or the end of the
media (when writing). Instead, it prompts you to load a new storage volume.
If the archive is on a magnetic tape, you should change tapes when you see
the prompt; if the archive is on a floppy disk, you should change disks; etc.

‘—-multi-volume’

=M’ Creates a multi-volume archive, when used in conjunction with
‘~-create’ (‘-c’). To perform any other operation on a multi-
volume archive, specify ‘—-multi-volume’ in conjunction with
that operation. For example:

$ tar --create --multi-volume --file=/dev/tape files

The method tar uses to detect end of tape is not perfect, and fails on
some operating systems or on some devices. If tar cannot detect the end of
the tape itself, you can use ‘--tape-length’ option to inform it about the
capacity of the tape:

‘-—tape-length=size[suf]’

‘~L sizel[suf]’
Set maximum length of a volume. The suf, if given, specifies
units in which size is expressed, e.g. ‘2M’ mean 2 megabytes (see
Table 9.1, for a list of allowed size suffixes). Without suf, units
of 1024 bytes (kilobyte) are assumed.

164 GNU tar 1.26

This option selects ‘~——multi-volume’ automatically. For exam-
ple:

$ tar --create --tape-length=41943040 --file=/dev/tape files
or, which is equivalent:

$ tar --create --tape-length=4G --file=/dev/tape files

When GNU tar comes to the end of a storage media, it asks you to change
the volume. The built-in prompt for POSIX locale is':

Prepare volume #n for ‘archive’ and hit return:

where n is the ordinal number of the volume to be created and archive is
archive file or device name.

When prompting for a new tape, tar accepts any of the following re-
sponses:

? Request tar to explain possible responses.
q Request tar to exit immediately.

n file-name
Request tar to write the next volume on the file file-name.

! Request tar to run a subshell. This option can be disabled by
giving ‘--restrict’ command line option to tar?.

vy Request tar to begin writing the next volume.

(You should only type ‘y’ after you have changed the tape; otherwise tar
will write over the volume it just finished.)

The volume number used by tar in its tape-changing prompt can be
changed; if you give the ‘--=volno-file=file-of-number’ option, then file-
of-number should be an non-existing file to be created, or else, a file already
containing a decimal number. That number will be used as the volume
number of the first volume written. When tar is finished, it will rewrite the
file with the now-current volume number. (This does not change the volume
number written on a tape label, as per Section 9.7 [label], page 167, it only
affects the number used in the prompt.)

If you want more elaborate behavior than this, you can write a special
new volume script, that will be responsible for changing the volume, and
instruct tar to use it instead of its normal prompting procedure:

‘-—info-script=script-name’

‘-—new-volume-script=script-name’

‘~F script-name’
Specify the full name of the volume script to use. The script
can be used to eject cassettes, or to broadcast messages such as

Lo you run GNU tar under a different locale, the translation to the locale’s language
will be used.

2 See [restrict], page 41, for more information about this option.

Chapter 9: Tapes and Other Archive Media 165

‘Someone please come change my tape’ when performing unat-
tended backups.

The script-name is executed without any command line arguments. It
inherits tar’s shell environment. Additional data is passed to it via the
following environment variables:

TAR_VERSION
GNU tar version number.

TAR_ARCHIVE
The name of the archive tar is processing.

TAR_BLOCKING_FACTOR
Current blocking factor (see Section 9.4 [Blocking], page 153).

TAR_VOLUME
Ordinal number of the volume tar is about to start.

TAR_SUBCOMMAND
A short option describing the operation tar is executing. See
Section 4.2.1 [Operations|, page 58, for a complete list of sub-
command options.

TAR_FORMAT
Format of the archive being processed. See Chapter 8 [Formats],
page 127, for a complete list of archive format names.

TAR_FD File descriptor which can be used to communicate the new vol-
ume name to tar.

The volume script can instruct tar to use new archive name, by writing
in to file descriptor $TAR_FD (see below for an example).

If the info script fails, tar exits; otherwise, it begins writing the next
volume.

If you want tar to cycle through a series of files or tape drives, there
are three approaches to choose from. First of all, you can give tar multiple
‘-—file’ options. In this case the specified files will be used, in sequence,
as the successive volumes of the archive. Only when the first one in the
sequence needs to be used again will tar prompt for a tape change (or run
the info script). For example, suppose someone has two tape drives on a
system named ‘/dev/tape0’ and ‘/dev/tapel’. For having GNU tar to
switch to the second drive when it needs to write the second tape, and then
back to the first tape, etc., just do either of:

$ tar --create --multi-volume --file=/dev/tape0 --file=/dev/tapel files
$ tar cMff /dev/tape0 /dev/tapel files

The second method is to use the ‘n’ response to the tape-change prompt.

Finally, the most flexible approach is to use a volume script, that writes
new archive name to the file descriptor $TAR_FD. For example, the following
volume script will create a series of archive files, named ‘archive-vol’, where

166 GNU tar 1.26

archive is the name of the archive being created (as given by ‘--file’ option)
and vol is the ordinal number of the archive being created:

#! /bin/sh
echo Preparing volume $TAR_VOLUME of $TAR_ARCHIVE.

name="‘expr $TAR_ARCHIVE : ’\(.*\)-.%>¢

case $TAR_SUBCOMMAND in

-c) HH

-d|-x|-t) test -r ${name:-$TAR_ARCHIVE}-$TAR_VOLUME || exit 1
*) exit 1

esac

echo ${name:-$TAR_ARCHIVE}-$TAR_VOLUME >&$TAR_FD

The same script can be used while listing, comparing or extracting from
the created archive. For example:
Create a multi-volume archive:
$ tar -c¢ -L1024 -f archive.tar -F new-volume .

Extract from the created archive:
$ tar -x -f archive.tar -F new-volume .

Notice, that the first command had to use ‘-L’ option, since otherwise GNU
tar will end up writing everything to file ‘archive.tar’.

You can read each individual volume of a multi-volume archive as if it
were an archive by itself. For example, to list the contents of one volume, use
‘—-list’, without ‘-—multi-volume’ specified. To extract an archive mem-
ber from one volume (assuming it is described that volume), use ‘--extract’,
again without ‘~-multi-volume’.

If an archive member is split across volumes (i.e., its entry begins
on one volume of the media and ends on another), you need to spec-
ify ‘-—multi-volume’ to extract it successfully. In this case, you should
load the volume where the archive member starts, and use ‘tar —-extract
--multi-volume—tar will prompt for later volumes as it needs them. See
Section 2.8.1 [extracting archives|, page 17, for more information about ex-
tracting archives.

Multi-volume archives can be modified like any other archive. To add
files to a multi-volume archive, you need to only mount the last volume of
the archive media (and new volumes, if needed). For all other operations,
you need to use the entire archive.

If a multi-volume archive was labeled using ‘--label=archive-label’
(see Section 9.7 [label|, page 167) when it was created, tar will not auto-
matically label volumes which are added later. To label subsequent volumes,
specify ‘--label=archive-label’ again in conjunction with the ‘~—append’,
‘~-—update’ or ‘--concatenate’ operation.

Notice that multi-volume support is a GNU extension and the archives
created in this mode should be read only using GNU tar. If you absolutely

Chapter 9: Tapes and Other Archive Media 167

have to process such archives using a third-party tar implementation, read
Section 8.3.10.1 [Split Recovery], page 143.

9.6.2 Tape Files

(This message will disappear, once this node revised.)

To give the archive a name which will be recorded in it, use the
‘~-label=volume-label’ (‘-V volume-label’) option. This will write a
special block identifying volume-label as the name of the archive to the
front of the archive which will be displayed when the archive is listed with
‘--1ist’. If you are creating a multi-volume archive with ‘~-multi-volume’
(see Section 9.6 [Using Multiple Tapes|, page 162), then the volume label will
have ‘Volume nnn’ appended to the name you give, where nnn is the num-
ber of the volume of the archive. If you use the ‘--label=volume-label’
option when reading an archive, it checks to make sure the label on the tape
matches the one you gave. See Section 9.7 [label], page 167.

When tar writes an archive to tape, it creates a single tape file. If
multiple archives are written to the same tape, one after the other, they
each get written as separate tape files. When extracting, it is necessary to
position the tape at the right place before running tar. To do this, use
the mt command. For more information on the mt command and on the
organization of tapes into a sequence of tape files, see Section 9.5.2 [mt],
page 162.

People seem to often do:

--label="some-prefix ‘date +some-format ‘"

or such, for pushing a common date in all volumes or an archive set.

9.6.3 Concatenate Volumes into a Single Archive

Sometimes it is necessary to convert existing GNU tar multi-volume archive
to a single tar archive. Simply concatenating all volumes into one will not
work, since each volume carries an additional information at the beginning.
GNU tar is shipped with the shell script tarcat designed for this purpose.

The script takes a list of files comprising a multi-volume archive and
creates the resulting archive at the standard output. For example:

tarcat vol.1 vol.2 vol.3 | tar tf -

The script implements a simple heuristics to determine the format of the
first volume file and to decide how to process the rest of the files. However,
it makes no attempt to verify whether the files are given in order or even if
they are valid tar archives. It uses dd and does not filter its standard error,
so you will usually see lots of spurious messages.

9.7 Including a Label in the Archive

To avoid problems caused by misplaced paper labels on the archive media,
you can include a label entry — an archive member which contains the name

168 GNU tar 1.26

of the archive — in the archive itself. Use the ‘--label=archive-label’ (‘-V
archive-label’) option® in conjunction with the ‘--create’ operation to
include a label entry in the archive as it is being created.

‘~-label=archive-label’

‘~V archive-label’
Includes an archive-label at the beginning of the archive when
the archive is being created, when used in conjunction with the
‘--create’ operation. Checks to make sure the archive label
matches the one specified (when used in conjunction with any
other operation).

If you create an archive using both ‘--label=archive-label’ (‘-V
archive-label’) and ‘--multi-volume’ (‘-M’), each volume of the archive
will have an archive label of the form ‘archive-label Volume n’, where n
is 1 for the first volume, 2 for the next, and so on. See Section 9.6 [Us-
ing Multiple Tapes|, page 162, for information on creating multiple volume
archives.

The volume label will be displayed by ‘--1ist’ along with the file con-
tents. If verbose display is requested, it will also be explicitly marked as in
the example below:

$ tar --verbose --list --file=iamanarchive

V- 0/0 0 1992-03-07 12:01 iamalabel--Volume Header-
-rw-r--r-- ringo/user 40 1990-05-21 13:30 iamafilename
However, ‘--1ist’ option will cause listing entire contents of the archive,

which may be undesirable (for example, if the archive is stored on a tape).
You can request checking only the volume label by specifying ‘--test-label’
option. This option reads only the first block of an archive, so it can be used
with slow storage devices. For example:
$ tar --test-label --file=iamanarchive
iamalabel
If ‘~-test-label’ is used with one or more command line arguments,
tar compares the volume label with each argument. It exits with code 0 if a
match is found, and with code 1 otherwise?. No output is displayed, unless
you also used the ‘~-verbose’ option. For example:
$ tar --test-label --file=iamanarchive ’iamalabel’
= 0
$ tar --test-label --file=iamanarchive ’alabel’
=1
When used with the ‘--verbose’ option, tar prints the actual volume
label (if any), and a verbose diagnostics in case of a mismatch:

3 Until version 1.10, that option was called ‘-~volume’, but is not available under that
name anymore.

4 Note that GNU tar versions up to 1.23 indicated mismatch with an exit code 2 and
printed a spurious diagnostics on stderr.

Chapter 9: Tapes and Other Archive Media 169

$ tar --test-label --verbose --file=iamanarchive ’iamalabel’
iamalabel

= 0

$ tar --test-label —--verbose --file=iamanarchive ’alabel’
iamalabel

tar: Archive label mismatch

=1

¢

If you request any operation, other than ‘--create’, along with using
‘--label’ option, tar will first check if the archive label matches the one
specified and will refuse to proceed if it does not. Use this as a safety
precaution to avoid accidentally overwriting existing archives. For example,
if you wish to add files to ‘archive’, presumably labeled with string ‘My
volume’, you will get:

$ tar -rf archive --label ’My volume’ .

tar: Archive not labeled to match ‘My volume’
in case its label does not match. This will work even if ‘archive’ is not
labeled at all.

Similarly, tar will refuse to list or extract the archive if its label doesn’t
match the archive-label specified. In those cases, archive-label argument is
interpreted as a globbing-style pattern which must match the actual mag-
netic volume label. See Section 6.4 [exclude], page 98, for a precise descrip-
tion of how match is attempted®. If the switch ‘--multi-volume’ (‘-M’)
is being used, the volume label matcher will also suffix archive-label by
‘ Volume [1-9]%’ if the initial match fails, before giving up. Since the vol-
ume numbering is automatically added in labels at creation time, it sounded
logical to equally help the user taking care of it when the archive is being
read.

You can also use ‘--label’ to get a common information on all tapes of
a series. For having this information different in each series created through
a single script used on a regular basis, just manage to get some date string
as part of the label. For example:
$ tar cfMV /dev/tape "Daily backup for ‘date +7Y-jm-7d‘"
$ tar --create --file=/dev/tape --multi-volume \
--label="Daily backup for ‘date +}Y-jm-}d‘"
Some more notes about volume labels:

e Each label has its own date and time, which corresponds to the time
when GNU tar initially attempted to write it, often soon after the op-
erator launches tar or types the carriage return telling that the next
tape is ready.

e Comparing date labels to get an idea of tape throughput is unreliable.
It gives correct results only if the delays for rewinding tapes and the
operator switching them were negligible, which is usually not the case.

5 Previous versions of tar used full regular expression matching, or before that, only ex-
act string matching, instead of wildcard matchers. We decided for the sake of simplicity
to use a uniform matching device through tar.

170 GNU tar 1.26

9.8 Verifying Data as It is Stored

W
‘-—verify’
Attempt to verify the archive after writing.

This option causes tar to verify the archive after writing it. Each volume
is checked after it is written, and any discrepancies are recorded on the
standard error output.

Verification requires that the archive be on a back-space-able medium.
This means pipes, some cartridge tape drives, and some other devices cannot
be verified.

You can insure the accuracy of an archive by comparing files in the system
with archive members. tar can compare an archive to the file system as
the archive is being written, to verify a write operation, or can compare a
previously written archive, to insure that it is up to date.

To check for discrepancies in an archive immediately after it is written, use
the ‘--verify’ (‘-W’) option in conjunction with the ‘--create’ operation.
When this option is specified, tar checks archive members against their
counterparts in the file system, and reports discrepancies on the standard
€rTor.

To verify an archive, you must be able to read it from before the end
of the last written entry. This option is useful for detecting data errors on
some tapes. Archives written to pipes, some cartridge tape drives, and some
other devices cannot be verified.

One can explicitly compare an already made archive with the file system
by using the ‘~-compare’ (‘--diff’, ‘-d’) option, instead of using the more
automatic ‘~--verify’ option. See Section 4.2.6 [compare], page 65.

Note that these two options have a slightly different intent. The
‘—-—compare’ option checks how identical are the logical contents of some
archive with what is on your disks, while the ‘--verify’ option is really for
checking if the physical contents agree and if the recording media itself is
of dependable quality. So, for the ‘--verify’ operation, tar tries to defeat
all in-memory cache pertaining to the archive, while it lets the speed op-
timization undisturbed for the ‘--compare’ option. If you nevertheless use
‘-—compare’ for media verification, you may have to defeat the in-memory
cache yourself, maybe by opening and reclosing the door latch of your record-
ing unit, forcing some doubt in your operating system about the fact this is
really the same volume as the one just written or read.

The ‘--verify’ option would not be necessary if drivers were indeed
able to detect dependably all write failures. This sometimes require many
magnetic heads, some able to read after the writes occurred. One would not
say that drivers unable to detect all cases are necessarily flawed, as long as
programming is concerned.

Chapter 9: Tapes and Other Archive Media 171

The ‘--verify’ (‘-W’) option will not work in conjunction with the
‘~-multi-volume’ (‘-M’) option or the ‘--append’ (‘-r’), ‘-—update’ (‘-u’)
and ‘--delete’ operations. See Section 4.2.1 [Operations|, page 58, for more
information on these operations.

Also, since tar normally strips leading ¢/’ from file names (see
Section 6.10.2 [absolute|, page 115), a command like ‘tar --verify -cf
/tmp/foo.tar /etc’ will work as desired only if the working directory is
‘/’, as tar uses the archive’s relative member names (e.g., ‘etc/motd’)
when verifying the archive.

9.9 Write Protection

Almost all tapes and diskettes, and in a few rare cases, even disks can be
write protected, to protect data on them from being changed. Once an
archive is written, you should write protect the media to prevent the archive
from being accidentally overwritten or deleted. (This will protect the archive
from being changed with a tape or floppy drive—it will not protect it from
magnet fields or other physical hazards.)

The write protection device itself is usually an integral part of the physical
media, and can be a two position (write enabled/write disabled) switch, a
notch which can be popped out or covered, a ring which can be removed
from the center of a tape reel, or some other changeable feature.

Chapter 10: Reliability and Security 173

10 Reliability and Security

The tar command reads and writes files as any other application does, and
is subject to the usual caveats about reliability and security. This section
contains some commonsense advice on the topic.

10.1 Reliability

Ideally, when tar is creating an archive, it reads from a file system that is not
being modified, and encounters no errors or inconsistencies while reading and
writing. If this is the case, the archive should faithfully reflect what was read.
Similarly, when extracting from an archive, ideally tar ideally encounters no
errors and the extracted files faithfully reflect what was in the archive.

However, when reading or writing real-world file systems, several things
can go wrong; these include permissions problems, corruption of data, and
race conditions.

10.1.1 Permissions Problems

If tar encounters errors while reading or writing files, it normally reports
an error and exits with nonzero status. The work it does may therefore be
incomplete. For example, when creating an archive, if tar cannot read a file
then it cannot copy the file into the archive.

10.1.2 Data Corruption and Repair

If an archive becomes corrupted by an I/O error, this may corrupt the data in
an extracted file. Worse, it may corrupt the file’s metadata, which may cause
later parts of the archive to become misinterpreted. An tar-format archive
contains a checksum that most likely will detect errors in the metadata, but
it will not detect errors in the data.

If data corruption is a concern, you can compute and check your own
checksums of an archive by using other programs, such as cksum.

When attempting to recover from a read error or data corruption in an
archive, you may need to skip past the questionable data and read the rest
of the archive. This requires some expertise in the archive format and in
other software tools.

10.1.3 Race conditions

If some other process is modifying the file system while tar is reading or
writing files, the result may well be inconsistent due to race conditions. For
example, if another process creates some files in a directory while tar is
creating an archive containing the directory’s files, tar may see some of the
files but not others, or it may see a file that is in the process of being created.
The resulting archive may not be a snapshot of the file system at any point
in time. If an application such as a database system depends on an accurate

174 GNU tar 1.26

snapshot, restoring from the tar archive of a live file system may therefore
break that consistency and may break the application. The simplest way
to avoid the consistency issues is to avoid making other changes to the file
system while tar is reading it or writing it.

When creating an archive, several options are available to avoid race
conditions. Some hosts have a way of snapshotting a file system, or of
temporarily suspending all changes to a file system, by (say) suspending
the only virtual machine that can modify a file system; if you use these
facilities and have tar -c read from a snapshot when creating an archive,
you can avoid inconsistency problems. More drastically, before starting tar
you could suspend or shut down all processes other than tar that have access
to the file system, or you could unmount the file system and then mount it
read-only.

When extracting from an archive, one approach to avoid race conditions
is to create a directory that no other process can write to, and extract into
that.

10.2 Security

In some cases tar may be used in an adversarial situation, where an un-
trusted user is attempting to gain information about or modify otherwise-
inaccessible files. Dealing with untrusted data (that is, data generated by
an untrusted user) typically requires extra care, because even the smallest
mistake in the use of tar is more likely to be exploited by an adversary than
by a race condition.

10.2.1 Privacy

Standard privacy concerns apply when using tar. For example, suppose you
are archiving your home directory into a file ‘/archive/myhome.tar’. Any
secret information in your home directory, such as your SSH secret keys,
are copied faithfully into the archive. Therefore, if your home directory
contains any file that should not be read by some other user, the archive
itself should be not be readable by that user. And even if the archive’s
data are inaccessible to untrusted users, its metadata (such as size or last-
modified date) may reveal some information about your home directory;
if the metadata are intended to be private, the archive’s parent directory
should also be inaccessible to untrusted users.

One precaution is to create ‘/archive’ so that it is not accessible to any
user, unless that user also has permission to access all the files in your home
directory.

Similarly, when extracting from an archive, take care that the permissions
of the extracted files are not more generous than what you want. Even if
the archive itself is readable only to you, files extracted from it have their
own permissions that may differ.

Chapter 10: Reliability and Security 175

10.2.2 Integrity

When creating archives, take care that they are not writable by a untrusted
user; otherwise, that user could modify the archive, and when you later
extract from the archive you will get incorrect data.

When tar extracts from an archive, by default it writes into files relative
to the working directory. If the archive was generated by an untrusted user,
that user therefore can write into any file under the working directory. If
the working directory contains a symbolic link to another directory, the
untrusted user can also write into any file under the referenced directory.
When extracting from an untrusted archive, it is therefore good practice to
create an empty directory and run tar in that directory.

When extracting from two or more untrusted archives, each one should
be extracted independently, into different empty directories. Otherwise, the
first archive could create a symbolic link into an area outside the working
directory, and the second one could follow the link and overwrite data that is
not under the working directory. For example, when restoring from a series
of incremental dumps, the archives should have been created by a trusted
process, as otherwise the incremental restores might alter data outside the
working directory.

3

If you use the ‘--absolute-names’ (‘-P’) option when extracting, tar
respects any file names in the archive, even file names that begin with ‘/’ or
contain ‘..’. As this lets the archive overwrite any file in your system that
you can write, the ‘-—absolute-names’ (‘-P’) option should be used only for
trusted archives.

Conversely, with the ‘--keep-old-files’ (‘-k’) option, tar refuses to
replace existing files when extracting; and with the ‘--no-overwrite-dir’
option, tar refuses to replace the permissions or ownership of already-
existing directories. These options may help when extracting from untrusted
archives.

10.2.3 Dealing with Live Untrusted Data

Extra care is required when creating from or extracting into a file system
that is accessible to untrusted users. For example, superusers who invoke
tar must be wary about its actions being hijacked by an adversary who is
reading or writing the file system at the same time that tar is operating.

When creating an archive from a live file system, tar is vulnerable to
denial-of-service attacks. For example, an adversarial user could create the
illusion of an indefinitely-deep directory hierarchy ‘d/e/f/g/. ..’ by creating
directories one step ahead of tar, or the illusion of an indefinitely-long file
by creating a sparse file but arranging for blocks to be allocated just before
tar reads them. There is no easy way for tar to distinguish these scenarios
from legitimate uses, so you may need to monitor tar, just as you’d need to
monitor any other system service, to detect such attacks.

176 GNU tar 1.26

While a superuser is extracting from an archive into a live file system,
an untrusted user might replace a directory with a symbolic link, in hopes
that tar will follow the symbolic link and extract data into files that the
untrusted user does not have access to. Even if the archive was generated
by the superuser, it may contain a file such as ‘d/etc/passwd’ that the
untrusted user earlier created in order to break in; if the untrusted user
replaces the directory ‘d/etc’ with a symbolic link to ‘/etc’ while tar is
running, tar will overwrite ‘/etc/passwd’. This attack can be prevented by
extracting into a directory that is inaccessible to untrusted users.

Similar attacks via symbolic links are also possible when creating an
archive, if the untrusted user can modify an ancestor of a top-level argument
of tar. For example, an untrusted user that can modify ‘/home/eve’ can
hijack a running instance of ‘tar -cf - /home/eve/Documents/yesterday’
by replacing ‘/home/eve/Documents’ with a symbolic link to some other
location. Attacks like these can be prevented by making sure that untrusted
users cannot modify any files that are top-level arguments to tar, or any
ancestor directories of these files.

10.2.4 Security Rules of Thumb

This section briefly summarizes rules of thumb for avoiding security pitfalls.

e Protect archives at least as much as you protect any of the files being
archived.

e Extract from an untrusted archive only into an otherwise-empty direc-
tory. This directory and its parent should be accessible only to trusted
users. For example:

chmod go-rwx .

mkdir -m go-rwx dir

cd dir

tar -xvf /archives/got-it-off-the-net.tar.gz

€ H H BH

As a corollary, do not do an incremental restore from an untrusted
archive.

e Do not let untrusted users access files extracted from untrusted archives
without checking first for problems such as setuid programs.

e Do not let untrusted users modify directories that are ancestors of top-
level arguments of tar. For example, while you are executing ‘tar -cf
/archive/u-home.tar /u/home’, do not let an untrusted user modify
‘*/’, ‘/archive’, or ‘/u’.

e Pay attention to the diagnostics and exit status of tar.

e When archiving live file systems, monitor running instances of tar to
detect denial-of-service attacks.

e Avoid unusual options such as ‘--absolute-names’ (‘-P’),
‘~—dereference’ (‘-h’), ‘--overwrite’, ‘--recursive-unlink’, and
‘~-remove-files’ unless you understand their security implications.

Appendix A: Changes 177

Appendix A Changes

This appendix lists some important user-visible changes between version
GNU tar 1.26 and previous versions. An up-to-date version of this document
is available at the GNU tar documentation page.

Use of globbing patterns when listing and extracting.

Previous versions of GNU tar assumed shell-style globbing when
extracting from or listing an archive. For example:

$ tar xf foo.tar ’*.c’

would extract all files whose names end in ‘.c’. This behavior
was not documented and was incompatible with traditional tar
implementations. Therefore, starting from version 1.15.91, GNU
tar no longer uses globbing by default. For example, the above
invocation is now interpreted as a request to extract from the
archive the file named ‘*.c’.

To facilitate transition to the new behavior for those users who
got used to the previous incorrect one, tar will print a warning if
it finds out that a requested member was not found in the archive
and its name looks like a globbing pattern. For example:

$ tar xf foo.tar ’*.c’
tar: Pattern matching characters used in file names. Please,

tar: use --wildcards to enable pattern matching, or --no-wildcards to

tar: suppress this warning.

tar: *.c: Not found in archive

tar: Error exit delayed from previous errors
To treat member names as globbing patterns, use the
‘--wildcards’ option. If you want to tar to mimic the
behavior of versions prior to 1.15.91, add this option to your
TAR_OPTIONS variable.

See Section 6.5 [wildcards], page 101, for the detailed discussion
of the use of globbing patterns by GNU tar.

Use of short option ‘-o’.

Earlier versions of GNU tar understood ‘-0’ command line op-
tion as a synonym for ‘--old-archive’.

GNU tar starting from version 1.13.90 understands this option
as a synonym for ‘--no-same-owner’. This is compatible with
UNIX98 tar implementations.

However, to facilitate transition, ‘-0’ option retains its old se-
mantics when it is used with one of archive-creation commands.
Users are encouraged to use ‘--format=oldgnu’ instead.

It is especially important, since versions of GNU Automake up
to and including 1.8.4 invoke tar with this option to produce
distribution tarballs. See Chapter 8 [Formats|, page 127, for the
detailed discussion of this issue and its implications.

http://www.gnu.org/software/tar/manual/changes.html

178 GNU tar 1.26

See Section “Changing Automake’s Behavior” in GNU Au-
tomake, for a description on how to use various archive formats
with automake.

Future versions of GNU tar will understand ‘~o’ only as a syn-
onym for ‘--no-same-owner’.

Use of short option ‘-1’

Earlier versions of GNU tar understood ‘-1’ option as a syn-
onym for ‘~—one-file-system’. Since such usage contradicted
to UNIX98 specification and harmed compatibility with other
implementations, it was declared deprecated in version 1.14.
However, to facilitate transition to its new semantics, it was
supported by versions 1.15 and 1.15.90. The present use of ‘-1’
as a short variant of ‘~-check-1links’ was introduced in version
1.15.91.

9

Use of options ‘~-portability’ and ‘--old-archive’
These options are deprecated. Please use ‘--format=v7’ instead.

Use of option ‘--posix’
This option is deprecated. Please use ‘--format=posix’ instead.

Appendix B: Configuring Help Summary 179
Appendix B Configuring Help Summary

Running tar --help displays the short tar option summary (see Section 3.5
[help], page 47). This summary is organized by groups of semantically close
options. The options within each group are printed in the following order:
a short option, eventually followed by a list of corresponding long option
names, followed by a short description of the option. For example, here is
an excerpt from the actual tar --help output:

Main operation mode:

-A, --catenate, --concatenate append tar files to an archive
-c, ——create create a new archive
-d, --diff, --compare find differences between archive and
file system
-—delete delete from the archive

The exact visual representation of the help output is configurable via
ARGP_HELP_FMT environment variable. The value of this variable is a comma-
separated list of format variable assignments. There are two kinds of format
variables. An offset variable keeps the offset of some part of help output
text from the leftmost column on the screen. A boolean variable is a flag
that toggles some output feature on or off. Depending on the type of the
corresponding variable, there are two kinds of assignments:

Offset assignment
The assignment to an offset variable has the following syntax:

variable=value

where variable is the variable name, and value is a numeric value
to be assigned to the variable.

Boolean assignment

To assign true value to a variable, simply put this variable name.
To assign false value, prefix the variable name with ‘no-’. For
example:

Assign true value:

dup-args

Assign false value:

no-dup-args

Following variables are declared:

boolean dup-args [Help Output]
If true, arguments for an option are shown with both short and long
options, even when a given option has both forms, for example:
-f ARCHIVE, --file=ARCHIVE use archive file or device ARCHIVE

If false, then if an option has both short and long forms, the argument is
only shown with the long one, for example:

180 GNU tar 1.26

-f, --file=ARCHIVE use archive file or device ARCHIVE

and a message indicating that the argument is applicable to both forms
is printed below the options. This message can be disabled using dup-
args-note (see below).

The default is false.

boolean dup-args-note [Help Output]
If this variable is true, which is the default, the following notice is dis-
played at the end of the help output:

Mandatory or optional arguments to long options are also
mandatory or optional for any corresponding short options.

Setting no-dup-args-note inhibits this message. Normally, only one of
variables dup-args or dup-args-note should be set.

offset short-opt-col [Help Output]
Column in which short options start. Default is 2.
$ tar --helplgrep ARCHIVE
-f, --file=ARCHIVE use archive file or device ARCHIVE

$ ARGP_HELP_FMT=short-opt-col=6 tar --help|grep ARCHIVE
-f, —-file=ARCHIVE use archive file or device ARCHIVE

offset long-opt-col [Help Output]
Column in which long options start. Default is 6. For example:
$ tar --helplgrep ARCHIVE
-f, --file=ARCHIVE use archive file or device ARCHIVE

$ ARGP_HELP_FMT=long-opt-col=16 tar --helplgrep ARCHIVE
-f, --file=ARCHIVE use archive file or device ARCHIVE

offset doc-opt-col [Help Output]
Column in which doc options start. A doc option isn’t actually an option,
but rather an arbitrary piece of documentation that is displayed in much
the same manner as the options. For example, in the description of
‘~—format’ option:

-H, --format=FORMAT create archive of the given format.

FORMAT is one of the following:

gnu GNU tar 1.13.x format

oldgnu GNU format as per tar <= 1.12
pax POSIX 1003.1-2001 (pax) format
posix same as pax

ustar POSIX 1003.1-1988 (ustar) format
v7 old V7 tar format

the format names are doc options. Thus, if you set ARGP_HELP_FMT=doc-
opt-col=6 the above part of the help output will look as follows:

Appendix B: Configuring Help Summary 181

-H, --format=FORMAT create archive of the given format.

FORMAT is one of the following:

gnu GNU tar 1.13.x format
oldgnu GNU format as per tar <= 1.12
pax POSIX 1003.1-2001 (pax) format
posix same as pax
ustar POSIX 1003.1-1988 (ustar) format
v7 old V7 tar format
offset opt-doc-col [Help Output]

Column in which option description starts. Default is 29.
$ tar --helplgrep ARCHIVE
-f, ——file=ARCHIVE use archive file or device ARCHIVE
$ ARGP_HELP_FMT=opt-doc-col=19 tar --help|grep ARCHIVE
-f, --file=ARCHIVE use archive file or device ARCHIVE
$ ARGP_HELP_FMT=opt-doc-col=9 tar --helpl|lgrep ARCHIVE
-f, --file=ARCHIVE
use archive file or device ARCHIVE
Notice, that the description starts on a separate line if opt-doc-col value
is too small.

offset header-col [Help Output]
Column in which group headers are printed. A group header is a de-
scriptive text preceding an option group. For example, in the following
text:

Main operation mode:

-A, --catenate, --concatenate append tar files to
an archive
-c, ——create create a new archive

‘Main operation mode:’ is the group header.
The default value is 1.

offset usage-indent [Help Output]
Indentation of wrapped usage lines. Affects ‘--usage’ output. Default is
12.

offset rmargin [Help Output]
Right margin of the text output. Used for wrapping.

Appendix C: Fixing Snapshot Files 183

Appendix C Fixing Snapshot Files

Sometimes device numbers can change after upgrading your kernel version
or reconfiguring the hardware. Reportedly this is the case with some newer
Linux kernels, when using LVM. In majority of cases this change is unnoticed
by the users. However, it influences tar incremental backups: the device
number is stored in tar snapshot files (see [Snapshot Files|, page 197) and is
used to determine whether the file has changed since the last backup. If the
device numbers change for some reason, the next backup you run will be a
full backup.

To minimize the impact in these cases, GNU tar comes with the tar-
snapshot-edit utility for inspecting and updating device numbers in snap-
shot files. The utility, written by Dustin J. Mitchell, is available from GNU
tar home page.

To obtain the device numbers used in the snapshot file, run
$ tar-snapshot-edit snapfile
where snapfile is the name of the snapshot file (you can supply as many files
as you wish in a single command line).

To update all occurrences of the given device number in the file, use
‘-r’ option. It takes a single argument of the form ‘olddev-newdev’, where
olddev is the device number used in the snapshot file, and newdev is the
corresponding new device number. Both numbers may be specified in hex
(e.g., ‘0xfe01’), decimal (e.g., ‘65025’), or as a major:minor number pair
(e.g., ‘264:1”). To change several device numbers at once, specify them in a
single comma-separated list, as in ‘~r 0x3060-0x4500,0x307-0x4600’.

Before updating the snapshot file, it is a good idea to create a backup
copy of it. This is accomplished by ‘-b’ option. The name of the backup file
is obtained by appending ‘=’ to the original file name.

An example session:

$ tar-snapshot-edit /var/backup/snap.a

file version 2

/tmp/snap: Device 0x0306 occurs 634 times.

$ tar-snapshot-edit -b -r 0x0306-0x4500 /var/backup/snap.a
file version 2

http://www.gnu.org/software/tar/utils/tar-snapshot-edit.html
http://www.gnu.org/software/tar/utils/tar-snapshot-edit.html

Appendix D: Tar Internals 185

Appendix D Tar Internals

Basic Tar Format

(This message will disappear, once this node revised.)

While an archive may contain many files, the archive itself is a single
ordinary file. Like any other file, an archive file can be written to a storage
device such as a tape or disk, sent through a pipe or over a network, saved
on the active file system, or even stored in another archive. An archive file
is not easy to read or manipulate without using the tar utility or Tar mode
in GNU Emacs.

Physically, an archive consists of a series of file entries terminated by an
end-of-archive entry, which consists of two 512 blocks of zero bytes. A file
entry usually describes one of the files in the archive (an archive member),
and consists of a file header and the contents of the file. File headers contain
file names and statistics, checksum information which tar uses to detect file
corruption, and information about file types.

Archives are permitted to have more than one member with the same
member name. One way this situation can occur is if more than one version
of a file has been stored in the archive. For information about adding new
versions of a file to an archive, see Section 4.2.3 [update|, page 62.

In addition to entries describing archive members, an archive may contain
entries which tar itself uses to store information. See Section 9.7 [label],
page 167, for an example of such an archive entry.

A tar archive file contains a series of blocks. FEach block contains
BLOCKSIZE bytes. Although this format may be thought of as being on
magnetic tape, other media are often used.

Each file archived is represented by a header block which describes the
file, followed by zero or more blocks which give the contents of the file. At
the end of the archive file there are two 512-byte blocks filled with binary
zeros as an end-of-file marker. A reasonable system should write such end-
of-file marker at the end of an archive, but must not assume that such a
block exists when reading an archive. In particular GNU tar always issues
a warning if it does not encounter it.

The blocks may be blocked for physical 1/O operations. Each record of
n blocks (where n is set by the ‘--blocking-factor=512-size’ (‘-b 512~
size’) option to tar) is written with a single ‘write ()’ operation. On
magnetic tapes, the result of such a write is a single record. When writing
an archive, the last record of blocks should be written at the full size, with
blocks after the zero block containing all zeros. When reading an archive,
a reasonable system should properly handle an archive whose last record is
shorter than the rest, or which contains garbage records after a zero block.

The header block is defined in C as follows. In the GNU tar distribution,
this is part of file ‘src/tar.h’:

186 GNU tar 1.26

/* tar Header Block, from POSIX 1003.1-1990. =*/
/* POSIX header. */

struct posix_header

{ /* byte offset */
char name[100]; /x 0/
char mode[8]; /* 100 */
char uid[8]; /* 108 */
char gid[8]; /* 116 */
char size[12]; /* 124 =/
char mtime[12]; /* 136 */
char chksum[8]; /* 148 */
char typeflag; /* 156 x/
char linkname[100]; /* 157 x/
char magic[6]; /* 257 */
char version[2]; /* 263 */
char uname[32]; /* 265 */
char gname[32]; /* 297 x/
char devmajor([8]; /* 329 *x/
char devminor[8]; /* 337 */
char prefix[155]; /* 345 x/
/* 500 */
};
#define TMAGIC "ustar" /* ustar and a null */
#define TMAGLEN 6
#tdefine TVERSION "00" /* 00 and no null */

#define TVERSLEN 2

/* Values used in typeflag field. */

#define REGTYPE °0° /* regular file x/

#define AREGTYPE ’\0’ /* regular file */

#define LNKTYPE °1° /* link */

#define SYMTYPE ’2° /* reserved */

#define CHRTYPE ’3° /* character special */

#define BLKTYPE °’4° /* block special */

#define DIRTYPE °’5° /* directory */

#define FIFOTYPE ’6° /* FIFO special *x/

#define CONTTYPE ’7° /* reserved */

#define XHDTYPE ’x’ /* Extended header referring to the
next file in the archive */

#define XGLTYPE ‘g’ /* Global extended header */

/* Bits used in the mode field, values in octal. */

#define TSUID 04000 /* set UID on execution */

#define TSGID 02000 /* set GID on execution */

#define TSVTX 01000 /* reserved */

/* file permissions */
#define TUREAD 00400 /* read by owner */

Appendix D: Tar Internals 187

#define TUWRITE 00200 /* write by owner */

#define TUEXEC 00100 /* execute/search by owner */
#define TGREAD 00040 /* read by group */

#define TGWRITE 00020 /* write by group */

#define TGEXEC 00010 /* execute/search by group */
#define TOREAD 00004 /* read by other */

#define TOWRITE 00002 /* write by other */

#define TOEXEC 00001 /* execute/search by other */

/* tar Header Block, GNU extensions. */

/* In GNU tar, SYMTYPE is for to symbolic links, and CONTTYPE is for
contiguous files, so maybe disobeying the ‘reserved’ comment in POSIX
header description. I suspect these were meant to be used this way, and
should not have really been ‘reserved’ in the published standards. */

/* *BEWARE* *BEWARE* *BEWARE* that the following information is still
boiling, and may change. Even if the OLDGNU format description should be
accurate, the so-called GNU format is not yet fully decided. It is
surely meant to use only extensions allowed by POSIX, but the sketch
below repeats some ugliness from the OLDGNU format, which should rather
go away. Sparse files should be saved in such a way that they do *not*
require two passes at archive creation time. Huge files get some POSIX
fields to overflow, alternate solutions have to be sought for this. */

/* Descriptor for a single file hole. */

struct sparse

{ /* byte offset */
char offset[12]; /% 0 x/
char numbytes[12]; /x 12 %/
/* 24 %/
};

/* Sparse files are not supported in POSIX ustar format. For sparse files
with a POSIX header, a GNU extra header is provided which holds overall
sparse information and a few sparse descriptors. When an old GNU header
replaces both the POSIX header and the GNU extra header, it holds some
sparse descriptors too. Whether POSIX or not, if more sparse descriptors
are still needed, they are put into as many successive sparse headers as
necessary. The following constants tell how many sparse descriptors fit
in each kind of header able to hold them. */

#define SPARSES_IN_EXTRA_HEADER 16
#define SPARSES_IN_OLDGNU_HEADER 4
#define SPARSES_IN_SPARSE_HEADER 21

/* Extension header for sparse files, used immediately after the GNU extra
header, and used only if all sparse information cannot fit into that
extra header. There might even be many such extension headers, one after
the other, until all sparse information has been recorded. */

188

GNU tar 1.26

struct sparse_header

{ /* byte offset */
struct sparse sp[SPARSES_IN_SPARSE_HEADER];
/x 0%/
char isextended; /* 504 */
/* 505 */
};

/* The old GNU format header conflicts with POSIX format in such a way that
POSIX archives may fool old GNU tar’s, and POSIX tar’s might well be
fooled by old GNU tar archives. An old GNU format header uses the space
used by the prefix field in a POSIX header, and cumulates information
normally found in a GNU extra header. With an old GNU tar header, we
never see any POSIX header nor GNU extra header. Supplementary sparse
headers are allowed, however. */

struct oldgnu_header

{ /* byte offset */
char unused_padl[345]; /* 0%/
char atime[12]; /* 345 Incr. archive: atime of the file */
char ctime[12]; /* 357 Incr. archive: ctime of the file */
char offset[12]; /* 369 Multivolume archive: the offset of
the start of this volume */
char longnames[4]; /* 381 Not used */
char unused_pad2; /* 385 x/
struct sparse sp[SPARSES_IN_OLDGNU_HEADER];
/* 386 */
char isextended; /* 482 Sparse file: Extension sparse header
follows */
char realsize[12]; /* 483 Sparse file: Real sizex/
/* 495 */
};

/* OLDGNU_MAGIC uses both magic and version fields, which are contiguous.
Found in an archive, it indicates an old GNU header format, which will be
hopefully become obsolescent. With OLDGNU_MAGIC, uname and gname are
valid, though the header is not truly POSIX conforming. */

#define OLDGNU_MAGIC "ustar " /* 7 chars and a null %/

/* The standards committee allows only capital A through capital Z for
user-defined expansion. Other letters in use include:

"A’ Solaris Access Control List

'E’ Solaris Extended Attribute File

T’ Inode only, as in ’star’

"N’ Obsolete GNU tar, for file names that do not fit into the main header.
"X’ POSIX 1003.1-2001 eXtended (VU version) */

/* This is a dir entry that contains the names of files that were in the
dir at the time the dump was made. */
#define GNUTYPE_DUMPDIR °’D’

Appendix D: Tar Internals

/* Identifies the *next* file on the tape as having a long linkname. */
#define GNUTYPE_LONGLINK °’K’

/* Identifies the *next* file on the tape as having a long name. */
#define GNUTYPE_LONGNAME L’

/* This is the continuation of a file that began on another volume. */
#define GNUTYPE_MULTIVOL

M2

/* This is for sparse files. */
#define GNUTYPE_SPARSE ’S’

/* This file is a tape/volume header. Ignore it on extraction. */

#define GNUTYPE_VOLHDR °’V’

/* Solaris extended header */

#define SOLARIS_XHDTYPE °’X’

/* Jorg Schilling star header */

struct
{
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

}s

#define SPARSES_IN_STAR_HEADER

star_header

name [100] ;
mode [8] ;
uid[8];
gid[8];
size[12];
mtime[12];
chksum[8] ;
typeflag;
linkname[100] ;
magic[6];
version[2];
uname [32] ;
gname [32] ;
devmajor[8];
devminor[8];
prefix[131];
atime[12];
ctime[12];

/* byte offset */
/x 0%/
/* 100 */
/* 108 */
/* 116 */
/* 124 */
/% 136 */
/* 148 */
/* 156 */
/* 157 */
/* 257 */
/% 263 */
/* 265 x/
/% 297 */
/* 329 x/
/* 337 */
/* 345 x/
/* 476 x/
/% 488 */
/* 500 */

4

#define SPARSES_IN_STAR_EXT_HEADER 21

struct
{
char
char
char
char

star_in_header

£i11[345];
prefix[1];
£i112;
£i113[8];

/*

0 Everything that is before t_prefix */

/* 345 t_name prefix */
/* 346 */
/* 347 x/

189

190 GNU tar 1.26

char isextended; /* 355 *x/
struct sparse sp[SPARSES_IN_STAR_HEADER]; /* 356 */
char realsize[12]; /* 452 Actual size of the file x/
char offset[12]; /* 464 Offset of multivolume contents */
char atime[12]; /% 476 *x/
char ctime[12]; /* 488 x/
char mfill[8]; /* 500 */
char xmagic[4]; /* 508 "tar" *x/
};
struct star_ext_header
{
struct sparse sp[SPARSES_IN_STAR_EXT_HEADER];
char isextended;
};

All characters in header blocks are represented by using 8-bit characters
in the local variant of ASCII. Each field within the structure is contiguous;
that is, there is no padding used within the structure. Each character on
the archive medium is stored contiguously.

Bytes representing the contents of files (after the header block of each
file) are not translated in any way and are not constrained to represent
characters in any character set. The tar format does not distinguish text
files from binary files, and no translation of file contents is performed.

The name, 1inkname, magic, uname, and gname are null-terminated char-
acter strings. All other fields are zero-filled octal numbers in ASCII. Each
numeric field of width w contains w minus 1 digits, and a null.

The name field is the file name of the file, with directory names (if any)
preceding the file name, separated by slashes.

The mode field provides nine bits specifying file permissions and three
bits to specify the Set UID, Set GID, and Save Text (sticky) modes. Values
for these bits are defined above. When special permissions are required to
create a file with a given mode, and the user restoring files from the archive
does not hold such permissions, the mode bit(s) specifying those special
permissions are ignored. Modes which are not supported by the operating
system restoring files from the archive will be ignored. Unsupported modes
should be faked up when creating or updating an archive; e.g., the group
permission could be copied from the other permission.

The uid and gid fields are the numeric user and group ID of the file
owners, respectively. If the operating system does not support numeric user
or group IDs, these fields should be ignored.

The size field is the size of the file in bytes; linked files are archived with
this field specified as zero.

The mtime field is the data modification time of the file at the time it
was archived. It is the ASCII representation of the octal value of the last

Appendix D: Tar Internals 191

time the file’s contents were modified, represented as an integer number of
seconds since January 1, 1970, 00:00 Coordinated Universal Time.

The chksum field is the ASCII representation of the octal value of the
simple sum of all bytes in the header block. Each 8-bit byte in the header is
added to an unsigned integer, initialized to zero, the precision of which shall
be no less than seventeen bits. When calculating the checksum, the chksum
field is treated as if it were all blanks.

The typeflag field specifies the type of file archived. If a particular
implementation does not recognize or permit the specified type, the file will
be extracted as if it were a regular file. As this action occurs, tar issues a
warning to the standard error.

The atime and ctime fields are used in making incremental backups;
they store, respectively, the particular file’s access and status change times.

The offset is used by the ‘--multi-volume’ (‘-M’) option, when making
a multi-volume archive. The offset is number of bytes into the file that we
need to restart at to continue the file on the next tape, i.e., where we store
the location that a continued file is continued at.

The following fields were added to deal with sparse files. A file is sparse
if it takes in unallocated blocks which end up being represented as zeros,
i.e., no useful data. A test to see if a file is sparse is to look at the number
blocks allocated for it versus the number of characters in the file; if there are
fewer blocks allocated for the file than would normally be allocated for a file
of that size, then the file is sparse. This is the method tar uses to detect
a sparse file, and once such a file is detected, it is treated differently from
non-sparse files.

Sparse files are often dbm files, or other database-type files which have
data at some points and emptiness in the greater part of the file. Such files
can appear to be very large when an ‘1ls -1’ is done on them, when in truth,
there may be a very small amount of important data contained in the file.
It is thus undesirable to have tar think that it must back up this entire file,
as great quantities of room are wasted on empty blocks, which can lead to
running out of room on a tape far earlier than is necessary. Thus, sparse
files are dealt with so that these empty blocks are not written to the tape.
Instead, what is written to the tape is a description, of sorts, of the sparse
file: where the holes are, how big the holes are, and how much data is found
at the end of the hole. This way, the file takes up potentially far less room
on the tape, and when the file is extracted later on, it will look exactly the
way it looked beforehand. The following is a description of the fields used
to handle a sparse file:

The sp is an array of struct sparse. Each struct sparse contains two
12-character strings which represent an offset into the file and a number of
bytes to be written at that offset. The offset is absolute, and not relative to
the offset in preceding array element.

192 GNU tar 1.26

The header can hold four of these struct sparse at the moment; if more
are needed, they are not stored in the header.

The isextended flag is set when an extended_header is needed to deal
with a file. Note that this means that this flag can only be set when dealing
with a sparse file, and it is only set in the event that the description of the
file will not fit in the allotted room for sparse structures in the header. In
other words, an extended_header is needed.

The extended_header structure is used for sparse files which need more
sparse structures than can fit in the header. The header can fit 4 such
structures; if more are needed, the flag isextended gets set and the next
block is an extended_header.

Each extended_header structure contains an array of 21 sparse struc-
tures, along with a similar isextended flag that the header had. There can
be an indeterminate number of such extended_headers to describe a sparse

file.

REGTYPE

AREGTYPE These flags represent a regular file. In order to be compatible
with older versions of tar, a typeflag value of AREGTYPE should
be silently recognized as a regular file. New archives should be
created using REGTYPE. Also, for backward compatibility, tar
treats a regular file whose name ends with a slash as a directory.

LNKTYPE This flag represents a file linked to another file, of any type,
previously archived. Such files are identified in Unix by each file
having the same device and inode number. The linked-to name
is specified in the linkname field with a trailing null.

SYMTYPE This represents a symbolic link to another file. The linked-to
name is specified in the linkname field with a trailing null.

CHRTYPE

BLKTYPE These represent character special files and block special files re-
spectively. In this case the devmajor and devminor fields will
contain the major and minor device numbers respectively. Op-
erating systems may map the device specifications to their own
local specification, or may ignore the entry.

DIRTYPE This flag specifies a directory or sub-directory. The directory
name in the name field should end with a slash. On systems
where disk allocation is performed on a directory basis, the size
field will contain the maximum number of bytes (which may be
rounded to the nearest disk block allocation unit) which the
directory may hold. A size field of zero indicates no such lim-
iting. Systems which do not support limiting in this manner
should ignore the size field.

FIFOTYPE This specifies a FIFO special file. Note that the archiving of a
FIFO file archives the existence of this file and not its contents.

Appendix D: Tar Internals 193

CONTTYPE This specifies a contiguous file, which is the same as a normal
file except that, in operating systems which support it, all its
space is allocated contiguously on the disk. Operating systems
which do not allow contiguous allocation should silently treat
this type as a normal file.

A...Z These are reserved for custom implementations. Some of these
are used in the GNU modified format, as described below.

Other values are reserved for specification in future revisions of the P1003
standard, and should not be used by any tar program.

The magic field indicates that this archive was output in the P1003
archive format. If this field contains TMAGIC, the uname and gname fields
will contain the ASCII representation of the owner and group of the file re-
spectively. If found, the user and group IDs are used rather than the values
in the uid and gid fields.

For references, see ISO/TEC 9945-1:1990 or IEEE Std 1003.1-1990, pages
169-173 (section 10.1) for Archive/Interchange File Format; and IEEE Std
1003.2-1992, pages 380-388 (section 4.48) and pages 936-940 (section E.4.48)
for pax - Portable archive interchange.

GNU Extensions to the Archive Format

(This message will disappear, once this node revised.)

The GNU format uses additional file types to describe new types of files
in an archive. These are listed below.

GNUTYPE_DUMPDIR

’D? This represents a directory and a list of files created by the
‘~—incremental’ (‘-G’) option. The size field gives the total
size of the associated list of files. Each file name is preceded by
either a ‘Y’ (the file should be in this archive) or an ‘N’. (The file
is a directory, or is not stored in the archive.) Each file name is
terminated by a null. There is an additional null after the last

file name.
GNUTYPE_MULTIVOL
M This represents a file continued from another volume of a multi-

volume archive created with the ‘--multi-volume’ (‘-M’) option.
The original type of the file is not given here. The size field
gives the maximum size of this piece of the file (assuming the
volume does not end before the file is written out). The offset
field gives the offset from the beginning of the file where this
part of the file begins. Thus size plus offset should equal the
original size of the file.

GNUTYPE_SPARSE
s This flag indicates that we are dealing with a sparse file. Note
that archiving a sparse file requires special operations to find

194 GNU tar 1.26

holes in the file, which mark the positions of these holes, along
with the number of bytes of data to be found after the hole.

GNUTYPE_VOLHDR

Ak This file type is used to mark the volume header that was given
with the ‘--label=archive-label’ (‘-V archive-label’) op-
tion when the archive was created. The name field contains the
name given after the ‘--label=archive-label’ (‘-V archive-
label’) option. The size field is zero. Only the first file in each
volume of an archive should have this type.

You may have trouble reading a GNU format archive on a non-GNU
system if the options ‘--incremental’ (‘-G’), ‘--multi-volume’ (‘-M’),
‘~-sparse’ (‘-8’), or ‘--label=archive-label’ (‘-V archive-label’) were
used when writing the archive. In general, if tar does not use the GNU-
added fields of the header, other versions of tar should be able to read the
archive. Otherwise, the tar program will give an error, the most likely one
being a checksum error.

Storing Sparse Files

The notion of sparse file, and the ways of handling it from the point of
view of GNU tar user have been described in detail in Section 8.1.2 [sparse],
page 132. This chapter describes the internal format GNU tar uses to store
such files.

The support for sparse files in GNU tar has a long history. The earliest
version featuring this support that I was able to find was 1.09, released
in November, 1990. The format introduced back then is called old GNU
sparse format and in spite of the fact that its design contained many flaws,
it was the only format GNU tar supported until version 1.14 (May, 2004),
which introduced initial support for sparse archives in PAX archives (see
Section 8.3.7 [posix|, page 139). This format was not free from design flaws,
either and it was subsequently improved in versions 1.15.2 (November, 2005)
and 1.15.92 (June, 2006).

In addition to GNU sparse format, GNU tar is able to read and extract
sparse files archived by star.

The following subsections describe each format in detail.

Old GNU Format

The format introduced in November 1990 (v. 1.09) was designed on top of
standard ustar headers in such an unfortunate way that some of its fields
overwrote fields required by POSIX.

An old GNU sparse header is designated by type ‘S’ (GNUTYPE_SPARSE)
and has the following layout:

Offset Size Name Data type Contents

Appendix D: Tar Internals 195

0 345 N/A Not used.

345 12 atime Number atime of the file.

357 12 ctime Number ctime of the file .

369 12 offset Number For multivolume archives:
the offset of the start of this
volume.

381 4 N/A Not used.

385 1 N/A Not used.

386 96 sp sparse_ (4 entries) File map.

header

482 1 isextended Bool 1 if an extension sparse
header follows, 0 otherwise.

483 12 realsize Number Real size of the file.

Each of sparse_header object at offset 386 describes a single data chunk.
It has the following structure:

Offset Size Data type Contents
0 12 Number Offset of the beginning of the chunk.
12 12 Number Size of the chunk.

If the member contains more than four chunks, the isextended field of

the header has the value 1 and the main header is followed by one or more
extension headers. Each such header has the following structure:

Offset Size Name Data type Contents
0 21 sp sparse_ (21 entries) File map.
header
504 1 isextended Bool 1 if an extension sparse
header follows, or O
otherwise.

A header with isextended=0 ends the map.

PAX Format, Versions 0.0 and 0.1

There are two formats available in this branch. The version 0.0 is the initial
version of sparse format used by tar versions 1.14-1.15.1. The sparse file
map is kept in extended (x) PAX header variables:

GNU.sparse.size
Real size of the stored file;

GNU. sparse.numblocks
Number of blocks in the sparse map;

GNU.sparse.offset
Offset of the data block;

GNU. sparse.numbytes
Size of the data block.

196 GNU tar 1.26

The latter two variables repeat for each data block, so the overall struc-
ture is like this:

GNU.sparse.size=size
GNU.sparse.numblocks=numblocks
repeat numblocks times
GNU.sparse.offset=offset
GNU.sparse.numbytes=numbytes
end repeat

This format presented the following two problems:

1. Whereas the POSIX specification allows a variable to appear multi-
ple times in a header, it requires that only the last occurrence be
meaningful. Thus, multiple occurrences of GNU.sparse.offset and
GNU. sparse.numbytes are conflicting with the POSIX specs.

2. Attempting to extract such archives using a third-party’s tar results in
extraction of sparse files in condensed form. If the tar implementation
in question does not support POSIX format, it will also extract a file
containing extension header attributes. This file can be used to expand
the file to its original state. However, posix-aware tars will usually
ignore the unknown variables, which makes restoring the file more diffi-
cult. See [extracting sparse v.0.x], page 146, for the detailed description
of how to restore such members using non-GNU tars.

GNU tar 1.15.2 introduced sparse format version 0.1, which
attempted to solve these problems. As its predecessor, this for-
mat stores sparse map in the extended POSIX header. It retains
GNU.sparse.size and GNU.sparse.numblocks variables, but instead of
GNU.sparse.offset/GNU.sparse.numbytes pairs it uses a single variable:

GNU.sparse.map
Map of non-null data chunks. It is a string consisting of comma-
separated values "offset,size|,offset-1,size-1...|"

To address the 2nd problem, the name field in ustar is replaced with a
special name, constructed using the following pattern:

%d/GNUSparseFile.%p/%E

The real name of the sparse file is stored in the variable
GNU.sparse.name. Thus, those tar implementations that are not
aware of GNU extensions will at least extract the files into separate
directories, giving the user a possibility to expand it afterwards. See
[extracting sparse v.0.x], page 146, for the detailed description of how to
restore such members using non-GNU tars.

The resulting GNU. sparse .map string can be very long. Although POSIX
does not impose any limit on the length of a x header variable, this possibly
can confuse some tars.

Appendix D: Tar Internals 197

PAX Format, Version 1.0

The version 1.0 of sparse format was introduced with GNU tar 1.15.92. Its
main objective was to make the resulting file extractable with little effort
even by non-posix aware tar implementations. Starting from this version,
the extended header preceding a sparse member always contains the follow-
ing variables that identify the format being used:

GNU.sparse.major
Major version

GNU.sparse.minor
Minor version

The name field in ustar header contains a special name, constructed using

the following pattern:
%d/GNUSparseFile.%p/%f

The real name of the sparse file is stored in the variable
GNU.sparse.name. The real size of the file is stored in the variable
GNU.sparse.realsize.

The sparse map itself is stored in the file data block, preceding the actual
file data. It consists of a series of octal numbers of arbitrary length, delimited
by newlines. The map is padded with nulls to the nearest block boundary.

The first number gives the number of entries in the map. Following are
map entries, each one consisting of two numbers giving the offset and size of
the data block it describes.

The format is designed in such a way that non-posix aware tars and tars
not supporting GNU.sparse.* keywords will extract each sparse file in its
condensed form with the file map prepended and will place it into a separate
directory. Then, using a simple program it would be possible to expand the
file to its original form even without GNU tar. See Section 8.3.10.2 [Sparse
Recovery|, page 144, for the detailed information on how to extract sparse
members without GNU tar.

Format of the Incremental Snapshot Files

A snapshot file (or directory file) is created during incremental backups (see
Section 5.2 [Incremental Dumps|, page 80). It contains the status of the file
system at the time of the dump and is used to determine which files were
modified since the last backup.

GNU tar version 1.26 supports three snapshot file formats. The first
format, called format 0, is the one used by GNU tar versions up to 1.15.1.
The second format, called format 1 is an extended version of this format,
that contains more metadata and allows for further extensions. It was used
by version 1.15.1. Starting from version 1.16 and up to 1.26, the format 2 is
used.

GNU tar is able to read all three formats, but will create snapshots only
in format 2.

198 GNU tar 1.26

0.

This appendix describes all three formats in detail.

‘Format O’ snapshot file begins with a line containing a decimal number
that represents a UNIX timestamp of the beginning of the last archiva-
tion. This line is followed by directory metadata descriptions, one per
line. Each description has the following format:

nfsdev inode name

where:

nfs A single plus character (‘+), if this directory is located on
an NFS-mounted partition, or a single space otherwise;

dev Device number of the directory;

inode I-node number of the directory;

name Name of the directory. Any special characters (white-space,

backslashes, etc.) are quoted.

‘Format 1’ snapshot file begins with a line specifying the format of the
file. This line has the following structure:

‘GNU tar-’tar-version‘-’incr-format-version

where tar-version is the version number of GNU tar implementation that
created this snapshot, and incr-format-version is the version number of
the snapshot format (in this case ‘1’).

Next line contains two decimal numbers, representing the time of the
last backup. First number is the number of seconds, the second one is
the number of nanoseconds, since the beginning of the epoch.

Lines that follow contain directory metadata, one line per directory.
Each line is formatted as follows:

[nfs]lmtime-sec mtime-nsec dev inode name

where mtime-sec and mtime-nsec represent last modification time of this
directory with nanosecond precision; nfs, dev, inode and name have the
same meaning as with ‘format 0’.

‘Format 2’ snapshot file begins with a format identifier, as described for
version 1, e.g.:

GNU tar-1.26-2

This line is followed by newline. Rest of file consists of records, separated
by null (ASCII 0) characters. Thus, in contrast to the previous formats,
format 2 snapshot is a binary file.

First two records are decimal numbers, representing the time of the last
backup. First number is the number of seconds, the second one is the
number of nanoseconds, since the beginning of the epoch. These are
followed by arbitrary number of directory records.

Each directory record contains a set of metadata describing a partic-
ular directory. Parts of a directory record are delimited with ASCII 0

Appendix D: Tar Internals 199

characters. The following table describes each part. The Number type
in this table stands for a decimal number in ASCII notation.

Field Type Description

nfs Character ‘1’ if the directory is located on an NFS-
mounted partition, or ‘0’ otherwise;

mtime-sec Number Modification time, seconds;

mtime-nano Number Modification time, nanoseconds;

dev-no Number Device number;

i-no Number I-node number;

name String Directory name; in contrast to the previous

versions it is not quoted;

contents Dumpdir Contents of the directory; See [Dumpdir],

page 199, for a description of its format.

Dumpdirs stored in snapshot files contain only records of types ‘Y’, ‘N’
and ‘D’.

Dumpdir
Incremental archives keep information about contents of each dumped di-
rectory in special data blocks called dumpdirs.

Dumpdir is a sequence of entries of the following form:
C filename \0

where C is one of the control codes described below, filename is the name
of the file C operates upon, and ‘\0’ represents a nul character (ASCII 0).
The white space characters were added for readability, real dumpdirs do not
contain them.

Each dumpdir ends with a single nul character.
The following table describes control codes and their meanings:

Y’ filename is contained in the archive.

‘N’ filename was present in the directory at the time the archive was
made, yet it was not dumped to the archive, because it had not
changed since the last backup.

‘D’ filename is a directory.

‘R’ This code requests renaming of the filename to the name speci-
fied with the ‘T’ command, that immediately follows it.

‘T Specify target file name for ‘R’ command (see below).

‘X’ Specify temporary directory name for a rename operation (see
below).

200 GNU tar 1.26

Codes ‘Y’, ‘N’ and ‘D’ require filename argument to be a relative file name
to the directory this dumpdir describes, whereas codes ‘R’, ‘T’ and ‘X’ require
their argument to be an absolute file name.

The three codes ‘R’, ‘T’ and ‘X’ specify a renaming operation. In the
simplest case it is:

R‘source’\0T‘dest’\0
which means “rename file ‘source’ to file ‘dest’.

However, there are cases that require using a temporary directory. For
example, consider the following scenario:

1. Previous run dumped a directory ‘foo’ which contained the following
three directories:
a

b
c

2. They were renamed cyclically, so that:
‘a’ became ‘b’
‘b’ became ‘c’
‘c’ became ‘a’

3. New incremental dump was made.

This case cannot be handled by three successive renames, since renaming
‘a’ to ‘b’ will destroy the existing directory. To correctly process it, GNU tar
needs a temporary directory, so it creates the following dumpdir (newlines
have been added for readability):
Xfoo\O
Rfoo/a\0T\O
Rfoo/b\0Tfoo/c\0
Rfoo/c\0Tfoo/a\0
R\OTfoo/a\0
The first command, ‘Xfoo\0’, instructs the extractor to create a tem-
porary directory in the directory ‘foo’. Second command, ‘Rfoo/aT\0’,
says “rename file ‘foo/a’ to the temporary directory that has just been cre-
ated” (empty file name after a command means use temporary directory).
Third and fourth commands work as usual, and, finally, the last command,
‘R\OTfoo/a\0’ tells tar to rename the temporary directory to ‘foo/a’.
The exact placement of a dumpdir in the archive depends on the archive
format (see Chapter 8 [Formats], page 127):

e PAX archives
In PAX archives, dumpdir is stored in the extended header of the cor-
responding directory, in variable GNU.dumpdir.

e GNU and old GNU archives
These formats implement special header type ‘D’, which is similar to

ustar header ‘5’ (directory), except that it precedes a data block con-
taining the dumpdir.

Appendix E: Genfile 201

Appendix E Genfile

This appendix describes genfile, an auxiliary program used in the GNU
tar testsuite. If you are not interested in developing GNU tar, skip this
appendix.

Initially, genfile was used to generate data files for the testsuite, hence
its name. However, new operation modes were being implemented as the
testsuite grew more sophisticated, and now genfile is a multi-purpose in-
strument.

There are three basic operation modes:

File Generation
This is the default mode. In this mode, genfile generates data

files.

File Status
In this mode genfile displays status of specified files.

Synchronous Execution.
In this mode genfile executes the given program with
‘-—checkpoint’ option and executes a set of actions when
specified checkpoints are reached.

E.1 Generate Mode

In this mode genfile creates a data file for the test suite. The size of the
file is given with the ‘--length’ (‘-1’) option. By default the file contents
is written to the standard output, this can be changed using ‘--file’ (‘-f’)
command line option. Thus, the following two commands are equivalent:
genfile --length 100 > outfile
genfile --length 100 --file outfile

If ‘--1length’ is not given, genfile will generate an empty (zero-length)
file.

The command line option ‘--seek=N istructs genfile to skip the given
number of bytes (N) in the output file before writing to it. It is similar to
the ‘seek=N of the dd utility.

You can instruct genfile to create several files at one go, by giving it
‘~-files-from’ (‘-T’) option followed by a name of file containing a list of
file names. Using dash (‘-’) instead of the file name causes genfile to read
file list from the standard input. For example:

Read file names from file ‘file.list’
genfile --files-from file.list

Read file names from standard input
genfile --files-from -

The list file is supposed to contain one file name per line. To use file
lists separated by ASCII NUL character, use ‘--null’ (‘-0’) command line
option:

202 GNU tar 1.26

genfile --null --files-from file.list
The default data pattern for filling the generated file consists of first 256
letters of ASCII code, repeated enough times to fill the entire file. This be-
havior can be changed with ‘--pattern’ option. This option takes a manda-
tory argument, specifying pattern name to use. Currently two patterns are
implemented:

‘--pattern=default’
The default pattern as described above.

‘--pattern=zero’
Fills the file with zeroes.

If no file name was given, the program exits with the code 0. Otherwise,
it exits with O only if it was able to create a file of the specified length.

Special option ‘--sparse’ (‘-s’) instructs genfile to create a sparse file.
Sparse files consist of data fragments, separated by holes or blocks of zeros.
On many operating systems, actual disk storage is not allocated for holes,
but they are counted in the length of the file. To create a sparse file, genfile
should know where to put data fragments, and what data to use to fill them.
So, when ‘--sparse’ is given the rest of the command line specifies a so-
called file map.

The file map consists of any number of fragment descriptors. Each de-
scriptor is composed of two values: a number, specifying fragment offset
from the end of the previous fragment or, for the very first fragment, from
the beginning of the file, and contents string, i.e., a string of characters,
specifying the pattern to fill the fragment with. File offset can be suffixed
with the following quantifiers:

Lk7

‘K The number is expressed in kilobytes.
4m?

‘M The number is expressed in megabytes.
‘G’ The number is expressed in gigabytes.

For each letter in contents string genfile will generate a block of data,
filled with this letter and will write it to the fragment. The size of block
is given by ‘--block-size’ option. It defaults to 512. Thus, if the string
consists of n characters, the resulting file fragment will contain n*block-
size of data.

Last fragment descriptor can have only file offset part. In this case
genfile will create a hole at the end of the file up to the given offset.

For example, consider the following invocation:

genfile --sparse --file sparsefile 0 ABCD 1M EFGHI 2000K
It will create 3101184-bytes long file of the following structure:
Offset Length Contents

Appendix E: Genfile 203

0 4*512=2048 Four 512-byte blocks, filled with
letters ‘A’, ‘B’, ‘C’ and ‘D’.

2048 1046528 Zero bytes

1050624 5*%512=2560 Five blocks, filled with letters
‘E,, ‘F,, ‘G’, ‘H’, 1.

1053184 2048000 Zero bytes

The exit code of genfile --status command is 0 only if created file is
actually sparse.

E.2 Status Mode

In status mode, genfile prints file system status for each file specified in
the command line. This mode is toggled by ‘--stat’ (‘-S’) command line
option. An optional argument to this option specifies output format: a
comma-separated list of struct stat fields to be displayed. This list can
contain following identifiers :

name The file name.

dev

st_dev Device number in decimal.
ino

st_ino Inode number.

mode[.number]

st_mode[.number]
File mode in octal. Optional number specifies octal mask to be
applied to the mode before outputting. For example, --stat
mode . 777 will preserve lower nine bits of it. Notice, that you
can use any punctuation character in place of *.’.

nlink

st_nlink Number of hard links.
uid

st_uid User ID of owner.

gid

st_gid Group ID of owner.
size

st_size File size in decimal.
blksize

st_blksize The size in bytes of each file block.
blocks

st_blocks Number of blocks allocated.

atime
st_atime Time of last access.

204 GNU tar 1.26

mtime
st_mtime Time of last modification

ctime
st_ctime Time of last status change

sparse A boolean value indicating whether the file is ‘sparse’.

Modification times are displayed in UTC as UNIX timestamps, unless
suffixed with ‘H’ (for “human-readable”), as in ‘ctimeH’, in which case usual
tar tv output format is used.

The default output format is: ‘name,dev, ino,mode,
nlink,uid,gid,size,blksize,blocks,atime,mtime,ctime’.

For example, the following command will display file names and corre-
sponding times of last access for each file in the current working directory:

genfile --stat=name,atime *

E.3 Exec Mode

This mode is designed for testing the behavior of paxutils commands when
some of the files change during archiving. It is an experimental mode.

The ‘Exec Mode’ is toggled by ‘~-run’ command line option (or its alias
‘~r’). The non-optional arguments to getopt give the command line to be
executed. Normally, it should contain at least the ‘--checkpoint’ option.

A set of options is provided for defining checkpoint values and actions
to be executed upon reaching them. Checkpoint values are introduced with
the ‘--checkpoint’ command line option. Argument to this option is the
number of checkpoint in decimal.

Any number of actions may be specified after a checkpoint. Available
actions are

‘——cut file’

‘-—truncate file’
Truncate file to the size specified by previous ‘--length’ option
(or 0, if it is not given).

‘~—append file’
Append data to file. The size of data and its pattern are given
by previous ‘--length’ and ‘pattern’ options.

‘~—touch file’
Update the access and modification times of file. These time-
stamps are changed to the current time, unless ‘--date’ option
was given, in which case they are changed to the specified time.
Argument to ‘--date’ option is a date specification in an almost
arbitrary format (see Chapter 7 [Date input formats|, page 119).

‘——exec command’
Execute given shell command.

Appendix E: Genfile 205

‘——unlink file’
Unlink the file.

Option ‘--verbose’ instructs genfile to print on standard output no-
tifications about checkpoints being executed and to verbosely describe exit
status of the command.

¢

While the command is being executed its standard output remains con-
nected to descriptor 1. All messages it prints to file descriptor 2, except
checkpoint notifications, are forwarded to standard error.

Genfile exits with the exit status of the executed command.

For compatibility with previous genfile versions, the ‘--run’ option

takes an optional argument. If used this way, its argument supplies the
command line to be executed. There should be no non-optional arguments
in the genfile command line.

The actual command line is constructed by inserting the ‘~-checkpoint’
option between the command name and its first argument (if any). Due to
this, the argument to ‘~-run’ may not use traditional tar option syntax,
i.e., the following is wrong:

Wrong!
genfile --run=’tar cf foo bar’
Use the following syntax instead:
genfile —--run=’tar -cf foo bar’ actioms...

The above command line is equivalent to

genfile actions... -- tar -cf foo bar

Notice, that the use of compatibility mode is deprecated.

Appendix F: Free Software Needs Free Documentation 207

Appendix F Free Software Needs Free
Documentation

The biggest deficiency in the free software community today is not in the
software—it is the lack of good free documentation that we can include
with the free software. Many of our most important programs do not come
with free reference manuals and free introductory texts. Documentation is
an essential part of any software package; when an important free software
package does not come with a free manual and a free tutorial, that is a major
gap. We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally
use are non-free. How did this come about? Because the authors of those
manuals published them with restrictive terms—no copying, no modification,
source files not available—which exclude them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far
from the last. Many times we have heard a GNU user eagerly describe a
manual that he is writing, his intended contribution to the community, only
to learn that he had ruined everything by signing a publication contract to
make it non-free.

Free documentation, like free software, is a matter of freedom, not price.
The problem with the non-free manual is not that publishers charge a price
for printed copies—that in itself is fine. (The Free Software Foundation sells
printed copies of manuals, too.) The problem is the restrictions on the use
of the manual. Free manuals are available in source code form, and give you
permission to copy and modify. Non-free manuals do not allow this.

The criteria of freedom for a free manual are roughly the same as for
free software. Redistribution (including the normal kinds of commercial
redistribution) must be permitted, so that the manual can accompany every
copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When
people modify the software, adding or changing features, if they are consci-
entious they will change the manual too—so they can provide accurate and
clear documentation for the modified program. A manual that leaves you
no choice but to write a new manual to document a changed version of the
program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable.
For example, requirements to preserve the original author’s copyright notice,
the distribution terms, or the list of authors, are ok. It is also no problem
to require modified versions to include notice that they were modified. Even
entire sections that may not be deleted or changed are acceptable, as long as
they deal with nontechnical topics (like this one). These kinds of restrictions
are acceptable because they don’t obstruct the community’s normal use of
the manual.

208 GNU tar 1.26

However, it must be possible to modify all the technical content of the
manual, and then distribute the result in all the usual media, through all the
usual channels. Otherwise, the restrictions obstruct the use of the manual,
it is not free, and we need another manual to replace it.

Please spread the word about this issue. Our community continues to lose
manuals to proprietary publishing. If we spread the word that free software
needs free reference manuals and free tutorials, perhaps the next person who
wants to contribute by writing documentation will realize, before it is too
late, that only free manuals contribute to the free software community.

If you are writing documentation, please insist on publishing it under the
GNU Free Documentation License or another free documentation license.
Remember that this decision requires your approval—you don’t have to let
the publisher decide. Some commercial publishers will use a free license if
you insist, but they will not propose the option; it is up to you to raise the
issue and say firmly that this is what you want. If the publisher you are
dealing with refuses, please try other publishers. If you're not sure whether
a proposed license is free, write to licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted
manuals and tutorials by buying them, and particularly by buying copies
from the publishers that paid for their writing or for major improvements.
Meanwhile, try to avoid buying non-free documentation at all. Check the
distribution terms of a manual before you buy it, and insist that whoever
seeks your business must respect your freedom. Check the history of the
book, and try reward the publishers that have paid or pay the authors to
work on it.

The Free Software Foundation maintains a list of free documenta-

tion published by other publishers, at http: //www . fsf . org /doc /
other-free-books.html.

mailto:licensing@gnu.org
http://www.fsf.org/doc/other-free-books.html
http://www.fsf.org/doc/other-free-books.html

Appendix G: GNU Free Documentation License 209

Appendix G GNU Free Documentation
License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or

http://fsf.org/

210

GNU tar 1.26

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-
generated HT'ML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix G: GNU Free Documentation License 211

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

212

GNU tar 1.26

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix G: GNU Free Documentation License 213

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not

214

GNU tar 1.26

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

Appendix G: GNU Free Documentation License 215

10.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new

216

11.

GNU tar 1.26

versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix G: GNU Free Documentation License 217

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the “with. .. Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Appendix H: Index of Command Line Options

219

Appendix H Index of Command Line

Options

This appendix contains an index of all GNU tar long command line op-

tions.

The options are listed without the preceding double-dash. For a

cross-reference of short command line options, see Section 3.4.3 [Short Op-

tion Summary|, page 46.

A

absolute-names 115
absolute-names, summary 29
add-file oo 97
after-date.................. ... 112
after-date, summary................. 29
anchored................ ... 104
anchored, summary 29
append ...l 59, 60
append, SUMMATYcouuuueennnnn. 28
atime-preserve 134
atime-preserve, summary 29
auto-COmpress...........oovuiuunnnn.. 131
auto-compress, SUMMATLY 30

backup.............oooiiiiiiL 76
backup, SUMMArYccovvvveeeea... 30
block-number................ 51
block-number, summary 30
blocking-factor 155
blocking-factor, summary........... 31
bzip2, summary 31

C

catenate 63
catenate, summary 28
check-device, described 81
check-device, summary 31
check-links, described 137
check-links, summary................ 32
checkpoint ..., 52
checkpoint, defined................... 52
checkpoint, summary................. 31
checkpoint-action................... 52
checkpoint-action, defined........... 52
checkpoint-action, summary......... 31
COMPATE. .ot vvttttiieiiiiineeeeeeen... 65

compare, SUMIMALYooveuunnn..... 28

COMPTESS .\t vveeeiee e 130
COMPress, SUMIATY « .. ovvvvennnn. ... 32
concatenate................... 63
concatenate, summary................ 28
confirmation, summary 32
create, additional options............. 65
create, complementary notes 57
create, introduced 11
create, SUMMATYoovvirunnn... 28
create, using with ‘--verbose’........ 12
create, using with ‘--verify’........ 170

D

delay-directory-restore............ 72
delay-directory-restore, summary.. 32
delete. ... 64
delete, summary 28
delete, using before --append 60
dereference................ ... 136
dereference, summary................ 32
diff, summary........................ 28
directorycooiiiiiiiiiiiia... 114
directory, summary.................. 32
directory, using in ‘--files-from’
argument.................ooo 96

exclude. ...t 98
exclude, potential problems with..... 101
exclude, SUMMATYcovvuneeeenn... 32
exclude-backups 99
exclude-backups, summary........... 32
exclude-caches....................... 99
exclude-caches, summary 33
exclude-caches-all.................. 99
exclude-caches-all, summary 33
exclude-caches-under................ 99
exclude-caches-under, summary..... 33
exclude-from......................... 98
exclude-from, summary 33

220
exclude-tag......................... 100
exclude-tag, summary................ 33
exclude-tag-all.................... 100
exclude-tag-all, summary........... 33
exclude-tag-under.................. 100
exclude-tag-under, summary......... 33
exclude-vesl 98
exclude-vcs, SUMMATYcovvunnn... 33
extract............o il 17
extract, additional options 67
extract, complementary notes 58
extract, summary 29
extract, using with
‘--listed-incremental’.......... 82

file.. ..o 93
file, short description................ 93
file, summary.............ccoooiiao... 33
file, tutorial 7
files—from.............cooiiiiiiiiit. 96
files-from, summary................. 33
force-local, short description....... 150
force-local, summary................ 34
format, summary 34
full-time, summary.................. 34

G

get, SUMmMAry........ooovvvuuinneennnn. 29
BTOUD . .ottt 67
group, SUMIMALY .. .vvevnrrneeennnnnn.. 34
gunzip, summary 35
BZIP . 130
GZip, SUMMALY ..o oteeeeeeeeeeeaaanns 35

H

hard-dereference, described......... 138
hard-dereference, summary.......... 35
help......oooi 10
help, introduction..................... 48
help, summary........................ 35

I

ignore-case........................ 104
ignore-case, SUMMALYoo... 35
ignore-command-error................ 74
ignore-command-error, summary 35

ignore-failed-read.................. 67

GNU tar 1.26

ignore-failed-read, summary 35
ignore-zeros......................... 68
ignore-zeros, short description...... 158
ignore-zeros, summary 35
incremental, summary................ 35
incremental, using with ‘--list’..... 82
index-file, summary................. 35
info-script.......... il 164
info-script, short description....... 151
info-script, summary................ 35
interactive........... o 56
interactive, summary................ 36

K

keep-newer—-files 70
keep-newer-files, summary.......... 36
keep-old-files....................... 69
keep-old-files, introduced........... 68
keep-old-files, summary 36

label....ooiiiiiiiiiiiii i 167
label, SUMIMATY . .vvvvvrvrinnnennnnnnn 36
level, described 81
level, summaryo..... 36
list .o 15
1ist, SUMMATY ..o vveeen et 29
list, using with ‘--incremental’ 82
list, using with ‘--listed-incremental’
................................ 82
list, using with ‘--verbose’.......... 15
list, using with file name arguments.. 16
listed-incremental, described 80
listed-incremental, summary 36
listed-incremental, using with
‘——extract’.......... ...l 82
listed-incremental, using with ‘--1ist’
.................................. 82
lzip...ooooiiiiii 130
lzip, summary........................ 36
lzma. ...t 130
1zma, SUMMALY ... vveennnnnnnns 37
1ZOPp .o 130

mode ...t 65
mode, SUMMATYo, 37
mtime....... ... 66
mtime, summary 37

Appendix H: Index of Command Line Options 221

multi-volume........................ 163
multi-volume, short description...... 151
multi-volume, summary 37

N

new-volume-script.................. 164
new-volume-script, short description

................................. 151
new-volume-script, summary..... 35, 37
4117 =Y o 112
newer, SUMMALYuueeernnnnneeen.. 37
newer-mtime.................. 112
newer-mtime, summary................ 37
no-anchored......................... 104
no-anchored, summary................ 37
no-auto-compress, SUMMAary.......... 38
no-check-device, described........... 81
no-check-device, summary........... 38
no-delay-directory-restore......... 72
no-delay-directory-restore, summary

.................................. 38
no-ignore-case 104
no-ignore-case, SUMMAary 38
no-ignore-command-error 74
no-ignore-command-error, summary.. 38
no-null, described.................... 97
no-null, SUMIMATY «...vvurrnnnnnnnnnn. 38
no-overwrite-dir, summary.......... 38
no-quote-chars, summary 38
no-recursion........................ 113
no-recursion, summary 38
NO—SAME=OWNETcovvunnneeennnn.. 135
no-same-owner, SUMMAary 38
no-same-permissions, summary 38
no-seek, SUMIMATYvvrrnnnnnnnnn. 39
NO-UNQUOte ... 95
no-unquote, SUMMATLY 39
no-wildcards........................ 103
no-wildcards, summary 39
no-wildcards-match-slash.......... 104
no-wildcards-match-slash, summary

.................................. 39
null, describedl 97
null, SUMMAary........................ 39
numeric-owner....................... 135
numeric-owner, SUMMArY 39

@)

occurrence, described................. 60
occurrence, SUMMALYooononn.. 39

old-archive, summary................ 40
one-file-system.................... 114
one-file-system, summary........... 40
overwritel 69
overwrite, introduced 68
overwrite, summary.................. 40
overwrite-dir............ 69
overwrite-dir, introduced............ 68
overwrite-dir, summary 40
103 41 ol 66
OWNET, SUMIMNATY . vvvvvvvnnnrnnnnnnnnn 40

P

pax-option.............ooiiiiiiil 139
pax-option, summary................. 40
portability, summary................ 40
POSIiX, SUMMALYovvviiiiininnnn. 40
PreSerVe ...t 136
preserve, SUMIMATLY 40
preserve-order....................... 75
preserve-order, summary 40
preserve-permissions................ 70
preserve-permissions, short description
................................. 135
preserve-permissions, summary 40
Q
quote-chars, summary................ 41
quoting-style....................... 105
quoting-style, summary 41

R

read-full-records 67, 68
read-full-records, short description

................................. 158
read-full-records, summary......... 41
record-size, summary................ 41
TeCUrsSionouveniininiinann. 113
recursion, SUMMArY 41
recursive-unlink 70
recursive-unlink, summary.......... 41
remove-files.............coiiiii... 74
remove-files, summary 41
restrict, summary................... 41
rmt-command, SUMMATY 41
rsh-command......................... 150
rsh-command, summary................ 42

222

S

Same—0rderiiiiiiiiiian 75
same-order, SUMMArY................. 42
SAME=OWINETvovt et eeeennnnnnn 134
same-owner, SUIMary................. 42
same-permissions 70
same-permissions, short description
................................. 135
same-permissions, summary 40, 42
seek, SUMMATLYoovviiiiiinna... 42
show-defaults........................ 49
show-defaults, summary 42
show-omitted-dirs................... 51
show-omitted-dirs, summary......... 42
show-stored-names 16
show-stored-names, summary......... 42
show-transformed-names 109
show-transformed-names, summary ... 42
SPATSE . .ttt 133
Sparse, SUIMMALYvvvrrerrnnrnnnnn. 43
Sparse-vVersion 133
sparse-version, summary............ 43
starting-file..................... ... 74
starting-file, summary 43
strip-components................... 108
strip-components, summary.......... 43
suffix........... 76
suffix, summary 43
T
tape-length............. 163
tape-length, short description....... 151
tape-length, summary................ 43
test-label.......................... 168
test-label, summary................. 43
to-command ... 73
to-command, SUMIMATYvvvrrrnnnn.. 43
to-stdout i 72
to-stdout, summary.................. 44
totals......ooiiiii 50
totals, summary 44
touch............l 70, 134
touch, summary 44
transform........................ 109
transform, summary.................. 44

GNU tar 1.26

U

UNCOMPTESS « v vvvvvvvvvveeeeeenennnnnns 130
uncompress, SUMMALY 32, 44
UNGZIP. i 130
ungzip, summary.................. 35, 44
unlink-first................ 70
unlink-first, introduced............. 69
unlink-first, summary 44
unquote............iiii 95
unquote, SUMMATY .. .vvvveweeeenennnn. 44
update. ... 62
update, summary 29
USAZE o vvveeeiie e 48
USe—COmMPresSS—program. 131
use-compress-program, Summary 44
UEC, SUMIMATY -+ v vvveeeeee e e eeeeeeenns 45

A\

verbose............ ..o 49
verbose, introduced.................... 8
verbose, summary 45
verbose, using with ‘--create’........ 12
verbose, using with ‘=-list’.......... 15
verify, short description.......... 170
verify, summary 45
verify, using with ‘--create’........ 170
version............ ..ol 47
Version, SUMMAaryoouee... 45
volno-file................... ... 164
volno-file, summary................. 45

\%\%

warning, explained............... 54
warning, SUmMMmary 45
wildcardscoiiiiiiiiiiiiin, 103
wildcards, summary.................. 45
wildcards-match-slash............. 104

wildcards-match-slash, summary.... 45

xform.... 109
xform, SUMMATY 44
b~ P 130

Appendix I: Index

Appendix I Index

%

‘%s: Directory has been renamed from

%s’, warning message 56
‘%s: Directory has been renamed’,

warning message.................. 56
‘%s: Directory is new’, warning message

.................................. 56

‘%s: directory is on a different
device: not purging’, warning
IMNESSAZE .« o e vvvee et 56

—after-date and —update compared ... 112
—newer-mtime and —update compared

.................................. 54
abbreviations for months............. 121
absolute file names.............. 115, 152
Adding archives to an archive......... 63
Adding files to an Archive............. 60
ADMINISTRATOR.......ccovvvniiinninnn.. 84
Age, excluding files by 111
ago in date strings................... 123
A1l 54
alone-zero-block.................... 54
alternative decompression programs .. 129
am in date strings 122
Appending files to an Archive......... 60
appending files to existing archive..... 59
Arch, excluding files................... 98
archive........... .. i i 1
Archive creation 93
archive member 2
Archive Name......................... 93
Archive, creation of 10
Archives, Appending files to........... 60
archives, binary equivalent 141
Archiving Directories.................. 14
ARGP_HELP_FMT, environment variable

................................. 179
arguments to long options............. 25
arguments to old options.............. 26

arguments to short options............ 25

223

atrributes, files............. 134
‘Attempting extraction of symbolic
links as hard links’, warning

INESSAZE « o ovvveeeeeeiiii i 55
authors of parse_datetime........... 126
Avoiding recursion in directories. 113
B
backup options.............cooiiii.. 75
backup suffix................. ...l 76
BACKUP DIRS.......ccoiiiiiininn... 84
BACKUP_FILES..........oiiiiiiinann. 85
BACKUP_HOUR...........cciiuiiiennen... 84
backups ...t 76, 79
bad-dumpdir..............l 56
basic operations....................... 58
Bazaar, excluding files................. 98
beginning of time, for POSIX......... 124
bell, checkpoint action 52
Bellovin, Steven M. 126
Berets, Jim ... 126
Berry, K. ... 126
binary equivalent archives, creating... 141
block ... 153
Block number where error occurred. ... 51
BLOCKINGottt 84
blocking factor....................... 159
Blocking Factor...................... 155
Blocks per record 155
bug reportso 4
Bytes per record 155
bZIp2 .. 128
C
cachedir ..., 54
calendar date item................... 120
case, ignored in dates 120
cat vs concatenate................... 64
Changing directory mid-stream. 114
Character class, excluding characters from

................................. 102
checkpoints, defined 52
Choosing an archive file............... 93
comments, in dates................... 120
COIMPIESS .« v vttt eteee et 128
Compressed archives................. 128

224
concatenate vscat................... 64
Concatenating Archives............... 63
‘contains a cache directory tag’,
Warning message. 54
contiguous-cast 55
corrupted archives................ 79, 131
Creation of the archive................ 10
‘Current s is newer or same age’,
warning message.................. 55
CVS, excluding files................... 98
D
Darcs, excluding files.................. 98
DAT blocking..........c.covvvviina.. 159
Data Modification time, excluding files by
................................. 111
Data modification times of extracted files
.................................. 70
date format, 1SO 8601 121
date input formats................... 119
day in date strings................... 123
day of week item..................... 123
decompress-program.................. 55
Deleting files from an archive.......... 64
Deleting from tape archives 64
dereferencing hard links.............. 137
Descending directories, avoiding. 113
Device numbers, changing............ 183
Device numbers, using in incremental
backupsc..oooiiiiiiii 81
Directories, Archiving................. 14
Directories, avoiding recursion........ 113
Directory, changing mid-stream 114
DIRLIST. ...ttt 85
displacement of dates 123
doc-opt-col...........coiiiiiiiii., 180
‘door ignored’, warning message...... 54
dot, checkpoint action................. 53
Double-checking a write operation.... 170
DUMP_BEGINooniiiiiiininnen.. 87
DUMP_ENDcoiiiiiiiiiiiiinne, 87
DUMP_REMIND_SCRIPT.................. 86
dumps, full...........ooo 79
dup-args ... 179
dup-args-note....................... 180
E
echo, checkpoint action 52
Eggert, Paul 126

End-of-archive blocks, ignoring 68

GNU tar 1.26

End-of-archive info script............. 164
ENbTY . o 3
epoch, for POSIX...............oonnn. 124
Error message, block number of 51
Exabyte blocking 159
exclude. ... 98
exclude-caches....................... 99
exclude-from......................... 98
exclude-tag......................... 100
Excluding characters from a character
class .o 102
Excluding file by age................. 111
Excluding files by file system.......... 98
Excluding files by name and pattern... 98
Exec Mode, genfile................. 204
exec, checkpoint action 53
existing backup method 76
exit status ... oo 22

‘Extracting contiguous files as
regular files’, warning message

.................................. 55
extracting nth copy of the file......... 60
extraction................iiia, 2
Extraction ... 17
F
file attributes 134
‘file changed as we read it’, warning

TNESSAZE .« o e vvvee et 55
‘file is on a different filesystem’,

Warning message. 54
‘file is the archive; not dumped’,

warning message.................. 55
‘file is unchanged; not dumped’,

warning message.................. 55
File lists separated by NUL characters

................................. 201
filename............ .. 2
File Name arguments, alternatives..... 95
File name arguments, using ‘--1ist’ with

.................................. 16
‘file name read contains nul

character’, warning message 54
file names, absolute 115
File names, excluding files by.......... 98
File names, terminated by NUL......... 97
File names, using hard links.......... 137
File names, using symbolic links...... 136
‘File removed before we read it’,

warning message.................. 55

Appendix I: Index

‘File shrank by %s bytes’, warning

INESSAGE « . voveiiiieiiiii i 54
File system boundaries, not crossing.. 114
file-changed......................... 55
file-ignored......................... 54
file-removed................. 55
file-shrank....................... ... 54
file-unchanged....................... 55
FILELIST ..ottt 85
filename-with-nuls.................. 54
find, using with tar 95, 113
first in date strings................. 119
format 0, snapshot file 198
format 1, snapshot file............... 198
format 2, snapshot file............... 198
Format Options...................... 155
Format Parameters 155
Format, old style..................... 138
fortnight in date strings............ 123
free documentation................... 207
full dumps ...l 79
future time stamps................... 142
G
general date syntax 119
Generate Mode, genfile............. 201
genfile 201
genfile, create file................ ... 201
genfile, creating sparse files......... 202
genfile, generate mode.............. 201
genfile, reading a list of file names.. 201
genfile, seeking to a given offset. 201
Getting program version number 47
git, excluding files..................... 98
GNU archive format 139
GNU.sparse.major, extended header
variable............... ... 197
GNU.sparse.map, extended header
variable............... 196
GNU.sparse.minor, extended header
variable................. 197
GNU.sparse.name, extended header
variable............... 196
GNU.sparse.name, extended header
variable, inv.1.0............. 197
GNU.sparse.numblocks, extended header
variable............... .ol 195
GNU.sparse.numbytes, extended header
variable............... 195
GNU.sparse.offset, extended header
variable........... 195

225

GNU.sparse.realsize, extended header

variable............... 197
GNU.sparse.size, extended header

variable............... ... 195
gnupg, using with tar............. ... 132
gpg, using with tar................... 132
BZIP i 128
H
hard links, dereferencing 137
header-col.......................... 181
hook ... 87
hour in date strings.................. 123
I
ignore-archive....................... 55
ignore-newer...............c..iiiian. 55
Ignoring end-of-archive blocks......... 68

‘Ignoring unknown extended header
keyword ‘Js’’, warning message .. 55
‘implausibly old time stamp %s’,

Warning message. 55
Info script ... 164
Interactive operation.................. 56
150 8601 date format................. 121
items in date strings 119
L
Labeling an archive.................. 167
labeling archives 167
Labeling multi-volume archives....... 167
Labels on the archive media.......... 167
language, in dates.................... 120
Large lists of file names on small machines

.................................. 75
large values.......... 142
last day...coovvniiiiiiiiiia 123
last in date strings.................. 119
Laszlo Ersek 132
Ibzip2. . oo 132
Listing all tar options................. 48
listing member and file names......... 15
Listing volume label.................. 168
Lists of file names..................... 95
Local and remote archives............. 94
long options. il 24
long options with mandatory arguments

.................................. 25

long options with optional arguments.. 25

226

long-opt-col..........ooiiiiiiiii., 180
1Zip .o 128
lzma.o 128
1ZOp oo 128

MacKenzie, David 126
‘Malformed dumpdir: X’ never used’,
warning message.................. 56
Member......ovutiiiii 2
member NAMeovuueeeennnnnen... 2
members, multiple 61
Members, replacing with other members
................................. 60
Mercurial, excluding files.............. 98
Meyering, Jim oL 126
Middle of the archive, starting in the.. 75
midnight in date strings 122
minute in date strings................ 123
minutes, time zone correction by 122
Modes of extracted files............... 70

Modification time, excluding files by.. 111
Modification times of extracted files... 70

month in date strings................. 123
month names in date strings 121
months, written-out.................. 120
MT 85
MT_BEGIN ..ot 86
MT_OFFLINEt 86
MT_REWIND oot 86
MT_STATUS ...t 87
Multi-volume archives................ 163
multiple members..................... 61

Mutli-volume archives in PAX format,
extracting using non-GNU tars .. 143
Mutli-volume archives, extracting using

non-GNU tars................... 143
N
Naming an archive.................... 93
negative time stamps................. 142
new-directory........................ 56
nextday............................. 123
next in date strings.................. 119
4T3 = 54
noon in date strings.................. 122
now in date strings 123
ntape device........ ...t 160
NUL-terminated file names............. 97

Number of blocks per record 155

GNU tar 1.26

Number of bytes per record 155
numbered backup method............. 76
numbers, written-out................. 119

(@)

Obtaining help........................ 48
Obtaining total status information. 50
Old GNU archive format............. 139
Old GNU sparse format.............. 194
old option style 26
old options with mandatory arguments
................................. 26
Old style archives.................... 138
Old style format 138
opt-doc-col......................... 181
option syntax, traditional 26
optional arguments to long options.... 25
optional arguments to short options ... 25
options for use with ‘--extract’....... 67
Options when reading archives 67
Options, archive format specifying.... 155
Options, format specifying 155
options, GNU style.................... 24
options, long style..................... 24
options, mixing different styles........ 27
options, mnemonic names 24
options, old style...................... 26
options, short style.................... 25
options, traditional................. ... 25
ordinal numbers........... 119
Overwriting old files, prevention....... 68

P

parse_datetime 119
pattern, genfile..................... 202
PAX archive format.................. 139
Permissions of extracted files.......... 70
Pinard, F.l 126
pm in date strings 122
POSIX archive format 139
Progress information 51
Protecting old files.................... 68
pure numbers in date strings......... 124

R

RCS, excluding files................... 98
Reading file names from a file......... 95
Reading incomplete records 67
TECOT « vttt 153

Appendix I: Index

Record Size............. 155
Records, incomplete................... 67
Recursion in directories, avoiding. 113
relative items in date strings......... 123
Remote devices, 94
remote tape drive.................... 151
Removing files from an archive........ 64
rename-directory.................... 56
Replacing members with other members
.................................. 60
reporting bugsl 4
RESTORE_BEGIN..............ciiiunn.. 87
RESTORE_END..........ooiiinienn .. 87
Resurrecting files from an archive...... 17
Retrieving files from an archive........ 17
return status...........oo ool 22
rmargin ... 181
o 1 151
RSH .ot 85
RSH_COMMANDcoiiiiiiiniinn.t. 85
Running out of space.................. 74

S

Salz, Rich............... 126
SCCS, excluding files.................. 98
short options.................... 25
short options with mandatory arguments
.................................. 25
short options with optional arguments
.................................. 25
short-opt-col.................ouie. 180
simple backup method 76
SIMPLE_BACKUP_SUFFIX................ 76
sleep, checkpoint action 53
SLEEP_MESSAGE............. 86
SLEEP_TIME, 86
Small memory 74
snapshot file, format 0 198
snapshot file, format 1............... 198
snapshot file, format 2 198
snapshot files, editing 183

snapshot files, fixing device numbers.. 183
‘socket ignored’, warning message.... 54

Sparse Files...............ooooiit. 132
sparse files v.0.0, extracting with
non-GNU tars................... 146
sparse files v.0.1, extracting with
non-GNU tars................... 146
sparse files v.1.0, extracting with
non-GNU tars................... 144

Sparse files, creating using genfile... 202

227

sparse files, extracting with non-GNU tars

................................. 144
sparse formats L. 194
sparse formats, defined............... 133
sparse formats, Old GNU 194
sparse formats, v.0.0................. 195
sparse formats, v.0.1................. 196
sparse formats, v.1.0................. 197
Sparse VErsionsoooeeen... 194
Specifying archive members 94
Specifying filestoacton 94
Standard input and output............ 93
Standard output, writing extracted files to

.................................. 72
Storing archives in compressed format

................................. 128
SVN, excluding files................... 98
Symbolic link as file name............ 136
symlink-cast.................oooiil 55
T
TAPE . .o 8
tape blocking oL 159
tape marks 160
tape positioning................ 160
TAPE_FILE i 84
Tapes, using ‘--delete’ and........... 64
tar. .o 2
TAR . o 86
tar archive o i 1
Tar archive formats.................. 127
tarentry........ ... i 3
tar file ... 3
tar to a remote device................. 94
tar to standard input and output...... 93
tar-snapshot-edit.................. 183
TAR_ARCHIVE, checkpoint script

environment 53
TAR_ARCHIVE, info script environment

variable............... 165
TAR_ARCHIVE, to-command environment

.................................. 74
TAR_ATIME, to-command environment

.................................. 73
TAR_BLOCKING_FACTOR, checkpoint

script environment.............. 53
TAR_BLOCKING_FACTOR, info script

environment variable 165
TAR_BLOCKING_FACTOR, to-command

environment 74

228

TAR_CHECKPOINT, checkpoint script
environment 53
TAR_CTIME, to-command environment

.................................. 73
TAR_FD, info script environment
variable........................ 165
TAR_FILENAME, to-command environment
.................................. 73
TAR_FILETYPE, to-command environment
.................................. 73
TAR_FORMAT, checkpoint script
environment 53
TAR_FORMAT, info script environment
variable........................ 165
TAR_FORMAT, to-command environment
.................................. 74
TAR_GID, to-command environment.... 73
TAR_GNAME, to-command environment
.................................. 73

TAR_MODE, to-command environment... 73
TAR_MTIME, to-command environment

.................................. 73
TAR_OPTIONS, environment variable

.................................. 23
TAR_REALNAME, to-command environment

.................................. 73

TAR_SIZE, to-command environment... 73
TAR_SUBCOMMAND, checkpoint script

environment 53
TAR_SUBCOMMAND, info script
environment variable 165
TAR_UID, to-command environment.... 73
TAR_UNAME, to-command environment
.................................. 73
TAR_VERSION, checkpoint script
environment 53
TAR_VERSION, info script environment
variable........................ 165
TAR_VERSION, to-command environment
.................................. 74
TAR_VOLUME, info script environment
variable........................ 165
TAR_VOLUME, to-command environment
.................................. 74
tarcat.......... i 167
this in date strings.................. 123
time of day item 121
‘time stamp %s is %s s in the future’,
warning message.................. 55
time zone correction 122
time zone item.................. 120, 122

timestamp.......................... 55

GNU tar 1.26

today in date strings................. 123
tomorrow in date strings 123
ttyout, checkpoint action............. 53
TZ oo 125

U

Ultrix 3.1 and write failure........... 152
‘Unknown file type ‘J%c’, extracted as
normal file’, warning message ... 55
‘Unknown file type; file ignored’,
warning message.................. 54
unknown-cast.............ooiiiiiiia. 55
unknown-keyword 55
unpacking 2
Updating an archive................... 62
usage-indent........................ 181
Using encrypted archives............. 132
ustar archive format 138
UUENCOAE . .vvvve e 76

vV

v7 archive format 138
VCS, excluding files................... 98
Verbose operation..................... 49
Verifying a write operation........... 170
Verifying the currency of an archive ... 65
version control system, excluding files.. 98
Version of the tar program............ 47
version-control Emacs variable...... 76
VERSION_CONTROLcoovvun... 76
volno file............. .. i 164
VOLNO_FILE....... ..ottt 85
Volume label, listing 168
Volume number file 164

\%\%

week in date strings.................. 123
Where is the archive? 93
Working directory, specifying......... 114
Writing extracted files to standard output

.................................. 72
Writing new archives.................. 93

XAV .« ittt 54, 56
XLIST ..o 85
XSPATSE t vttt 144

Appendix I: Index

Y

year in date strings

Short Contents

SFHOQTEHOQE RS © %Ok W

Introduction e 1
Tutorial Introduction totar 5
Invoking GNU tar i 21
GNU tar Operationsc.vvveiie i eeiie e 57
Performing Backups and Restoring Files.................. 79
Choosing Files and Names for tar....................... 93
Date input formats 119
Controlling the Archive Format........................ 127
Tapes and Other Archive Media 149
Reliability and Security 173
CRanges . . . v vttt e 177
Configuring Help Summary 179
Fixing Snapshot Files. 183
Tar Internals 185
Genfile 201
Free Software Needs Free Documentation 207
GNU Free Documentation License. 209
Index of Command Line Options. 219

iii

Table of Contents

1 Introduction.................., 1
1.1 What this Book Containsc i, 1
1.2 Some Definitionscoouiii 1
1.3 What tar Doeso 2
1.4 How tar Archives are Named oo . 3
1.5 GNU tar Authors........ ..ot 3
1.6 Reporting bugs or suggestions..............ooiiiiiiiiiii.. 4

2 Tutorial Introduction to tar................... 5
2.1 Assumptions this Tutorial Makes............ 5
2.2 Stylistic Conventionso.ueiiiiiiiiiii .. 6
2.3 Basic tar Operations and Options............ ..., 6
2.4 The Three Most Frequently Used Operations 7
2.5 Two Frequently Used Options............ooiiiiiiiiieinien.n. 7

The ‘==file’ Optionuuiiiii e 7
The ‘—=verbose’ Option..........ouuiiiiiii i, 8
Getting Help: Using the ‘~—=help’ Option........................ 10
2.6 How to Create Archives......... ..., 10
2.6.1 Preparing a Practice Directory for Examples.............. 11
2.6.2 Creating the Archive......... 11
2.6.3 Running ‘--create’ with ‘~-verbose’.................... 12
2.6.4 Short Forms with ‘create’ il 13
2.6.5 Archiving Directories.c.ooiiiiiiiiiiiii .. 14
2.7 How to List Archives.......... ..., 15
Listing the Contents of a Stored Directory....................... 16
2.8 How to Extract Members from an Archive..................... 17
2.8.1 Extracting an Entire Archive............ 17
2.8.2 Extracting Specific Files.......o L 17
2.8.3 [Extracting Files that are Directories...................... 18
2.8.4 Extracting Archives from Untrusted Sources.............. 19
2.8.5 Commands That Will Fail 19
2.9 Going Further Ahead in this Manual 20

3 Invoking GNU tar..................cooviin.... 21
3.1 General Synopsis of tar..........cooiiiiiiiiii i 21
3.2 Using tar Optionsouutttiie e 23
3.3 The Three Option Styles. 24

3.3.1 Long Option Style. 24
3.3.2 Short Option Style...... ..o, 25
3.3.3 Old Option Style......cooouiiiiiiii i 26

3.3.4 Mixing Option Styles. ..., 27

v

GNU tar 1.26

3.4 All tar Options. 28
3.4. 1 Operationsouuuet e 28
3.4.2 tar OptionS.utt i e 29
3.4.3 Short Options Cross Reference, 46

3.5 GNU tar documentation, 47

3.6 Obtaining GNU tar default values............................. 49

3.7 Checking tar Progresseeuee et 49

3.8 Checkpoints.ot e 52

3.9 Controlling Warning Messages.ouuuiiiiiienniieaan. 54

3.10 Asking for Confirmation During Operations 56

GNU tar Operations 57

4.1 Basic GNU tar Operationsooiiiiiiiiiieniieann. 57

4.2 Advanced GNU tar Operations..............ccoeiiiienennnno... 58
4.2.1 The Five Advanced tar Operations....................... 58
4.2.2 How to Add Files to Existing Archives: ‘--append’....... 59

4.2.2.1 Appending Files to an Archive....................... 60
4.2.2.2 Multiple Members with the Same Name 61
4.2.3 Updating an Archive.........o i 62
4.2.3.1 How to Update an Archive Using ‘--update’......... 62
4.2.4 Combining Archives with ‘--concatenate’ 63
4.2.5 Removing Archive Members Using ‘--delete’............ 64
4.2.6 Comparing Archive Members with the File System........ 65

4.3 Options Used by ‘—=create’...... ..., 65
4.3.1 Overriding File Metadata..................c..ooooiin, 65
4.3.2 Ignore Fail Reado i i 67

4.4 Options Used by ‘——extract’ ... 67
4.4.1 Options to Help Read Archives........................... 67

Reading Full Recordso it 68
Ignoring Blocks of Zeros. ... 68
4.4.2 Changing How tar Writes Files, 68
Options Controlling the Overwriting of Existing Files......... 68
Overwrite Old Files...... ..o, 69
Keep Old Files. ... 69
Keep Newer Files ... 70
Unlink First ... 70
Recursive Unlink....... ... o i 70
Setting Data Modification Times................, 70
Setting Access Permissions.............cooooviiiiiiiiii... 70
Directory Modification Times and Permissions................ 71
Writing to Standard Output i il 72
Writing to an External Program....................... 72
Removing Files ... 74
4.4.3 Coping with Scarce Resources............................ e
Starting File. ... e

Same Order. 75

4.5 Backup options ... 75
4.6 Notable tar Usagescoovuuiiiiiiiiiiiiiiiii .. 76
4.7 Looking Ahead: The Rest of this Manual...................... 7

Performing Backups and Restoring Files.... 79

5.1 Using tar to Perform Full Dumps..................... 79
5.2 Using tar to Perform Incremental Dumps..................... 80
5.3 Levels of Backups ... 83
5.4 Setting Parameters for Backups and Restoration............... 84
5.4.1 General-Purpose Variables................., 84
5.4.2 Magnetic Tape Control.......... ..., 86
5.4.3 User Hookso 87
5.4.4 An Example Text of ‘Backup-specs’cc..o.... 88
5.5 Using the Backup Scripts ... 88
5.6 Using the Restore Script i 90
Choosing Files and Names for tar........... 93
6.1 Choosing and Naming Archive Files........................... 93
6.2 Selecting Archive Members...................o i i, 94
6.3 Reading Names from a File............o .. 95
6.3.1 NUL-Terminated File Names 97
6.4 Excluding Some Fileso i i 98
Problems with Using the exclude Options 101
6.5 Wildcards Patterns and Matching............................ 101
Controlling Pattern-Matching 102
6.6 Quoting Member Names ..., 104
6.7 Modifying File and Member Names 108
6.8 Operating Only on New Files oL, 111
6.9 Descending into Directories, 113
6.10 Crossing File System Boundaries............................ 114
6.10.1 Changing the Working Directory 114
6.10.2 Absolute File Names. 115
Date input formats........................... 119
7.1 General date Syntax..........cooueiiiiniiiiiiiiiiin 119
7.2 Calendar date items. ...t 120
7.3 Time of day items ... 121
7.4 Time zone IbemMSo oo e 122
7.5 Dayof week itemso 123
7.6 Relative items in date strings il 123
7.7 Pure numbers in date strings............. ...l 124
7.8 Seconds since the Epoch 124
7.9 Specifying time zone rules........... i i 125

7.10 Authors of parse_datetime 126

vi GNU tar 1.26

8 Controlling the Archive Format............. 127
8.1 Using Less Space through Compression....................... 128
8.1.1 Creating and Reading Compressed Archives............. 128
8.1.1.1 Using lbzip2 with GNU tar......................... 132
8.1.2 Archiving Sparse Files..........o 132
8.2 Handling File Attributes.......... i i, 134
8.3 Making tar Archives More Portable.......................... 136
8.3.1 Portable Names..............ooiiiiiiiiiiiiiiii 136
8.3.2 Symbolic Links....... ... 136
8.3.3 Hard Links....... ..o i 137
8.3.4 Old V7 Archiveso 138
8.3.5 Ustar Archive Formato ... 138
8.3.6 GNU and old GNU tar format........................... 139
8.3.7 GNU tar and POSIX tar.......ccvviiiiiiniinneninneann. 139
8.3.7.1 Controlling Extended Header Keywords............. 139
8.3.8 Checksumming Problems.............o . 141
8.3.9 Large or Negative Values................................ 142
8.3.10 How to Extract GNU-Specific Data Using Other tar
Implementations.o 142
8.3.10.1 Extracting Members Split Between Volumes....... 143
8.3.10.2 Extracting Sparse Members 144
8.4 Comparison of tar and cpio....... ..., 147
9 Tapes and Other Archive Media............ 149
9.1 Device Selection and Switching............ 149
9.2 Remote Tape Serverouuieiiiiieiiiie i, 151
9.3 Some Common Problems and their Solutions................. 153
9.4 BlocKing . ..o 153
9.4.1 Format Variations............... ..o i, 155
9.4.2 The Blocking Factor of an Archive 155
9.5 Many Archives on One Tape ..., 160
9.5.1 Tape Positions and Tape Marks......................... 161
9.5.2 Themt Utilityooiii e 162
9.6 Using Multiple Tapes ... 162
9.6.1 Archives Longer than One Tape or Disk 163
9.6.2 Tape Fileso 167
9.6.3 Concatenate Volumes into a Single Archive.............. 167
9.7 Including a Label in the Archive 167
9.8 Verifying Data as It is Stored L. 170

9.9 Write Protection..... ... 171

10 Reliability and Security 173
10.1 Reliability 173
10.1.1 Permissions Problems................ ..o i 173
10.1.2 Data Corruption and Repair 173
10.1.3 Race conditions...........ccooiiiiiiiiiiiiiiiiiiaaa... 173

10.2 SeCUTIY - v vv et 174
10.2.1 Privacy « o oo e e e 174
10.2.2 Integrityo.ooiii 175
10.2.3 Dealing with Live Untrusted Data...................... 175
10.2.4 Security Rules of Thumb.........., 176
Appendix A Changes.......................... 177

Appendix B Configuring Help Summary 179

Appendix C Fixing Snapshot Files........... 183
Appendix D Tar Internals................... .. 185
Basic Tar Format 185
GNU Extensions to the Archive Format...............coouvi.... 193
Storing Sparse Files. ... 194
Old GNU Format . ..o oot e 194
PAX Format, Versions 0.0 and 0.1.......................oo... 195
PAX Format, Version 1.0....... ..o 197
Format of the Incremental Snapshot Files 197
Dumpdir. . ..o 199
Appendix E Genfile........................ ... 201
E.1 Generate Mode. 201
E.2 Status Mode ... 203
E.3 ExecMode. ... 204
Appendix F Free Software Needs Free
Documentation............. 207

Appendix G GNU Free Documentation License
... 209

Appendix H Index of Command Line Options
... 219

	Introduction
	What this Book Contains
	Some Definitions
	What tar Does
	How tar Archives are Named
	GNU tar Authors
	Reporting bugs or suggestions

	Tutorial Introduction to tar
	Assumptions this Tutorial Makes
	Stylistic Conventions
	Basic tar Operations and Options
	The Three Most Frequently Used Operations
	Two Frequently Used Options
	The --file Option
	The --verbose Option
	Getting Help: Using the --help Option

	How to Create Archives
	Preparing a Practice Directory for Examples
	Creating the Archive
	Running --create with --verbose
	Short Forms with create
	Archiving Directories

	How to List Archives
	Listing the Contents of a Stored Directory

	How to Extract Members from an Archive
	Extracting an Entire Archive
	Extracting Specific Files
	Extracting Files that are Directories
	Extracting Archives from Untrusted Sources
	Commands That Will Fail

	Going Further Ahead in this Manual

	Invoking GNU tar
	General Synopsis of tar
	Using tar Options
	The Three Option Styles
	Long Option Style
	Short Option Style
	Old Option Style
	Mixing Option Styles

	All tar Options
	Operations
	tar Options
	Short Options Cross Reference

	GNU tar documentation
	Obtaining GNU tar default values
	Checking tar progress
	Checkpoints
	Controlling Warning Messages
	Asking for Confirmation During Operations

	GNU tar Operations
	Basic GNU tar Operations
	Advanced GNU tar Operations
	The Five Advanced tar Operations
	How to Add Files to Existing Archives: --append
	Appending Files to an Archive
	Multiple Members with the Same Name

	Updating an Archive
	How to Update an Archive Using --update

	Combining Archives with --concatenate
	Removing Archive Members Using --delete
	Comparing Archive Members with the File System

	Options Used by --create
	Overriding File Metadata
	Ignore Fail Read

	Options Used by --extract
	Options to Help Read Archives
	Reading Full Records
	Ignoring Blocks of Zeros

	Changing How tar Writes Files
	Options Controlling the Overwriting of Existing Files
	Overwrite Old Files
	Keep Old Files
	Keep Newer Files
	Unlink First
	Recursive Unlink
	Setting Data Modification Times
	Setting Access Permissions
	Directory Modification Times and Permissions
	Writing to Standard Output
	Writing to an External Program
	Removing Files

	Coping with Scarce Resources
	Starting File
	Same Order

	Backup options
	Notable tar Usages
	Looking Ahead: The Rest of this Manual

	Performing Backups and Restoring Files
	Using tar to Perform Full Dumps
	Using tar to Perform Incremental Dumps
	Levels of Backups
	Setting Parameters for Backups and Restoration
	General-Purpose Variables
	Magnetic Tape Control
	User Hooks
	An Example Text of Backup-specs

	Using the Backup Scripts
	Using the Restore Script

	Choosing Files and Names for tar
	Choosing and Naming Archive Files
	Selecting Archive Members
	Reading Names from a File
	NUL-Terminated File Names

	Excluding Some Files
	Problems with Using the exclude Options

	Wildcards Patterns and Matching
	Controlling Pattern-Matching

	Quoting Member Names
	Modifying File and Member Names
	Operating Only on New Files
	Descending into Directories
	Crossing File System Boundaries
	Changing the Working Directory
	Absolute File Names

	Date input formats
	General date syntax
	Calendar date items
	Time of day items
	Time zone items
	Day of week items
	Relative items in date strings
	Pure numbers in date strings
	Seconds since the Epoch
	Specifying time zone rules
	Authors of parse_datetime

	Controlling the Archive Format
	Using Less Space through Compression
	Creating and Reading Compressed Archives
	Using lbzip2 with GNU tar.

	Archiving Sparse Files

	Handling File Attributes
	Making tar Archives More Portable
	Portable Names
	Symbolic Links
	Hard Links
	Old V7 Archives
	Ustar Archive Format
	GNU and old GNU tar format
	GNU tar and POSIX tar
	Controlling Extended Header Keywords

	Checksumming Problems
	Large or Negative Values
	How to Extract GNU-Specific Data Using Other tar Implementations
	Extracting Members Split Between Volumes
	Extracting Sparse Members

	Comparison of tar and cpio

	Tapes and Other Archive Media
	Device Selection and Switching
	Remote Tape Server
	Some Common Problems and their Solutions
	Blocking
	Format Variations
	The Blocking Factor of an Archive

	Many Archives on One Tape
	Tape Positions and Tape Marks
	The mt Utility

	Using Multiple Tapes
	Archives Longer than One Tape or Disk
	Tape Files
	Concatenate Volumes into a Single Archive

	Including a Label in the Archive
	Verifying Data as It is Stored
	Write Protection

	Reliability and Security
	Reliability
	Permissions Problems
	Data Corruption and Repair
	Race conditions

	Security
	Privacy
	Integrity
	Dealing with Live Untrusted Data
	Security Rules of Thumb

	Changes
	Configuring Help Summary
	Fixing Snapshot Files
	Tar Internals
	Basic Tar Format
	GNU Extensions to the Archive Format
	Storing Sparse Files
	Old GNU Format
	PAX Format, Versions 0.0 and 0.1
	PAX Format, Version 1.0

	Format of the Incremental Snapshot Files
	Dumpdir

	Genfile
	Generate Mode
	Status Mode
	Exec Mode

	Free Software Needs Free Documentation
	GNU Free Documentation License
	Index of Command Line Options
	Index

