

 Writing Programs with NCURSES

 by Eric S. Raymond and Zeyd M. Ben-Halim
 updates since release 1.9.9e by Thomas Dickey

 Contents

 * Introduction
 + A Brief History of Curses
 + Scope of This Document
 + Terminology
 * The Curses Library
 + An Overview of Curses
 o Compiling Programs using Curses
 o Updating the Screen
 o Standard Windows and Function Naming Conventions
 o Variables
 + Using the Library
 o Starting up
 o Output
 o Input
 o Using Forms Characters
 o Character Attributes and Color
 o Mouse Interfacing
 o Finishing Up
 + Function Descriptions
 o Initialization and Wrapup
 o Causing Output to the Terminal
 o Low-Level Capability Access
 o Debugging
 + Hints, Tips, and Tricks
 o Some Notes of Caution
 o Temporarily Leaving ncurses Mode
 o Using ncurses under xterm
 o Handling Multiple Terminal Screens
 o Testing for Terminal Capabilities
 o Tuning for Speed
 o Special Features of ncurses
 + Compatibility with Older Versions
 o Refresh of Overlapping Windows
 o Background Erase
 + XSI Curses Conformance
 * The Panels Library
 + Compiling With the Panels Library
 + Overview of Panels
 + Panels, Input, and the Standard Screen
 + Hiding Panels
 + Miscellaneous Other Facilities
 * The Menu Library
 + Compiling with the menu Library
 + Overview of Menus
 + Selecting items
 + Menu Display
 + Menu Windows
 + Processing Menu Input
 + Miscellaneous Other Features

 * The Forms Library
 + Compiling with the forms Library
 + Overview of Forms
 + Creating and Freeing Fields and Forms
 + Fetching and Changing Field Attributes
 o Fetching Size and Location Data
 o Changing the Field Location
 o The Justification Attribute
 o Field Display Attributes
 o Field Option Bits
 o Field Status
 o Field User Pointer
 + Variable-Sized Fields
 + Field Validation
 o TYPE_ALPHA
 o TYPE_ALNUM
 o TYPE_ENUM
 o TYPE_INTEGER
 o TYPE_NUMERIC
 o TYPE_REGEXP
 + Direct Field Buffer Manipulation
 + Attributes of Forms
 + Control of Form Display
 + Input Processing in the Forms Driver
 o Page Navigation Requests
 o Inter-Field Navigation Requests
 o Intra-Field Navigation Requests
 o Scrolling Requests
 o Field Editing Requests
 o Order Requests
 o Application Commands
 + Field Change Hooks
 + Field Change Commands
 + Form Options
 + Custom Validation Types
 o Union Types
 o New Field Types
 o Validation Function Arguments
 o Order Functions For Custom Types
 o Avoiding Problems

 Introduction

 This document is an introduction to programming with curses. It is not
 an exhaustive reference for the curses Application Programming
 Interface (API); that role is filled by the curses manual pages.
 Rather, it is intended to help C programmers ease into using the
 package.

 This document is aimed at C applications programmers not yet
 specifically familiar with ncurses. If you are already an experienced
 curses programmer, you should nevertheless read the sections on Mouse
 Interfacing, Debugging, Compatibility with Older Versions, and Hints,
 Tips, and Tricks. These will bring you up to speed on the special
 features and quirks of the ncurses implementation. If you are not so
 experienced, keep reading.

 The curses package is a subroutine library for terminal-independent
 screen-painting and input-event handling which presents a high level
 screen model to the programmer, hiding differences between terminal
 types and doing automatic optimization of output to change one screen
 full of text into another. Curses uses terminfo, which is a database
 format that can describe the capabilities of thousands of different
 terminals.

 The curses API may seem something of an archaism on UNIX desktops
 increasingly dominated by X, Motif, and Tcl/Tk. Nevertheless, UNIX
 still supports tty lines and X supports xterm(1); the curses API has
 the advantage of (a) back-portability to character-cell terminals, and
 (b) simplicity. For an application that does not require bit-mapped
 graphics and multiple fonts, an interface implementation using curses
 will typically be a great deal simpler and less expensive than one
 using an X toolkit.

A Brief History of Curses

 Historically, the first ancestor of curses was the routines written to
 provide screen-handling for the game rogue; these used the
 already-existing termcap database facility for describing terminal
 capabilities. These routines were abstracted into a documented library
 and first released with the early BSD UNIX versions.

 System III UNIX from Bell Labs featured a rewritten and much-improved
 curses library. It introduced the terminfo format. Terminfo is based
 on Berkeley's termcap database, but contains a number of improvements
 and extensions. Parameterized capabilities strings were introduced,
 making it possible to describe multiple video attributes, and colors
 and to handle far more unusual terminals than possible with termcap.
 In the later AT&T System V releases, curses evolved to use more
 facilities and offer more capabilities, going far beyond BSD curses in
 power and flexibility.

Scope of This Document

 This document describes ncurses, a free implementation of the System V
 curses API with some clearly marked extensions. It includes the
 following System V curses features:
 * Support for multiple screen highlights (BSD curses could only
 handle one `standout' highlight, usually reverse-video).
 * Support for line- and box-drawing using forms characters.
 * Recognition of function keys on input.
 * Color support.
 * Support for pads (windows of larger than screen size on which the
 screen or a subwindow defines a viewport).

 Also, this package makes use of the insert and delete line and
 character features of terminals so equipped, and determines how to
 optimally use these features with no help from the programmer. It
 allows arbitrary combinations of video attributes to be displayed,
 even on terminals that leave ``magic cookies'' on the screen to mark
 changes in attributes.

 The ncurses package can also capture and use event reports from a

 mouse in some environments (notably, xterm under the X window system).
 This document includes tips for using the mouse.

 The ncurses package was originated by Pavel Curtis. The original
 maintainer of this package is Zeyd Ben-Halim <zmbenhal@netcom.com>.
 Eric S. Raymond <esr@snark.thyrsus.com> wrote many of the new features
 in versions after 1.8.1 and wrote most of this introduction. Jürgen
 Pfeifer wrote all of the menu and forms code as well as the Ada95
 binding. Ongoing work is being done by Thomas Dickey (maintainer).
 Contact the current maintainers at bug-ncurses@gnu.org.

 This document also describes the panels extension library, similarly
 modeled on the SVr4 panels facility. This library allows you to
 associate backing store with each of a stack or deck of overlapping
 windows, and provides operations for moving windows around in the
 stack that change their visibility in the natural way (handling window
 overlaps).

 Finally, this document describes in detail the menus and forms
 extension libraries, also cloned from System V, which support easy
 construction and sequences of menus and fill-in forms.

Terminology

 In this document, the following terminology is used with reasonable
 consistency:

 window
 A data structure describing a sub-rectangle of the screen
 (possibly the entire screen). You can write to a window as
 though it were a miniature screen, scrolling independently of
 other windows on the physical screen.

 screens
 A subset of windows which are as large as the terminal screen,
 i.e., they start at the upper left hand corner and encompass
 the lower right hand corner. One of these, stdscr, is
 automatically provided for the programmer.

 terminal screen
 The package's idea of what the terminal display currently looks
 like, i.e., what the user sees now. This is a special screen.

 The Curses Library

An Overview of Curses

 Compiling Programs using Curses

 In order to use the library, it is necessary to have certain types and
 variables defined. Therefore, the programmer must have a line:
 #include <curses.h>

 at the top of the program source. The screen package uses the Standard
 I/O library, so <curses.h> includes <stdio.h>. <curses.h> also
 includes <termios.h>, <termio.h>, or <sgtty.h> depending on your
 system. It is redundant (but harmless) for the programmer to do these

 includes, too. In linking with curses you need to have -lncurses in
 your LDFLAGS or on the command line. There is no need for any other
 libraries.

 Updating the Screen

 In order to update the screen optimally, it is necessary for the
 routines to know what the screen currently looks like and what the
 programmer wants it to look like next. For this purpose, a data type
 (structure) named WINDOW is defined which describes a window image to
 the routines, including its starting position on the screen (the (y,
 x) coordinates of the upper left hand corner) and its size. One of
 these (called curscr, for current screen) is a screen image of what
 the terminal currently looks like. Another screen (called stdscr, for
 standard screen) is provided by default to make changes on.

 A window is a purely internal representation. It is used to build and
 store a potential image of a portion of the terminal. It doesn't bear
 any necessary relation to what is really on the terminal screen; it's
 more like a scratchpad or write buffer.

 To make the section of physical screen corresponding to a window
 reflect the contents of the window structure, the routine refresh()
 (or wrefresh() if the window is not stdscr) is called.

 A given physical screen section may be within the scope of any number
 of overlapping windows. Also, changes can be made to windows in any
 order, without regard to motion efficiency. Then, at will, the
 programmer can effectively say ``make it look like this,'' and let the
 package implementation determine the most efficient way to repaint the
 screen.

 Standard Windows and Function Naming Conventions

 As hinted above, the routines can use several windows, but two are
 automatically given: curscr, which knows what the terminal looks like,
 and stdscr, which is what the programmer wants the terminal to look
 like next. The user should never actually access curscr directly.
 Changes should be made to through the API, and then the routine
 refresh() (or wrefresh()) called.

 Many functions are defined to use stdscr as a default screen. For
 example, to add a character to stdscr, one calls addch() with the
 desired character as argument. To write to a different window. use the
 routine waddch() (for `w'indow-specific addch()) is provided. This
 convention of prepending function names with a `w' when they are to be
 applied to specific windows is consistent. The only routines which do
 not follow it are those for which a window must always be specified.

 In order to move the current (y, x) coordinates from one point to
 another, the routines move() and wmove() are provided. However, it is
 often desirable to first move and then perform some I/O operation. In
 order to avoid clumsiness, most I/O routines can be preceded by the
 prefix 'mv' and the desired (y, x) coordinates prepended to the
 arguments to the function. For example, the calls
 move(y, x);
 addch(ch);

 can be replaced by
 mvaddch(y, x, ch);

 and
 wmove(win, y, x);
 waddch(win, ch);

 can be replaced by
 mvwaddch(win, y, x, ch);

 Note that the window description pointer (win) comes before the added
 (y, x) coordinates. If a function requires a window pointer, it is
 always the first parameter passed.

 Variables

 The curses library sets some variables describing the terminal
 capabilities.
 type name description
 --
 int LINES number of lines on the terminal
 int COLS number of columns on the terminal

 The curses.h also introduces some #define constants and types of
 general usefulness:

 bool
 boolean type, actually a `char' (e.g., bool doneit;)

 TRUE
 boolean `true' flag (1).

 FALSE
 boolean `false' flag (0).

 ERR
 error flag returned by routines on a failure (-1).

 OK
 error flag returned by routines when things go right.

Using the Library

 Now we describe how to actually use the screen package. In it, we
 assume all updating, reading, etc. is applied to stdscr. These
 instructions will work on any window, providing you change the
 function names and parameters as mentioned above.

 Here is a sample program to motivate the discussion:
#include <curses.h>
#include <signal.h>

static void finish(int sig);

int
main(int argc, char *argv[])

{
 int num = 0;

 /* initialize your non-curses data structures here */

 (void) signal(SIGINT, finish); /* arrange interrupts to terminate */

 (void) initscr(); /* initialize the curses library */
 keypad(stdscr, TRUE); /* enable keyboard mapping */
 (void) nonl(); /* tell curses not to do NL->CR/NL on output */
 (void) cbreak(); /* take input chars one at a time, no wait for \n */
 (void) echo(); /* echo input - in color */

 if (has_colors())
 {
 start_color();

 /*
 * Simple color assignment, often all we need. Color pair 0 cannot
 * be redefined. This example uses the same value for the color
 * pair as for the foreground color, though of course that is not
 * necessary:
 */
 init_pair(1, COLOR_RED, COLOR_BLACK);
 init_pair(2, COLOR_GREEN, COLOR_BLACK);
 init_pair(3, COLOR_YELLOW, COLOR_BLACK);
 init_pair(4, COLOR_BLUE, COLOR_BLACK);
 init_pair(5, COLOR_CYAN, COLOR_BLACK);
 init_pair(6, COLOR_MAGENTA, COLOR_BLACK);
 init_pair(7, COLOR_WHITE, COLOR_BLACK);
 }

 for (;;)
 {
 int c = getch(); /* refresh, accept single keystroke of input */
 attrset(COLOR_PAIR(num % 8));
 num++;

 /* process the command keystroke */
 }

 finish(0); /* we're done */
}

static void finish(int sig)
{
 endwin();

 /* do your non-curses wrapup here */

 exit(0);
}

 Starting up

 In order to use the screen package, the routines must know about
 terminal characteristics, and the space for curscr and stdscr must be

 allocated. These function initscr() does both these things. Since it
 must allocate space for the windows, it can overflow memory when
 attempting to do so. On the rare occasions this happens, initscr()
 will terminate the program with an error message. initscr() must
 always be called before any of the routines which affect windows are
 used. If it is not, the program will core dump as soon as either
 curscr or stdscr are referenced. However, it is usually best to wait
 to call it until after you are sure you will need it, like after
 checking for startup errors. Terminal status changing routines like
 nl() and cbreak() should be called after initscr().

 Once the screen windows have been allocated, you can set them up for
 your program. If you want to, say, allow a screen to scroll, use
 scrollok(). If you want the cursor to be left in place after the last
 change, use leaveok(). If this isn't done, refresh() will move the
 cursor to the window's current (y, x) coordinates after updating it.

 You can create new windows of your own using the functions newwin(),
 derwin(), and subwin(). The routine delwin() will allow you to get rid
 of old windows. All the options described above can be applied to any
 window.

 Output

 Now that we have set things up, we will want to actually update the
 terminal. The basic functions used to change what will go on a window
 are addch() and move(). addch() adds a character at the current (y, x)
 coordinates. move() changes the current (y, x) coordinates to whatever
 you want them to be. It returns ERR if you try to move off the window.
 As mentioned above, you can combine the two into mvaddch() to do both
 things at once.

 The other output functions, such as addstr() and printw(), all call
 addch() to add characters to the window.

 After you have put on the window what you want there, when you want
 the portion of the terminal covered by the window to be made to look
 like it, you must call refresh(). In order to optimize finding
 changes, refresh() assumes that any part of the window not changed
 since the last refresh() of that window has not been changed on the
 terminal, i.e., that you have not refreshed a portion of the terminal
 with an overlapping window. If this is not the case, the routine
 touchwin() is provided to make it look like the entire window has been
 changed, thus making refresh() check the whole subsection of the
 terminal for changes.

 If you call wrefresh() with curscr as its argument, it will make the
 screen look like curscr thinks it looks like. This is useful for
 implementing a command which would redraw the screen in case it get
 messed up.

 Input

 The complementary function to addch() is getch() which, if echo is
 set, will call addch() to echo the character. Since the screen package
 needs to know what is on the terminal at all times, if characters are
 to be echoed, the tty must be in raw or cbreak mode. Since initially

 the terminal has echoing enabled and is in ordinary ``cooked'' mode,
 one or the other has to changed before calling getch(); otherwise, the
 program's output will be unpredictable.

 When you need to accept line-oriented input in a window, the functions
 wgetstr() and friends are available. There is even a wscanw() function
 that can do scanf()(3)-style multi-field parsing on window input.
 These pseudo-line-oriented functions turn on echoing while they
 execute.

 The example code above uses the call keypad(stdscr, TRUE) to enable
 support for function-key mapping. With this feature, the getch() code
 watches the input stream for character sequences that correspond to
 arrow and function keys. These sequences are returned as
 pseudo-character values. The #define values returned are listed in the
 curses.h The mapping from sequences to #define values is determined by
 key_ capabilities in the terminal's terminfo entry.

 Using Forms Characters

 The addch() function (and some others, including box() and border())
 can accept some pseudo-character arguments which are specially defined
 by ncurses. These are #define values set up in the curses.h header;
 see there for a complete list (look for the prefix ACS_).

 The most useful of the ACS defines are the forms-drawing characters.
 You can use these to draw boxes and simple graphs on the screen. If
 the terminal does not have such characters, curses.h will map them to
 a recognizable (though ugly) set of ASCII defaults.

 Character Attributes and Color

 The ncurses package supports screen highlights including standout,
 reverse-video, underline, and blink. It also supports color, which is
 treated as another kind of highlight.

 Highlights are encoded, internally, as high bits of the
 pseudo-character type (chtype) that curses.h uses to represent the
 contents of a screen cell. See the curses.h header file for a complete
 list of highlight mask values (look for the prefix A_).

 There are two ways to make highlights. One is to logical-or the value
 of the highlights you want into the character argument of an addch()
 call, or any other output call that takes a chtype argument.

 The other is to set the current-highlight value. This is logical-or'ed
 with any highlight you specify the first way. You do this with the
 functions attron(), attroff(), and attrset(); see the manual pages for
 details. Color is a special kind of highlight. The package actually
 thinks in terms of color pairs, combinations of foreground and
 background colors. The sample code above sets up eight color pairs,
 all of the guaranteed-available colors on black. Note that each color
 pair is, in effect, given the name of its foreground color. Any other
 range of eight non-conflicting values could have been used as the
 first arguments of the init_pair() values.

 Once you've done an init_pair() that creates color-pair N, you can use

 COLOR_PAIR(N) as a highlight that invokes that particular color
 combination. Note that COLOR_PAIR(N), for constant N, is itself a
 compile-time constant and can be used in initializers.

 Mouse Interfacing

 The ncurses library also provides a mouse interface.

 NOTE: this facility is specific to ncurses, it is not part of
 either the XSI Curses standard, nor of System V Release 4, nor BSD
 curses. System V Release 4 curses contains code with similar
 interface definitions, however it is not documented. Other than by
 disassembling the library, we have no way to determine exactly how
 that mouse code works. Thus, we recommend that you wrap
 mouse-related code in an #ifdef using the feature macro
 NCURSES_MOUSE_VERSION so it will not be compiled and linked on
 non-ncurses systems.

 Presently, mouse event reporting works in the following environments:
 * xterm and similar programs such as rxvt.
 * Linux console, when configured with gpm(1), Alessandro Rubini's
 mouse server.
 * FreeBSD sysmouse (console)
 * OS/2 EMX

 The mouse interface is very simple. To activate it, you use the
 function mousemask(), passing it as first argument a bit-mask that
 specifies what kinds of events you want your program to be able to
 see. It will return the bit-mask of events that actually become
 visible, which may differ from the argument if the mouse device is not
 capable of reporting some of the event types you specify.

 Once the mouse is active, your application's command loop should watch
 for a return value of KEY_MOUSE from wgetch(). When you see this, a
 mouse event report has been queued. To pick it off the queue, use the
 function getmouse() (you must do this before the next wgetch(),
 otherwise another mouse event might come in and make the first one
 inaccessible).

 Each call to getmouse() fills a structure (the address of which you'll
 pass it) with mouse event data. The event data includes zero-origin,
 screen-relative character-cell coordinates of the mouse pointer. It
 also includes an event mask. Bits in this mask will be set,
 corresponding to the event type being reported.

 The mouse structure contains two additional fields which may be
 significant in the future as ncurses interfaces to new kinds of
 pointing device. In addition to x and y coordinates, there is a slot
 for a z coordinate; this might be useful with touch-screens that can
 return a pressure or duration parameter. There is also a device ID
 field, which could be used to distinguish between multiple pointing
 devices.

 The class of visible events may be changed at any time via
 mousemask(). Events that can be reported include presses, releases,
 single-, double- and triple-clicks (you can set the maximum
 button-down time for clicks). If you don't make clicks visible, they

 will be reported as press-release pairs. In some environments, the
 event mask may include bits reporting the state of shift, alt, and
 ctrl keys on the keyboard during the event.

 A function to check whether a mouse event fell within a given window
 is also supplied. You can use this to see whether a given window
 should consider a mouse event relevant to it.

 Because mouse event reporting will not be available in all
 environments, it would be unwise to build ncurses applications that
 require the use of a mouse. Rather, you should use the mouse as a
 shortcut for point-and-shoot commands your application would normally
 accept from the keyboard. Two of the test games in the ncurses
 distribution (bs and knight) contain code that illustrates how this
 can be done.

 See the manual page curs_mouse(3X) for full details of the
 mouse-interface functions.

 Finishing Up

 In order to clean up after the ncurses routines, the routine endwin()
 is provided. It restores tty modes to what they were when initscr()
 was first called, and moves the cursor down to the lower-left corner.
 Thus, anytime after the call to initscr, endwin() should be called
 before exiting.

Function Descriptions

 We describe the detailed behavior of some important curses functions
 here, as a supplement to the manual page descriptions.

 Initialization and Wrapup

 initscr()
 The first function called should almost always be initscr().
 This will determine the terminal type and initialize curses
 data structures. initscr() also arranges that the first call to
 refresh() will clear the screen. If an error occurs a message
 is written to standard error and the program exits. Otherwise
 it returns a pointer to stdscr. A few functions may be called
 before initscr (slk_init(), filter(), ripofflines(), use_env(),
 and, if you are using multiple terminals, newterm().)

 endwin()
 Your program should always call endwin() before exiting or
 shelling out of the program. This function will restore tty
 modes, move the cursor to the lower left corner of the screen,
 reset the terminal into the proper non-visual mode. Calling
 refresh() or doupdate() after a temporary escape from the
 program will restore the ncurses screen from before the escape.

 newterm(type, ofp, ifp)
 A program which outputs to more than one terminal should use
 newterm() instead of initscr(). newterm() should be called once
 for each terminal. It returns a variable of type SCREEN * which
 should be saved as a reference to that terminal. (NOTE: a

 SCREEN variable is not a screen in the sense we are describing
 in this introduction, but a collection of parameters used to
 assist in optimizing the display.) The arguments are the type
 of the terminal (a string) and FILE pointers for the output and
 input of the terminal. If type is NULL then the environment
 variable $TERM is used. endwin() should called once at wrapup
 time for each terminal opened using this function.

 set_term(new)
 This function is used to switch to a different terminal
 previously opened by newterm(). The screen reference for the
 new terminal is passed as the parameter. The previous terminal
 is returned by the function. All other calls affect only the
 current terminal.

 delscreen(sp)
 The inverse of newterm(); deallocates the data structures
 associated with a given SCREEN reference.

 Causing Output to the Terminal

 refresh() and wrefresh(win)
 These functions must be called to actually get any output on
 the terminal, as other routines merely manipulate data
 structures. wrefresh() copies the named window to the physical
 terminal screen, taking into account what is already there in
 order to do optimizations. refresh() does a refresh of
 stdscr(). Unless leaveok() has been enabled, the physical
 cursor of the terminal is left at the location of the window's
 cursor.

 doupdate() and wnoutrefresh(win)
 These two functions allow multiple updates with more efficiency
 than wrefresh. To use them, it is important to understand how
 curses works. In addition to all the window structures, curses
 keeps two data structures representing the terminal screen: a
 physical screen, describing what is actually on the screen, and
 a virtual screen, describing what the programmer wants to have
 on the screen. wrefresh works by first copying the named window
 to the virtual screen (wnoutrefresh()), and then calling the
 routine to update the screen (doupdate()). If the programmer
 wishes to output several windows at once, a series of calls to
 wrefresh will result in alternating calls to wnoutrefresh() and
 doupdate(), causing several bursts of output to the screen. By
 calling wnoutrefresh() for each window, it is then possible to
 call doupdate() once, resulting in only one burst of output,
 with fewer total characters transmitted (this also avoids a
 visually annoying flicker at each update).

 Low-Level Capability Access

 setupterm(term, filenum, errret)
 This routine is called to initialize a terminal's description,
 without setting up the curses screen structures or changing the
 tty-driver mode bits. term is the character string representing
 the name of the terminal being used. filenum is the UNIX file
 descriptor of the terminal to be used for output. errret is a

 pointer to an integer, in which a success or failure indication
 is returned. The values returned can be 1 (all is well), 0 (no
 such terminal), or -1 (some problem locating the terminfo
 database).

 The value of term can be given as NULL, which will cause the
 value of TERM in the environment to be used. The errret pointer
 can also be given as NULL, meaning no error code is wanted. If
 errret is defaulted, and something goes wrong, setupterm() will
 print an appropriate error message and exit, rather than
 returning. Thus, a simple program can call setupterm(0, 1, 0)
 and not worry about initialization errors.

 After the call to setupterm(), the global variable cur_term is
 set to point to the current structure of terminal capabilities.
 By calling setupterm() for each terminal, and saving and
 restoring cur_term, it is possible for a program to use two or
 more terminals at once. Setupterm() also stores the names
 section of the terminal description in the global character
 array ttytype[]. Subsequent calls to setupterm() will overwrite
 this array, so you'll have to save it yourself if need be.

 Debugging

 NOTE: These functions are not part of the standard curses API!

 trace()
 This function can be used to explicitly set a trace level. If
 the trace level is nonzero, execution of your program will
 generate a file called `trace' in the current working directory
 containing a report on the library's actions. Higher trace
 levels enable more detailed (and verbose) reporting -- see
 comments attached to TRACE_ defines in the curses.h file for
 details. (It is also possible to set a trace level by assigning
 a trace level value to the environment variable NCURSES_TRACE).

 _tracef()
 This function can be used to output your own debugging
 information. It is only available only if you link with
 -lncurses_g. It can be used the same way as printf(), only it
 outputs a newline after the end of arguments. The output goes
 to a file called trace in the current directory.

 Trace logs can be difficult to interpret due to the sheer volume of
 data dumped in them. There is a script called tracemunch included with
 the ncurses distribution that can alleviate this problem somewhat; it
 compacts long sequences of similar operations into more succinct
 single-line pseudo-operations. These pseudo-ops can be distinguished
 by the fact that they are named in capital letters.

Hints, Tips, and Tricks

 The ncurses manual pages are a complete reference for this library. In
 the remainder of this document, we discuss various useful methods that
 may not be obvious from the manual page descriptions.

 Some Notes of Caution

 If you find yourself thinking you need to use noraw() or nocbreak(),
 think again and move carefully. It's probably better design to use
 getstr() or one of its relatives to simulate cooked mode. The noraw()
 and nocbreak() functions try to restore cooked mode, but they may end
 up clobbering some control bits set before you started your
 application. Also, they have always been poorly documented, and are
 likely to hurt your application's usability with other curses
 libraries.

 Bear in mind that refresh() is a synonym for wrefresh(stdscr). Don't
 try to mix use of stdscr with use of windows declared by newwin(); a
 refresh() call will blow them off the screen. The right way to handle
 this is to use subwin(), or not touch stdscr at all and tile your
 screen with declared windows which you then wnoutrefresh() somewhere
 in your program event loop, with a single doupdate() call to trigger
 actual repainting.

 You are much less likely to run into problems if you design your
 screen layouts to use tiled rather than overlapping windows.
 Historically, curses support for overlapping windows has been weak,
 fragile, and poorly documented. The ncurses library is not yet an
 exception to this rule.

 There is a panels library included in the ncurses distribution that
 does a pretty good job of strengthening the overlapping-windows
 facilities.

 Try to avoid using the global variables LINES and COLS. Use getmaxyx()
 on the stdscr context instead. Reason: your code may be ported to run
 in an environment with window resizes, in which case several screens
 could be open with different sizes.

 Temporarily Leaving NCURSES Mode

 Sometimes you will want to write a program that spends most of its
 time in screen mode, but occasionally returns to ordinary `cooked'
 mode. A common reason for this is to support shell-out. This behavior
 is simple to arrange in ncurses.

 To leave ncurses mode, call endwin() as you would if you were
 intending to terminate the program. This will take the screen back to
 cooked mode; you can do your shell-out. When you want to return to
 ncurses mode, simply call refresh() or doupdate(). This will repaint
 the screen.

 There is a boolean function, isendwin(), which code can use to test
 whether ncurses screen mode is active. It returns TRUE in the interval
 between an endwin() call and the following refresh(), FALSE otherwise.

 Here is some sample code for shellout:
 addstr("Shelling out...");
 def_prog_mode(); /* save current tty modes */
 endwin(); /* restore original tty modes */
 system("sh"); /* run shell */
 addstr("returned.\n"); /* prepare return message */
 refresh(); /* restore save modes, repaint screen */

 Using NCURSES under XTERM

 A resize operation in X sends SIGWINCH to the application running
 under xterm. The ncurses library provides an experimental signal
 handler, but in general does not catch this signal, because it cannot
 know how you want the screen re-painted. You will usually have to
 write the SIGWINCH handler yourself. Ncurses can give you some help.

 The easiest way to code your SIGWINCH handler is to have it do an
 endwin, followed by an refresh and a screen repaint you code yourself.
 The refresh will pick up the new screen size from the xterm's
 environment.

 That is the standard way, of course (it even works with some vendor's
 curses implementations). Its drawback is that it clears the screen to
 reinitialize the display, and does not resize subwindows which must be
 shrunk. Ncurses provides an extension which works better, the
 resizeterm function. That function ensures that all windows are
 limited to the new screen dimensions, and pads stdscr with blanks if
 the screen is larger.

 Finally, ncurses can be configured to provide its own SIGWINCH
 handler, based on resizeterm.

 Handling Multiple Terminal Screens

 The initscr() function actually calls a function named newterm() to do
 most of its work. If you are writing a program that opens multiple
 terminals, use newterm() directly.

 For each call, you will have to specify a terminal type and a pair of
 file pointers; each call will return a screen reference, and stdscr
 will be set to the last one allocated. You will switch between screens
 with the set_term call. Note that you will also have to call
 def_shell_mode and def_prog_mode on each tty yourself.

 Testing for Terminal Capabilities

 Sometimes you may want to write programs that test for the presence of
 various capabilities before deciding whether to go into ncurses mode.
 An easy way to do this is to call setupterm(), then use the functions
 tigetflag(), tigetnum(), and tigetstr() to do your testing.

 A particularly useful case of this often comes up when you want to
 test whether a given terminal type should be treated as `smart'
 (cursor-addressable) or `stupid'. The right way to test this is to see
 if the return value of tigetstr("cup") is non-NULL. Alternatively, you
 can include the term.h file and test the value of the macro
 cursor_address.

 Tuning for Speed

 Use the addchstr() family of functions for fast screen-painting of
 text when you know the text doesn't contain any control characters.
 Try to make attribute changes infrequent on your screens. Don't use
 the immedok() option!

 Special Features of NCURSES

 The wresize() function allows you to resize a window in place. The
 associated resizeterm() function simplifies the construction of
 SIGWINCH handlers, for resizing all windows.

 The define_key() function allows you to define at runtime function-key
 control sequences which are not in the terminal description. The
 keyok() function allows you to temporarily enable or disable
 interpretation of any function-key control sequence.

 The use_default_colors() function allows you to construct applications
 which can use the terminal's default foreground and background colors
 as an additional "default" color. Several terminal emulators support
 this feature, which is based on ISO 6429.

 Ncurses supports up 16 colors, unlike SVr4 curses which defines only
 8. While most terminals which provide color allow only 8 colors, about
 a quarter (including XFree86 xterm) support 16 colors.

Compatibility with Older Versions

 Despite our best efforts, there are some differences between ncurses
 and the (undocumented!) behavior of older curses implementations.
 These arise from ambiguities or omissions in the documentation of the
 API.

 Refresh of Overlapping Windows

 If you define two windows A and B that overlap, and then alternately
 scribble on and refresh them, the changes made to the overlapping
 region under historic curses versions were often not documented
 precisely.

 To understand why this is a problem, remember that screen updates are
 calculated between two representations of the entire display. The
 documentation says that when you refresh a window, it is first copied
 to to the virtual screen, and then changes are calculated to update
 the physical screen (and applied to the terminal). But "copied to" is
 not very specific, and subtle differences in how copying works can
 produce different behaviors in the case where two overlapping windows
 are each being refreshed at unpredictable intervals.

 What happens to the overlapping region depends on what wnoutrefresh()
 does with its argument -- what portions of the argument window it
 copies to the virtual screen. Some implementations do "change copy",
 copying down only locations in the window that have changed (or been
 marked changed with wtouchln() and friends). Some implementations do
 "entire copy", copying all window locations to the virtual screen
 whether or not they have changed.

 The ncurses library itself has not always been consistent on this
 score. Due to a bug, versions 1.8.7 to 1.9.8a did entire copy.
 Versions 1.8.6 and older, and versions 1.9.9 and newer, do change
 copy.

 For most commercial curses implementations, it is not documented and
 not known for sure (at least not to the ncurses maintainers) whether
 they do change copy or entire copy. We know that System V release 3
 curses has logic in it that looks like an attempt to do change copy,
 but the surrounding logic and data representations are sufficiently
 complex, and our knowledge sufficiently indirect, that it's hard to
 know whether this is reliable. It is not clear what the SVr4
 documentation and XSI standard intend. The XSI Curses standard barely
 mentions wnoutrefresh(); the SVr4 documents seem to be describing
 entire-copy, but it is possible with some effort and straining to read
 them the other way.

 It might therefore be unwise to rely on either behavior in programs
 that might have to be linked with other curses implementations.
 Instead, you can do an explicit touchwin() before the wnoutrefresh()
 call to guarantee an entire-contents copy anywhere.

 The really clean way to handle this is to use the panels library. If,
 when you want a screen update, you do update_panels(), it will do all
 the necessary wnoutrfresh() calls for whatever panel stacking order
 you have defined. Then you can do one doupdate() and there will be a
 single burst of physical I/O that will do all your updates.

 Background Erase

 If you have been using a very old versions of ncurses (1.8.7 or older)
 you may be surprised by the behavior of the erase functions. In older
 versions, erased areas of a window were filled with a blank modified
 by the window's current attribute (as set by wattrset(), wattron(),
 wattroff() and friends).

 In newer versions, this is not so. Instead, the attribute of erased
 blanks is normal unless and until it is modified by the functions
 bkgdset() or wbkgdset().

 This change in behavior conforms ncurses to System V Release 4 and the
 XSI Curses standard.

XSI Curses Conformance

 The ncurses library is intended to be base-level conformant with the
 XSI Curses standard from X/Open. Many extended-level features (in
 fact, almost all features not directly concerned with wide characters
 and internationalization) are also supported.

 One effect of XSI conformance is the change in behavior described
 under "Background Erase -- Compatibility with Old Versions".

 Also, ncurses meets the XSI requirement that every macro entry point
 have a corresponding function which may be linked (and will be
 prototype-checked) if the macro definition is disabled with #undef.

 The Panels Library

 The ncurses library by itself provides good support for screen
 displays in which the windows are tiled (non-overlapping). In the more
 general case that windows may overlap, you have to use a series of

 wnoutrefresh() calls followed by a doupdate(), and be careful about
 the order you do the window refreshes in. It has to be bottom-upwards,
 otherwise parts of windows that should be obscured will show through.

 When your interface design is such that windows may dive deeper into
 the visibility stack or pop to the top at runtime, the resulting
 book-keeping can be tedious and difficult to get right. Hence the
 panels library.

 The panel library first appeared in AT&T System V. The version
 documented here is the panel code distributed with ncurses.

Compiling With the Panels Library

 Your panels-using modules must import the panels library declarations
 with
 #include <panel.h>

 and must be linked explicitly with the panels library using an -lpanel
 argument. Note that they must also link the ncurses library with
 -lncurses. Many linkers are two-pass and will accept either order, but
 it is still good practice to put -lpanel first and -lncurses second.

Overview of Panels

 A panel object is a window that is implicitly treated as part of a
 deck including all other panel objects. The deck has an implicit
 bottom-to-top visibility order. The panels library includes an update
 function (analogous to refresh()) that displays all panels in the deck
 in the proper order to resolve overlaps. The standard window, stdscr,
 is considered below all panels.

 Details on the panels functions are available in the man pages. We'll
 just hit the highlights here.

 You create a panel from a window by calling new_panel() on a window
 pointer. It then becomes the top of the deck. The panel's window is
 available as the value of panel_window() called with the panel pointer
 as argument.

 You can delete a panel (removing it from the deck) with del_panel.
 This will not deallocate the associated window; you have to do that
 yourself. You can replace a panel's window with a different window by
 calling replace_window. The new window may be of different size; the
 panel code will re-compute all overlaps. This operation doesn't change
 the panel's position in the deck.

 To move a panel's window, use move_panel(). The mvwin() function on
 the panel's window isn't sufficient because it doesn't update the
 panels library's representation of where the windows are. This
 operation leaves the panel's depth, contents, and size unchanged.

 Two functions (top_panel(), bottom_panel()) are provided for
 rearranging the deck. The first pops its argument window to the top of
 the deck; the second sends it to the bottom. Either operation leaves
 the panel's screen location, contents, and size unchanged.

 The function update_panels() does all the wnoutrefresh() calls needed
 to prepare for doupdate() (which you must call yourself, afterwards).

 Typically, you will want to call update_panels() and doupdate() just
 before accepting command input, once in each cycle of interaction with
 the user. If you call update_panels() after each and every panel
 write, you'll generate a lot of unnecessary refresh activity and
 screen flicker.

Panels, Input, and the Standard Screen

 You shouldn't mix wnoutrefresh() or wrefresh() operations with panels
 code; this will work only if the argument window is either in the top
 panel or unobscured by any other panels.

 The stsdcr window is a special case. It is considered below all
 panels. Because changes to panels may obscure parts of stdscr, though,
 you should call update_panels() before doupdate() even when you only
 change stdscr.

 Note that wgetch automatically calls wrefresh. Therefore, before
 requesting input from a panel window, you need to be sure that the
 panel is totally unobscured.

 There is presently no way to display changes to one obscured panel
 without repainting all panels.

Hiding Panels

 It's possible to remove a panel from the deck temporarily; use
 hide_panel for this. Use show_panel() to render it visible again. The
 predicate function panel_hidden tests whether or not a panel is
 hidden.

 The panel_update code ignores hidden panels. You cannot do top_panel()
 or bottom_panel on a hidden panel(). Other panels operations are
 applicable.

Miscellaneous Other Facilities

 It's possible to navigate the deck using the functions panel_above()
 and panel_below. Handed a panel pointer, they return the panel above
 or below that panel. Handed NULL, they return the bottom-most or
 top-most panel.

 Every panel has an associated user pointer, not used by the panel
 code, to which you can attach application data. See the man page
 documentation of set_panel_userptr() and panel_userptr for details.

 The Menu Library

 A menu is a screen display that assists the user to choose some subset
 of a given set of items. The menu library is a curses extension that
 supports easy programming of menu hierarchies with a uniform but
 flexible interface.

 The menu library first appeared in AT&T System V. The version

 documented here is the menu code distributed with ncurses.

Compiling With the menu Library

 Your menu-using modules must import the menu library declarations with
 #include <menu.h>

 and must be linked explicitly with the menus library using an -lmenu
 argument. Note that they must also link the ncurses library with
 -lncurses. Many linkers are two-pass and will accept either order, but
 it is still good practice to put -lmenu first and -lncurses second.

Overview of Menus

 The menus created by this library consist of collections of items
 including a name string part and a description string part. To make
 menus, you create groups of these items and connect them with menu
 frame objects.

 The menu can then by posted, that is written to an associated window.
 Actually, each menu has two associated windows; a containing window in
 which the programmer can scribble titles or borders, and a subwindow
 in which the menu items proper are displayed. If this subwindow is too
 small to display all the items, it will be a scrollable viewport on
 the collection of items.

 A menu may also be unposted (that is, undisplayed), and finally freed
 to make the storage associated with it and its items available for
 re-use.

 The general flow of control of a menu program looks like this:
 1. Initialize curses.
 2. Create the menu items, using new_item().
 3. Create the menu using new_menu().
 4. Post the menu using menu_post().
 5. Refresh the screen.
 6. Process user requests via an input loop.
 7. Unpost the menu using menu_unpost().
 8. Free the menu, using free_menu().
 9. Free the items using free_item().
 10. Terminate curses.

Selecting items

 Menus may be multi-valued or (the default) single-valued (see the
 manual page menu_opts(3x) to see how to change the default). Both
 types always have a current item.

 From a single-valued menu you can read the selected value simply by
 looking at the current item. From a multi-valued menu, you get the
 selected set by looping through the items applying the item_value()
 predicate function. Your menu-processing code can use the function
 set_item_value() to flag the items in the select set.

 Menu items can be made unselectable using set_item_opts() or
 item_opts_off() with the O_SELECTABLE argument. This is the only
 option so far defined for menus, but it is good practice to code as

 though other option bits might be on.

Menu Display

 The menu library calculates a minimum display size for your window,
 based on the following variables:
 * The number and maximum length of the menu items
 * Whether the O_ROWMAJOR option is enabled
 * Whether display of descriptions is enabled
 * Whatever menu format may have been set by the programmer
 * The length of the menu mark string used for highlighting selected
 items

 The function set_menu_format() allows you to set the maximum size of
 the viewport or menu page that will be used to display menu items. You
 can retrieve any format associated with a menu with menu_format(). The
 default format is rows=16, columns=1.

 The actual menu page may be smaller than the format size. This depends
 on the item number and size and whether O_ROWMAJOR is on. This option
 (on by default) causes menu items to be displayed in a `raster-scan'
 pattern, so that if more than one item will fit horizontally the first
 couple of items are side-by-side in the top row. The alternative is
 column-major display, which tries to put the first several items in
 the first column.

 As mentioned above, a menu format not large enough to allow all items
 to fit on-screen will result in a menu display that is vertically
 scrollable.

 You can scroll it with requests to the menu driver, which will be
 described in the section on menu input handling.

 Each menu has a mark string used to visually tag selected items; see
 the menu_mark(3x) manual page for details. The mark string length also
 influences the menu page size.

 The function scale_menu() returns the minimum display size that the
 menu code computes from all these factors. There are other menu
 display attributes including a select attribute, an attribute for
 selectable items, an attribute for unselectable items, and a pad
 character used to separate item name text from description text. These
 have reasonable defaults which the library allows you to change (see
 the menu_attribs(3x) manual page.

Menu Windows

 Each menu has, as mentioned previously, a pair of associated windows.
 Both these windows are painted when the menu is posted and erased when
 the menu is unposted.

 The outer or frame window is not otherwise touched by the menu
 routines. It exists so the programmer can associate a title, a border,
 or perhaps help text with the menu and have it properly refreshed or
 erased at post/unpost time. The inner window or subwindow is where the
 current menu page is displayed.

 By default, both windows are stdscr. You can set them with the
 functions in menu_win(3x).

 When you call menu_post(), you write the menu to its subwindow. When
 you call menu_unpost(), you erase the subwindow, However, neither of
 these actually modifies the screen. To do that, call wrefresh() or
 some equivalent.

Processing Menu Input

 The main loop of your menu-processing code should call menu_driver()
 repeatedly. The first argument of this routine is a menu pointer; the
 second is a menu command code. You should write an input-fetching
 routine that maps input characters to menu command codes, and pass its
 output to menu_driver(). The menu command codes are fully documented
 in menu_driver(3x).

 The simplest group of command codes is REQ_NEXT_ITEM, REQ_PREV_ITEM,
 REQ_FIRST_ITEM, REQ_LAST_ITEM, REQ_UP_ITEM, REQ_DOWN_ITEM,
 REQ_LEFT_ITEM, REQ_RIGHT_ITEM. These change the currently selected
 item. These requests may cause scrolling of the menu page if it only
 partially displayed.

 There are explicit requests for scrolling which also change the
 current item (because the select location does not change, but the
 item there does). These are REQ_SCR_DLINE, REQ_SCR_ULINE,
 REQ_SCR_DPAGE, and REQ_SCR_UPAGE.

 The REQ_TOGGLE_ITEM selects or deselects the current item. It is for
 use in multi-valued menus; if you use it with O_ONEVALUE on, you'll
 get an error return (E_REQUEST_DENIED).

 Each menu has an associated pattern buffer. The menu_driver() logic
 tries to accumulate printable ASCII characters passed in in that
 buffer; when it matches a prefix of an item name, that item (or the
 next matching item) is selected. If appending a character yields no
 new match, that character is deleted from the pattern buffer, and
 menu_driver() returns E_NO_MATCH.

 Some requests change the pattern buffer directly: REQ_CLEAR_PATTERN,
 REQ_BACK_PATTERN, REQ_NEXT_MATCH, REQ_PREV_MATCH. The latter two are
 useful when pattern buffer input matches more than one item in a
 multi-valued menu.

 Each successful scroll or item navigation request clears the pattern
 buffer. It is also possible to set the pattern buffer explicitly with
 set_menu_pattern().

 Finally, menu driver requests above the constant MAX_COMMAND are
 considered application-specific commands. The menu_driver() code
 ignores them and returns E_UNKNOWN_COMMAND.

Miscellaneous Other Features

 Various menu options can affect the processing and visual appearance
 and input processing of menus. See menu_opts(3x) for details.

 It is possible to change the current item from application code; this
 is useful if you want to write your own navigation requests. It is
 also possible to explicitly set the top row of the menu display. See
 mitem_current(3x). If your application needs to change the menu
 subwindow cursor for any reason, pos_menu_cursor() will restore it to
 the correct location for continuing menu driver processing.

 It is possible to set hooks to be called at menu initialization and
 wrapup time, and whenever the selected item changes. See
 menu_hook(3x).

 Each item, and each menu, has an associated user pointer on which you
 can hang application data. See mitem_userptr(3x) and menu_userptr(3x).

 The Forms Library

 The form library is a curses extension that supports easy programming
 of on-screen forms for data entry and program control.

 The form library first appeared in AT&T System V. The version
 documented here is the form code distributed with ncurses.

Compiling With the form Library

 Your form-using modules must import the form library declarations with
 #include <form.h>

 and must be linked explicitly with the forms library using an -lform
 argument. Note that they must also link the ncurses library with
 -lncurses. Many linkers are two-pass and will accept either order, but
 it is still good practice to put -lform first and -lncurses second.

Overview of Forms

 A form is a collection of fields; each field may be either a label
 (explanatory text) or a data-entry location. Long forms may be
 segmented into pages; each entry to a new page clears the screen.

 To make forms, you create groups of fields and connect them with form
 frame objects; the form library makes this relatively simple.

 Once defined, a form can be posted, that is written to an associated
 window. Actually, each form has two associated windows; a containing
 window in which the programmer can scribble titles or borders, and a
 subwindow in which the form fields proper are displayed.

 As the form user fills out the posted form, navigation and editing
 keys support movement between fields, editing keys support modifying
 field, and plain text adds to or changes data in a current field. The
 form library allows you (the forms designer) to bind each navigation
 and editing key to any keystroke accepted by curses Fields may have
 validation conditions on them, so that they check input data for type
 and value. The form library supplies a rich set of pre-defined field
 types, and makes it relatively easy to define new ones.

 Once its transaction is completed (or aborted), a form may be unposted
 (that is, undisplayed), and finally freed to make the storage

 associated with it and its items available for re-use.

 The general flow of control of a form program looks like this:
 1. Initialize curses.
 2. Create the form fields, using new_field().
 3. Create the form using new_form().
 4. Post the form using form_post().
 5. Refresh the screen.
 6. Process user requests via an input loop.
 7. Unpost the form using form_unpost().
 8. Free the form, using free_form().
 9. Free the fields using free_field().
 10. Terminate curses.

 Note that this looks much like a menu program; the form library
 handles tasks which are in many ways similar, and its interface was
 obviously designed to resemble that of the menu library wherever
 possible.

 In forms programs, however, the `process user requests' is somewhat
 more complicated than for menus. Besides menu-like navigation
 operations, the menu driver loop has to support field editing and data
 validation.

Creating and Freeing Fields and Forms

 The basic function for creating fields is new_field():
FIELD *new_field(int height, int width, /* new field size */
 int top, int left, /* upper left corner */
 int offscreen, /* number of offscreen rows */
 int nbuf); /* number of working buffers */

 Menu items always occupy a single row, but forms fields may have
 multiple rows. So new_field() requires you to specify a width and
 height (the first two arguments, which mist both be greater than
 zero).

 You must also specify the location of the field's upper left corner on
 the screen (the third and fourth arguments, which must be zero or
 greater). Note that these coordinates are relative to the form
 subwindow, which will coincide with stdscr by default but need not be
 stdscr if you've done an explicit set_form_window() call.

 The fifth argument allows you to specify a number of off-screen rows.
 If this is zero, the entire field will always be displayed. If it is
 nonzero, the form will be scrollable, with only one screen-full
 (initially the top part) displayed at any given time. If you make a
 field dynamic and grow it so it will no longer fit on the screen, the
 form will become scrollable even if the offscreen argument was
 initially zero.

 The forms library allocates one working buffer per field; the size of
 each buffer is ((height + offscreen)*width + 1, one character for each
 position in the field plus a NUL terminator. The sixth argument is the
 number of additional data buffers to allocate for the field; your
 application can use them for its own purposes.
FIELD *dup_field(FIELD *field, /* field to copy */

 int top, int left); /* location of new copy */

 The function dup_field() duplicates an existing field at a new
 location. Size and buffering information are copied; some attribute
 flags and status bits are not (see the form_field_new(3X) for
 details).
FIELD *link_field(FIELD *field, /* field to copy */
 int top, int left); /* location of new copy */

 The function link_field() also duplicates an existing field at a new
 location. The difference from dup_field() is that it arranges for the
 new field's buffer to be shared with the old one.

 Besides the obvious use in making a field editable from two different
 form pages, linked fields give you a way to hack in dynamic labels. If
 you declare several fields linked to an original, and then make them
 inactive, changes from the original will still be propagated to the
 linked fields.

 As with duplicated fields, linked fields have attribute bits separate
 from the original.

 As you might guess, all these field-allocations return NULL if the
 field allocation is not possible due to an out-of-memory error or
 out-of-bounds arguments.

 To connect fields to a form, use
FORM *new_form(FIELD **fields);

 This function expects to see a NULL-terminated array of field
 pointers. Said fields are connected to a newly-allocated form object;
 its address is returned (or else NULL if the allocation fails).

 Note that new_field() does not copy the pointer array into private
 storage; if you modify the contents of the pointer array during forms
 processing, all manner of bizarre things might happen. Also note that
 any given field may only be connected to one form.

 The functions free_field() and free_form are available to free field
 and form objects. It is an error to attempt to free a field connected
 to a form, but not vice-versa; thus, you will generally free your form
 objects first.

Fetching and Changing Field Attributes

 Each form field has a number of location and size attributes
 associated with it. There are other field attributes used to control
 display and editing of the field. Some (for example, the O_STATIC bit)
 involve sufficient complications to be covered in sections of their
 own later on. We cover the functions used to get and set several basic
 attributes here.

 When a field is created, the attributes not specified by the new_field
 function are copied from an invisible system default field. In
 attribute-setting and -fetching functions, the argument NULL is taken
 to mean this field. Changes to it persist as defaults until your forms
 application terminates.

 Fetching Size and Location Data

 You can retrieve field sizes and locations through:
int field_info(FIELD *field, /* field from which to fetch */
 int *height, *int width, /* field size */
 int *top, int *left, /* upper left corner */
 int *offscreen, /* number of offscreen rows */
 int *nbuf); /* number of working buffers */

 This function is a sort of inverse of new_field(); instead of setting
 size and location attributes of a new field, it fetches them from an
 existing one.

 Changing the Field Location

 It is possible to move a field's location on the screen:
int move_field(FIELD *field, /* field to alter */
 int top, int left); /* new upper-left corner */

 You can, of course. query the current location through field_info().

 The Justification Attribute

 One-line fields may be unjustified, justified right, justified left,
 or centered. Here is how you manipulate this attribute:
int set_field_just(FIELD *field, /* field to alter */
 int justmode); /* mode to set */

int field_just(FIELD *field); /* fetch mode of field */

 The mode values accepted and returned by this functions are
 preprocessor macros NO_JUSTIFICATION, JUSTIFY_RIGHT, JUSTIFY_LEFT, or
 JUSTIFY_CENTER.

 Field Display Attributes

 For each field, you can set a foreground attribute for entered
 characters, a background attribute for the entire field, and a pad
 character for the unfilled portion of the field. You can also control
 pagination of the form.

 This group of four field attributes controls the visual appearance of
 the field on the screen, without affecting in any way the data in the
 field buffer.
int set_field_fore(FIELD *field, /* field to alter */
 chtype attr); /* attribute to set */

chtype field_fore(FIELD *field); /* field to query */

int set_field_back(FIELD *field, /* field to alter */
 chtype attr); /* attribute to set */

chtype field_back(FIELD *field); /* field to query */

int set_field_pad(FIELD *field, /* field to alter */
 int pad); /* pad character to set */

chtype field_pad(FIELD *field);

int set_new_page(FIELD *field, /* field to alter */
 int flag); /* TRUE to force new page */

chtype new_page(FIELD *field); /* field to query */

 The attributes set and returned by the first four functions are normal
 curses(3x) display attribute values (A_STANDOUT, A_BOLD, A_REVERSE
 etc). The page bit of a field controls whether it is displayed at the
 start of a new form screen.

 Field Option Bits

 There is also a large collection of field option bits you can set to
 control various aspects of forms processing. You can manipulate them
 with these functions:
int set_field_opts(FIELD *field, /* field to alter */
 int attr); /* attribute to set */

int field_opts_on(FIELD *field, /* field to alter */
 int attr); /* attributes to turn on */

int field_opts_off(FIELD *field, /* field to alter */
 int attr); /* attributes to turn off */

int field_opts(FIELD *field); /* field to query */

 By default, all options are on. Here are the available option bits:

 O_VISIBLE
 Controls whether the field is visible on the screen. Can be
 used during form processing to hide or pop up fields depending
 on the value of parent fields.

 O_ACTIVE
 Controls whether the field is active during forms processing
 (i.e. visited by form navigation keys). Can be used to make
 labels or derived fields with buffer values alterable by the
 forms application, not the user.

 O_PUBLIC
 Controls whether data is displayed during field entry. If this
 option is turned off on a field, the library will accept and
 edit data in that field, but it will not be displayed and the
 visible field cursor will not move. You can turn off the
 O_PUBLIC bit to define password fields.

 O_EDIT
 Controls whether the field's data can be modified. When this
 option is off, all editing requests except REQ_PREV_CHOICE and
 REQ_NEXT_CHOICE will fail. Such read-only fields may be useful
 for help messages.

 O_WRAP
 Controls word-wrapping in multi-line fields. Normally, when any

 character of a (blank-separated) word reaches the end of the
 current line, the entire word is wrapped to the next line
 (assuming there is one). When this option is off, the word will
 be split across the line break.

 O_BLANK
 Controls field blanking. When this option is on, entering a
 character at the first field position erases the entire field
 (except for the just-entered character).

 O_AUTOSKIP
 Controls automatic skip to next field when this one fills.
 Normally, when the forms user tries to type more data into a
 field than will fit, the editing location jumps to next field.
 When this option is off, the user's cursor will hang at the end
 of the field. This option is ignored in dynamic fields that
 have not reached their size limit.

 O_NULLOK
 Controls whether validation is applied to blank fields.
 Normally, it is not; the user can leave a field blank without
 invoking the usual validation check on exit. If this option is
 off on a field, exit from it will invoke a validation check.

 O_PASSOK
 Controls whether validation occurs on every exit, or only after
 the field is modified. Normally the latter is true. Setting
 O_PASSOK may be useful if your field's validation function may
 change during forms processing.

 O_STATIC
 Controls whether the field is fixed to its initial dimensions.
 If you turn this off, the field becomes dynamic and will
 stretch to fit entered data.

 A field's options cannot be changed while the field is currently
 selected. However, options may be changed on posted fields that are
 not current.

 The option values are bit-masks and can be composed with logical-or in
 the obvious way.

Field Status

 Every field has a status flag, which is set to FALSE when the field is
 created and TRUE when the value in field buffer 0 changes. This flag
 can be queried and set directly:
int set_field_status(FIELD *field, /* field to alter */
 int status); /* mode to set */

int field_status(FIELD *field); /* fetch mode of field */

 Setting this flag under program control can be useful if you use the
 same form repeatedly, looking for modified fields each time.

 Calling field_status() on a field not currently selected for input
 will return a correct value. Calling field_status() on a field that is

 currently selected for input may not necessarily give a correct field
 status value, because entered data isn't necessarily copied to buffer
 zero before the exit validation check. To guarantee that the returned
 status value reflects reality, call field_status() either (1) in the
 field's exit validation check routine, (2) from the field's or form's
 initialization or termination hooks, or (3) just after a
 REQ_VALIDATION request has been processed by the forms driver.

Field User Pointer

 Each field structure contains one character pointer slot that is not
 used by the forms library. It is intended to be used by applications
 to store private per-field data. You can manipulate it with:
int set_field_userptr(FIELD *field, /* field to alter */
 char *userptr); /* mode to set */

char *field_userptr(FIELD *field); /* fetch mode of field */

 (Properly, this user pointer field ought to have (void *) type. The
 (char *) type is retained for System V compatibility.)

 It is valid to set the user pointer of the default field (with a
 set_field_userptr() call passed a NULL field pointer.) When a new
 field is created, the default-field user pointer is copied to
 initialize the new field's user pointer.

Variable-Sized Fields

 Normally, a field is fixed at the size specified for it at creation
 time. If, however, you turn off its O_STATIC bit, it becomes dynamic
 and will automatically resize itself to accommodate data as it is
 entered. If the field has extra buffers associated with it, they will
 grow right along with the main input buffer.

 A one-line dynamic field will have a fixed height (1) but variable
 width, scrolling horizontally to display data within the field area as
 originally dimensioned and located. A multi-line dynamic field will
 have a fixed width, but variable height (number of rows), scrolling
 vertically to display data within the field area as originally
 dimensioned and located.

 Normally, a dynamic field is allowed to grow without limit. But it is
 possible to set an upper limit on the size of a dynamic field. You do
 it with this function:
int set_max_field(FIELD *field, /* field to alter (may not be NULL) */
 int max_size); /* upper limit on field size */

 If the field is one-line, max_size is taken to be a column size limit;
 if it is multi-line, it is taken to be a line size limit. To disable
 any limit, use an argument of zero. The growth limit can be changed
 whether or not the O_STATIC bit is on, but has no effect until it is.

 The following properties of a field change when it becomes dynamic:
 * If there is no growth limit, there is no final position of the
 field; therefore O_AUTOSKIP and O_NL_OVERLOAD are ignored.
 * Field justification will be ignored (though whatever justification
 is set up will be retained internally and can be queried).

 * The dup_field() and link_field() calls copy dynamic-buffer sizes.
 If the O_STATIC option is set on one of a collection of links,
 buffer resizing will occur only when the field is edited through
 that link.
 * The call field_info() will retrieve the original static size of
 the field; use dynamic_field_info() to get the actual dynamic
 size.

Field Validation

 By default, a field will accept any data that will fit in its input
 buffer. However, it is possible to attach a validation type to a
 field. If you do this, any attempt to leave the field while it
 contains data that doesn't match the validation type will fail. Some
 validation types also have a character-validity check for each time a
 character is entered in the field.

 A field's validation check (if any) is not called when
 set_field_buffer() modifies the input buffer, nor when that buffer is
 changed through a linked field.

 The form library provides a rich set of pre-defined validation types,
 and gives you the capability to define custom ones of your own. You
 can examine and change field validation attributes with the following
 functions:
int set_field_type(FIELD *field, /* field to alter */
 FIELDTYPE *ftype, /* type to associate */
 ...); /* additional arguments*/

FIELDTYPE *field_type(FIELD *field); /* field to query */

 The validation type of a field is considered an attribute of the
 field. As with other field attributes, Also, doing set_field_type()
 with a NULL field default will change the system default for
 validation of newly-created fields.

 Here are the pre-defined validation types:

 TYPE_ALPHA

 This field type accepts alphabetic data; no blanks, no digits, no
 special characters (this is checked at character-entry time). It is
 set up with:
int set_field_type(FIELD *field, /* field to alter */
 TYPE_ALPHA, /* type to associate */
 int width); /* maximum width of field */

 The width argument sets a minimum width of data. Typically you'll want
 to set this to the field width; if it's greater than the field width,
 the validation check will always fail. A minimum width of zero makes
 field completion optional.

 TYPE_ALNUM

 This field type accepts alphabetic data and digits; no blanks, no
 special characters (this is checked at character-entry time). It is
 set up with:

int set_field_type(FIELD *field, /* field to alter */
 TYPE_ALNUM, /* type to associate */
 int width); /* maximum width of field */

 The width argument sets a minimum width of data. As with TYPE_ALPHA,
 typically you'll want to set this to the field width; if it's greater
 than the field width, the validation check will always fail. A minimum
 width of zero makes field completion optional.

 TYPE_ENUM

 This type allows you to restrict a field's values to be among a
 specified set of string values (for example, the two-letter postal
 codes for U.S. states). It is set up with:
int set_field_type(FIELD *field, /* field to alter */
 TYPE_ENUM, /* type to associate */
 char **valuelist; /* list of possible values */
 int checkcase; /* case-sensitive? */
 int checkunique); /* must specify uniquely? */

 The valuelist parameter must point at a NULL-terminated list of valid
 strings. The checkcase argument, if true, makes comparison with the
 string case-sensitive.

 When the user exits a TYPE_ENUM field, the validation procedure tries
 to complete the data in the buffer to a valid entry. If a complete
 choice string has been entered, it is of course valid. But it is also
 possible to enter a prefix of a valid string and have it completed for
 you.

 By default, if you enter such a prefix and it matches more than one
 value in the string list, the prefix will be completed to the first
 matching value. But the checkunique argument, if true, requires prefix
 matches to be unique in order to be valid.

 The REQ_NEXT_CHOICE and REQ_PREV_CHOICE input requests can be
 particularly useful with these fields.

 TYPE_INTEGER

 This field type accepts an integer. It is set up as follows:
int set_field_type(FIELD *field, /* field to alter */
 TYPE_INTEGER, /* type to associate */
 int padding, /* # places to zero-pad to */
 int vmin, int vmax); /* valid range */

 Valid characters consist of an optional leading minus and digits. The
 range check is performed on exit. If the range maximum is less than or
 equal to the minimum, the range is ignored.

 If the value passes its range check, it is padded with as many leading
 zero digits as necessary to meet the padding argument.

 A TYPE_INTEGER value buffer can conveniently be interpreted with the C
 library function atoi(3).

 TYPE_NUMERIC

 This field type accepts a decimal number. It is set up as follows:
int set_field_type(FIELD *field, /* field to alter */
 TYPE_NUMERIC, /* type to associate */
 int padding, /* # places of precision */
 double vmin, double vmax); /* valid range */

 Valid characters consist of an optional leading minus and digits.
 possibly including a decimal point. If your system supports locale's,
 the decimal point character used must be the one defined by your
 locale. The range check is performed on exit. If the range maximum is
 less than or equal to the minimum, the range is ignored.

 If the value passes its range check, it is padded with as many
 trailing zero digits as necessary to meet the padding argument.

 A TYPE_NUMERIC value buffer can conveniently be interpreted with the C
 library function atof(3).

 TYPE_REGEXP

 This field type accepts data matching a regular expression. It is set
 up as follows:
int set_field_type(FIELD *field, /* field to alter */
 TYPE_REGEXP, /* type to associate */
 char *regexp); /* expression to match */

 The syntax for regular expressions is that of regcomp(3). The check
 for regular-expression match is performed on exit.

Direct Field Buffer Manipulation

 The chief attribute of a field is its buffer contents. When a form has
 been completed, your application usually needs to know the state of
 each field buffer. You can find this out with:
char *field_buffer(FIELD *field, /* field to query */
 int bufindex); /* number of buffer to query */

 Normally, the state of the zero-numbered buffer for each field is set
 by the user's editing actions on that field. It's sometimes useful to
 be able to set the value of the zero-numbered (or some other) buffer
 from your application:
int set_field_buffer(FIELD *field, /* field to alter */
 int bufindex, /* number of buffer to alter */
 char *value); /* string value to set */

 If the field is not large enough and cannot be resized to a
 sufficiently large size to contain the specified value, the value will
 be truncated to fit.

 Calling field_buffer() with a null field pointer will raise an error.
 Calling field_buffer() on a field not currently selected for input
 will return a correct value. Calling field_buffer() on a field that is
 currently selected for input may not necessarily give a correct field
 buffer value, because entered data isn't necessarily copied to buffer
 zero before the exit validation check. To guarantee that the returned
 buffer value reflects on-screen reality, call field_buffer() either

 (1) in the field's exit validation check routine, (2) from the field's
 or form's initialization or termination hooks, or (3) just after a
 REQ_VALIDATION request has been processed by the forms driver.

Attributes of Forms

 As with field attributes, form attributes inherit a default from a
 system default form structure. These defaults can be queried or set by
 of these functions using a form-pointer argument of NULL.

 The principal attribute of a form is its field list. You can query and
 change this list with:
int set_form_fields(FORM *form, /* form to alter */
 FIELD **fields); /* fields to connect */

char *form_fields(FORM *form); /* fetch fields of form */

int field_count(FORM *form); /* count connect fields */

 The second argument of set_form_fields() may be a NULL-terminated
 field pointer array like the one required by new_form(). In that case,
 the old fields of the form are disconnected but not freed (and
 eligible to be connected to other forms), then the new fields are
 connected.

 It may also be null, in which case the old fields are disconnected
 (and not freed) but no new ones are connected.

 The field_count() function simply counts the number of fields
 connected to a given from. It returns -1 if the form-pointer argument
 is NULL.

Control of Form Display

 In the overview section, you saw that to display a form you normally
 start by defining its size (and fields), posting it, and refreshing
 the screen. There is an hidden step before posting, which is the
 association of the form with a frame window (actually, a pair of
 windows) within which it will be displayed. By default, the forms
 library associates every form with the full-screen window stdscr.

 By making this step explicit, you can associate a form with a declared
 frame window on your screen display. This can be useful if you want to
 adapt the form display to different screen sizes, dynamically tile
 forms on the screen, or use a form as part of an interface layout
 managed by panels.

 The two windows associated with each form have the same functions as
 their analogues in the menu library. Both these windows are painted
 when the form is posted and erased when the form is unposted.

 The outer or frame window is not otherwise touched by the form
 routines. It exists so the programmer can associate a title, a border,
 or perhaps help text with the form and have it properly refreshed or
 erased at post/unpost time. The inner window or subwindow is where the
 current form page is actually displayed.

 In order to declare your own frame window for a form, you'll need to
 know the size of the form's bounding rectangle. You can get this
 information with:
int scale_form(FORM *form, /* form to query */
 int *rows, /* form rows */
 int *cols); /* form cols */

 The form dimensions are passed back in the locations pointed to by the
 arguments. Once you have this information, you can use it to declare
 of windows, then use one of these functions:
int set_form_win(FORM *form, /* form to alter */
 WINDOW *win); /* frame window to connect */

WINDOW *form_win(FORM *form); /* fetch frame window of form */

int set_form_sub(FORM *form, /* form to alter */
 WINDOW *win); /* form subwindow to connect */

WINDOW *form_sub(FORM *form); /* fetch form subwindow of form */

 Note that curses operations, including refresh(), on the form, should
 be done on the frame window, not the form subwindow.

 It is possible to check from your application whether all of a
 scrollable field is actually displayed within the menu subwindow. Use
 these functions:
int data_ahead(FORM *form); /* form to be queried */

int data_behind(FORM *form); /* form to be queried */

 The function data_ahead() returns TRUE if (a) the current field is
 one-line and has undisplayed data off to the right, (b) the current
 field is multi-line and there is data off-screen below it.

 The function data_behind() returns TRUE if the first (upper left hand)
 character position is off-screen (not being displayed).

 Finally, there is a function to restore the form window's cursor to
 the value expected by the forms driver:
int pos_form_cursor(FORM *) /* form to be queried */

 If your application changes the form window cursor, call this function
 before handing control back to the forms driver in order to
 re-synchronize it.

Input Processing in the Forms Driver

 The function form_driver() handles virtualized input requests for form
 navigation, editing, and validation requests, just as menu_driver does
 for menus (see the section on menu input handling).
int form_driver(FORM *form, /* form to pass input to */
 int request); /* form request code */

 Your input virtualization function needs to take input and then
 convert it to either an alphanumeric character (which is treated as
 data to be entered in the currently-selected field), or a forms
 processing request.

 The forms driver provides hooks (through input-validation and
 field-termination functions) with which your application code can
 check that the input taken by the driver matched what was expected.

 Page Navigation Requests

 These requests cause page-level moves through the form, triggering
 display of a new form screen.

 REQ_NEXT_PAGE
 Move to the next form page.

 REQ_PREV_PAGE
 Move to the previous form page.

 REQ_FIRST_PAGE
 Move to the first form page.

 REQ_LAST_PAGE
 Move to the last form page.

 These requests treat the list as cyclic; that is, REQ_NEXT_PAGE from
 the last page goes to the first, and REQ_PREV_PAGE from the first page
 goes to the last.

 Inter-Field Navigation Requests

 These requests handle navigation between fields on the same page.

 REQ_NEXT_FIELD
 Move to next field.

 REQ_PREV_FIELD
 Move to previous field.

 REQ_FIRST_FIELD
 Move to the first field.

 REQ_LAST_FIELD
 Move to the last field.

 REQ_SNEXT_FIELD
 Move to sorted next field.

 REQ_SPREV_FIELD
 Move to sorted previous field.

 REQ_SFIRST_FIELD
 Move to the sorted first field.

 REQ_SLAST_FIELD
 Move to the sorted last field.

 REQ_LEFT_FIELD
 Move left to field.

 REQ_RIGHT_FIELD
 Move right to field.

 REQ_UP_FIELD
 Move up to field.

 REQ_DOWN_FIELD
 Move down to field.

 These requests treat the list of fields on a page as cyclic; that is,
 REQ_NEXT_FIELD from the last field goes to the first, and
 REQ_PREV_FIELD from the first field goes to the last. The order of the
 fields for these (and the REQ_FIRST_FIELD and REQ_LAST_FIELD requests)
 is simply the order of the field pointers in the form array (as set up
 by new_form() or set_form_fields()

 It is also possible to traverse the fields as if they had been sorted
 in screen-position order, so the sequence goes left-to-right and
 top-to-bottom. To do this, use the second group of four
 sorted-movement requests.

 Finally, it is possible to move between fields using visual directions
 up, down, right, and left. To accomplish this, use the third group of
 four requests. Note, however, that the position of a form for purposes
 of these requests is its upper-left corner.

 For example, suppose you have a multi-line field B, and two
 single-line fields A and C on the same line with B, with A to the left
 of B and C to the right of B. A REQ_MOVE_RIGHT from A will go to B
 only if A, B, and C all share the same first line; otherwise it will
 skip over B to C.

 Intra-Field Navigation Requests

 These requests drive movement of the edit cursor within the currently
 selected field.

 REQ_NEXT_CHAR
 Move to next character.

 REQ_PREV_CHAR
 Move to previous character.

 REQ_NEXT_LINE
 Move to next line.

 REQ_PREV_LINE
 Move to previous line.

 REQ_NEXT_WORD
 Move to next word.

 REQ_PREV_WORD
 Move to previous word.

 REQ_BEG_FIELD
 Move to beginning of field.

 REQ_END_FIELD
 Move to end of field.

 REQ_BEG_LINE
 Move to beginning of line.

 REQ_END_LINE
 Move to end of line.

 REQ_LEFT_CHAR
 Move left in field.

 REQ_RIGHT_CHAR
 Move right in field.

 REQ_UP_CHAR
 Move up in field.

 REQ_DOWN_CHAR
 Move down in field.

 Each word is separated from the previous and next characters by
 whitespace. The commands to move to beginning and end of line or field
 look for the first or last non-pad character in their ranges.

 Scrolling Requests

 Fields that are dynamic and have grown and fields explicitly created
 with offscreen rows are scrollable. One-line fields scroll
 horizontally; multi-line fields scroll vertically. Most scrolling is
 triggered by editing and intra-field movement (the library scrolls the
 field to keep the cursor visible). It is possible to explicitly
 request scrolling with the following requests:

 REQ_SCR_FLINE
 Scroll vertically forward a line.

 REQ_SCR_BLINE
 Scroll vertically backward a line.

 REQ_SCR_FPAGE
 Scroll vertically forward a page.

 REQ_SCR_BPAGE
 Scroll vertically backward a page.

 REQ_SCR_FHPAGE
 Scroll vertically forward half a page.

 REQ_SCR_BHPAGE
 Scroll vertically backward half a page.

 REQ_SCR_FCHAR
 Scroll horizontally forward a character.

 REQ_SCR_BCHAR

 Scroll horizontally backward a character.

 REQ_SCR_HFLINE
 Scroll horizontally one field width forward.

 REQ_SCR_HBLINE
 Scroll horizontally one field width backward.

 REQ_SCR_HFHALF
 Scroll horizontally one half field width forward.

 REQ_SCR_HBHALF
 Scroll horizontally one half field width backward.

 For scrolling purposes, a page of a field is the height of its visible
 part.

 Editing Requests

 When you pass the forms driver an ASCII character, it is treated as a
 request to add the character to the field's data buffer. Whether this
 is an insertion or a replacement depends on the field's edit mode
 (insertion is the default.

 The following requests support editing the field and changing the edit
 mode:

 REQ_INS_MODE
 Set insertion mode.

 REQ_OVL_MODE
 Set overlay mode.

 REQ_NEW_LINE
 New line request (see below for explanation).

 REQ_INS_CHAR
 Insert space at character location.

 REQ_INS_LINE
 Insert blank line at character location.

 REQ_DEL_CHAR
 Delete character at cursor.

 REQ_DEL_PREV
 Delete previous word at cursor.

 REQ_DEL_LINE
 Delete line at cursor.

 REQ_DEL_WORD
 Delete word at cursor.

 REQ_CLR_EOL
 Clear to end of line.

 REQ_CLR_EOF
 Clear to end of field.

 REQ_CLEAR_FIELD
 Clear entire field.

 The behavior of the REQ_NEW_LINE and REQ_DEL_PREV requests is
 complicated and partly controlled by a pair of forms options. The
 special cases are triggered when the cursor is at the beginning of a
 field, or on the last line of the field.

 First, we consider REQ_NEW_LINE:

 The normal behavior of REQ_NEW_LINE in insert mode is to break the
 current line at the position of the edit cursor, inserting the portion
 of the current line after the cursor as a new line following the
 current and moving the cursor to the beginning of that new line (you
 may think of this as inserting a newline in the field buffer).

 The normal behavior of REQ_NEW_LINE in overlay mode is to clear the
 current line from the position of the edit cursor to end of line. The
 cursor is then moved to the beginning of the next line.

 However, REQ_NEW_LINE at the beginning of a field, or on the last line
 of a field, instead does a REQ_NEXT_FIELD. O_NL_OVERLOAD option is
 off, this special action is disabled.

 Now, let us consider REQ_DEL_PREV:

 The normal behavior of REQ_DEL_PREV is to delete the previous
 character. If insert mode is on, and the cursor is at the start of a
 line, and the text on that line will fit on the previous one, it
 instead appends the contents of the current line to the previous one
 and deletes the current line (you may think of this as deleting a
 newline from the field buffer).

 However, REQ_DEL_PREV at the beginning of a field is instead treated
 as a REQ_PREV_FIELD.

 If the O_BS_OVERLOAD option is off, this special action is disabled
 and the forms driver just returns E_REQUEST_DENIED.

 See Form Options for discussion of how to set and clear the overload
 options.

 Order Requests

 If the type of your field is ordered, and has associated functions for
 getting the next and previous values of the type from a given value,
 there are requests that can fetch that value into the field buffer:

 REQ_NEXT_CHOICE
 Place the successor value of the current value in the buffer.

 REQ_PREV_CHOICE
 Place the predecessor value of the current value in the buffer.

 Of the built-in field types, only TYPE_ENUM has built-in successor and
 predecessor functions. When you define a field type of your own (see
 Custom Validation Types), you can associate our own ordering
 functions.

 Application Commands

 Form requests are represented as integers above the curses value
 greater than KEY_MAX and less than or equal to the constant
 MAX_COMMAND. If your input-virtualization routine returns a value
 above MAX_COMMAND, the forms driver will ignore it.

Field Change Hooks

 It is possible to set function hooks to be executed whenever the
 current field or form changes. Here are the functions that support
 this:
typedef void (*HOOK)(); /* pointer to function returning void */

int set_form_init(FORM *form, /* form to alter */
 HOOK hook); /* initialization hook */

HOOK form_init(FORM *form); /* form to query */

int set_form_term(FORM *form, /* form to alter */
 HOOK hook); /* termination hook */

HOOK form_term(FORM *form); /* form to query */

int set_field_init(FORM *form, /* form to alter */
 HOOK hook); /* initialization hook */

HOOK field_init(FORM *form); /* form to query */

int set_field_term(FORM *form, /* form to alter */
 HOOK hook); /* termination hook */

HOOK field_term(FORM *form); /* form to query */

 These functions allow you to either set or query four different hooks.
 In each of the set functions, the second argument should be the
 address of a hook function. These functions differ only in the timing
 of the hook call.

 form_init
 This hook is called when the form is posted; also, just after
 each page change operation.

 field_init
 This hook is called when the form is posted; also, just after
 each field change

 field_term
 This hook is called just after field validation; that is, just
 before the field is altered. It is also called when the form is
 unposted.

 form_term
 This hook is called when the form is unposted; also, just
 before each page change operation.

 Calls to these hooks may be triggered
 1. When user editing requests are processed by the forms driver
 2. When the current page is changed by set_current_field() call
 3. When the current field is changed by a set_form_page() call

 See Field Change Commands for discussion of the latter two cases.

 You can set a default hook for all fields by passing one of the set
 functions a NULL first argument.

 You can disable any of these hooks by (re)setting them to NULL, the
 default value.

Field Change Commands

 Normally, navigation through the form will be driven by the user's
 input requests. But sometimes it is useful to be able to move the
 focus for editing and viewing under control of your application, or
 ask which field it currently is in. The following functions help you
 accomplish this:
int set_current_field(FORM *form, /* form to alter */
 FIELD *field); /* field to shift to */

FIELD *current_field(FORM *form); /* form to query */

int field_index(FORM *form, /* form to query */
 FIELD *field); /* field to get index of */

 The function field_index() returns the index of the given field in the
 given form's field array (the array passed to new_form() or
 set_form_fields()).

 The initial current field of a form is the first active field on the
 first page. The function set_form_fields() resets this.

 It is also possible to move around by pages.
int set_form_page(FORM *form, /* form to alter */
 int page); /* page to go to (0-origin) */

int form_page(FORM *form); /* return form's current page */

 The initial page of a newly-created form is 0. The function
 set_form_fields() resets this.

Form Options

 Like fields, forms may have control option bits. They can be changed
 or queried with these functions:
int set_form_opts(FORM *form, /* form to alter */
 int attr); /* attribute to set */

int form_opts_on(FORM *form, /* form to alter */
 int attr); /* attributes to turn on */

int form_opts_off(FORM *form, /* form to alter */
 int attr); /* attributes to turn off */

int form_opts(FORM *form); /* form to query */

 By default, all options are on. Here are the available option bits:

 O_NL_OVERLOAD
 Enable overloading of REQ_NEW_LINE as described in Editing
 Requests. The value of this option is ignored on dynamic
 fields that have not reached their size limit; these have no
 last line, so the circumstances for triggering a REQ_NEXT_FIELD
 never arise.

 O_BS_OVERLOAD
 Enable overloading of REQ_DEL_PREV as described in Editing
 Requests.

 The option values are bit-masks and can be composed with logical-or in
 the obvious way.

Custom Validation Types

 The form library gives you the capability to define custom validation
 types of your own. Further, the optional additional arguments of
 set_field_type effectively allow you to parameterize validation types.
 Most of the complications in the validation-type interface have to do
 with the handling of the additional arguments within custom validation
 functions.

 Union Types

 The simplest way to create a custom data type is to compose it from
 two preexisting ones:
FIELD *link_fieldtype(FIELDTYPE *type1,
 FIELDTYPE *type2);

 This function creates a field type that will accept any of the values
 legal for either of its argument field types (which may be either
 predefined or programmer-defined). If a set_field_type() call later
 requires arguments, the new composite type expects all arguments for
 the first type, than all arguments for the second. Order functions
 (see Order Requests) associated with the component types will work on
 the composite; what it does is check the validation function for the
 first type, then for the second, to figure what type the buffer
 contents should be treated as.

 New Field Types

 To create a field type from scratch, you need to specify one or both
 of the following things:
 * A character-validation function, to check each character as it is
 entered.
 * A field-validation function to be applied on exit from the field.

 Here's how you do that:

typedef int (*HOOK)(); /* pointer to function returning int */

FIELDTYPE *new_fieldtype(HOOK f_validate, /* field validator */
 HOOK c_validate) /* character validator */

int free_fieldtype(FIELDTYPE *ftype); /* type to free */

 At least one of the arguments of new_fieldtype() must be non-NULL. The
 forms driver will automatically call the new type's validation
 functions at appropriate points in processing a field of the new type.

 The function free_fieldtype() deallocates the argument fieldtype,
 freeing all storage associated with it.

 Normally, a field validator is called when the user attempts to leave
 the field. Its first argument is a field pointer, from which it can
 get to field buffer 0 and test it. If the function returns TRUE, the
 operation succeeds; if it returns FALSE, the edit cursor stays in the
 field.

 A character validator gets the character passed in as a first
 argument. It too should return TRUE if the character is valid, FALSE
 otherwise.

 Validation Function Arguments

 Your field- and character- validation functions will be passed a
 second argument as well. This second argument is the address of a
 structure (which we'll call a pile) built from any of the
 field-type-specific arguments passed to set_field_type(). If no such
 arguments are defined for the field type, this pile pointer argument
 will be NULL.

 In order to arrange for such arguments to be passed to your validation
 functions, you must associate a small set of storage-management
 functions with the type. The forms driver will use these to synthesize
 a pile from the trailing arguments of each set_field_type() argument,
 and a pointer to the pile will be passed to the validation functions.

 Here is how you make the association:
typedef char *(*PTRHOOK)(); /* pointer to function returning (char *) */
typedef void (*VOIDHOOK)(); /* pointer to function returning void */

int set_fieldtype_arg(FIELDTYPE *type, /* type to alter */
 PTRHOOK make_str, /* make structure from args */
 PTRHOOK copy_str, /* make copy of structure */
 VOIDHOOK free_str); /* free structure storage */

 Here is how the storage-management hooks are used:

 make_str
 This function is called by set_field_type(). It gets one
 argument, a va_list of the type-specific arguments passed to
 set_field_type(). It is expected to return a pile pointer to a
 data structure that encapsulates those arguments.

 copy_str
 This function is called by form library functions that allocate
 new field instances. It is expected to take a pile pointer,
 copy the pile to allocated storage, and return the address of
 the pile copy.

 free_str
 This function is called by field- and type-deallocation
 routines in the library. It takes a pile pointer argument, and
 is expected to free the storage of that pile.

 The make_str and copy_str functions may return NULL to signal
 allocation failure. The library routines will that call them will
 return error indication when this happens. Thus, your validation
 functions should never see a NULL file pointer and need not check
 specially for it.

 Order Functions For Custom Types

 Some custom field types are simply ordered in the same well-defined
 way that TYPE_ENUM is. For such types, it is possible to define
 successor and predecessor functions to support the REQ_NEXT_CHOICE and
 REQ_PREV_CHOICE requests. Here's how:
typedef int (*INTHOOK)(); /* pointer to function returning int */

int set_fieldtype_arg(FIELDTYPE *type, /* type to alter */
 INTHOOK succ, /* get successor value */
 INTHOOK pred); /* get predecessor value */

 The successor and predecessor arguments will each be passed two
 arguments; a field pointer, and a pile pointer (as for the validation
 functions). They are expected to use the function field_buffer() to
 read the current value, and set_field_buffer() on buffer 0 to set the
 next or previous value. Either hook may return TRUE to indicate
 success (a legal next or previous value was set) or FALSE to indicate
 failure.

 Avoiding Problems

 The interface for defining custom types is complicated and tricky.
 Rather than attempting to create a custom type entirely from scratch,
 you should start by studying the library source code for whichever of
 the pre-defined types seems to be closest to what you want.

 Use that code as a model, and evolve it towards what you really want.
 You will avoid many problems and annoyances that way. The code in the
 ncurses library has been specifically exempted from the package
 copyright to support this.

 If your custom type defines order functions, have do something
 intuitive with a blank field. A useful convention is to make the
 successor of a blank field the types minimum value, and its
 predecessor the maximum.

