
Finding Files
Edition 4.4.2, for GNU find version 4.4.2

16 May 2009

by David MacKenzie and James Youngman

This file documents the GNU utilities for finding files that match certain criteria and per-
forming various operations on them.
Copyright (C) 1994, 1996, 1998, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software
Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

i

Table of Contents

1 Introduction . 1
1.1 Scope . 1
1.2 Overview . 2
1.3 find Expressions . 3

2 Finding Files . 5
2.1 Name . 5

2.1.1 Base Name Patterns . 5
2.1.2 Full Name Patterns . 5
2.1.3 Fast Full Name Search . 7
2.1.4 Shell Pattern Matching . 8

2.2 Links . 8
2.2.1 Symbolic Links . 9
2.2.2 Hard Links . 10

2.3 Time . 11
2.3.1 Age Ranges . 11
2.3.2 Comparing Timestamps . 12

2.4 Size . 13
2.5 Type . 14
2.6 Owner . 15
2.7 File Mode Bits . 15
2.8 Contents . 17
2.9 Directories . 17
2.10 Filesystems . 19
2.11 Combining Primaries With Operators . 19

3 Actions . 21
3.1 Print File Name . 21
3.2 Print File Information . 21

3.2.1 Escapes . 22
3.2.2 Format Directives . 23

3.2.2.1 Name Directives . 23
3.2.2.2 Ownership Directives . 23
3.2.2.3 Size Directives . 24
3.2.2.4 Location Directives . 24
3.2.2.5 Time Directives . 24

3.2.3 Time Formats . 25
3.2.3.1 Time Components . 25
3.2.3.2 Date Components . 25
3.2.3.3 Combined Time Formats . 26
3.2.3.4 Formatting Flags . 26

3.3 Run Commands . 26

ii

3.3.1 Single File . 26
3.3.2 Multiple Files . 27

3.3.2.1 Unsafe File Name Handling . 29
3.3.2.2 Safe File Name Handling . 30
3.3.2.3 Unusual Characters in File Names 30
3.3.2.4 Limiting Command Size . 31
3.3.2.5 Interspersing File Names . 32

3.3.3 Querying . 33
3.4 Delete Files . 34
3.5 Adding Tests . 34

4 File Name Databases . 36
4.1 Database Locations . 36
4.2 Database Formats . 36

4.2.1 LOCATE02 Database Format . 37
4.2.2 Sample LOCATE02 Database . 37
4.2.3 slocate Database Format . 38
4.2.4 Old Database Format . 38

4.3 Newline Handling . 39

5 File Permissions . 40
5.1 Structure of File Permissions . 40
5.2 Symbolic Modes . 41

5.2.1 Setting Permissions . 41
5.2.2 Copying Existing Permissions . 42
5.2.3 Changing Special Permissions . 42
5.2.4 Conditional Executability . 43
5.2.5 Making Multiple Changes . 43
5.2.6 The Umask and Protection . 44

5.3 Numeric Modes . 44

6 Date input formats . 46
6.1 General date syntax . 46
6.2 Calendar date items . 47
6.3 Time of day items . 48
6.4 Time zone items . 49
6.5 Day of week items . 49
6.6 Relative items in date strings . 49
6.7 Pure numbers in date strings . 50
6.8 Seconds since the Epoch . 51
6.9 Specifying time zone rules . 51
6.10 Authors of get_date . 52

iii

7 Reference . 53
7.1 Invoking find . 53

7.1.1 Filesystem Traversal Options . 53
7.1.2 Warning Messages . 54
7.1.3 Optimisation Options . 54
7.1.4 Debug Options . 55
7.1.5 Find Expressions . 55

7.2 Invoking locate . 55
7.3 Invoking updatedb . 58
7.4 Invoking xargs . 59

7.4.1 xargs options . 59
7.4.2 Invoking the shell from xargs . 61

7.5 Regular Expressions . 63
7.5.1 ‘findutils-default’ regular expression syntax 63
7.5.2 ‘awk’ regular expression syntax . 64
7.5.3 ‘egrep’ regular expression syntax . 65
7.5.4 ‘emacs’ regular expression syntax . 65
7.5.5 ‘gnu-awk’ regular expression syntax . 66
7.5.6 ‘grep’ regular expression syntax . 67
7.5.7 ‘posix-awk’ regular expression syntax . 69
7.5.8 ‘posix-basic’ regular expression syntax 69
7.5.9 ‘posix-egrep’ regular expression syntax 69
7.5.10 ‘posix-extended’ regular expression syntax 70

7.6 Environment Variables . 71

8 Common Tasks . 73
8.1 Viewing And Editing . 73
8.2 Archiving . 73
8.3 Cleaning Up . 74
8.4 Strange File Names . 75
8.5 Fixing Permissions . 75
8.6 Classifying Files . 76

9 Worked Examples . 77
9.1 Deleting Files . 77

9.1.1 The Traditional Way . 77
9.1.2 Making Use of xargs . 78
9.1.3 Unusual characters in filenames . 78
9.1.4 Going back to -exec . 78
9.1.5 A more secure version of -exec . 79
9.1.6 Using the -delete action . 80
9.1.7 Improving things still further . 80
9.1.8 Conclusion . 81

9.2 Copying A Subset of Files . 81
9.3 Updating A Timestamp File . 82

9.3.1 Updating the Timestamp The Wrong Way 82
9.3.2 Using the test utility to compare timestamps 82

iv

9.3.3 A combined approach . 82
9.3.4 Using -printf and sort to compare timestamps 82
9.3.5 Solving the problem with make . 83
9.3.6 Coping with odd filenames too . 83

9.4 Finding the Shallowest Instance . 84

10 Security Considerations . 85
10.1 Levels of Risk . 85
10.2 Security Considerations for find . 86

10.2.1 Problems with -exec and filenames . 86
10.2.2 Changing the Current Working Directory 87

10.2.2.1 O NOFOLLOW . 87
10.2.2.2 Systems without O NOFOLLOW 88

10.2.3 Race Conditions with -exec . 88
10.2.4 Race Conditions with -print and -print0 89

10.3 Security Considerations for xargs . 89
10.4 Security Considerations for locate . 90

10.4.1 Race Conditions . 90
10.4.2 Long File Name Bugs with Old-Format Databases 90

10.5 Summary . 91

11 Error Messages . 92
11.1 Error Messages From find . 92
11.2 Error Messages From xargs . 93
11.3 Error Messages From locate . 94
11.4 Error Messages From updatedb . 94

Appendix A GNU Free Documentation License
. 95

find Primary Index . 102

Chapter 1: Introduction 1

1 Introduction

This manual shows how to find files that meet criteria you specify, and how to perform vari-
ous actions on the files that you find. The principal programs that you use to perform these
tasks are find, locate, and xargs. Some of the examples in this manual use capabilities
specific to the GNU versions of those programs.

GNU find was originally written by Eric Decker, with enhancements by David MacKen-
zie, Jay Plett, and Tim Wood. GNU xargs was originally written by Mike Rendell, with
enhancements by David MacKenzie. GNU locate and its associated utilities were orig-
inally written by James Woods, with enhancements by David MacKenzie. The idea for
‘find -print0’ and ‘xargs -0’ came from Dan Bernstein. The current maintainer of GNU
findutils (and this manual) is James Youngman. Many other people have contributed bug
fixes, small improvements, and helpful suggestions. Thanks!

To report a bug in GNU findutils, please use the form on the Savannah web site
at http://savannah.gnu.org/bugs/?group=findutils. Reporting bugs this way means
that you will then be able to track progress in fixing the problem.

If you don’t have web access, you can also just send mail to the mailing list. The mailing
list bug-findutils@gnu.org carries discussion of bugs in findutils, questions and answers
about the software and discussion of the development of the programs. To join the list,
send email to bug-findutils-request@gnu.org.

Please read any relevant sections of this manual before asking for help on the mailing
list. You may also find it helpful to read the NON-BUGS section of the find manual page.

If you ask for help on the mailing list, people will be able to help you much more
effectively if you include the following things:
• The version of the software you are running. You can find this out by running ‘locate

--version’.
• What you were trying to do
• The exact command line you used
• The exact output you got (if this is very long, try to find a smaller example which

exhibits the same problem)
• The output you expected to get

It may also be the case that the bug you are describing has already been fixed, if it is a
bug. Please check the most recent findutils releases at ftp://ftp.gnu.org/gnu/findutils
and, if possible, the development branch at ftp://alpha.gnu.org/gnu/findutils. If you
take the time to check that your bug still exists in current releases, this will greatly help
people who want to help you solve your problem. Please also be aware that if you obtained
findutils as part of the GNU/Linux ’distribution’, the distributions often lag seriously behind
findutils releases, even the stable release. Please check the GNU FTP site.

1.1 Scope

For brevity, the word file in this manual means a regular file, a directory, a symbolic link,
or any other kind of node that has a directory entry. A directory entry is also called a file
name. A file name may contain some, all, or none of the directories in a path that leads to
the file. These are all examples of what this manual calls “file names”:

mailto:bug-findutils@gnu.org
mailto:bug-findutils-request@gnu.org
ftp://ftp.gnu.org/gnu/findutils
ftp://alpha.gnu.org/gnu/findutils

Chapter 1: Introduction 2

parser.c
README
./budget/may-94.sc
fred/.cshrc
/usr/local/include/termcap.h

A directory tree is a directory and the files it contains, all of its subdirectories and the
files they contain, etc. It can also be a single non-directory file.

These programs enable you to find the files in one or more directory trees that:

• have names that contain certain text or match a certain pattern;

• are links to certain files;

• were last used during a certain period of time;

• are within a certain size range;

• are of a certain type (regular file, directory, symbolic link, etc.);

• are owned by a certain user or group;

• have certain access permissions or special mode bits;

• contain text that matches a certain pattern;

• are within a certain depth in the directory tree;

• or some combination of the above.

Once you have found the files you’re looking for (or files that are potentially the ones
you’re looking for), you can do more to them than simply list their names. You can get any
combination of the files’ attributes, or process the files in many ways, either individually or
in groups of various sizes. Actions that you might want to perform on the files you have
found include, but are not limited to:

• view or edit

• store in an archive

• remove or rename

• change access permissions

• classify into groups

This manual describes how to perform each of those tasks, and more.

1.2 Overview

The principal programs used for making lists of files that match given criteria and running
commands on them are find, locate, and xargs. An additional command, updatedb, is
used by system administrators to create databases for locate to use.

find searches for files in a directory hierarchy and prints information about the files it
found. It is run like this:

find [file...] [expression]

Here is a typical use of find. This example prints the names of all files in the directory tree
rooted in ‘/usr/src’ whose name ends with ‘.c’ and that are larger than 100 Kilobytes.

Chapter 1: Introduction 3

find /usr/src -name ’*.c’ -size +100k -print

Notice that the wildcard must be enclosed in quotes in order to protect it from expansion
by the shell.

locate searches special file name databases for file names that match patterns. The
system administrator runs the updatedb program to create the databases. locate is run
like this:

locate [option...] pattern...

This example prints the names of all files in the default file name database whose name
ends with ‘Makefile’ or ‘makefile’. Which file names are stored in the database depends
on how the system administrator ran updatedb.

locate ’*[Mm]akefile’

The name xargs, pronounced EX-args, means “combine arguments.” xargs builds and
executes command lines by gathering together arguments it reads on the standard input.
Most often, these arguments are lists of file names generated by find. xargs is run like
this:

xargs [option...] [command [initial-arguments]]
The following command searches the files listed in the file ‘file-list’ and prints all of the
lines in them that contain the word ‘typedef’.

xargs grep typedef < file-list

1.3 find Expressions

The expression that find uses to select files consists of one or more primaries, each of which
is a separate command line argument to find. find evaluates the expression each time it
processes a file. An expression can contain any of the following types of primaries:

options affect overall operation rather than the processing of a specific file;

tests return a true or false value, depending on the file’s attributes;

actions have side effects and return a true or false value; and

operators connect the other arguments and affect when and whether they are evaluated.

You can omit the operator between two primaries; it defaults to ‘-and’. See Section 2.11
[Combining Primaries With Operators], page 19, for ways to connect primaries into more
complex expressions. If the expression contains no actions other than ‘-prune’, ‘-print’
is performed on all files for which the entire expression is true (see Section 3.1 [Print File
Name], page 21).

Options take effect immediately, rather than being evaluated for each file when their
place in the expression is reached. Therefore, for clarity, it is best to place them at the
beginning of the expression. There are two exceptions to this; ‘-daystart’ and ‘-follow’
have different effects depending on where in the command line they appear. This can be
confusing, so it’s best to keep them at the beginning, too.

Many of the primaries take arguments, which immediately follow them in the next
command line argument to find. Some arguments are file names, patterns, or other strings;
others are numbers. Numeric arguments can be specified as

Chapter 1: Introduction 4

+n for greater than n,

-n for less than n,

n for exactly n.

Chapter 2: Finding Files 5

2 Finding Files

By default, find prints to the standard output the names of the files that match the given
criteria. See Chapter 3 [Actions], page 21, for how to get more information about the
matching files.

2.1 Name

Here are ways to search for files whose name matches a certain pattern. See Section 2.1.4
[Shell Pattern Matching], page 8, for a description of the pattern arguments to these tests.

Each of these tests has a case-sensitive version and a case-insensitive version, whose
name begins with ‘i’. In a case-insensitive comparison, the patterns ‘fo*’ and ‘F??’ match
the file names ‘Foo’, ‘FOO’, ‘foo’, ‘fOo’, etc.

2.1.1 Base Name Patterns

[Test]-name pattern
[Test]-iname pattern

True if the base of the file name (the path with the leading directories removed)
matches shell pattern pattern. For ‘-iname’, the match is case-insensitive.1 To ignore
a whole directory tree, use ‘-prune’ (see Section 2.9 [Directories], page 17). As an
example, to find Texinfo source files in ‘/usr/local/doc’:

find /usr/local/doc -name ’*.texi’

Notice that the wildcard must be enclosed in quotes in order to protect it from
expansion by the shell.

As of findutils version 4.2.2, patterns for ‘-name’ and ‘-iname’ will match a file name
with a leading ‘.’. For example the command ‘find /tmp -name *bar’ will match
the file ‘/tmp/.foobar’. Braces within the pattern (‘{}’) are not considered to be
special (that is, find . -name ’foo{1,2}’ matches a file named ‘foo{1,2}’, not the
files ‘foo1’ and ‘foo2’.

2.1.2 Full Name Patterns

[Test]-path pattern
[Test]-wholename pattern

True if the entire file name, starting with the command line argument under which
the file was found, matches shell pattern pattern. To ignore a whole directory tree,
use ‘-prune’ rather than checking every file in the tree (see Section 2.9 [Directories],
page 17). The “entire file name” as used by find starts with the starting-point
specified on the command line, and is not converted to an absolute pathname, so
for example cd /; find tmp -wholename /tmp will never match anything. The name
‘-wholename’ is GNU-specific, but ‘-path’ is more portable; it is supported by HP-UX
find and will soon be part of POSIX.

1 Because we need to perform case-insensitive matching, the GNU fnmatch implementation is always used;
if the C library includes the GNU implementation, we use that and otherwise we use the one from gnulib

Chapter 2: Finding Files 6

[Test]-ipath pattern
[Test]-iwholename pattern

These tests are like ‘-wholename’ and ‘-path’, but the match is case-insensitive.

In the context of the tests ‘-path’, ‘-wholename’, ‘-ipath’ and ‘-wholename’, a “full
path” is the name of all the directories traversed from find’s start point to the file being
tested, followed by the base name of the file itself. These paths are often not absolute paths;
for example

$ cd /tmp
$ mkdir -p foo/bar/baz
$ find foo -path foo/bar -print
foo/bar
$ find foo -path /tmp/foo/bar -print
$ find /tmp/foo -path /tmp/foo/bar -print
/tmp/foo/bar

Notice that the second find command prints nothing, even though ‘/tmp/foo/bar’ exists
and was examined by find.

Unlike file name expansion on the command line, a ‘*’ in the pattern will match both
‘/’ and leading dots in file names:

$ find . -path ’*f’
./quux/bar/baz/f
$ find . -path ’*/*config’
./quux/bar/baz/.config

[Test]-regex expr
[Test]-iregex expr

True if the entire file name matches regular expression expr. This is a match on
the whole path, not a search. For example, to match a file named ‘./fubar3’, you
can use the regular expression ‘.*bar.’ or ‘.*b.*3’, but not ‘f.*r3’. See Section
“Syntax of Regular Expressions” in The GNU Emacs Manual, for a description of the
syntax of regular expressions. For ‘-iregex’, the match is case-insensitive. There are
several varieties of regular expressions; by default this test uses POSIX basic regular
expressions, but this can be changed with the option ‘-regextype’.

[Option]-regextype name
This option controls the variety of regular expression syntax understood by the
‘-regex’ and ‘-iregex’ tests. This option is positional; that is, it only affects regular
expressions which occur later in the command line. If this option is not given, GNU
Emacs regular expressions are assumed. Currently-implemented types are

‘emacs’ Regular expressions compatible with GNU Emacs; this is also the default
behaviour if this option is not used.

‘posix-awk’
Regular expressions compatible with the POSIX awk command (not GNU
awk)

‘posix-basic’
POSIX Basic Regular Expressions.

Chapter 2: Finding Files 7

‘posix-egrep’
Regular expressions compatible with the POSIX egrep command

‘posix-extended’
POSIX Extended Regular Expressions

Section 7.5 [Regular Expressions], page 63 for more information on the regular ex-
pression dialects understood by GNU findutils.

2.1.3 Fast Full Name Search

To search for files by name without having to actually scan the directories on the disk (which
can be slow), you can use the locate program. For each shell pattern you give it, locate
searches one or more databases of file names and displays the file names that contain the
pattern. See Section 2.1.4 [Shell Pattern Matching], page 8, for details about shell patterns.

If a pattern is a plain string—it contains no metacharacters—locate displays all file
names in the database that contain that string. If a pattern contains metacharacters,
locate only displays file names that match the pattern exactly. As a result, patterns that
contain metacharacters should usually begin with a ‘*’, and will most often end with one
as well. The exceptions are patterns that are intended to explicitly match the beginning or
end of a file name.

If you only want locate to match against the last component of the file names (the
“base name” of the files) you can use the ‘--basename’ option. The opposite behaviour is
the default, but can be selected explicitly by using the option ‘--wholename’.

The command
locate pattern

is almost equivalent to
find directories -name pattern

where directories are the directories for which the file name databases contain infor-
mation. The differences are that the locate information might be out of date, and that
locate handles wildcards in the pattern slightly differently than find (see Section 2.1.4
[Shell Pattern Matching], page 8).

The file name databases contain lists of files that were on the system when the databases
were last updated. The system administrator can choose the file name of the default data-
base, the frequency with which the databases are updated, and the directories for which
they contain entries.

Here is how to select which file name databases locate searches. The default
is system-dependent. At the time this document was generated, the default was
‘/Languages/gnu_lang/4.0/install/var/locatedb’.

--database=path
-d path Instead of searching the default file name database, search the file name data-

bases in path, which is a colon-separated list of database file names. You can
also use the environment variable LOCATE_PATH to set the list of database files
to search. The option overrides the environment variable if both are used.

GNU locate can read file name databases generated by the slocate package. However,
these generally contain a list of all the files on the system, and so when using this database,

Chapter 2: Finding Files 8

locate will produce output only for files which are accessible to you. See Section 7.2
[Invoking locate], page 55, for a description of the ‘--existing’ option which is used to do
this.

The updatedb program can also generate database in a format compatible with slocate.
See Section 7.3 [Invoking updatedb], page 58, for a description of its ‘--dbformat’ and
‘--output’ options.

2.1.4 Shell Pattern Matching

find and locate can compare file names, or parts of file names, to shell patterns. A shell
pattern is a string that may contain the following special characters, which are known as
wildcards or metacharacters.

You must quote patterns that contain metacharacters to prevent the shell from expanding
them itself. Double and single quotes both work; so does escaping with a backslash.

* Matches any zero or more characters.

? Matches any one character.

[string] Matches exactly one character that is a member of the string string. This is
called a character class. As a shorthand, string may contain ranges, which
consist of two characters with a dash between them. For example, the class
‘[a-z0-9_]’ matches a lowercase letter, a number, or an underscore. You can
negate a class by placing a ‘!’ or ‘^’ immediately after the opening bracket.
Thus, ‘[^A-Z@]’ matches any character except an uppercase letter or an at
sign.

\ Removes the special meaning of the character that follows it. This works even
in character classes.

In the find tests that do shell pattern matching (‘-name’, ‘-wholename’, etc.), wildcards
in the pattern will match a ‘.’ at the beginning of a file name. This is also the case for
locate. Thus, ‘find -name ’*macs’’ will match a file named ‘.emacs’, as will ‘locate
’*macs’’.

Slash characters have no special significance in the shell pattern matching that find and
locate do, unlike in the shell, in which wildcards do not match them. Therefore, a pattern
‘foo*bar’ can match a file name ‘foo3/bar’, and a pattern ‘./sr*sc’ can match a file name
‘./src/misc’.

If you want to locate some files with the ‘locate’ command but don’t need to see the full
list you can use the ‘--limit’ option to see just a small number of results, or the ‘--count’
option to display only the total number of matches.

2.2 Links

There are two ways that files can be linked together. Symbolic links are a special type of file
whose contents are a portion of the name of another file. Hard links are multiple directory
entries for one file; the file names all have the same index node (inode) number on the disk.

Chapter 2: Finding Files 9

2.2.1 Symbolic Links

Symbolic links are names that reference other files. GNU find will handle symbolic links
in one of two ways; firstly, it can dereference the links for you - this means that if it comes
across a symbolic link, it examines the file that the link points to, in order to see if it
matches the criteria you have specified. Secondly, it can check the link itself in case you
might be looking for the actual link. If the file that the symbolic link points to is also within
the directory hierarchy you are searching with the find command, you may not see a great
deal of difference between these two alternatives.

By default, find examines symbolic links themselves when it finds them (and, if it later
comes across the linked-to file, it will examine that, too). If you would prefer find to
dereference the links and examine the file that each link points to, specify the ‘-L’ option
to find. You can explicitly specify the default behaviour by using the ‘-P’ option. The
‘-H’ option is a half-way-between option which ensures that any symbolic links listed on the
command line are dereferenced, but other symbolic links are not.

Symbolic links are different from “hard links” in the sense that you need permission to
search the directories in the linked-to file name to dereference the link. This can mean that
even if you specify the ‘-L’ option, find may not be able to determine the properties of the
file that the link points to (because you don’t have sufficient permission). In this situation,
find uses the properties of the link itself. This also occurs if a symbolic link exists but
points to a file that is missing.

The options controlling the behaviour of find with respect to links are as follows :-

‘-P’ find does not dereference symbolic links at all. This is the default behaviour.
This option must be specified before any of the file names on the command line.

‘-H’ find does not dereference symbolic links (except in the case of file names on
the command line, which are dereferenced). If a symbolic link cannot be deref-
erenced, the information for the symbolic link itself is used. This option must
be specified before any of the file names on the command line.

‘-L’ find dereferences symbolic links where possible, and where this is not possible
it uses the properties of the symbolic link itself. This option must be specified
before any of the file names on the command line. Use of this option also implies
the same behaviour as the ‘-noleaf’ option. If you later use the ‘-H’ or ‘-P’
options, this does not turn off ‘-noleaf’.

‘-follow’ This option forms part of the “expression” and must be specified after the file
names, but it is otherwise equivalent to ‘-L’. The ‘-follow’ option affects
only those tests which appear after it on the command line. This option is
deprecated. Where possible, you should use ‘-L’ instead.

The following differences in behavior occur when the ‘-L’ option is used:
• find follows symbolic links to directories when searching directory trees.
• ‘-lname’ and ‘-ilname’ always return false (unless they happen to match broken sym-

bolic links).
• ‘-type’ reports the types of the files that symbolic links point to. This means that in

combination with ‘-L’, ‘-type l’ will be true only for broken symbolic links. To check
for symbolic links when ‘-L’ has been specified, use ‘-xtype l’.

Chapter 2: Finding Files 10

• Implies ‘-noleaf’ (see Section 2.9 [Directories], page 17).

If the ‘-L’ option or the ‘-H’ option is used, the file names used as arguments to ‘-newer’,
‘-anewer’, and ‘-cnewer’ are dereferenced and the timestamp from the pointed-to file is
used instead (if possible – otherwise the timestamp from the symbolic link is used).

[Test]-lname pattern
[Test]-ilname pattern

True if the file is a symbolic link whose contents match shell pattern pattern. For
‘-ilname’, the match is case-insensitive. See Section 2.1.4 [Shell Pattern Matching],
page 8, for details about the pattern argument. If the ‘-L’ option is in effect, this
test will always return false for symbolic links unless they are broken. So, to list any
symbolic links to ‘sysdep.c’ in the current directory and its subdirectories, you can
do:

find . -lname ’*sysdep.c’

2.2.2 Hard Links

Hard links allow more than one name to refer to the same file. To find all the names
which refer to the same file as NAME, use ‘-samefile NAME’. If you are not using the
‘-L’ option, you can confine your search to one filesystem using the ‘-xdev’ option. This is
useful because hard links cannot point outside a single filesystem, so this can cut down on
needless searching.

If the ‘-L’ option is in effect, and NAME is in fact a symbolic link, the symbolic link
will be dereferenced. Hence you are searching for other links (hard or symbolic) to the
file pointed to by NAME. If ‘-L’ is in effect but NAME is not itself a symbolic link, other
symbolic links to the file NAME will be matched.

You can also search for files by inode number. This can occasionally be useful in diag-
nosing problems with filesystems for example, because fsck tends to print inode numbers.
Inode numbers also occasionally turn up in log messages for some types of software, and
are used to support the ftok() library function.

You can learn a file’s inode number and the number of links to it by running ‘ls -li’ or
‘find -ls’.

You can search for hard links to inode number NUM by using ‘-inum NUM’. If there
are any filesystem mount points below the directory where you are starting the search,
use the ‘-xdev’ option unless you are also using the ‘-L’ option. Using ‘-xdev’ this saves
needless searching, since hard links to a file must be on the same filesystem. See Section 2.10
[Filesystems], page 19.

[Test]-samefile NAME
File is a hard link to the same inode as NAME. If the ‘-L’ option is in effect, symbolic
links to the same file as NAME points to are also matched.

[Test]-inum n
File has inode number n. The ‘+’ and ‘-’ qualifiers also work, though these are rarely
useful. Much of the time it is easier to use ‘-samefile’ rather than this option.

You can also search for files that have a certain number of links, with ‘-links’. Direc-
tories normally have at least two hard links; their ‘.’ entry is the second one. If they have

Chapter 2: Finding Files 11

subdirectories, each of those also has a hard link called ‘..’ to its parent directory. The ‘.’
and ‘..’ directory entries are not normally searched unless they are mentioned on the find
command line.

[Test]-links n
File has n hard links.

[Test]-links +n
File has more than n hard links.

[Test]-links -n
File has fewer than n hard links.

2.3 Time

Each file has three time stamps, which record the last time that certain operations were
performed on the file:
1. access (read the file’s contents)
2. change the status (modify the file or its attributes)
3. modify (change the file’s contents)

Some systems also provide a timestamp that indicates when a file was created. For
example, the UFS2 fileystem under NetBSD-3.1 records the birth time of each file. This
information is also available under other versions of BSD and some versions of Cygwin.
However, even on systems which support file birth time, files may exist for which this
information was not recorded (for example, UFS1 file systems simply do not contain this
information).

You can search for files whose time stamps are within a certain age range, or compare
them to other time stamps.

2.3.1 Age Ranges

These tests are mainly useful with ranges (‘+n ’ and ‘-n ’).

[Test]-atime n
[Test]-ctime n
[Test]-mtime n

True if the file was last accessed (or its status changed, or it was modified) n*24 hours
ago. The number of 24-hour periods since the file’s timestamp is always rounded
down; therefore 0 means “less than 24 hours ago”, 1 means “between 24 and 48 hours
ago”, and so forth. Fractional values are supported but this only really makes sense
for the case where ranges (‘+n ’ and ‘-n ’) are used.

[Test]-amin n
[Test]-cmin n
[Test]-mmin n

True if the file was last accessed (or its status changed, or it was modified) n minutes
ago. These tests provide finer granularity of measurement than ‘-atime’ et al., but
rounding is done in a similar way (again, fractions are supported). For example, to
list files in ‘/u/bill’ that were last read from 2 to 6 minutes ago:

Chapter 2: Finding Files 12

find /u/bill -amin +2 -amin -6

[Option]-daystart
Measure times from the beginning of today rather than from 24 hours ago. So, to list
the regular files in your home directory that were modified yesterday, do

find ~/ -daystart -type f -mtime 1

The ‘-daystart’ option is unlike most other options in that it has an effect on the
way that other tests are performed. The affected tests are ‘-amin’, ‘-cmin’, ‘-mmin’,
‘-atime’, ‘-ctime’ and ‘-mtime’. The ‘-daystart’ option only affects the behaviour
of any tests which appear after it on the command line.

2.3.2 Comparing Timestamps

[Test]-newerXY reference
Succeeds if timestamp ‘X’ of the file being considered is newer than timestamp ‘Y’ of
the file ‘reference’. The latters ‘X’ and ‘Y’ can be any of the following letters:

‘a’ Last-access time of ‘reference’

‘B’ Birth time of ‘reference’ (when this is not known, the test cannot suc-
ceed)

‘c’ Last-change time of ‘reference’

‘m’ Last-modification time of ‘reference’

‘t’ The ‘reference’ argument is interpreted as a literal time, rather than
the name of a file. See Chapter 6 [Date input formats], page 46, for
a description of how the timestamp is understood. Tests of the form
‘-newerXt’ are valid but tests of the form ‘-newertY’ are not.

For example the test -newerac /tmp/foo succeeds for all files which have been ac-
cessed more recently than ‘/tmp/foo’ was changed. Here ‘X’ is ‘a’ and ‘Y’ is ‘c’.
Not all files have a known birth time. If ‘Y’ is ‘b’ and the birth time of ‘reference’
is not available, find exits with an explanatory error message. If ‘X’ is ‘b’ and we do
not know the birth time the file currently being considered, the test simply fails (that
is, it behaves like -false does).
Some operating systems (for example, most implementations of Unix) do not support
file birth times. Some others, for example NetBSD-3.1, do. Even on operating systems
which support file birth times, the information may not be available for specific files.
For example, under NetBSD, file birth times are supported on UFS2 file systems, but
not UFS1 file systems.

There are two ways to list files in ‘/usr’ modified after February 1 of the current year.
One uses ‘-newermt’:

find /usr -newermt "Feb 1"

The other way of doing this works on the versions of find before 4.3.3:
touch -t 02010000 /tmp/stamp$$
find /usr -newer /tmp/stamp$$
rm -f /tmp/stamp$$

Chapter 2: Finding Files 13

[Test]-anewer file
[Test]-cnewer file
[Test]-newer file

True if the file was last accessed (or its status changed, or it was modified) more
recently than file was modified. These tests are affected by ‘-follow’ only if ‘-follow’
comes before them on the command line. See Section 2.2.1 [Symbolic Links], page 9,
for more information on ‘-follow’. As an example, to list any files modified since
‘/bin/sh’ was last modified:

find . -newer /bin/sh

[Test]-used n
True if the file was last accessed n days after its status was last changed. Useful for
finding files that are not being used, and could perhaps be archived or removed to
save disk space.

2.4 Size

[Test]-size n[bckwMG]
True if the file uses n units of space, rounding up. The units are 512-byte blocks by
default, but they can be changed by adding a one-character suffix to n:

b 512-byte blocks (never 1024)

c bytes

k kilobytes (1024 bytes)

w 2-byte words

M Megabytes (units of 1048576 bytes)

G Gigabytes (units of 1073741824 bytes)

The ‘b’ suffix always considers blocks to be 512 bytes. This is not affected by the
setting (or non-setting) of the POSIXLY CORRECT environment variable. This
behaviour is different from the behaviour of the ‘-ls’ action). If you want to use
1024-byte units, use the ‘k’ suffix instead.
The number can be prefixed with a ‘+’ or a ‘-’. A plus sign indicates that the test
should succeed if the file uses at least n units of storage (a common use of this test)
and a minus sign indicates that the test should succeed if the file uses less than n
units of storage. There is no ‘=’ prefix, because that’s the default anyway.
The size does not count indirect blocks, but it does count blocks in sparse files that
are not actually allocated. In other words, it’s consistent with the result you get for
‘ls -l’ or ‘wc -c’. This handling of sparse files differs from the output of the ‘%k’ and
‘%b’ format specifiers for the ‘-printf’ predicate.

[Test]-empty
True if the file is empty and is either a regular file or a directory. This might help de-
termine good candidates for deletion. This test is useful with ‘-depth’ (see Section 2.9
[Directories], page 17) and ‘-delete’ (see Section 3.3.1 [Single File], page 26).

Chapter 2: Finding Files 14

2.5 Type

[Test]-type c
True if the file is of type c:

b block (buffered) special

c character (unbuffered) special

d directory

p named pipe (FIFO)

f regular file

l symbolic link; if ‘-L’ is in effect, this is true only for broken symbolic
links. If you want to search for symbolic links when ‘-L’ is in effect, use
‘-xtype’ instead of ‘-type’.

s socket

D door (Solaris)

[Test]-xtype c
This test behaves the same as ‘-type’ unless the file is a symbolic link. If the file is
a symbolic link, the result is as follows (in the table below, ‘X’ should be understood
to represent any letter except ‘l’):

‘‘-P -xtype l’’
True if the symbolic link is broken

‘‘-P -xtype X’’
True if the (ultimate) target file is of type ‘X’.

‘‘-L -xtype l’’
Always true

‘‘-L -xtype X’’
False unless the symbolic link is broken

In other words, for symbolic links, ‘-xtype’ checks the type of the file that ‘-type’
does not check.

The ‘-H’ option also affects the behaviour of ‘-xtype’. When ‘-H’ is in effect, ‘-xtype’
behaves as if ‘-L’ had been specified when examining files listed on the command
line, and as if ‘-P’ had been specified otherwise. If neither ‘-H’ nor ‘-L’ was specified,
‘-xtype’ behaves as if ‘-P’ had been specified.

See Section 2.2.1 [Symbolic Links], page 9, for more information on ‘-follow’ and
‘-L’.

Chapter 2: Finding Files 15

2.6 Owner

[Test]-user uname
[Test]-group gname

True if the file is owned by user uname (belongs to group gname). A numeric ID is
allowed.

[Test]-uid n
[Test]-gid n

True if the file’s numeric user ID (group ID) is n. These tests support ranges (‘+n ’
and ‘-n ’), unlike ‘-user’ and ‘-group’.

[Test]-nouser
[Test]-nogroup

True if no user corresponds to the file’s numeric user ID (no group corresponds to
the numeric group ID). These cases usually mean that the files belonged to users who
have since been removed from the system. You probably should change the ownership
of such files to an existing user or group, using the chown or chgrp program.

2.7 File Mode Bits

See Chapter 5 [File Permissions], page 40, for information on how file mode bits are struc-
tured and how to specify them.

Four tests determine what users can do with files. These are ‘-readable’, ‘-writable’,
‘-executable’ and ‘-perm’. The first three tests ask the operating system if the current user
can perform the relevant operation on a file, while ‘-perm’ just examines the file’s mode.
The file mode may give a misleading impression of what the user can actually do, because
the file may have an access control list, or exist on a read-only filesystem, for example. Of
these four tests though, only ‘-perm’ is specified by the POSIX standard.

The ‘-readable’, ‘-writable’ and ‘-executable’ tests are implemented via the access
system call. This is implemented within the operating system itself. If the file being
considered is on an NFS filesystem, the remote system may allow or forbid read or write
operations for reasons of which the NFS client cannot take account. This includes user-ID
mapping, either in the general sense or the more restricted sense in which remote superusers
are treated by the NFS server as if they are the local user ‘nobody’ on the NFS server.

None of the tests in this section should be used to verify that a user is authorised to
perform any operation (on the file being tested or any other file) because of the possibility
of a race condition. That is, the situation may change between the test and an action being
taken on the basis of the result of that test.

[Test]-readable
True if the file can be read by the invoking user.

[Test]-writable
True if the file can be written by the invoking user. This is an in-principle check, and
other things may prevent a successful write operation; for example, the filesystem
might be full.

Chapter 2: Finding Files 16

[Test]-executable
True if the file can be executed/searched by the invoking user.

[Test]-perm pmode
True if the file’s mode bits match pmode, which can be either a symbolic or numeric
mode (see Chapter 5 [File Permissions], page 40) optionally prefixed by ‘-’ or ‘/’.
A pmode that starts with neither ‘-’ nor ‘/’ matches if mode exactly matches the file
mode bits.
A pmode that starts with ‘+’ but which is not valid (for example ‘+a+x’) is an error if
the POSIXLY CORRECT environment variable it set. Otherwise this is treated as
if the initial ‘+’ were a ‘/’, for backward compatibility.
A pmode that starts with ‘-’ matches if all the file mode bits set in mode are set for
the file; bits not set in mode are ignored.
A pmode that starts with ‘/’ matches if any of the file mode bits set in mode are set
for the file; bits not set in mode are ignored. This is a GNU extension.
If you don’t use the ‘/’ or ‘-’ form with a symbolic mode string, you may have to
specify a rather complex mode string. For example ‘-perm g=w’ will only match files
that have mode 0020 (that is, ones for which group write permission is the only file
mode bit set). It is more likely that you will want to use the ‘/’ or ‘-’ forms, for
example ‘-perm -g=w’, which matches any file with group write permission.

‘-perm 664’
Match files that have read and write permission for their owner, and
group, but that the rest of the world can read but not write to. Do not
match files that meet these criteria but have other file mode bits set (for
example if someone can execute/search the file).

‘-perm -664’
Match files that have read and write permission for their owner, and
group, but that the rest of the world can read but not write to, with-
out regard to the presence of any extra file mode bits (for example the
executable bit). This matches a file with mode 0777, for example.

‘-perm /222’
Match files that are writable by somebody (their owner, or their group,
or anybody else).

‘-perm /022’
Match files that are writable by either their owner or their group. The files
don’t have to be writable by both the owner and group to be matched;
either will do.

‘-perm /g+w,o+w’
As above.

‘-perm /g=w,o=w’
As above.

‘-perm -022’
Match files that are writable by both their owner and their group.

Chapter 2: Finding Files 17

‘-perm -444 -perm /222 ! -perm /111’
Match files that are readable for everybody, have at least one write bit set
(i.e., somebody can write to them), but that cannot be executed/searched
by anybody. Note that in some shells the ‘!’ must be escaped;.

‘-perm -a+r -perm /a+w ! -perm /a+x’
As above.

‘-perm -g+w,o+w’
As above.

Warning: If you specify ‘-perm /000’ or ‘-perm /mode’ where the sym-
bolic mode ‘mode’ has no bits set, the test matches all files. Versions of
GNU find prior to 4.3.3 matched no files in this situation.

2.8 Contents

To search for files based on their contents, you can use the grep program. For example, to
find out which C source files in the current directory contain the string ‘thing’, you can do:

grep -l thing *.[ch]

If you also want to search for the string in files in subdirectories, you can combine grep
with find and xargs, like this:

find . -name ’*.[ch]’ | xargs grep -l thing

The ‘-l’ option causes grep to print only the names of files that contain the string,
rather than the lines that contain it. The string argument (‘thing’) is actually a regular
expression, so it can contain metacharacters. This method can be refined a little by using
the ‘-r’ option to make xargs not run grep if find produces no output, and using the
find action ‘-print0’ and the xargs option ‘-0’ to avoid misinterpreting files whose names
contain spaces:

find . -name ’*.[ch]’ -print0 | xargs -r -0 grep -l thing

For a fuller treatment of finding files whose contents match a pattern, see the manual
page for grep.

2.9 Directories

Here is how to control which directories find searches, and how it searches them. These
two options allow you to process a horizontal slice of a directory tree.

[Option]-maxdepth levels
Descend at most levels (a non-negative integer) levels of directories below the com-
mand line arguments. ‘-maxdepth 0’ means only apply the tests and actions to the
command line arguments.

[Option]-mindepth levels
Do not apply any tests or actions at levels less than levels (a non-negative integer).
‘-mindepth 1’ means process all files except the command line arguments.

[Option]-depth
Process each directory’s contents before the directory itself. Doing this is a good idea
when producing lists of files to archive with cpio or tar. If a directory does not have

Chapter 2: Finding Files 18

write permission for its owner, its contents can still be restored from the archive since
the directory’s permissions are restored after its contents.

[Option]-d
This is a deprecated synonym for ‘-depth’, for compatibility with Mac OS X, FreeBSD
and OpenBSD. The ‘-depth’ option is a POSIX feature, so it is better to use that.

[Action]-prune
If the file is a directory, do not descend into it. The result is true. For example, to
skip the directory ‘src/emacs’ and all files and directories under it, and print the
names of the other files found:

find . -wholename ’./src/emacs’ -prune -o -print

The above command will not print ‘./src/emacs’ among its list of results. This
however is not due to the effect of the ‘-prune’ action (which only prevents further
descent, it doesn’t make sure we ignore that item). Instead, this effect is due to
the use of ‘-o’. Since the left hand side of the “or” condition has succeeded for
‘./src/emacs’, it is not necessary to evaluate the right-hand-side (‘-print’) at all for
this particular file. If you wanted to print that directory name you could use either
an extra ‘-print’ action:

find . -wholename ’./src/emacs’ -prune -print -o -print

or use the comma operator:
find . -wholename ’./src/emacs’ -prune , -print

If the ‘-depth’ option is in effect, the subdirectories will have already been visited in
any case. Hence ‘-prune’ has no effect in this case.
Because ‘-delete’ implies ‘-depth’, using ‘-prune’ in combination with ‘-delete’
may well result in the deletion of more files than you intended.

[Action]-quit
Exit immediately (with return value zero if no errors have occurred). This is different
to ‘-prune’ because ‘-prune’ only applies to the contents of pruned directories, whilt
‘-quit’ simply makes find stop immediately. No child processes will be left running,
but no more files specified on the command line will be processed. For example, find
/tmp/foo /tmp/bar -print -quit will print only ‘/tmp/foo’. Any command lines
which have been built by ‘-exec ... \+’ or ‘-execdir ... \+’ are invoked before the
program is exited.

[Option]-noleaf
Do not optimize by assuming that directories contain 2 fewer subdirectories than their
hard link count. This option is needed when searching filesystems that do not follow
the Unix directory-link convention, such as CD-ROM or MS-DOS filesystems or AFS
volume mount points. Each directory on a normal Unix filesystem has at least 2 hard
links: its name and its ‘.’ entry. Additionally, its subdirectories (if any) each have a
‘..’ entry linked to that directory. When find is examining a directory, after it has
statted 2 fewer subdirectories than the directory’s link count, it knows that the rest
of the entries in the directory are non-directories (leaf files in the directory tree). If
only the files’ names need to be examined, there is no need to stat them; this gives a
significant increase in search speed.

Chapter 2: Finding Files 19

[Option]-ignore_readdir_race
If a file disappears after its name has been read from a directory but before find
gets around to examining the file with stat, don’t issue an error message. If you
don’t specify this option, an error message will be issued. This option can be useful
in system scripts (cron scripts, for example) that examine areas of the filesystem that
change frequently (mail queues, temporary directories, and so forth), because this
scenario is common for those sorts of directories. Completely silencing error messages
from find is undesirable, so this option neatly solves the problem. There is no way to
search one part of the filesystem with this option on and part of it with this option off,
though. When this option is turned on and find discovers that one of the start-point
files specified on the command line does not exist, no error message will be issued.

[Option]-noignore_readdir_race
This option reverses the effect of the ‘-ignore_readdir_race’ option.

2.10 Filesystems

A filesystem is a section of a disk, either on the local host or mounted from a remote host
over a network. Searching network filesystems can be slow, so it is common to make find
avoid them.

There are two ways to avoid searching certain filesystems. One way is to tell find to
only search one filesystem:

[Option]-xdev
[Option]-mount

Don’t descend directories on other filesystems. These options are synonyms.

The other way is to check the type of filesystem each file is on, and not descend directories
that are on undesirable filesystem types:

[Test]-fstype type
True if the file is on a filesystem of type type. The valid filesystem types vary among
different versions of Unix; an incomplete list of filesystem types that are accepted on
some version of Unix or another is:

ext2 ext3 proc sysfs ufs 4.2 4.3 nfs tmp mfs S51K S52K

You can use ‘-printf’ with the ‘%F’ directive to see the types of your filesystems.
The ‘%D’ directive shows the device number. See Section 3.2 [Print File Information],
page 21. ‘-fstype’ is usually used with ‘-prune’ to avoid searching remote filesystems
(see Section 2.9 [Directories], page 17).

2.11 Combining Primaries With Operators

Operators build a complex expression from tests and actions. The operators are, in order
of decreasing precedence:

(expr) Force precedence. True if expr is true.

! expr

-not expr

True if expr is false. In some shells, it is necessary to protect the ‘!’ from shell
interpretation by quoting it.

Chapter 2: Finding Files 20

expr1 expr2

expr1 -a expr2

expr1 -and expr2

And; expr2 is not evaluated if expr1 is false.

expr1 -o expr2

expr1 -or expr2

Or; expr2 is not evaluated if expr1 is true.

expr1 , expr2

List; both expr1 and expr2 are always evaluated. True if expr2 is true. The
value of expr1 is discarded. This operator lets you do multiple independent
operations on one traversal, without depending on whether other operations
succeeded. The two operations expr1 and expr2 are not always fully indepen-
dent, since expr1 might have side effects like touching or deleting files, or it
might use ‘-prune’ which would also affect expr2.

find searches the directory tree rooted at each file name by evaluating the expression
from left to right, according to the rules of precedence, until the outcome is known (the left
hand side is false for ‘-and’, true for ‘-or’), at which point find moves on to the next file
name.

There are two other tests that can be useful in complex expressions:

[Test]-true
Always true.

[Test]-false
Always false.

Chapter 3: Actions 21

3 Actions

There are several ways you can print information about the files that match the criteria you
gave in the find expression. You can print the information either to the standard output
or to a file that you name. You can also execute commands that have the file names as
arguments. You can use those commands as further filters to select files.

3.1 Print File Name

[Action]-print
True; print the entire file name on the standard output, followed by a newline. If
there is the faintest possibility that one of the files for which you are searching might
contain a newline, you should use ‘-print0’ instead.

[Action]-fprint file
True; print the entire file name into file file, followed by a newline. If file does not
exist when find is run, it is created; if it does exist, it is truncated to 0 bytes. The
named output file is always created, even if no output is sent to it. The file names
‘/dev/stdout’ and ‘/dev/stderr’ are handled specially; they refer to the standard
output and standard error output, respectively.
If there is the faintest possibility that one of the files for which you are searching
might contain a newline, you should use ‘-fprint0’ instead.

3.2 Print File Information

[Action]-ls
True; list the current file in ‘ls -dils’ format on the standard output. The output
looks like this:

204744 17 -rw-r--r-- 1 djm staff 17337 Nov 2 1992 ./lwall-quotes

The fields are:
1. The inode number of the file. See Section 2.2.2 [Hard Links], page 10, for how

to find files based on their inode number.
2. the number of blocks in the file. The block counts are of 1K blocks, unless the

environment variable POSIXLY_CORRECT is set, in which case 512-byte blocks are
used. See Section 2.4 [Size], page 13, for how to find files based on their size.

3. The file’s type and file mode bits. The type is shown as a dash for a regular
file; for other file types, a letter like for ‘-type’ is used (see Section 2.5 [Type],
page 14). The file mode bits are read, write, and execute/search for the file’s
owner, its group, and other users, respectively; a dash means the permission is
not granted. See Chapter 5 [File Permissions], page 40, for more details about
file permissions. See Section 2.7 [Mode Bits], page 15, for how to find files based
on their file mode bits.

4. The number of hard links to the file.
5. The user who owns the file.
6. The file’s group.

Chapter 3: Actions 22

7. The file’s size in bytes.
8. The date the file was last modified.
9. The file’s name. ‘-ls’ quotes non-printable characters in the file names using

C-like backslash escapes. This may change soon, as the treatment of unprintable
characters is harmonised for ‘-ls’, ‘-fls’, ‘-print’, ‘-fprint’, ‘-printf’ and
‘-fprintf’.

[Action]-fls file
True; like ‘-ls’ but write to file like ‘-fprint’ (see Section 3.1 [Print File Name],
page 21). The named output file is always created, even if no output is sent to it.

[Action]-printf format
True; print format on the standard output, interpreting ‘\’ escapes and ‘%’ directives.
Field widths and precisions can be specified as with the printf C function. Format
flags (like ‘#’ for example) may not work as you expect because many of the fields,
even numeric ones, are printed with %s. Numeric flags which are affected in this
way include G, U, b, D, k and n. This difference in behaviour means though that
the format flag ‘-’ will work; it forces left-alignment of the field. Unlike ‘-print’,
‘-printf’ does not add a newline at the end of the string. If you want a newline at
the end of the string, add a ‘\n’.

[Action]-fprintf file format
True; like ‘-printf’ but write to file like ‘-fprint’ (see Section 3.1 [Print File Name],
page 21). The output file is always created, even if no output is ever sent to it.

3.2.1 Escapes

The escapes that ‘-printf’ and ‘-fprintf’ recognise are:

\a Alarm bell.

\b Backspace.

\c Stop printing from this format immediately and flush the output.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\\ A literal backslash (‘\’).

\0 ASCII NUL.

\NNN The character whose ASCII code is NNN (octal).

A ‘\’ character followed by any other character is treated as an ordinary character,
so they both are printed, and a warning message is printed to the standard error output
(because it was probably a typo).

Chapter 3: Actions 23

3.2.2 Format Directives

‘-printf’ and ‘-fprintf’ support the following format directives to print information
about the file being processed. The C printf function, field width and precision speci-
fiers are supported, as applied to string (%s) types. That is, you can specify "minimum
field width"."maximum field width" for each directive. Format flags (like ‘#’ for example)
may not work as you expect because many of the fields, even numeric ones, are printed with
%s. The format flag ‘-’ does work; it forces left-alignment of the field.

‘%%’ is a literal percent sign. A ‘%’ character followed by an unrecognised character
(i.e., not a known directive or printf field width and precision specifier), is discarded (but
the unrecognised character is printed), and a warning message is printed to the standard
error output (because it was probably a typo). Don’t rely on this behaviour, because other
directives may be added in the future.

A ‘%’ at the end of the format argument causes undefined behaviour since there is no
following character. In some locales, it may hide your door keys, while in others it may
remove the final page from the novel you are reading.

3.2.2.1 Name Directives

%p File’s name (not the absolute path name, but the name of the file as it was
encountered by find - that is, as a relative path from one of the starting points).

%f File’s name with any leading directories removed (only the last element).

%h Leading directories of file’s name (all but the last element and the slash before
it). If the file’s name contains no slashes (for example because it was named on
the command line and is in the current working directory), then “%h” expands
to “.”. This prevents “%h/%f” expanding to “/foo”, which would be surprising
and probably not desirable.

%P File’s name with the name of the command line argument under which it was
found removed from the beginning.

%H Command line argument under which file was found.

3.2.2.2 Ownership Directives

%g File’s group name, or numeric group ID if the group has no name.

%G File’s numeric group ID.

%u File’s user name, or numeric user ID if the user has no name.

%U File’s numeric user ID.

%m File’s mode bits (in octal). If you always want to have a leading zero on the
number, use the ’#’ format flag, for example ’%#m’.
The file mode bit numbers used are the traditional Unix numbers, which will
be as expected on most systems, but if your system’s file mode bit layout differs
from the traditional Unix semantics, you will see a difference between the mode
as printed by ‘%m’ and the mode as it appears in struct stat.

%M File’s type and mode bits (in symbolic form, as for ls). This directive is
supported in findutils 4.2.5 and later.

Chapter 3: Actions 24

3.2.2.3 Size Directives

%k The amount of disk space used for this file in 1K blocks. Since disk space is
allocated in multiples of the filesystem block size this is usually greater than
%s/1024, but it can also be smaller if the file is a sparse file (that is, it has
“holes”).

%b The amount of disk space used for this file in 512-byte blocks. Since disk space
is allocated in multiples of the filesystem block size this is usually greater than
%s/512, but it can also be smaller if the file is a sparse file (that is, it has
“holes”).

%s File’s size in bytes.

%S File’s sparseness. This is calculated as (BLOCKSIZE*st_blocks / st_size).
The exact value you will get for an ordinary file of a certain length is system-
dependent. However, normally sparse files will have values less than 1.0, and
files which use indirect blocks and have few holes may have a value which is
greater than 1.0. The value used for BLOCKSIZE is system-dependent, but is
usually 512 bytes. If the file size is zero, the value printed is undefined. On
systems which lack support for st blocks, a file’s sparseness is assumed to be
1.0.

3.2.2.4 Location Directives

%d File’s depth in the directory tree (depth below a file named on the command
line, not depth below the root directory). Files named on the command line
have a depth of 0. Subdirectories immediately below them have a depth of 1,
and so on.

%D The device number on which the file exists (the st_dev field of struct stat),
in decimal.

%F Type of the filesystem the file is on; this value can be used for ‘-fstype’ (see
Section 2.9 [Directories], page 17).

%l Object of symbolic link (empty string if file is not a symbolic link).

%i File’s inode number (in decimal).

%n Number of hard links to file.

%y Type of the file as used with ‘-type’. If the file is a symbolic link, ‘l’ will be
printed.

%Y Type of the file as used with ‘-type’. If the file is a symbolic link, it is deref-
erenced. If the file is a broken symbolic link, ‘N’ is printed.

3.2.2.5 Time Directives

Some of these directives use the C ctime function. Its output depends on the current locale,
but it typically looks like

Wed Nov 2 00:42:36 1994

%a File’s last access time in the format returned by the C ctime function.

Chapter 3: Actions 25

%Ak File’s last access time in the format specified by k (see Section 3.2.3 [Time
Formats], page 25).

%c File’s last status change time in the format returned by the C ctime function.

%Ck File’s last status change time in the format specified by k (see Section 3.2.3
[Time Formats], page 25).

%t File’s last modification time in the format returned by the C ctime function.

%Tk File’s last modification time in the format specified by k (see Section 3.2.3 [Time
Formats], page 25).

3.2.3 Time Formats

Below are the formats for the directives ‘%A’, ‘%C’, and ‘%T’, which print the file’s timestamps.
Some of these formats might not be available on all systems, due to differences in the C
strftime function between systems.

3.2.3.1 Time Components

The following format directives print single components of the time.

H hour (00..23)

I hour (01..12)

k hour (0..23)

l hour (1..12)

p locale’s AM or PM

Z time zone (e.g., EDT), or nothing if no time zone is determinable

M minute (00..59)

S second (00..61). There is a fractional part.

@ seconds since Jan. 1, 1970, 00:00 GMT, with fractional part.

The fractional part of the seconds field is of indeterminate length and precision. That
is, the length of the fractional part of the seconds field will in general vary between findutils
releases and between systems. This means that it is unwise to assume that field has any
specific length. The length of this field is not usually a guide to the precision of timestamps
in the underlying file system.

3.2.3.2 Date Components

The following format directives print single components of the date.

a locale’s abbreviated weekday name (Sun..Sat)

A locale’s full weekday name, variable length (Sunday..Saturday)

b
h locale’s abbreviated month name (Jan..Dec)

B locale’s full month name, variable length (January..December)

Chapter 3: Actions 26

m month (01..12)

d day of month (01..31)

w day of week (0..6)

j day of year (001..366)

U week number of year with Sunday as first day of week (00..53)

W week number of year with Monday as first day of week (00..53)

Y year (1970. . .)

y last two digits of year (00..99)

3.2.3.3 Combined Time Formats

The following format directives print combinations of time and date components.

r time, 12-hour (hh:mm:ss [AP]M)

T time, 24-hour (hh:mm:ss)

X locale’s time representation (H:M:S)

c locale’s date and time in ctime format (Sat Nov 04 12:02:33 EST 1989). This
format does not include any fractional part in the seconds field.

D date (mm/dd/yy)

x locale’s date representation (mm/dd/yy)

+ Date and time, separated by ’+’, for example ‘2004-04-28+22:22:05.0000000000’.
The time is given in the current timezone (which may be affected by setting the
TZ environment variable). This is a GNU extension. The seconds field includes
a fractional part.

3.2.3.4 Formatting Flags

The ‘%m’ and ‘%d’ directives support the ‘#’, ‘0’ and ‘+’ flags, but the other directives do
not, even if they print numbers. Numeric directives that do not support these flags include

‘G’, ‘U’, ‘b’, ‘D’, ‘k’ and ‘n’.

All fields support the format flag ‘-’, which makes fields left-aligned. That is, if the field
width is greater than the actual contents of the field, the requisite number of spaces are
printed after the field content instead of before it.

3.3 Run Commands

You can use the list of file names created by find or locate as arguments to other com-
mands. In this way you can perform arbitrary actions on the files.

3.3.1 Single File

Here is how to run a command on one file at a time.

Chapter 3: Actions 27

[Action]-execdir command ;
Execute command; true if zero status is returned. find takes all arguments after
‘-execdir’ to be part of the command until an argument consisting of ‘;’ is reached.
It replaces the string ‘{}’ by the current file name being processed everywhere it
occurs in the command. Both of these constructions need to be escaped (with a ‘\’)
or quoted to protect them from expansion by the shell. The command is executed in
the directory in which find was run.
For example, to compare each C header file in or below the current directory with
the file ‘/tmp/master’:

find . -name ’*.h’ -execdir diff -u ’{}’ /tmp/master ’;’

If you use ‘-execdir’, you must ensure that the ‘$PATH’ variable contains only absolute
directory names. Having an empty element in ‘$PATH’ or explicitly including ‘.’ (or any
other non-absolute name) is insecure. GNU find will refuse to run if you use ‘-execdir’
and it thinks your ‘$PATH’ setting is insecure. For example:

‘/bin:/usr/bin:’
Insecure; empty path element (at the end)

‘:/bin:/usr/bin:/usr/local/bin’
Insecure; empty path element (at the start)

‘/bin:/usr/bin::/usr/local/bin’
Insecure; empty path element (two colons in a row)

‘/bin:/usr/bin:.:/usr/local/bin’
Insecure; ‘.’ is a path element (‘.’ is not an absolute file name)

‘/bin:/usr/bin:sbin:/usr/local/bin’
Insecure; ‘sbin’ is not an absolute file name

‘/bin:/usr/bin:/sbin:/usr/local/bin’
Secure (if you control the contents of those directories and any access to them)

Another similar option, ‘-exec’ is supported, but is less secure. See Chapter 10 [Security
Considerations], page 85, for a discussion of the security problems surrounding ‘-exec’.

[Action]-exec command ;
This insecure variant of the ‘-execdir’ action is specified by POSIX. The main differ-
ence is that the command is executed in the directory from which find was invoked,
meaning that ‘{}’ is expanded to a relative path starting with the name of one of the
starting directories, rather than just the basename of the matched file.
While some implementations of find replace the ‘{}’ only where it appears on its
own in an argument, GNU find replaces ‘{}’ wherever it appears.

3.3.2 Multiple Files

Sometimes you need to process files one at a time. But usually this is not necessary, and,
it is faster to run a command on as many files as possible at a time, rather than once per
file. Doing this saves on the time it takes to start up the command each time.

The ‘-execdir’ and ‘-exec’ actions have variants that build command lines containing
as many matched files as possible.

Chapter 3: Actions 28

[Action]-execdir command {} +
This works as for ‘-execdir command ;’, except that the ‘{}’ at the end of the com-
mand is expanded to a list of names of matching files. This expansion is done in
such a way as to avoid exceeding the maximum command line length available on the
system. Only one ‘{}’ is allowed within the command, and it must appear at the end,
immediately before the ‘+’. A ‘+’ appearing in any position other than immediately
after ‘{}’ is not considered to be special (that is, it does not terminate the command).

[Action]-exec command {} +
This insecure variant of the ‘-execdir’ action is specified by POSIX. The main differ-
ence is that the command is executed in the directory from which find was invoked,
meaning that ‘{}’ is expanded to a relative path starting with the name of one of the
starting directories, rather than just the basename of the matched file.

Before find exits, any partially-built command lines are executed. This happens even if
the exit was caused by the ‘-quit’ action. However, some types of error (for example not
being able to invoke stat() on the current directory) can cause an immediate fatal exit. In
this situation, any partially-built command lines will not be invoked (this prevents possible
infinite loops).

At first sight, it looks like the list of filenames to be processed can only be at the end
of the command line, and that this might be a problem for some comamnds (cp and rsync
for example).

However, there is a slightly obscure but powerful workarouund for this problem which
takes advantage of the behaviour of sh -c:-

find startpoint -tests ... -exec sh -c ’scp "$@" remote:/dest’ sh {} +

In the example above, the filenames we want to work on need to occur on the scp
command line before the name of the destination. We use the shell to invoke the command
scp "$@" remote:/dest and the shell expands "$@" to the list of filenames we want to
process.

Another, but less secure, way to run a command on more than one file at once, is to use
the xargs command, which is invoked like this:

xargs [option...] [command [initial-arguments]]
xargs normally reads arguments from the standard input. These arguments are de-

limited by blanks (which can be protected with double or single quotes or a backslash)
or newlines. It executes the command (default is ‘/bin/echo’) one or more times with
any initial-arguments followed by arguments read from standard input. Blank lines on the
standard input are ignored. If the ‘-L’ option is in use, trailing blanks indicate that xargs
should consider the following line to be part of this one.

Instead of blank-delimited names, it is safer to use ‘find -print0’ or ‘find -fprint0’
and process the output by giving the ‘-0’ or ‘--null’ option to GNU xargs, GNU tar,
GNU cpio, or perl. The locate command also has a ‘-0’ or ‘--null’ option which does
the same thing.

You can use shell command substitution (backquotes) to process a list of arguments, like
this:

grep -l sprintf ‘find $HOME -name ’*.c’ -print‘

Chapter 3: Actions 29

However, that method produces an error if the length of the ‘.c’ file names exceeds the
operating system’s command line length limit. xargs avoids that problem by running the
command as many times as necessary without exceeding the limit:

find $HOME -name ’*.c’ -print | xargs grep -l sprintf

However, if the command needs to have its standard input be a terminal (less, for
example), you have to use the shell command substitution method or use the ‘--arg-file’
option of xargs.

The xargs command will process all its input, building command lines and executing
them, unless one of the commands exits with a status of 255 (this will cause xargs to issue
an error message and stop) or it reads a line contains the end of file string specified with
the ‘--eof’ option.

3.3.2.1 Unsafe File Name Handling

Because file names can contain quotes, backslashes, blank characters, and even newlines, it
is not safe to process them using xargs in its default mode of operation. But since most
files’ names do not contain blanks, this problem occurs only infrequently. If you are only
searching through files that you know have safe names, then you need not be concerned
about it.

Error messages issued by find and locate quote unusual characters in file names in
order to prevent unwanted changes in the terminal’s state.

In many applications, if xargs botches processing a file because its name contains special
characters, some data might be lost. The importance of this problem depends on the
importance of the data and whether anyone notices the loss soon enough to correct it.
However, here is an extreme example of the problems that using blank-delimited names can
cause. If the following command is run daily from cron, then any user can remove any file
on the system:

find / -name ’#*’ -atime +7 -print | xargs rm

For example, you could do something like this:

eg$ echo > ’#
vmunix’

and then cron would delete ‘/vmunix’, if it ran xargs with ‘/’ as its current directory.

To delete other files, for example ‘/u/joeuser/.plan’, you could do this:

eg$ mkdir ’#
’
eg$ cd ’#
’
eg$ mkdir u u/joeuser u/joeuser/.plan’
’
eg$ echo > u/joeuser/.plan’
/#foo’
eg$ cd ..
eg$ find . -name ’#*’ -print | xargs echo
./# ./# /u/joeuser/.plan /#foo

Chapter 3: Actions 30

3.3.2.2 Safe File Name Handling

Here is how to make find output file names so that they can be used by other programs
without being mangled or misinterpreted. You can process file names generated this way
by giving the ‘-0’ or ‘--null’ option to GNU xargs, GNU tar, GNU cpio, or perl.

[Action]-print0
True; print the entire file name on the standard output, followed by a null character.

[Action]-fprint0 file
True; like ‘-print0’ but write to file like ‘-fprint’ (see Section 3.1 [Print File Name],
page 21). The output file is always created.

As of findutils version 4.2.4, the locate program also has a ‘--null’ option which does
the same thing. For similarity with xargs, the short form of the option ‘-0’ can also be
used.

If you want to be able to handle file names safely but need to run commands which want
to be connected to a terminal on their input, you can use the ‘--arg-file’ option to xargs
like this:

find / -name xyzzy -print0 > list
xargs --null --arg-file=list munge

The example above runs the munge program on all the files named ‘xyzzy’ that we can
find, but munge’s input will still be the terminal (or whatever the shell was using as standard
input). If your shell has the “process substitution” feature ‘<(...)’, you can do this in just
one step:

xargs --null --arg-file=<(find / -name xyzzy -print0) munge

3.3.2.3 Unusual Characters in File Names

As discussed above, you often need to be careful about how the names of files are handled
by find and other programs. If the output of find is not going to another program but
instead is being shown on a terminal, this can still be a problem. For example, some
character sequences can reprogram the function keys on some terminals. See Chapter 10
[Security Considerations], page 85, for a discussion of other security problems relating to
find.

Unusual characters are handled differently by various actions, as described below.

‘-print0’
‘-fprint0’

Always print the exact file name, unchanged, even if the output is going to a
terminal.

‘-ok’
‘-okdir’ Always print the exact file name, unchanged. This will probably change in a

future release.

‘-ls’
‘-fls’ Unusual characters are always escaped. White space, backslash, and double

quote characters are printed using C-style escaping (for example ‘\f’, ‘\"’).
Other unusual characters are printed using an octal escape. Other printable

Chapter 3: Actions 31

characters (for ‘-ls’ and ‘-fls’ these are the characters between octal 041 and
0176) are printed as-is.

‘-printf’
‘-fprintf’

If the output is not going to a terminal, it is printed as-is. Otherwise, the result
depends on which directive is in use:

%D, %F, %H, %Y, %y
These expand to values which are not under control of files’ owners,
and so are printed as-is.

%a, %b, %c, %d, %g, %G, %i, %k, %m, %M, %n, %s, %t, %u, %U
These have values which are under the control of files’ owners but
which cannot be used to send arbitrary data to the terminal, and
so these are printed as-is.

%f, %h, %l, %p, %P
The output of these directives is quoted if the output is going to a
terminal. The setting of the ‘LC CTYPE’ environment variable is
used to determine which characters need to be quoted.

This quoting is performed in the same way as for GNU ls. This
is not the same quoting mechanism as the one used for ‘-ls’ and
‘fls’. If you are able to decide what format to use for the output
of find then it is normally better to use ‘\0’ as a terminator than
to use newline, as file names can contain white space and newline
characters.

‘-print’
‘-fprint’ Quoting is handled in the same way as for the ‘%p’ directive of ‘-printf’ and

‘-fprintf’. If you are using find in a script or in a situation where the matched
files might have arbitrary names, you should consider using ‘-print0’ instead
of ‘-print’.

The locate program quotes and escapes unusual characters in file names in the same
way as find’s ‘-print’ action.

The behaviours described above may change soon, as the treatment of unprintable char-
acters is harmonised for ‘-ls’, ‘-fls’, ‘-print’, ‘-fprint’, ‘-printf’ and ‘-fprintf’.

3.3.2.4 Limiting Command Size

xargs gives you control over how many arguments it passes to the command each time it
executes it. By default, it uses up to ARG_MAX - 2k, or 128k, whichever is smaller, characters
per command. It uses as many lines and arguments as fit within that limit. The following
options modify those values.

--no-run-if-empty
-r If the standard input does not contain any nonblanks, do not run the command.

By default, the command is run once even if there is no input. This option is
a GNU extension.

Chapter 3: Actions 32

--max-lines[=max-lines]
-L max-lines

-l[max-lines]
Use at most max-lines nonblank input lines per command line; max-lines de-
faults to 1 if omitted; omitting the argument is not allowed in the case of the
‘-L’ option. Trailing blanks cause an input line to be logically continued on
the next input line, for the purpose of counting the lines. Implies ‘-x’. The
preferred name for this option is ‘-L’ as this is specified by POSIX.

--max-args=max-args
-n max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the ‘-s’ option) is exceeded, unless the
‘-x’ option is given, in which case xargs will exit.

--max-chars=max-chars
-s max-chars

Use at most max-chars characters per command line, including the command
initial arguments and the terminating nulls at the ends of the argument strings.
If you specify a value for this option which is too large or small, a warning
message is printed and the appropriate upper or lower limit is used instead.
You can use ‘--show-limits’ option to understand the command-line limits
applying to xargs and how this is affected by any other options. The POSIX
limits shown when you do this have already been adjusted to take into account
the size of your environment variables.
The largest allowed value is system-dependent, and is calculated as the argu-
ment length limit for exec, less the size of your environment, less 2048 bytes
of headroom. If this value is more than 128KiB, 128Kib is used as the default
value; otherwise, the default value is the maximum.

--max-procs=max-procs
-P max-procs

Run up to max-procs processes at a time; the default is 1. If max-procs is 0,
xargs will run as many processes as possible at a time. Use the ‘-n’, ‘-s’, or
‘-L’ option with ‘-P’; otherwise chances are that the command will be run only
once.

3.3.2.5 Interspersing File Names

xargs can insert the name of the file it is processing between arguments you give for the
command. Unless you also give options to limit the command size (see Section 3.3.2.4
[Limiting Command Size], page 31), this mode of operation is equivalent to ‘find -exec’
(see Section 3.3.1 [Single File], page 26).

--replace[=replace-str]
-I replace-str

-i replace-str

Replace occurrences of replace-str in the initial arguments with names read
from the input. Also, unquoted blanks do not terminate arguments; instead,
the input is split at newlines only. For the ‘-i’ option, if replace-str is omitted

Chapter 3: Actions 33

for ‘--replace’ or ‘-i’, it defaults to ‘{}’ (like for ‘find -exec’). Implies ‘-x’
and ‘-l 1’. ‘-i’ is deprecated in favour of ‘-I’. As an example, to sort each file
in the ‘bills’ directory, leaving the output in that file name with ‘.sorted’
appended, you could do:

find bills -type f | xargs -I XX sort -o XX.sorted XX

The equivalent command using ‘find -execdir’ is:
find bills -type f -execdir sort -o ’{}.sorted’ ’{}’ ’;’

When you use the ‘-I’ option, each line read from the input is buffered internally. This
means that there is an upper limit on the length of input line that xargs will accept when
used with the ‘-I’ option. To work around this limitation, you can use the ‘-s’ option to
increase the amount of buffer space that xargs uses, and you can also use an extra invocation
of xargs to ensure that very long lines do not occur. For example:

somecommand | xargs -s 50000 echo | xargs -I ’{}’ -s 100000 rm ’{}’

Here, the first invocation of xargs has no input line length limit because it doesn’t use
the ‘-I’ option. The second invocation of xargs does have such a limit, but we have ensured
that it never encounters a line which is longer than it can handle.

This is not an ideal solution. Instead, the ‘-I’ option should not impose a line length
limit (apart from any limit imposed by the operating system) and so one might consider
this limitation to be a bug. A better solution would be to allow xargs -I to automatically
move to a larger value for the ‘-s’ option when this is needed.

This sort of problem doesn’t occur with the output of find because it emits just one
filename per line.

3.3.3 Querying

To ask the user whether to execute a command on a single file, you can use the find primary
‘-okdir’ instead of ‘-execdir’, and the find primary ‘-ok’ instead of ‘-exec’:

[Action]-okdir command ;
Like ‘-execdir’ (see Section 3.3.1 [Single File], page 26), but ask the user first. If the
user does not agree to run the command, just return false. Otherwise, run it, with
standard input redirected from ‘/dev/null’.
The response to the prompt is matched against a pair of regular expressions to de-
termine if it is a yes or no response. These regular expressions are obtained from the
system1 if the POSIXLY CORRECT environment variable is set and the system has
such patterns available. Otherwise, find’s message translations are used. In either
case, the LC MESSAGES environment variable will determine the regular expres-
sions used to determine if the answer is affirmative or negative. The interpretation
of the regular expressions themselves will be affected by the environment variables
LC CTYPE (character classes) and LC COLLATE (character ranges and equivalence
classes).

[Action]-ok command ;
This insecure variant of the ‘-okdir’ action is specified by POSIX. The main difference
is that the command is executed in the directory from which find was invoked,

1 nl_langinfo items YESEXPR and NOEXPR are used

Chapter 3: Actions 34

meaning that ‘{}’ is expanded to a relative path starting with the name of one of
the starting directories, rather than just the basename of the matched file. If the
command is run, its standard input is redirected from ‘/dev/null’.

When processing multiple files with a single command, to query the user you give xargs
the following option. When using this option, you might find it useful to control the number
of files processed per invocation of the command (see Section 3.3.2.4 [Limiting Command
Size], page 31).

--interactive
-p Prompt the user about whether to run each command line and read a line from

the terminal. Only run the command line if the response starts with ‘y’ or ‘Y’.
Implies ‘-t’.

3.4 Delete Files

[Action]-delete
Delete files or directories; true if removal succeeded. If the removal failed, an error
message is issued.
The use of the ‘-delete’ action on the command line automatically turns on the
‘-depth’ option (see Section 1.3 [find Expressions], page 3). This can be surprising if
you were previously just testing with ‘-print’, so it is usually best to remember to
use ‘-depth’ explicitly.
If ‘-delete’ fails, find’s exit status will be nonzero (when it eventually exits).

3.5 Adding Tests

You can test for file attributes that none of the find builtin tests check. To do this, use
xargs to run a program that filters a list of files printed by find. If possible, use find
builtin tests to pare down the list, so the program run by xargs has less work to do. The
tests builtin to find will likely run faster than tests that other programs perform.

For reasons of efficiency it is often useful to limit the number of times an external program
has to be run. For this reason, it is often a good idea to implement “extended” tests by
using xargs.

For example, here is a way to print the names of all of the unstripped binaries in the
‘/usr/local’ directory tree. Builtin tests avoid running file on files that are not regular
files or are not executable.

find /usr/local -type f -perm /a=x | xargs file |
grep ’not stripped’ | cut -d: -f1

The cut program removes everything after the file name from the output of file.
However, using xargs can present important security problems (see Chapter 10 [Security

Considerations], page 85). These can be avoided by using ‘-execdir’. The ‘-execdir’
action is also a useful way of putting your own test in the middle of a set of other tests or
actions for find (for example, you might want to use ‘-prune’).

To place a special test somewhere in the middle of a find expression, you can use
‘-execdir’ (or, less securely, ‘-exec’) to run a program that performs the test. Because

Chapter 3: Actions 35

‘-execdir’ evaluates to the exit status of the executed program, you can use a program
(which can be a shell script) that tests for a special attribute and make it exit with a
true (zero) or false (non-zero) status. It is a good idea to place such a special test after
the builtin tests, because it starts a new process which could be avoided if a builtin test
evaluates to false.

Here is a shell script called unstripped that checks whether its argument is an unstripped
binary file:

#! /bin/sh
file "$1" | grep -q "not stripped"

This script relies on the shell exiting with the status of the last command in the pipeline,
in this case grep. The grep command exits with a true status if it found any matches, false
if not. Here is an example of using the script (assuming it is in your search path). It lists
the stripped executables (and shell scripts) in the file ‘sbins’ and the unstripped ones in
‘ubins’.

find /usr/local -type f -perm /a=x \
\(-execdir unstripped ’{}’ \; -fprint ubins -o -fprint sbins \)

Chapter 4: File Name Databases 36

4 File Name Databases

The file name databases used by locate contain lists of files that were in particular directory
trees when the databases were last updated. The file name of the default database is
determined when locate and updatedb are configured and installed. The frequency with
which the databases are updated and the directories for which they contain entries depend
on how often updatedb is run, and with which arguments.

You can obtain some statistics about the databases by using ‘locate --statistics’.

4.1 Database Locations

There can be multiple file name databases. Users can select which databases locate searches
using the LOCATE_PATH environment variable or a command line option. The system ad-
ministrator can choose the file name of the default database, the frequency with which
the databases are updated, and the directories for which they contain entries. File name
databases are updated by running the updatedb program, typically nightly.

In networked environments, it often makes sense to build a database at the root of
each filesystem, containing the entries for that filesystem. updatedb is then run for each
filesystem on the fileserver where that filesystem is on a local disk, to prevent thrashing the
network.

See Section 7.3 [Invoking updatedb], page 58, for the description of the options to
updatedb. These options can be used to specify which directories are indexed by each
database file.

The default location for the locate database depends on how findutils is built,
but the findutils installation accompanying this manual uses the default location
‘/Languages/gnu_lang/4.0/install/var/locatedb’.

If no database exists at ‘/Languages/gnu_lang/4.0/install/var/locatedb’ but the
user did not specify where to look (by using ‘-d’ or setting LOCATE_PATH), then locate will
also check for a “secure” database in ‘/var/lib/slocate/slocate.db’.

4.2 Database Formats

The file name databases contain lists of files that were in particular directory trees when the
databases were last updated. The file name database format changed starting with GNU
locate version 4.0 to allow machines with different byte orderings to share the databases.

GNU locate can read both the old and new database formats. However, old versions
of locate (on other Unix systems, or GNU locate before version 4.0) produce incorrect
results if run against a database in something other than the old format.

Support for the old database format will eventually be discontinued, first in updatedb
and later in locate.

If you run ‘locate --statistics’, the resulting summary indicates the type of
each locate database. You select which database format updatedb will use with the
‘--dbformat’ option.

Chapter 4: File Name Databases 37

4.2.1 LOCATE02 Database Format

updatedb runs a program called frcode to front-compress the list of file names, which
reduces the database size by a factor of 4 to 5. Front-compression (also known as incremental
encoding) works as follows.

The database entries are a sorted list (case-insensitively, for users’ convenience). Since
the list is sorted, each entry is likely to share a prefix (initial string) with the previous entry.
Each database entry begins with an offset-differential count byte, which is the additional
number of characters of prefix of the preceding entry to use beyond the number that the
preceding entry is using of its predecessor. (The counts can be negative.) Following the
count is a null-terminated ASCII remainder—the part of the name that follows the shared
prefix.

If the offset-differential count is larger than can be stored in a byte (+/-127), the byte
has the value 0x80 and the count follows in a 2-byte word, with the high byte first (network
byte order).

Every database begins with a dummy entry for a file called ‘LOCATE02’, which locate
checks for to ensure that the database file has the correct format; it ignores the entry in
doing the search.

Databases cannot be concatenated together, even if the first (dummy) entry is trimmed
from all but the first database. This is because the offset-differential count in the first entry
of the second and following databases will be wrong.

In the output of ‘locate --statistics’, the new database format is referred to as
‘LOCATE02’.

4.2.2 Sample LOCATE02 Database

Sample input to frcode:

/usr/src
/usr/src/cmd/aardvark.c
/usr/src/cmd/armadillo.c
/usr/tmp/zoo

Length of the longest prefix of the preceding entry to share:

0 /usr/src
8 /cmd/aardvark.c
14 rmadillo.c
5 tmp/zoo

Output from frcode, with trailing nulls changed to newlines and count bytes made
printable:

0 LOCATE02
0 /usr/src
8 /cmd/aardvark.c
6 rmadillo.c
-9 tmp/zoo

(6 = 14 - 8, and -9 = 5 - 14)

Chapter 4: File Name Databases 38

4.2.3 slocate Database Format

The slocate program uses a database format similar to, but not quite the same as, GNU
locate. The first byte of the database specifies its security level. If the security level is 0,
slocate will read, match and print filenames on the basis of the information in the database
only. However, if the security level byte is 1, slocate omits entries from its output if the
invoking user is unable to access them. The second byte of the database is zero. The second
byte is immediately followed by the first database entry. The first entry in the database
is not preceded by any differential count or dummy entry. Instead the differential count
for the first item is assumed to be zero. .P Starting with the second entry (if any) in the
database, data is interpreted as for the GNU LOCATE02 format.

4.2.4 Old Database Format

The old database format is used by Unix locate and find programs and earlier releases of
the GNU ones. updatedb produces this format if given the ‘--old-format’ option.

updatedb runs programs called bigram and code to produce old-format databases. The
old format differs from the new one in the following ways. Instead of each entry starting
with an offset-differential count byte and ending with a null, byte values from 0 through
28 indicate offset-differential counts from -14 through 14. The byte value indicating that a
long offset-differential count follows is 0x1e (30), not 0x80. The long counts are stored in
host byte order, which is not necessarily network byte order, and host integer word size,
which is usually 4 bytes. They also represent a count 14 less than their value. The database
lines have no termination byte; the start of the next line is indicated by its first byte having
a value <= 30.

In addition, instead of starting with a dummy entry, the old database format starts with
a 256 byte table containing the 128 most common bigrams in the file list. A bigram is a
pair of adjacent bytes. Bytes in the database that have the high bit set are indexes (with
the high bit cleared) into the bigram table. The bigram and offset-differential count coding
makes these databases 20-25% smaller than the new format, but makes them not 8-bit
clean. Any byte in a file name that is in the ranges used for the special codes is replaced in
the database by a question mark, which not coincidentally is the shell wildcard to match a
single character.

The old format therefore cannot faithfully store entries with non-ASCII characters. It
therefore should not be used in internationalised environments. That is, most installations
should not use it.

Because the long counts are stored by the code program as native-order machine words,
the database format is not eaily used in environments which differ in terms of byte order.
If locate databases are to be shared between machines, the LOCATE02 database format
should be used. This has other benefits as discussed above. However, the length of the
filename currently being processed can normally be used to place reasonable limits on the
long counts and so this information is used by locate to help it guess the byte ordering of
the old format database. Unless it finds evidence to the contrary, locate will assume that
the byte order of the database is the same as the native byte order of the machine running
locate. The output of ‘locate --statistics’ also includes information about the byte
order of old-format databases.

Chapter 4: File Name Databases 39

The output of ‘locate --statistics’ will give an incorrect count of the number of file
names containing newlines or high-bit characters for old-format databases.

Old versions of GNU locate fail to correctly handle very long file names, possibly
leading to security problems relating to a heap buffer overrun. See Section 10.4 [Security
Considerations for locate], page 90, for a detailed explanation.

4.3 Newline Handling

Within the database, file names are terminated with a null character. This is the case for
both the old and the new format.

When the new database format is being used, the compression technique used to generate
the database though relies on the ability to sort the list of files before they are presented to
frcode.

If the system’s sort command allows its input list of files to be separated with null
characters via the ‘-z’ option, this option is used and therefore updatedb and locate will
both correctly handle file names containing newlines. If the sort command lacks support
for this, the list of files is delimited with the newline character, meaning that parts of file
names containing newlines will be incorrectly sorted. This can result in both incorrect
matches and incorrect failures to match.

On the other hand, if you are using the old database format, file names with embedded
newlines are not correctly handled. There is no technical limitation which enforces this, it’s
just that the bigram program has not been updated to support lists of file names separated
by nulls.

So, if you are using the new database format (this is the default) and your system uses
GNU sort, newlines will be correctly handled at all times. Otherwise, newlines may not
be correctly handled.

Chapter 5: File Permissions 40

5 File Permissions

Each file has a set of permissions that control the kinds of access that users have to that
file. The permissions for a file are also called its access mode. They can be represented
either in symbolic form or as an octal number.

5.1 Structure of File Permissions

There are three kinds of permissions that a user can have for a file:

1. permission to read the file. For directories, this means permission to list the contents
of the directory.

2. permission to write to (change) the file. For directories, this means permission to create
and remove files in the directory.

3. permission to execute the file (run it as a program). For directories, this means per-
mission to access files in the directory.

There are three categories of users who may have different permissions to perform any
of the above operations on a file:

1. the file’s owner;
2. other users who are in the file’s group;
3. everyone else.

Files are given an owner and group when they are created. Usually the owner is the
current user and the group is the group of the directory the file is in, but this varies with
the operating system, the file system the file is created on, and the way the file is created.
You can change the owner and group of a file by using the chown and chgrp commands.

In addition to the three sets of three permissions listed above, a file’s permissions have
three special components, which affect only executable files (programs) and, on some sys-
tems, directories:

1. Set the process’s effective user ID to that of the file upon execution (called the setuid
bit). No effect on directories.

2. Set the process’s effective group ID to that of the file upon execution (called the setgid
bit). For directories on some systems, put files created in the directory into the same
group as the directory, no matter what group the user who creates them is in.

3. prevent users from removing or renaming a file in a directory unless they own the file
or the directory; this is called the restricted deletion flag for the directory. For regular
files on some systems, save the program’s text image on the swap device so it will load
more quickly when run; this is called the sticky bit.

In addition to the permissions listed above, there may be file attributes specific to the
file system, e.g: access control lists (ACLs), whether a file is compressed, whether a file
can be modified (immutability), whether a file can be dumped. These are usually set using
programs specific to the file system. For example:

ext2 On GNU and GNU/Linux the file permissions (“attributes”) specific to the ext2
file system are set using chattr.

Chapter 5: File Permissions 41

FFS On FreeBSD the file permissions (“flags”) specific to the FFS file system are
set using chrflags.

Although a file’s permission “bits” allow an operation on that file, that operation may
still fail, because:
• the file-system-specific permissions do not permit it;
• the file system is mounted as read-only.

For example, if the immutable attribute is set on a file, it cannot be modified, regardless
of the fact that you may have just run chmod a+w FILE.

5.2 Symbolic Modes

Symbolic modes represent changes to files’ permissions as operations on single-character
symbols. They allow you to modify either all or selected parts of files’ permissions, optionally
based on their previous values, and perhaps on the current umask as well (see Section 5.2.6
[Umask and Protection], page 44).

The format of symbolic modes is:
[ugoa...][+-=]perms...[,...]

where perms is either zero or more letters from the set ‘rwxXst’, or a single letter from the
set ‘ugo’.

The following sections describe the operators and other details of symbolic modes.

5.2.1 Setting Permissions

The basic symbolic operations on a file’s permissions are adding, removing, and setting the
permission that certain users have to read, write, and execute the file. These operations
have the following format:

users operation permissions

The spaces between the three parts above are shown for readability only; symbolic modes
cannot contain spaces.

The users part tells which users’ access to the file is changed. It consists of one or more of
the following letters (or it can be empty; see Section 5.2.6 [Umask and Protection], page 44,
for a description of what happens then). When more than one of these letters is given, the
order that they are in does not matter.

u the user who owns the file;

g other users who are in the file’s group;

o all other users;

a all users; the same as ‘ugo’.

The operation part tells how to change the affected users’ access to the file, and is one
of the following symbols:

+ to add the permissions to whatever permissions the users already have for the
file;

- to remove the permissions from whatever permissions the users already have
for the file;

Chapter 5: File Permissions 42

= to make the permissions the only permissions that the users have for the file.

The permissions part tells what kind of access to the file should be changed; it is normally
zero or more of the following letters. As with the users part, the order does not matter
when more than one letter is given. Omitting the permissions part is useful only with the
‘=’ operation, where it gives the specified users no access at all to the file.

r the permission the users have to read the file;

w the permission the users have to write to the file;

x the permission the users have to execute the file.

For example, to give everyone permission to read and write a file, but not to execute it,
use:

a=rw

To remove write permission for all users other than the file’s owner, use:
go-w

The above command does not affect the access that the owner of the file has to it, nor does
it affect whether other users can read or execute the file.

To give everyone except a file’s owner no permission to do anything with that file, use
the mode below. Other users could still remove the file, if they have write permission on
the directory it is in.

go=

Another way to specify the same thing is:
og-rwx

5.2.2 Copying Existing Permissions

You can base a file’s permissions on its existing permissions. To do this, instead of using
a series of ‘r’, ‘w’, or ‘x’ letters after the operator, you use the letter ‘u’, ‘g’, or ‘o’. For
example, the mode

o+g

adds the permissions for users who are in a file’s group to the permissions that other
users have for the file. Thus, if the file started out as mode 664 (‘rw-rw-r--’), the above
mode would change it to mode 666 (‘rw-rw-rw-’). If the file had started out as mode 741
(‘rwxr----x’), the above mode would change it to mode 745 (‘rwxr--r-x’). The ‘-’ and
‘=’ operations work analogously.

5.2.3 Changing Special Permissions

In addition to changing a file’s read, write, and execute permissions, you can change its
special permissions. See Section 5.1 [Mode Structure], page 40, for a summary of these
permissions.

To change a file’s permission to set the user ID on execution, use ‘u’ in the users part of
the symbolic mode and ‘s’ in the permissions part.

To change a file’s permission to set the group ID on execution, use ‘g’ in the users part
of the symbolic mode and ‘s’ in the permissions part.

Chapter 5: File Permissions 43

To change a file’s permission to set the restricted deletion flag or sticky bit, omit the
users part of the symbolic mode (or use ‘a’) and put ‘t’ in the permissions part.

For example, to add set-user-ID permission to a program, you can use the mode:
u+s

To remove both set-user-ID and set-group-ID permission from it, you can use the mode:
ug-s

To set the restricted deletion flag or sticky bit, you can use the mode:
+t

The combination ‘o+s’ has no effect. On GNU systems the combinations ‘u+t’ and ‘g+t’
have no effect, and ‘o+t’ acts like plain ‘+t’.

The ‘=’ operator is not very useful with special permissions; for example, the mode:
o=t

does set the restricted deletion flag or sticky bit, but it also removes all read, write, and
execute permissions that users not in the file’s group might have had for it.

5.2.4 Conditional Executability

There is one more special type of symbolic permission: if you use ‘X’ instead of ‘x’, execute
permission is affected only if the file is a directory or already had execute permission.

For example, this mode:
a+X

gives all users permission to search directories, or to execute files if anyone could execute
them before.

5.2.5 Making Multiple Changes

The format of symbolic modes is actually more complex than described above (see
Section 5.2.1 [Setting Permissions], page 41). It provides two ways to make multiple
changes to files’ permissions.

The first way is to specify multiple operation and permissions parts after a users part
in the symbolic mode.

For example, the mode:
og+rX-w

gives users other than the owner of the file read permission and, if it is a directory or if
someone already had execute permission to it, gives them execute permission; and it also
denies them write permission to the file. It does not affect the permission that the owner
of the file has for it. The above mode is equivalent to the two modes:

og+rX
og-w

The second way to make multiple changes is to specify more than one simple symbolic
mode, separated by commas. For example, the mode:

a+r,go-w

gives everyone permission to read the file and removes write permission on it for all users
except its owner. Another example:

Chapter 5: File Permissions 44

u=rwx,g=rx,o=

sets all of the non-special permissions for the file explicitly. (It gives users who are not in
the file’s group no permission at all for it.)

The two methods can be combined. The mode:
a+r,g+x-w

gives all users permission to read the file, and gives users who are in the file’s group per-
mission to execute it, as well, but not permission to write to it. The above mode could be
written in several different ways; another is:

u+r,g+rx,o+r,g-w

5.2.6 The Umask and Protection

If the users part of a symbolic mode is omitted, it defaults to ‘a’ (affect all users), except
that any permissions that are set in the system variable umask are not affected. The value
of umask can be set using the umask command. Its default value varies from system to
system.

Omitting the users part of a symbolic mode is generally not useful with operations other
than ‘+’. It is useful with ‘+’ because it allows you to use umask as an easily customizable
protection against giving away more permission to files than you intended to.

As an example, if umask has the value 2, which removes write permission for users who
are not in the file’s group, then the mode:

+w

adds permission to write to the file to its owner and to other users who are in the file’s
group, but not to other users. In contrast, the mode:

a+w

ignores umask, and does give write permission for the file to all users.

5.3 Numeric Modes

As an alternative to giving a symbolic mode, you can give an octal (base 8) number that
represents the new mode. This number is always interpreted in octal; you do not have to
add a leading 0, as you do in C. Mode 0055 is the same as mode 55.

A numeric mode is usually shorter than the corresponding symbolic mode, but it is
limited in that it cannot take into account a file’s previous permissions; it can only set them
absolutely.

The permissions granted to the user, to other users in the file’s group, and to other users
not in the file’s group each require three bits, which are represented as one octal digit. The
three special permissions also require one bit each, and they are as a group represented as
another octal digit. Here is how the bits are arranged, starting with the lowest valued bit:

Value in Corresponding
Mode Permission

Other users not in the file’s group:
1 Execute
2 Write

Chapter 5: File Permissions 45

4 Read

Other users in the file’s group:
10 Execute
20 Write
40 Read

The file’s owner:
100 Execute
200 Write
400 Read

Special permissions:
1000 Restricted deletion flag or sticky bit
2000 Set group ID on execution
4000 Set user ID on execution

For example, numeric mode 4755 corresponds to symbolic mode ‘u=rwxs,go=rx’, and
numeric mode 664 corresponds to symbolic mode ‘ug=rw,o=r’. Numeric mode 0 corresponds
to symbolic mode ‘a=’.

Chapter 6: Date input formats 46

6 Date input formats

First, a quote:
Our units of temporal measurement, from seconds on up to months, are so
complicated, asymmetrical and disjunctive so as to make coherent mental reck-
oning in time all but impossible. Indeed, had some tyrannical god contrived
to enslave our minds to time, to make it all but impossible for us to escape
subjection to sodden routines and unpleasant surprises, he could hardly have
done better than handing down our present system. It is like a set of trape-
zoidal building blocks, with no vertical or horizontal surfaces, like a language in
which the simplest thought demands ornate constructions, useless particles and
lengthy circumlocutions. Unlike the more successful patterns of language and
science, which enable us to face experience boldly or at least level-headedly, our
system of temporal calculation silently and persistently encourages our terror
of time.
. . . It is as though architects had to measure length in feet, width in meters
and height in ells; as though basic instruction manuals demanded a knowledge
of five different languages. It is no wonder then that we often look into our own
immediate past or future, last Tuesday or a week from Sunday, with feelings of
helpless confusion. . . .
— Robert Grudin, Time and the Art of Living.

This section describes the textual date representations that gnu programs accept. These
are the strings you, as a user, can supply as arguments to the various programs. The C
interface (via the get_date function) is not described here.

6.1 General date syntax

A date is a string, possibly empty, containing many items separated by whitespace. The
whitespace may be omitted when no ambiguity arises. The empty string means the begin-
ning of today (i.e., midnight). Order of the items is immaterial. A date string may contain
many flavors of items:
• calendar date items
• time of day items
• time zone items
• day of the week items
• relative items
• pure numbers.

We describe each of these item types in turn, below.
A few ordinal numbers may be written out in words in some contexts. This is most

useful for specifying day of the week items or relative items (see below). Among the most
commonly used ordinal numbers, the word ‘last’ stands for −1, ‘this’ stands for 0, and
‘first’ and ‘next’ both stand for 1. Because the word ‘second’ stands for the unit of time
there is no way to write the ordinal number 2, but for convenience ‘third’ stands for 3,
‘fourth’ for 4, ‘fifth’ for 5, ‘sixth’ for 6, ‘seventh’ for 7, ‘eighth’ for 8, ‘ninth’ for 9,
‘tenth’ for 10, ‘eleventh’ for 11 and ‘twelfth’ for 12.

Chapter 6: Date input formats 47

When a month is written this way, it is still considered to be written numerically, instead
of being “spelled in full”; this changes the allowed strings.

In the current implementation, only English is supported for words and abbreviations
like ‘AM’, ‘DST’, ‘EST’, ‘first’, ‘January’, ‘Sunday’, ‘tomorrow’, and ‘year’.

The output of the date command is not always acceptable as a date string, not only
because of the language problem, but also because there is no standard meaning for time
zone items like ‘IST’. When using date to generate a date string intended to be parsed
later, specify a date format that is independent of language and that does not use time zone
items other than ‘UTC’ and ‘Z’. Here are some ways to do this:

$ LC_ALL=C TZ=UTC0 date
Mon Mar 1 00:21:42 UTC 2004
$ TZ=UTC0 date +’%Y-%m-%d %H:%M:%SZ’
2004-03-01 00:21:42Z
$ date --iso-8601=ns | tr T ’ ’ # --iso-8601 is a GNU extension.
2004-02-29 16:21:42,692722128-0800
$ date --rfc-2822 # a GNU extension
Sun, 29 Feb 2004 16:21:42 -0800
$ date +’%Y-%m-%d %H:%M:%S %z’ # %z is a GNU extension.
2004-02-29 16:21:42 -0800
$ date +’@%s.%N’ # %s and %N are GNU extensions.
@1078100502.692722128

Alphabetic case is completely ignored in dates. Comments may be introduced between
round parentheses, as long as included parentheses are properly nested. Hyphens not fol-
lowed by a digit are currently ignored. Leading zeros on numbers are ignored.

Invalid dates like ‘2005-02-29’ or times like ‘24:00’ are rejected. In the typical case
of a host that does not support leap seconds, a time like ‘23:59:60’ is rejected even if it
corresponds to a valid leap second.

6.2 Calendar date items

A calendar date item specifies a day of the year. It is specified differently, depending on
whether the month is specified numerically or literally. All these strings specify the same
calendar date:

1972-09-24 # iso 8601.
72-9-24 # Assume 19xx for 69 through 99,

20xx for 00 through 68.
72-09-24 # Leading zeros are ignored.
9/24/72 # Common U.S. writing.
24 September 1972
24 Sept 72 # September has a special abbreviation.
24 Sep 72 # Three-letter abbreviations always allowed.
Sep 24, 1972
24-sep-72
24sep72

The year can also be omitted. In this case, the last specified year is used, or the current
year if none. For example:

Chapter 6: Date input formats 48

9/24
sep 24

Here are the rules.
For numeric months, the iso 8601 format ‘year-month-day ’ is allowed, where year is

any positive number, month is a number between 01 and 12, and day is a number between
01 and 31. A leading zero must be present if a number is less than ten. If year is 68 or
smaller, then 2000 is added to it; otherwise, if year is less than 100, then 1900 is added
to it. The construct ‘month/day/year ’, popular in the United States, is accepted. Also
‘month/day ’, omitting the year.

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’ or ‘December’. Literal months
may be abbreviated to their first three letters, possibly followed by an abbreviating dot. It
is also permitted to write ‘Sept’ instead of ‘September’.

When months are written literally, the calendar date may be given as any of the following:
day month year

day month

month day year

day-month-year

Or, omitting the year:
month day

6.3 Time of day items

A time of day item in date strings specifies the time on a given day. Here are some examples,
all of which represent the same time:

20:02:00.000000
20:02
8:02pm
20:02-0500 # In est (U.S. Eastern Standard Time).

More generally, the time of day may be given as ‘hour:minute:second ’, where hour is
a number between 0 and 23, minute is a number between 0 and 59, and second is a number
between 0 and 59 possibly followed by ‘.’ or ‘,’ and a fraction containing one or more digits.
Alternatively, ‘:second ’ can be omitted, in which case it is taken to be zero. On the rare
hosts that support leap seconds, second may be 60.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is restricted to run from
1 to 12, and ‘:minute ’ may be omitted (taken to be zero). ‘am’ indicates the first half of
the day, ‘pm’ indicates the second half of the day. In this notation, 12 is the predecessor
of 1: midnight is ‘12am’ while noon is ‘12pm’. (This is the zero-oriented interpretation of
‘12am’ and ‘12pm’, as opposed to the old tradition derived from Latin which uses ‘12m’ for
noon and ‘12pm’ for midnight.)

The time may alternatively be followed by a time zone correction, expressed as ‘shhmm ’,
where s is ‘+’ or ‘-’, hh is a number of zone hours and mm is a number of zone minutes.
You can also separate hh from mm with a colon. When a time zone correction is given
this way, it forces interpretation of the time relative to Coordinated Universal Time (utc),
overriding any previous specification for the time zone or the local time zone. For example,

Chapter 6: Date input formats 49

‘+0530’ and ‘+05:30’ both stand for the time zone 5.5 hours ahead of utc (e.g., India).
The minute part of the time of day may not be elided when a time zone correction is used.
This is the best way to specify a time zone correction by fractional parts of an hour.

Either ‘am’/‘pm’ or a time zone correction may be specified, but not both.

6.4 Time zone items

A time zone item specifies an international time zone, indicated by a small set of letters,
e.g., ‘UTC’ or ‘Z’ for Coordinated Universal Time. Any included periods are ignored. By
following a non-daylight-saving time zone by the string ‘DST’ in a separate word (that
is, separated by some white space), the corresponding daylight saving time zone may be
specified. Alternatively, a non-daylight-saving time zone can be followed by a time zone
correction, to add the two values. This is normally done only for ‘UTC’; for example,
‘UTC+05:30’ is equivalent to ‘+05:30’.

Time zone items other than ‘UTC’ and ‘Z’ are obsolescent and are not recommended,
because they are ambiguous; for example, ‘EST’ has a different meaning in Australia than
in the United States. Instead, it’s better to use unambiguous numeric time zone corrections
like ‘-0500’, as described in the previous section.

If neither a time zone item nor a time zone correction is supplied, time stamps are
interpreted using the rules of the default time zone (see Section 6.9 [Specifying time zone
rules], page 51).

6.5 Day of week items

The explicit mention of a day of the week will forward the date (only if necessary) to reach
that day of the week in the future.

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’,
‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated to their first three letters,
optionally followed by a period. The special abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’
for ‘Wednesday’ and ‘Thur’ or ‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supplementary weeks.
It is best used in expression like ‘third monday’. In this context, ‘last day ’ or ‘next day ’
is also acceptable; they move one week before or after the day that day by itself would
represent.

A comma following a day of the week item is ignored.

6.6 Relative items in date strings

Relative items adjust a date (or the current date if none) forward or backward. The effects
of relative items accumulate. Here are some examples:

1 year
1 year ago
3 years
2 days

The unit of time displacement may be selected by the string ‘year’ or ‘month’ for moving
by whole years or months. These are fuzzy units, as years and months are not all of equal

Chapter 6: Date input formats 50

duration. More precise units are ‘fortnight’ which is worth 14 days, ‘week’ worth 7 days,
‘day’ worth 24 hours, ‘hour’ worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and
‘second’ or ‘sec’ worth one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally signed number.
Unsigned numbers are taken as positively signed. No number at all implies 1 for a multiplier.
Following a relative item by the string ‘ago’ is equivalent to preceding the unit by a multiplier
with value −1.

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’), the string
‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-valued time dis-
placement, these strings come from the fact a zero-valued time displacement represents the
current time when not otherwise changed by previous items. They may be used to stress
other items, like in ‘12:00 today’. The string ‘this’ also has the meaning of a zero-valued
time displacement, but is preferred in date strings like ‘this thursday’.

When a relative item causes the resulting date to cross a boundary where the clocks
were adjusted, typically for daylight saving time, the resulting date and time are adjusted
accordingly.

The fuzz in units can cause problems with relative items. For example, ‘2003-07-31 -1
month’ might evaluate to 2003-07-01, because 2003-06-31 is an invalid date. To determine
the previous month more reliably, you can ask for the month before the 15th of the current
month. For example:

$ date -R
Thu, 31 Jul 2003 13:02:39 -0700
$ date --date=’-1 month’ +’Last month was %B?’
Last month was July?
$ date --date="$(date +%Y-%m-15) -1 month" +’Last month was %B!’
Last month was June!

Also, take care when manipulating dates around clock changes such as daylight saving
leaps. In a few cases these have added or subtracted as much as 24 hours from the clock,
so it is often wise to adopt universal time by setting the TZ environment variable to ‘UTC0’
before embarking on calendrical calculations.

6.7 Pure numbers in date strings

The precise interpretation of a pure decimal number depends on the context in the date
string.

If the decimal number is of the form yyyymmdd and no other calendar date item (see
Section 6.2 [Calendar date items], page 47) appears before it in the date string, then yyyy
is read as the year, mm as the month number and dd as the day of the month, for the
specified calendar date.

If the decimal number is of the form hhmm and no other time of day item appears before
it in the date string, then hh is read as the hour of the day and mm as the minute of the
hour, for the specified time of day. mm can also be omitted.

If both a calendar date and a time of day appear to the left of a number in the date
string, but no relative item, then the number overrides the year.

Chapter 6: Date input formats 51

6.8 Seconds since the Epoch

If you precede a number with ‘@’, it represents an internal time stamp as a count of seconds.
The number can contain an internal decimal point (either ‘.’ or ‘,’); any excess precision not
supported by the internal representation is truncated toward minus infinity. Such a number
cannot be combined with any other date item, as it specifies a complete time stamp.

Internally, computer times are represented as a count of seconds since an epoch—a well-
defined point of time. On GNU and POSIX systems, the epoch is 1970-01-01 00:00:00 utc,
so ‘@0’ represents this time, ‘@1’ represents 1970-01-01 00:00:01 utc, and so forth. GNU and
most other POSIX-compliant systems support such times as an extension to POSIX, using
negative counts, so that ‘@-1’ represents 1969-12-31 23:59:59 utc.

Traditional Unix systems count seconds with 32-bit two’s-complement integers and can
represent times from 1901-12-13 20:45:52 through 2038-01-19 03:14:07 utc. More modern
systems use 64-bit counts of seconds with nanosecond subcounts, and can represent all the
times in the known lifetime of the universe to a resolution of 1 nanosecond.

On most hosts, these counts ignore the presence of leap seconds. For example, on most
hosts ‘@915148799’ represents 1998-12-31 23:59:59 utc, ‘@915148800’ represents 1999-01-
01 00:00:00 utc, and there is no way to represent the intervening leap second 1998-12-31
23:59:60 utc.

6.9 Specifying time zone rules

Normally, dates are interpreted using the rules of the current time zone, which in turn are
specified by the TZ environment variable, or by a system default if TZ is not set. To specify
a different set of default time zone rules that apply just to one date, start the date with a
string of the form ‘TZ="rule"’. The two quote characters (‘"’) must be present in the date,
and any quotes or backslashes within rule must be escaped by a backslash.

For example, with the GNU date command you can answer the question “What time is
it in New York when a Paris clock shows 6:30am on October 31, 2004?” by using a date
beginning with ‘TZ="Europe/Paris"’ as shown in the following shell transcript:

$ export TZ="America/New_York"
$ date --date=’TZ="Europe/Paris" 2004-10-31 06:30’
Sun Oct 31 01:30:00 EDT 2004

In this example, the ‘--date’ operand begins with its own TZ setting, so the rest of that
operand is processed according to ‘Europe/Paris’ rules, treating the string ‘2004-10-31
06:30’ as if it were in Paris. However, since the output of the date command is processed
according to the overall time zone rules, it uses New York time. (Paris was normally six
hours ahead of New York in 2004, but this example refers to a brief Halloween period when
the gap was five hours.)

A TZ value is a rule that typically names a location in the ‘tz’ database. A recent catalog
of location names appears in the TWiki Date and Time Gateway. A few non-GNU hosts
require a colon before a location name in a TZ setting, e.g., ‘TZ=":America/New_York"’.

The ‘tz’ database includes a wide variety of locations ranging from
‘Arctic/Longyearbyen’ to ‘Antarctica/South_Pole’, but if you are at sea and
have your own private time zone, or if you are using a non-GNU host that does not support
the ‘tz’ database, you may need to use a POSIX rule instead. Simple POSIX rules like

http://www.twinsun.com/tz/tz-link.htm
http://twiki.org/cgi-bin/xtra/tzdate

Chapter 6: Date input formats 52

‘UTC0’ specify a time zone without daylight saving time; other rules can specify simple
daylight saving regimes. See Section “Specifying the Time Zone with TZ” in The GNU C
Library .

6.10 Authors of get_date

get_date was originally implemented by Steven M. Bellovin (smb@research.att.com)
while at the University of North Carolina at Chapel Hill. The code was later tweaked
by a couple of people on Usenet, then completely overhauled by Rich $alz (rsalz@bbn.com)
and Jim Berets (jberets@bbn.com) in August, 1990. Various revisions for the gnu system
were made by David MacKenzie, Jim Meyering, Paul Eggert and others.

This chapter was originally produced by François Pinard (pinard@iro.umontreal.ca)
from the ‘getdate.y’ source code, and then edited by K. Berry (kb@cs.umb.edu).

mailto:smb@research.att.com
mailto:rsalz@bbn.com
mailto:jberets@bbn.com
mailto:pinard@iro.umontreal.ca
mailto:kb@cs.umb.edu

Chapter 7: Reference 53

7 Reference

Below are summaries of the command line syntax for the programs discussed in this manual.

7.1 Invoking find

find [-H] [-L] [-P] [-D debugoptions] [-Olevel] [file...] [expression]

find searches the directory tree rooted at each file name file by evaluating the expression
on each file it finds in the tree.

The command line may begin with the ‘-H’, ‘-L’, ‘-P’, ‘-D’ and ‘-O’ options. These are
followed by a list of files or directories that should be searched. If no files to search are
specified, the current directory (‘.’) is used.

This list of files to search is followed by a list of expressions describing the files we wish
to search for. The first part of the expression is recognised by the fact that it begins with ‘-’
followed by some other letters (for example ‘-print’), or is either ‘(’ or ‘!’. Any arguments
after it are the rest of the expression.

If no expression is given, the expression ‘-print’ is used.

The find command exits with status zero if all files matched are processed successfully,
greater than zero if errors occur.

The find program also recognises two options for administrative use:

‘--help’ Print a summary of the command line usage and exit.

‘--version’
Print the version number of find and exit.

The ‘-version’ option is a synonym for ‘--version’

7.1.1 Filesystem Traversal Options

The options ‘-H’, ‘-L’ or ‘-P’ may be specified at the start of the command line (if none of
these is specified, ‘-P’ is assumed). If you specify more than one of these options, the last
one specified takes effect (but note that the ‘-follow’ option is equivalent to ‘-L’).

-P Never follow symbolic links (this is the default), except in the case of the
‘-xtype’ predicate.

-L Always follow symbolic links, except in the case of the ‘-xtype’ predicate.

-H Follow symbolic links specified in the list of files to search, or which are otherwise
specified on the command line.

If find would follow a symbolic link, but cannot for any reason (for example, because it
has insufficient permissions or the link is broken), it falls back on using the properties of the
symbolic link itself. Section 2.2.1 [Symbolic Links], page 9 for a more complete description
of how symbolic links are handled.

Chapter 7: Reference 54

7.1.2 Warning Messages

If there is an error on the find command line, an error message is normally issued. However,
there are some usages that are inadvisable but which find should still accept. Under these
circumstances, find may issue a warning message.

By default, warnings are enabled only if find is being run interactively (specifically, if
the standard input is a terminal) and the POSIXLY CORRECT environment variable is not
set. Warning messages can be controlled explicitly by the use of options on the command
line:

-warn Issue warning messages where appropriate.

-nowarn Do not issue warning messages.

These options take effect at the point on the command line where they are specified.
Therefore it’s not useful to specify ‘-nowarn’ at the end of the command line. The warning
messages affected by the above options are triggered by:
− Use of the ‘-d’ option which is deprecated; please use ‘-depth’ instead, since the latter

is POSIX-compliant.
− Use of the ‘-ipath’ option which is deprecated; please use ‘-iwholename’ instead.
− Specifying an option (for example ‘-mindepth’) after a non-option (for example ‘-type’

or ‘-print’) on the command line.
− Use of the ‘-name’ or ‘-iname’ option with a slash character in the pattern. Since the

name predicates only compare against the basename of the visited files, the only file
that can match a slash is the root directory itself.

The default behaviour above is designed to work in that way so that existing shell scripts
don’t generate spurious errors, but people will be made aware of the problem.

Some warning messages are issued for less common or more serious problems, and con-
sequently cannot be turned off:
− Use of an unrecognised backslash escape sequence with ‘-fprintf’
− Use of an unrecognised formatting directive with ‘-fprintf’

7.1.3 Optimisation Options

The ‘-Olevel ’ option sets find’s optimisation level to level. The default optimisation level
is 1.

At certain optimisation levels, find reorders tests to speed up execution while preserving
the overall effect; that is, predicates with side effects are not reordered relative to each other.
The optimisations performed at each optimisation level are as follows.

‘0’ Currently equivalent to optimisation level 1.

‘1’ This is the default optimisation level and corresponds to the traditional be-
haviour. Expressions are reordered so that tests based only on the names of
files (for example‘ -name’ and ‘-regex’) are performed first.

‘2’ Any ‘-type’ or ‘-xtype’ tests are performed after any tests based only on the
names of files, but before any tests that require information from the inode.
On many modern versions of Unix, file types are returned by readdir() and

Chapter 7: Reference 55

so these predicates are faster to evaluate than predicates which need to stat the
file first.

‘3’ At this optimisation level, the full cost-based query optimiser is enabled. The
order of tests is modified so that cheap (i.e., fast) tests are performed first and
more expensive ones are performed later, if necessary. Within each cost band,
predicates are evaluated earlier or later according to whether they are likely to
succeed or not. For ‘-o’, predicates which are likely to succeed are evaluated
earlier, and for ‘-a’, predicates which are likely to fail are evaluated earlier.

7.1.4 Debug Options

The ‘-D’ option makes find produce diagnostic output. Much of the information is useful
only for diagnosing problems, and so most people will not find this option helpful.

The list of debug options should be comma separated. Compatibility of the debug
options is not guaranteed between releases of findutils. For a complete list of valid debug
options, see the output of find -D help. Valid debug options include:

‘help’ Explain the debugging options.

‘tree’ Show the expression tree in its original and optimised form.

‘stat’ Print messages as files are examined with the stat and lstat system calls. The
find program tries to minimise such calls.

‘opt’ Prints diagnostic information relating to the optimisation of the expression tree;
see the ‘-O’ option.

‘rates’ Prints a summary indicating how often each predicate succeeded or failed.

7.1.5 Find Expressions

The final part of the find command line is a list of expressions. See [Primary Index],
page 102, for a summary of all of the tests, actions, and options that the expression can
contain. If the expression is missing, ‘-print’ is assumed.

7.2 Invoking locate

locate [option...] pattern...

For each pattern given locate searches one or more file name databases returning each
match of pattern.

For each pattern given locate searches one or more file name databases returning each
match of pattern.

--all
-A Print only names which match all non-option arguments, not those matching

one or more non-option arguments.

--basename
-b The specified pattern is matched against just the last component of the

name of a file in the locate database. This last component is also called the
“base name”. For example, the base name of ‘/tmp/mystuff/foo.old.c’ is
‘foo.old.c’. If the pattern contains metacharacters, it must match the base
name exactly. If not, it must match part of the base name.

Chapter 7: Reference 56

--count
-c Instead of printing the matched file names, just print the total number of

matches found, unless ‘--print’ (‘-p’) is also present.

--database=path
-d path Instead of searching the default locate database ‘/Languages/gnu_lang/4.0/install/var/locatedb’,

locate searches the file name databases in path, which is a colon-separated
list of database file names. You can also use the environment variable
LOCATE_PATH to set the list of database files to search. The option overrides
the environment variable if both are used. Empty elements in path (that is,
a leading or trailing colon, or two colons in a row) are taken to stand for the
default database. A database can be supplied on stdin, using ‘-’ as an element
of ‘path’. If more than one element of ‘path’ is ‘-’, later instances are ignored
(but a warning message is printed).

--existing
-e Only print out such names which currently exist (instead of such names which

existed when the database was created). Note that this may slow down the
program a lot, if there are many matches in the database. The way in which
broken symbolic links are treated is affected by the ‘-L’, ‘-P’ and ‘-H’ options.
Please note that it is possible for the file to be deleted after locate has checked
that it exists, but before you use it. This option is automatically turned on
when reading an slocate database in secure mode (see Section 4.2.3 [slocate
Database Format], page 38).

--non-existing
-E Only print out such names which currently do not exist (instead of such names

which existed when the database was created). Note that this may slow down
the program a lot, if there are many matches in the database. The way in which
broken symbolic links are treated is affected by the ‘-L’, ‘-P’ and ‘-H’ options.
Please note that locate checks that the file does not exist, but a file of the
same name might be created after locate’s check but before you read locate’s
output.

--follow
-L If testing for the existence of files (with the ‘-e’ or ‘-E’ options), consider broken

symbolic links to be non-existing. This is the default behaviour.

--nofollow
-P
-H If testing for the existence of files (with the ‘-e’ or ‘-E’ options), treat broken

symbolic links as if they were existing files. The ‘-H’ form of this option is
provided purely for similarity with find; the use of ‘-P’ is recommended over
‘-H’.

--ignore-case
-i Ignore case distinctions in both the pattern and the file names.

--limit=N
-l N Limit the number of results printed to N. When used with the ‘--count’ option,

the value printed will never be larger than this limit.

Chapter 7: Reference 57

--max-database-age=D
Normally, locate will issue a warning message when it searches a database
which is more than 8 days old. This option changes that value to something
other than 8. The effect of specifying a negative value is undefined.

--mmap
-m Accepted but does nothing. The option is supported only to provide compati-

bility with BSD’s locate.

--null
-0 Results are separated with the ASCII NUL character rather than the newline

character. To get the full benefit of this option, use the new locate database
format (that is the default anyway).

--print
-p Print search results when they normally would not be due to use of

‘--statistics’ (‘-S’) or ‘--count’ (‘-c’).

--wholename
-w The specified pattern is matched against the whole name of the file in the locate

database. If the pattern contains metacharacters, it must match exactly. If not,
it must match part of the whole file name. This is the default behaviour.

--regex
-r Instead of using substring or shell glob matching, the pattern specified on the

command line is understood to be a regular expression. GNU Emacs-style
regular expressions are assumed unless the ‘--regextype’ option is also given.
File names from the locate database are matched using the specified regular
expression. If the ‘-i’ flag is also given, matching is case-insensitive. Matches
are performed against the whole path name, and so by default a pathname
will be matched if any part of it matches the specified regular expression. The
regular expression may use ‘^’ or ‘$’ to anchor a match at the beginning or end
of a pathname.

--regextype
This option changes the regular expression syntax and behaviour used by the
‘--regex’ option. Section 7.5 [Regular Expressions], page 63 for more informa-
tion on the regular expression dialects understood by GNU findutils.

--stdio
-s Accepted but does nothing. The option is supported only to provide compati-

bility with BSD’s locate.

--statistics
-S Print some summary information for each locate database. No search is per-

formed unless non-option arguments are given. Although the BSD version of
locate also has this option, the format of the output is different.

--help Print a summary of the command line usage for locate and exit.

--version
Print the version number of locate and exit.

Chapter 7: Reference 58

7.3 Invoking updatedb

updatedb [option...]
updatedb creates and updates the database of file names used by locate. updatedb

generates a list of files similar to the output of find and then uses utilities for optimizing the
database for performance. updatedb is often run periodically as a cron job and configured
with environment variables or command options. Typically, operating systems have a shell
script that “exports” configurations for variable definitions and uses another shell script
that “sources” the configuration file into the environment and then executes updatedb in
the environment.

updatedb creates and updates the database of file names used by locate. updatedb
generates a list of files similar to the output of find and then uses utilities for optimizing the
database for performance. updatedb is often run periodically as a cron job and configured
with environment variables or command options. Typically, operating systems have a shell
script that “exports” configurations for variable definitions and uses another shell script
that “sources” the configuration file into the environment and then executes updatedb in
the environment.

--findoptions=’OPTION...’
Global options to pass on to find. The environment variable FINDOPTIONS also
sets this value. Default is none.

--localpaths=’path...’
Non-network directories to put in the database. Default is ‘/’.

--netpaths=’path...’
Network (NFS, AFS, RFS, etc.) directories to put in the database. The envi-
ronment variable NETPATHS also sets this value. Default is none.

--prunepaths=’path...’
Directories to omit from the database, which would otherwise be included.
The environment variable PRUNEPATHS also sets this value. Default is ‘/tmp
/usr/tmp /var/tmp /afs’. The paths are used as regular expressions (with
find ... -regex, so you need to specify these paths in the same way that
find will encounter them. This means for example that the paths must not
include trailing slashes.

--prunefs=’path...’
Filesystems to omit from the database, which would otherwise be included.
Note that files are pruned when a filesystem is reached; Any filesystem
mounted under an undesired filesystem will be ignored. The environment
variable PRUNEFS also sets this value. Default is ‘nfs NFS proc’.

--output=dbfile
The database file to build. The default is system-dependent, but when this doc-
ument was formatted it was ‘/Languages/gnu_lang/4.0/install/var/locatedb’.

--localuser=user
The user to search the non-network directories as, using su. Default is to
search the non-network directories as the current user. You can also use the
environment variable LOCALUSER to set this user.

Chapter 7: Reference 59

--netuser=user
The user to search network directories as, using su. Default user is daemon.
You can also use the environment variable NETUSER to set this user.

--old-format
Generate a locate database in the old format, for compatibility with versions
of locate other than GNU locate. Using this option means that locate will
not be able to properly handle non-ASCII characters in file names (that is, file
names containing characters which have the eighth bit set, such as many of
the characters from the ISO-8859-1 character set). See Section 4.2 [Database
Formats], page 36, for a detailed description of the supported database formats.

--dbformat=FORMAT
Generate the locate database in format FORMAT. Supported database formats
include LOCATE02 (which is the default), old and slocate. The old format
exists for compatibility with implementations of locate on other Unix systems.
The slocate format exists for compatibility with slocate. See Section 4.2
[Database Formats], page 36, for a detailed description of each format.

--help Print a summary of the command line usage and exit.

--version
Print the version number of updatedb and exit.

7.4 Invoking xargs

xargs [option...] [command [initial-arguments]]

xargs exits with the following status:

0 if it succeeds

123 if any invocation of the command exited with status 1-125

124 if the command exited with status 255

125 if the command is killed by a signal

126 if the command cannot be run

127 if the command is not found

1 if some other error occurred.

Exit codes greater than 128 are used by the shell to indicate that a program died due to
a fatal signal.

7.4.1 xargs options

--arg-file=inputfile
-a inputfile

Read names from the file inputfile instead of standard input. If you use this
option, the standard input stream remains unchanged when commands are run.
Otherwise, stdin is redirected from ‘/dev/null’.

Chapter 7: Reference 60

--null
-0 Input file names are terminated by a null character instead of by whitespace, and

any quotes and backslash characters are not considered special (every character
is taken literally). Disables the end of file string, which is treated like any other
argument.

--delimiter delim

-d delim

Input file names are terminated by the specified character delim instead of by
whitespace, and any quotes and backslash characters are not considered special
(every character is taken literally). Disables the end of file string, which is
treated like any other argument.

The specified delimiter may be a single character, a C-style character escape
such as ‘\n’, or an octal or hexadecimal escape code. Octal and hexadecimal
escape codes are understood as for the printf command. Multibyte characters
are not supported.

-E eof-str

--eof[=eof-str]
-e[eof-str]

Set the end of file string to eof-str. If the end of file string occurs as a line
of input, the rest of the input is ignored. If eof-str is omitted (‘-e’) or blank
(either ‘-e’ or ‘-E’), there is no end of file string. The ‘-e’ form of this option is
deprecated in favour of the POSIX-compliant ‘-E’ option, which you should use
instead. As of GNU xargs version 4.2.9, the default behaviour of xargs is not
to have a logical end-of-file marker. The POSIX standard (IEEE Std 1003.1,
2004 Edition) allows this.

--help Print a summary of the options to xargs and exit.

-I replace-str

--replace[=replace-str]
-i[replace-str]

Replace occurrences of replace-str in the initial arguments with names read from
standard input. Also, unquoted blanks do not terminate arguments; instead,
the input is split at newlines only. If replace-str is omitted (omitting it is
allowed only for ‘-i’), it defaults to ‘{}’ (like for ‘find -exec’). Implies ‘-x’
and ‘-l 1’. The ‘-i’ option is deprecated in favour of the ‘-I’ option.

-L max-lines

--max-lines[=max-lines]
-l[max-lines]

Use at most max-lines non-blank input lines per command line. For ‘-l’, max-
lines defaults to 1 if omitted. For ‘-L’, the argument is mandatory. Trailing
blanks cause an input line to be logically continued on the next input line, for
the purpose of counting the lines. Implies ‘-x’. The ‘-l’ form of this option is
deprecated in favour of the POSIX-compliant ‘-L’ option.

Chapter 7: Reference 61

--max-args=max-args
-n max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the ‘-s’ option) is exceeded, unless the
‘-x’ option is given, in which case xargs will exit.

--interactive
-p Prompt the user about whether to run each command line and read a line from

the terminal. Only run the command line if the response starts with ‘y’ or ‘Y’.
Implies ‘-t’.

--no-run-if-empty
-r If the standard input is completely empty, do not run the command. By default,

the command is run once even if there is no input.

--max-chars=max-chars
-s max-chars

Use at most max-chars characters per command line, including the command,
initial arguments and any terminating nulls at the ends of the argument strings.

--show-limits
Display the limits on the command-line length which are imposed by the oper-
ating system, xargs’ choice of buffer size and the ‘-s’ option. Pipe the input
from ‘/dev/null’ (and perhaps specify ‘--no-run-if-empty’) if you don’t want
xargs to do anything.

--verbose
-t Print the command line on the standard error output before executing it.

--version
Print the version number of xargs and exit.

--exit
-x Exit if the size (see the ‘-s’ option) is exceeded.

--max-procs=max-procs
-P max-procs

Run simultaneously up to max-procs processes at once; the default is 1. If
max-procs is 0, xargs will run as many processes as possible simultaneously.

7.4.2 Invoking the shell from xargs

Normally, xargs will exec the command you specified directly, without invoking a shell.
This is normally the behaviour one would want. It’s somewhat more efficient and avoids
problems with shell metacharacters, for example. However, sometimes it is necessary to
manipulate the environment of a command before it is run, in a way that xargs does not
directly support.

Invoking a shell from xargs is a good way of performing such manipulations. However,
some care must be taken to prevent problems, for example unwanted interpretation of shell
metacharacters.

This command moves a set of files into an archive directory:

Chapter 7: Reference 62

find /foo -maxdepth 1 -atime +366 -exec mv {} /archive \;

However, this will only move one file at a time. We cannot in this case use -exec
... + because the matched file names are added at the end of the command line, while
the destination directory would need to be specified last. We also can’t use xargs in the
obvious way for the same reason. One way of working around this problem is to make use
of the special properties of GNU mv; it has a -t option that allows the target directory to
be specified before the list of files to be moved. However, while this technique works for
GNU mv, it doesn’t solve the more general problem.

Here is a more general technique for solving this problem:

find /foo -maxdepth 1 -atime +366 -print0 |
xargs -r0 sh -c ’mv "$@" /archive’ move

Here, a shell is being invoked. There are two shell instances to think about. The first
is the shell which launches the xargs command (this might be the shell into which you are
typing, for example). The second is the shell launched by xargs (in fact it will probably
launch several, one after the other, depending on how many files need to be archived). We’l
refer to this second shell as a subshell.

Our example uses the -c option of sh. Its argument is a shell command to be executed
by the subshell. Along with the rest of that command, the $@ is enclosed by single quotes
to make sure it is passed to the subshell without being expanded by the parent shell. It is
also enclosed with double quotes so that the subshell will expand $@ correctly even if one
of the file names contains a space or newline.

The subshell will use any non-option arguments as positional parameters (that is, in the
expansion of $@). Because xargs launches the sh -c subshell with a list of files, those files
will end up as the expansion of $@.

You may also notice the ‘move’ at the end of the command line. This is used as the
value of $0 by the subshell. We include it because otherwise the name of the first file to be
moved would be used instead. If that happened it would not be included in the subshell’s
expansion of $@, and so it wouldn’t actually get moved.

Another reason to use the sh -c construct could be to perform redirection:

find /usr/include -name ’*.h’ | xargs grep -wl mode_t |
xargs -r sh -c ’exec emacs "$@" < /dev/tty’ Emacs

Notice that we use the shell builtin exec here. That’s simply because the subshell needs
to do nothing once Emacs has been invoked. Therefore instead of keeping a sh process
around for no reason, we just arrange for the subshell to exec Emacs, saving an extra
process creation.

Sometimes, though, it can be helpful to keep the shell process around:

find /foo -maxdepth 1 -atime +366 -print0 |
xargs -r0 sh -c ’mv "$@" /archive || exit 255’ move

Here, the shell will exit with status 255 if any mv failed. This causes xargs to stop
immediately.

Chapter 7: Reference 63

7.5 Regular Expressions

The ‘-regex’ and ‘-iregex’ tests of find allow matching by regular expression, as does the
‘--regex’ option of locate.

Your locale configuration affects how regular expressions are interpreted. See Section 7.6
[Environment Variables], page 71, for a description of how your locale setup affects the
interpretation of regular expressions.

There are also several different types of regular expression, and these are interpreted
differently. Normally, the type of regular expression used by find and locate is the same
as is used in GNU Emacs. Both programs provide an option which allows you to select
an alternative regular expression syntax; for find this is the ‘-regextype’ option, and for
locate this is the ‘--regextype’ option.

These options take a single argument, which indicates the specific regular expression
syntax and behaviour that should be used. This should be one of the following:

7.5.1 ‘findutils-default’ regular expression syntax

The character ‘.’ matches any single character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are not supported, so for example you would need to use
‘[0-9]’ instead of ‘[[:digit:]]’.

GNU extensions are supported:
1. ‘\w’ matches a character within a word
2. ‘\W’ matches a character which is not within a word
3. ‘\<’ matches the beginning of a word
4. ‘\>’ matches the end of a word
5. ‘\b’ matches a word boundary
6. ‘\B’ matches characters which are not a word boundary
7. ‘\‘’ matches the beginning of the whole input
8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.
The character ‘^’ only represents the beginning of a string when it appears:

Chapter 7: Reference 64

1. At the beginning of a regular expression
2. After an open-group, signified by ‘\(’
3. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:
1. At the end of a regular expression
2. Before a close-group, signified by ‘\)’
3. Before the alternation operator ‘\|’

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:
1. At the beginning of a regular expression
2. After an open-group, signified by ‘\(’
3. After the alternation operator ‘\|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

7.5.2 ‘awk’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ can be
used to quote the following character. Character classes are not supported, so for example
you would need to use ‘[0-9]’ instead of ‘[[:digit:]]’.

GNU extensions are not supported and so ‘\w’, ‘\W’, ‘\<’, ‘\>’, ‘\b’, ‘\B’, ‘\‘’, and ‘\’’
match ‘w’, ‘W’, ‘<’, ‘>’, ‘b’, ‘B’, ‘‘’, and ‘’’ respectively.

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself. A
backslash followed by a digit matches that digit.

The alternation operator is ‘|’.
The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,

except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:
1. At the beginning of a regular expression
2. After an open-group, signified by ‘(’
3. After the alternation operator ‘|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

Chapter 7: Reference 65

7.5.3 ‘egrep’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are supported; for example ‘[[:digit:]]’ will match a
single decimal digit. Non-matching lists ‘[^...]’ do not ever match newline.

GNU extensions are supported:
1. ‘\w’ matches a character within a word
2. ‘\W’ matches a character which is not within a word
3. ‘\<’ matches the beginning of a word
4. ‘\>’ matches the end of a word
5. ‘\b’ matches a word boundary
6. ‘\B’ matches characters which are not a word boundary
7. ‘\‘’ matches the beginning of the whole input
8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. A backslash followed by a digit acts as a
back-reference and matches the same thing as the previous grouped expression indicated by
that number. For example ‘\2’ matches the second group expression. The order of group
expressions is determined by the position of their opening parenthesis ‘(’.

The alternation operator is ‘|’.
The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,

except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

The characters ‘*’, ‘+’ and ‘?’ are special anywhere in a regular expression.
The longest possible match is returned; this applies to the regular expression as a whole

and (subject to this constraint) to subexpressions within groups.

7.5.4 ‘emacs’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

Chapter 7: Reference 66

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are not supported, so for example you would need to use
‘[0-9]’ instead of ‘[[:digit:]]’.

GNU extensions are supported:
1. ‘\w’ matches a character within a word
2. ‘\W’ matches a character which is not within a word
3. ‘\<’ matches the beginning of a word
4. ‘\>’ matches the end of a word
5. ‘\b’ matches a word boundary
6. ‘\B’ matches characters which are not a word boundary
7. ‘\‘’ matches the beginning of the whole input
8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.
The character ‘^’ only represents the beginning of a string when it appears:

1. At the beginning of a regular expression
2. After an open-group, signified by ‘\(’
3. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:
1. At the end of a regular expression
2. Before a close-group, signified by ‘\)’
3. Before the alternation operator ‘\|’

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:
1. At the beginning of a regular expression
2. After an open-group, signified by ‘\(’
3. After the alternation operator ‘\|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

7.5.5 ‘gnu-awk’ regular expression syntax

The character ‘.’ matches any single character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

Chapter 7: Reference 67

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ can
be used to quote the following character. Character classes are supported; for example
‘[[:digit:]]’ will match a single decimal digit.

GNU extensions are supported:
1. ‘\w’ matches a character within a word
2. ‘\W’ matches a character which is not within a word
3. ‘\<’ matches the beginning of a word
4. ‘\>’ matches the end of a word
5. ‘\b’ matches a word boundary
6. ‘\B’ matches characters which are not a word boundary
7. ‘\‘’ matches the beginning of the whole input
8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself.
A backslash followed by a digit acts as a back-reference and matches the same thing as
the previous grouped expression indicated by that number. For example ‘\2’ matches the
second group expression. The order of group expressions is determined by the position of
their opening parenthesis ‘(’.

The alternation operator is ‘|’.
The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,

except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:
1. At the beginning of a regular expression
2. After an open-group, signified by ‘(’
3. After the alternation operator ‘|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

7.5.6 ‘grep’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘\+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘\?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘+ and ?’ match themselves.

Chapter 7: Reference 68

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are supported; for example ‘[[:digit:]]’ will match a
single decimal digit. Non-matching lists ‘[^...]’ do not ever match newline.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.

The character ‘^’ only represents the beginning of a string when it appears:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After a newline

4. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:

1. At the end of a regular expression

2. Before a close-group, signified by ‘\)’

3. Before a newline

4. Before the alternation operator ‘\|’

‘*’, ‘\+’ and ‘\?’ are special at any point in a regular expression except:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After a newline

4. After the alternation operator ‘\|’

Intervals are specified by ‘\{’ and ‘\}’. Invalid intervals such as ‘a\{1z’ are not accepted.

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

Chapter 7: Reference 69

7.5.7 ‘posix-awk’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ can
be used to quote the following character. Character classes are supported; for example
‘[[:digit:]]’ will match a single decimal digit.

GNU extensions are not supported and so ‘\w’, ‘\W’, ‘\<’, ‘\>’, ‘\b’, ‘\B’, ‘\‘’, and ‘\’’
match ‘w’, ‘W’, ‘<’, ‘>’, ‘b’, ‘B’, ‘‘’, and ‘’’ respectively.

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself.
A backslash followed by a digit acts as a back-reference and matches the same thing as
the previous grouped expression indicated by that number. For example ‘\2’ matches the
second group expression. The order of group expressions is determined by the position of
their opening parenthesis ‘(’.

The alternation operator is ‘|’.
The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,

except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except the following places,
where they are not allowed:
1. At the beginning of a regular expression
2. After an open-group, signified by ‘(’
3. After the alternation operator ‘|’

Intervals are specified by ‘{’ and ‘}’. Invalid intervals such as ‘a{1z’ are not accepted.
The longest possible match is returned; this applies to the regular expression as a whole

and (subject to this constraint) to subexpressions within groups.

7.5.8 ‘posix-basic’ regular expression syntax

This is a synonym for ed.

7.5.9 ‘posix-egrep’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

Chapter 7: Reference 70

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are supported; for example ‘[[:digit:]]’ will match a
single decimal digit. Non-matching lists ‘[^...]’ do not ever match newline.

GNU extensions are supported:

1. ‘\w’ matches a character within a word
2. ‘\W’ matches a character which is not within a word
3. ‘\<’ matches the beginning of a word
4. ‘\>’ matches the end of a word
5. ‘\b’ matches a word boundary
6. ‘\B’ matches characters which are not a word boundary
7. ‘\‘’ matches the beginning of the whole input
8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. A backslash followed by a digit acts as a
back-reference and matches the same thing as the previous grouped expression indicated by
that number. For example ‘\2’ matches the second group expression. The order of group
expressions is determined by the position of their opening parenthesis ‘(’.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

The characters ‘*’, ‘+’ and ‘?’ are special anywhere in a regular expression.

Intervals are specified by ‘{’ and ‘}’. Invalid intervals are treated as literals, for example
‘a{1’ is treated as ‘a\{1’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

7.5.10 ‘posix-extended’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ is taken

Chapter 7: Reference 71

literally. Character classes are supported; for example ‘[[:digit:]]’ will match a single
decimal digit.

GNU extensions are supported:
1. ‘\w’ matches a character within a word
2. ‘\W’ matches a character which is not within a word
3. ‘\<’ matches the beginning of a word
4. ‘\>’ matches the end of a word
5. ‘\b’ matches a word boundary
6. ‘\B’ matches characters which are not a word boundary
7. ‘\‘’ matches the beginning of the whole input
8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself.
A backslash followed by a digit acts as a back-reference and matches the same thing as
the previous grouped expression indicated by that number. For example ‘\2’ matches the
second group expression. The order of group expressions is determined by the position of
their opening parenthesis ‘(’.

The alternation operator is ‘|’.
The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,

except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except the following places,
where they are not allowed:
1. At the beginning of a regular expression
2. After an open-group, signified by ‘(’
3. After the alternation operator ‘|’

Intervals are specified by ‘{’ and ‘}’. Invalid intervals such as ‘a{1z’ are not accepted.
The longest possible match is returned; this applies to the regular expression as a whole

and (subject to this constraint) to subexpressions within groups.

7.6 Environment Variables

LANG Provides a default value for the internationalisation variables that are unset or
null.

LC ALL If set to a non-empty string value, override the values of all the other interna-
tionalisation variables.

LC COLLATE
The POSIX standard specifies that this variable affects the pattern matching
to be used for the ‘\-name’ option. GNU find uses the GNU version of the
fnmatch library function.
This variable also affects the interpretation of the response to -ok; while the
LC MESSAGES variable selects the actual pattern used to interpret the re-
sponse to -ok, the interpretation of any bracket expressions in the pattern will
be affected by the LC COLLATE variable.

Chapter 7: Reference 72

LC CTYPE
This variable affects the treatment of character classes used in regular expression
and with the ‘-name’ test, if the fnmatch function supports this.
This variable also affects the interpretation of any character classes in the regu-
lar expressions used to interpret the response to the prompt issued by -ok. The
LC CTYPE environment variable will also affect which characters are consid-
ered to be unprintable when filenames are printed (see Section 3.3.2.3 [Unusual
Characters in File Names], page 30).

LC MESSAGES
Determines the locale to be used for internationalised messages, including the
interpretation of the response to the prompt made by the -ok action.

NLSPATH
Determines the location of the internationalisation message catalogues.

PATH Affects the directories which are searched to find the executables invoked by
‘-exec’, ‘-execdir’ ‘-ok’ and ‘-okdir’. If the PATH environment variable
includes the current directory (by explicitly including ‘.’ or by having an empty
element), and the find command line includes ‘-execdir’ or ‘-okdir’, find will
refuse to run. See Chapter 10 [Security Considerations], page 85, for a more
detailed discussion of security matters.

POSIXLY CORRECT
Determines the block size used by ‘-ls’ and ‘-fls’. If POSIXLY CORRECT
is set, blocks are units of 512 bytes. Otherwise they are units of 1024 bytes.
Setting this variable also turns off warning messages (that is, implies ‘-nowarn’)
by default, because POSIX requires that apart from the output for ‘-ok’, all
messages printed on stderr are diagnostics and must result in a non-zero exit
status.
Arguments to ‘-perm’ beginning with ‘+’ are treated differently when
POSIXLY CORRECT is set. See Section 2.7 [File Mode Bits], page 15.
When POSIXLY CORRECT is set, the response to the prompt made by the -
ok action is interpreted according to the system’s message catalogue, as opposed
to according to find’s own message translations.

TZ Affects the time zone used for some of the time-related format directives of
‘-printf’ and ‘-fprintf’.

Chapter 8: Common Tasks 73

8 Common Tasks

The sections that follow contain some extended examples that both give a good idea of the
power of these programs, and show you how to solve common real-world problems.

8.1 Viewing And Editing

To view a list of files that meet certain criteria, simply run your file viewing program with
the file names as arguments. Shells substitute a command enclosed in backquotes with its
output, so the whole command looks like this:

less ‘find /usr/include -name ’*.h’ | xargs grep -l mode_t‘

You can edit those files by giving an editor name instead of a file viewing program:
emacs ‘find /usr/include -name ’*.h’ | xargs grep -l mode_t‘

Because there is a limit to the length of any individual command line, there is a limit to
the number of files that can be handled in this way. We can get around this difficulty by
using xargs like this:

find /usr/include -name ’*.h’ | xargs grep -l mode_t > todo
xargs --arg-file=todo emacs

Here, xargs will run emacs as many times as necessary to visit all of the files listed in the
file ‘todo’. Generating a temporary file is not always convenient, though. This command
does much the same thing without needing one:

find /usr/include -name ’*.h’ | xargs grep -l mode_t |
xargs sh -c ’emacs "$@" < /dev/tty’ Emacs

The example above illustrates a useful trick; Using sh -c you can invoke a shell command
from xargs. The $@ in the command line is expanded by the shell to a list of arguments as
provided by xargs. The single quotes in the command line protect the $@ against expansion
by your interactive shell (which will normally have no arguments and thus expand $@ to
nothing). The capitalised ‘Emacs’ on the command line is used as $0 by the shell that xargs
launches.

8.2 Archiving

You can pass a list of files produced by find to a file archiving program. GNU tar and
cpio can both read lists of file names from the standard input—either delimited by nulls
(the safe way) or by blanks (the lazy, risky default way). To use null-delimited names, give
them the ‘--null’ option. You can store a file archive in a file, write it on a tape, or send
it over a network to extract on another machine.

One common use of find to archive files is to send a list of the files in a directory tree
to cpio. Use ‘-depth’ so if a directory does not have write permission for its owner, its
contents can still be restored from the archive since the directory’s permissions are restored
after its contents. Here is an example of doing this using cpio; you could use a more
complex find expression to archive only certain files.

find . -depth -print0 |
cpio --create --null --format=crc --file=/dev/nrst0

You could restore that archive using this command:

Chapter 8: Common Tasks 74

cpio --extract --null --make-dir --unconditional \
--preserve --file=/dev/nrst0

Here are the commands to do the same things using tar:
find . -depth -print0 |
tar --create --null --files-from=- --file=/dev/nrst0

tar --extract --null --preserve-perm --same-owner \
--file=/dev/nrst0

Here is an example of copying a directory from one machine to another:
find . -depth -print0 | cpio -0o -Hnewc |
rsh other-machine "cd ‘pwd‘ && cpio -i0dum"

8.3 Cleaning Up

This section gives examples of removing unwanted files in various situations. Here is a
command to remove the CVS backup files created when an update requires a merge:

find . -name ’.#*’ -print0 | xargs -0r rm -f

If your find command removes directories, you may find that you get a spurious error
message when find tries to recurse into a directory that has now been removed. Using the
‘-depth’ option will normally resolve this problem.

It is also possible to use the ‘-delete’ action:
find . -depth -name ’.#*’ -delete

You can run this command to clean out your clutter in ‘/tmp’. You might place it in the
file your shell runs when you log out (‘.bash_logout’, ‘.logout’, or ‘.zlogout’, depending
on which shell you use).

find /tmp -depth -user "$LOGNAME" -type f -delete

To remove old Emacs backup and auto-save files, you can use a command like the
following. It is especially important in this case to use null-terminated file names because
Emacs packages like the VM mailer often create temporary file names with spaces in them,
like ‘#reply to David J. MacKenzie<1>#’.

find ~ \(-name ’*~’ -o -name ’#*#’ \) -print0 |
xargs --no-run-if-empty --null rm -vf

Removing old files from ‘/tmp’ is commonly done from cron:
find /tmp /var/tmp -depth -not -type d -mtime +3 -delete
find /tmp /var/tmp -depth -mindepth 1 -type d -empty -delete

The second find command above cleans out empty directories depth-first (‘-delete’
implies ‘-depth’ anyway), hoping that the parents become empty and can be removed too.
It uses ‘-mindepth’ to avoid removing ‘/tmp’ itself if it becomes totally empty.

Lastly, an example of a program that almost certainly does not do what the user intended:
find dirname -delete -name quux

If the user hoped to delete only files named ‘quux’ they will get an unpleasant surprise;
this command will attempt to delete everything at or below the starting point ‘dirname’.
This is because find evaluates the items on the command line as an expression. The find

Chapter 8: Common Tasks 75

program will normally execute an action if the preceeding action succeeds. Here, there is no
action or test before the ‘-delete’ so it will always be executed. The ‘-name quux’ test will
be performed for files we successfully deleted, but that test has no effect since ‘-delete’
also disables the default ‘-print’ operation. So the above example will probably delete a
lot of files the user didn’t want to delete.

This command is also likely to do something you did not intend:

find dirname -path dirname/foo -prune -o -delete

Because ‘-delete’ turns on ‘-depth’, the ‘-prune’ action has no effect and files in
‘dirname/foo’ will be deleted too.

8.4 Strange File Names

find can help you remove or rename a file with strange characters in its name. People are
sometimes stymied by files whose names contain characters such as spaces, tabs, control
characters, or characters with the high bit set. The simplest way to remove such files is:

rm -i some*pattern*that*matches*the*problem*file

rm asks you whether to remove each file matching the given pattern. If you are using an
old shell, this approach might not work if the file name contains a character with the high
bit set; the shell may strip it off. A more reliable way is:

find . -maxdepth 1 tests -okdir rm ’{}’ \;

where tests uniquely identify the file. The ‘-maxdepth 1’ option prevents find from wasting
time searching for the file in any subdirectories; if there are no subdirectories, you may omit
it. A good way to uniquely identify the problem file is to figure out its inode number; use

ls -i

Suppose you have a file whose name contains control characters, and you have found
that its inode number is 12345. This command prompts you for whether to remove it:

find . -maxdepth 1 -inum 12345 -okdir rm -f ’{}’ \;

If you don’t want to be asked, perhaps because the file name may contain a strange
character sequence that will mess up your screen when printed, then use ‘-execdir’ instead
of ‘-okdir’.

If you want to rename the file instead, you can use mv instead of rm:

find . -maxdepth 1 -inum 12345 -okdir mv ’{}’ new-file-name \;

8.5 Fixing Permissions

Suppose you want to make sure that everyone can write to the directories in a certain
directory tree. Here is a way to find directories lacking either user or group write permission
(or both), and fix their permissions:

find . -type d -not -perm -ug=w | xargs chmod ug+w

You could also reverse the operations, if you want to make sure that directories do not have
world write permission.

Chapter 8: Common Tasks 76

8.6 Classifying Files

If you want to classify a set of files into several groups based on different criteria, you can
use the comma operator to perform multiple independent tests on the files. Here is an
example:

find / -type d \(-perm -o=w -fprint allwrite , \
-perm -o=x -fprint allexec \)

echo "Directories that can be written to by everyone:"
cat allwrite
echo ""
echo "Directories with search permissions for everyone:"
cat allexec

find has only to make one scan through the directory tree (which is one of the most
time consuming parts of its work).

Chapter 9: Worked Examples 77

9 Worked Examples

The tools in the findutils package, and in particular find, have a large number of options.
This means that quite often, there is more than one way to do things. Some of the options
and facilities only exist for compatibility with other tools, and findutils provides improved
ways of doing things.

This chapter describes a number of useful tasks that are commonly performed, and
compares the different ways of achieving them.

9.1 Deleting Files

One of the most common tasks that find is used for is locating files that can be deleted.
This might include:

• Files last modified more than 3 years ago which haven’t been accessed for at least 2
years

• Files belonging to a certain user

• Temporary files which are no longer required

This example concentrates on the actual deletion task rather than on sophisticated ways
of locating the files that need to be deleted. We’ll assume that the files we want to delete
are old files underneath ‘/var/tmp/stuff’.

9.1.1 The Traditional Way

The traditional way to delete files in ‘/var/tmp/stuff’ that have not been modified in over
90 days would have been:

find /var/tmp/stuff -mtime +90 -exec /bin/rm {} \;

The above command uses ‘-exec’ to run the /bin/rm command to remove each file.
This approach works and in fact would have worked in Version 7 Unix in 1979. However,
there are a number of problems with this approach.

The most obvious problem with the approach above is that it causes find to fork every
time it finds a file that needs to delete, and the child process then has to use the exec
system call to launch /bin/rm. All this is quite inefficient. If we are going to use /bin/rm
to do this job, it is better to make it delete more than one file at a time.

The most obvious way of doing this is to use the shell’s command expansion feature:
/bin/rm ‘find /var/tmp/stuff -mtime +90 -print‘

or you could use the more modern form
/bin/rm $(find /var/tmp/stuff -mtime +90 -print)

The commands above are much more efficient than the first attempt. However, there
is a problem with them. The shell has a maximum command length which is imposed by
the operating system (the actual limit varies between systems). This means that while the
command expansion technique will usually work, it will suddenly fail when there are lots of
files to delete. Since the task is to delete unwanted files, this is precisely the time we don’t
want things to go wrong.

Chapter 9: Worked Examples 78

9.1.2 Making Use of xargs

So, is there a way to be more efficient in the use of fork() and exec() without running up
against this limit? Yes, we can be almost optimally efficient by making use of the xargs
command. The xargs command reads arguments from its standard input and builds them
into command lines. We can use it like this:

find /var/tmp/stuff -mtime +90 -print | xargs /bin/rm

For example if the files found by find are ‘/var/tmp/stuff/A’, ‘/var/tmp/stuff/B’
and ‘/var/tmp/stuff/C’ then xargs might issue the commands

/bin/rm /var/tmp/stuff/A /var/tmp/stuff/B

/bin/rm /var/tmp/stuff/C

The above assumes that xargs has a very small maximum command line length. The
real limit is much larger but the idea is that xargs will run /bin/rm as many times as
necessary to get the job done, given the limits on command line length.

This usage of xargs is pretty efficient, and the xargs command is widely implemented
(all modern versions of Unix offer it). So far then, the news is all good. However, there is
bad news too.

9.1.3 Unusual characters in filenames

Unix-like systems allow any characters to appear in file names with the exception of the
ASCII NUL character and the slash. Slashes can occur in path names (as the directory
separator) but not in the names of actual directory entries. This means that the list of
files that xargs reads could in fact contain white space characters — spaces, tabs and
newline characters. Since by default, xargs assumes that the list of files it is reading uses
white space as an argument separator, it cannot correctly handle the case where a filename
actually includes white space. This makes the default behaviour of xargs almost useless
for handling arbitrary data.

To solve this problem, GNU findutils introduced the ‘-print0’ action for find. This
uses the ASCII NUL character to separate the entries in the file list that it produces. This is
the ideal choice of separator since it is the only character that cannot appear within a path
name. The ‘-0’ option to xargs makes it assume that arguments are separated with ASCII
NUL instead of white space. It also turns off another misfeature in the default behaviour
of xargs, which is that it pays attention to quote characters in its input. Some versions of
xargs also terminate when they see a lone ‘_’ in the input, but GNU find no longer does
that (since it has become an optional behaviour in the Unix standard).

So, putting find -print0 together with xargs -0 we get this command:
find /var/tmp/stuff -mtime +90 -print0 | xargs -0 /bin/rm

The result is an efficient way of proceeding that correctly handles all the possible char-
acters that could appear in the list of files to delete. This is good news. However, there is,
as I’m sure you’re expecting, also more bad news. The problem is that this is not a portable
construct; although other versions of Unix (notably BSD-derived ones) support ‘-print0’,
it’s not universal. So, is there a more universal mechanism?

9.1.4 Going back to -exec

There is indeed a more universal mechanism, which is a slight modification to the ‘-exec’
action. The normal ‘-exec’ action assumes that the command to run is terminated with a

Chapter 9: Worked Examples 79

semicolon (the semicolon normally has to be quoted in order to protect it from interpretation
as the shell command separator). The SVR4 edition of Unix introduced a slight variation,
which involves terminating the command with ‘+’ instead:

find /var/tmp/stuff -mtime +90 -exec /bin/rm {} \+

The above use of ‘-exec’ causes find to build up a long command line and then issue it.
This can be less efficient than some uses of xargs; for example xargs allows new command
lines to be built up while the previous command is still executing, and allows you to specify
a number of commands to run in parallel. However, the find ... -exec ... + construct
has the advantage of wide portability. GNU findutils did not support ‘-exec ... +’ until
version 4.2.12; one of the reasons for this is that it already had the ‘-print0’ action in any
case.

9.1.5 A more secure version of -exec

The command above seems to be efficient and portable. However, within it lurks a security
problem. The problem is shared with all the commands we’ve tried in this worked example
so far, too. The security problem is a race condition; that is, if it is possible for somebody
to manipulate the filesystem that you are searching while you are searching it, it is possible
for them to persuade your find command to cause the deletion of a file that you can delete
but they normally cannot.

The problem occurs because the ‘-exec’ action is defined by the POSIX standard to
invoke its command with the same working directory as find had when it was started.
This means that the arguments which replace the {} include a relative path from find’s
starting point down the file that needs to be deleted. For example,

find /var/tmp/stuff -mtime +90 -exec /bin/rm {} \+

might actually issue the command:
/bin/rm /var/tmp/stuff/A /var/tmp/stuff/B /var/tmp/stuff/passwd

Notice the file ‘/var/tmp/stuff/passwd’. Likewise, the command:
cd /var/tmp && find stuff -mtime +90 -exec /bin/rm {} \+

might actually issue the command:
/bin/rm stuff/A stuff/B stuff/passwd

If an attacker can rename ‘stuff’ to something else (making use of their write permis-
sions in ‘/var/tmp’) they can replace it with a symbolic link to ‘/etc’. That means that
the /bin/rm command will be invoked on ‘/etc/passwd’. If you are running your find
command as root, the attacker has just managed to delete a vital file. All they needed to
do to achieve this was replace a subdirectory with a symbolic link at the vital moment.

There is however, a simple solution to the problem. This is an action which works a
lot like -exec but doesn’t need to traverse a chain of directories to reach the file that it
needs to work on. This is the ‘-execdir’ action, which was introduced by the BSD family
of operating systems. The command,

find /var/tmp/stuff -mtime +90 -execdir /bin/rm {} \+

might delete a set of files by performing these actions:
1. Change directory to /var/tmp/stuff/foo
2. Invoke /bin/rm ./file1 ./file2 ./file3

3. Change directory to /var/tmp/stuff/bar

Chapter 9: Worked Examples 80

4. Invoke /bin/rm ./file99 ./file100 ./file101

This is a much more secure method. We are no longer exposed to a race condition. For
many typical uses of find, this is the best strategy. It’s reasonably efficient, but the length
of the command line is limited not just by the operating system limits, but also by how
many files we actually need to delete from each directory.

Is it possible to do any better? In the case of general file processing, no. However, in
the specific case of deleting files it is indeed possible to do better.

9.1.6 Using the -delete action

The most efficient and secure method of solving this problem is to use the ‘-delete’ action:
find /var/tmp/stuff -mtime +90 -delete

This alternative is more efficient than any of the ‘-exec’ or ‘-execdir’ actions, since it
entirely avoids the overhead of forking a new process and using exec to run /bin/rm. It is
also normally more efficient than xargs for the same reason. The file deletion is performed
from the directory containing the entry to be deleted, so the ‘-delete’ action has the same
security advantages as the ‘-execdir’ action has.

The ‘-delete’ action was introduced by the BSD family of operating systems.

9.1.7 Improving things still further

Is it possible to improve things still further? Not without either modifying the system
library to the operating system or having more specific knowledge of the layout of the
filesystem and disk I/O subsystem, or both.

The find command traverses the filesystem, reading directories. It then issues a separate
system call for each file to be deleted. If we could modify the operating system, there are
potential gains that could be made:
• We could have a system call to which we pass more than one filename for deletion
• Alternatively, we could pass in a list of inode numbers (on GNU/Linux systems,

readdir() also returns the inode number of each directory entry) to be deleted.

The above possibilities sound interesting, but from the kernel’s point of view it is difficult
to enforce standard Unix access controls for such processing by inode number. Such a facility
would probably need to be restricted to the superuser.

Another way of improving performance would be to increase the parallelism of the pro-
cess. For example if the directory hierarchy we are searching is actually spread across a
number of disks, we might somehow be able to arrange for find to process each disk in
parallel. In practice GNU find doesn’t have such an intimate understanding of the system’s
filesystem layout and disk I/O subsystem.

However, since the system administrator can have such an understanding they can take
advantage of it like so:

find /var/tmp/stuff1 -mtime +90 -delete &

find /var/tmp/stuff2 -mtime +90 -delete &

find /var/tmp/stuff3 -mtime +90 -delete &

find /var/tmp/stuff4 -mtime +90 -delete &

wait

In the example above, four separate instances of find are used to search four subdirec-
tories in parallel. The wait command simply waits for all of these to complete. Whether

Chapter 9: Worked Examples 81

this approach is more or less efficient than a single instance of find depends on a number
of things:

• Are the directories being searched in parallel actually on separate disks? If not, this
parallel search might just result in a lot of disk head movement and so the speed might
even be slower.

• Other activity - are other programs also doing things on those disks?

9.1.8 Conclusion

The fastest and most secure way to delete files with the help of find is to use ‘-delete’.
Using xargs -0 -P N can also make effective use of the disk, but it is not as secure.

In the case where we’re doing things other than deleting files, the most secure alternative
is ‘-execdir ... +’, but this is not as portable as the insecure action ‘-exec ... +’.

The ‘-delete’ action is not completely portable, but the only other possibility which
is as secure (‘-execdir’) is no more portable. The most efficient portable alternative is
‘-exec ...+’, but this is insecure and isn’t supported by versions of GNU findutils prior to
4.2.12.

9.2 Copying A Subset of Files

Suppose you want to copy some files from ‘/source-dir’ to ‘/dest-dir’, but there are a
small number of files in ‘/source-dir’ you don’t want to copy.

One option of course is cp /source-dir /dest-dir followed by deletion of the unwanted
material under ‘/dest-dir’. But often that can be inconvenient, because for example we
would have copied a large amount of extraneous material, or because ‘/dest-dir’ is too
small. Naturally there are many other possible reasons why this strategy may be unsuitable.

So we need to have some way of identifying which files we want to copy, and we need to
have a way of copying that file list. The second part of this condition is met by cpio -p.
Of course, we can identify the files we wish to copy by using find. Here is a command that
solves our problem:

cd /source-dir
find . -name ’.snapshot’ -prune -o \(\! -name ’*~’ -print0 \) |
cpio -pmd0 /dest-dir

The first part of the find command here identifies files or directoires named ‘.snapshot’
and tells find not to recurse into them (since they do not need to be copied). The combi-
nation -name ’.snapshot’ -prune yields false for anything that didn’t get pruned, but it
is exactly those files we want to copy. Therefore we need to use an OR (‘-o’) condition to
introduce the rest of our expression. The remainder of the expression simply arranges for
the name of any file not ending in ‘~’ to be printed.

Using -print0 ensures that white space characters in file names do not pose a problem.
The cpio command does the actual work of copying files. The program as a whole fails
if the cpio program returns nonzero. If the find command returns non-zero on the other
hand, the Unix shell will not diagnose a problem (since find is not the last command in
the pipeline).

Chapter 9: Worked Examples 82

9.3 Updating A Timestamp File

Suppose we have a directory full of files which is maintained with a set of automated tools;
perhaps one set of tools updates them and another set of tools uses the result. In this
situation, it might be useful for the second set of tools to know if the files have recently
been changed. It might be useful, for example, to have a ’timestamp’ file which gives the
timestamp on the newest file in the collection.

We can use find to achieve this, but there are several different ways to do it.

9.3.1 Updating the Timestamp The Wrong Way

The obvious but wrong answer is just to use ‘-newer’:-
find subdir -newer timestamp -exec touch -r {} timestamp \;

This does the right sort of thing but has a bug. Suppose that two files in the subdirectory
have been updated, and that these are called ‘file1’ and ‘file2’. The command above will
update ‘timestamp’ with the modification time of ‘file1’ or that of ‘file2’, but we don’t
know which one. Since the timestamps on ‘file1’ and ‘file2’ will in general be different,
this could well be the wrong value.

One solution to this problem is to modify find to recheck the modification time of
‘timestamp’ every time a file is to be compared against it, but that will reduce the perfor-
mance of find.

9.3.2 Using the test utility to compare timestamps

The test command can be used to compare timestamps:
find subdir -exec test {} -nt timestamp \; -exec touch -r {} timestamp \;

This will ensure that any changes made to the modification time of ‘timestamp’ that
take place during the execution of find are taken into account. This resolves our earlier
problem, but unfortunately this runs much more slowly.

9.3.3 A combined approach

We can of course still use ‘-newer’ to cut down on the number of calls to test:
find subdir -newer timestamp -a \

-exec test {} -nt timestamp \; -a \

-exec touch -r {} timestamp \;

Here, the ‘-newer’ test excludes all the files which are definitely older than the time-
stamp, but all the files which are newer than the old value of the timestamp are compared
against the current updated timestamp.

This is indeed faster in general, but the speed difference will depend on how many
updated files there are.

9.3.4 Using -printf and sort to compare timestamps

It is possible to use the ‘-printf’ action to abandon the use of test entirely:
newest=$(find subdir -newer timestamp -printf "%A%p\n" |

sort -n |

tail -1 |

cut -d: -f2-)

touch -r "${newest:-timestamp}" timestamp

Chapter 9: Worked Examples 83

The command above works by generating a list of the timestamps and names of all the
files which are newer than the timestamp. The sort, tail and cut commands simply pull
out the name of the file with the largest timestamp value (that is, the latest file). The
touch command is then used to update the timestamp,

The "${newest:-timestamp}" expression simply expands to the value of $newest if
that variable is set, but to ‘timestamp’ otherwise. This ensures that an argument is always
given to the ‘-r’ option of the touch command.

This approach seems quite efficient, but unfortunately it has a problem. Many operating
systems now keep file modification time information at a granularity which is finer than one
second. Findutils version 4.3.3 and later will print a fractional part with %A@, but older
versions will not.

9.3.5 Solving the problem with make

Another tool which often works with timestamps is make. We can use find to generate a
‘Makefile’ file on the fly and then use make to update the timestamps:

makefile=$(mktemp)

find subdir \

\(\! -xtype l \) \

-newer timestamp \

-printf "timestamp:: %p\n\ttouch -r %p timestamp\n\n" > "$makefile"

make -f "$makefile"

rm -f "$makefile"

Unfortunately although the solution above is quite elegant, it fails to cope with white
space within file names, and adjusting it to do so would require a rather complex shell
script.

9.3.6 Coping with odd filenames too

We can fix both of these problems (looping and problems with white space), and do things
more efficiently too. The following command works with newlines and doesn’t need to sort
the list of filenames.

find subdir -newer timestamp -printf "%A@:%p\0" |

perl -0 newest.pl |

xargs --no-run-if-empty --null -i \

find {} -maxdepth 0 -newer timestamp -exec touch -r {} timestamp \;

The first find command generates a list of files which are newer than the original time-
stamp file, and prints a list of them with their timestamps. The ‘newest.pl’ script simply
filters out all the filenames which have timestamps which are older than whatever the newest
file is:-

#! /usr/bin/perl -0

my @newest = ();

my $latest_stamp = undef;

while (<>) {

my ($stamp, $name) = split(/:/);

if (!defined($latest_stamp) || ($tstamp > $latest_stamp)) {

$latest_stamp = $stamp;

@newest = ();

}

if ($tstamp >= $latest_stamp) {

push @newest, $name;

}

Chapter 9: Worked Examples 84

}

print join("\0", @newest);

This prints a list of zero or more files, all of which are newer than the original time-
stamp file, and which have the same timestamp as each other, to the nearest second. The
second find command takes each resulting file one at a time, and if that is newer than the
timestamp file, the timestamp is updated.

9.4 Finding the Shallowest Instance

Suppose you maintain local copies of sources from various projects, each with their own
choice of directory organisation and source code management (SCM) tool. You need to pe-
riodically synchronize each project with its upstream tree. As the number local repositories
grows, so does the work involved in maintaining synchronization. SCM utilities typically
create some sort of administrative directory: .svn for Subversion, CVS for CVS, and so on.
These directories can be used as a key to search for the bases of the project source trees.
Suppose we have the following directory structure:

repo/project1/CVS

repo/gnu/project2/.svn

repo/gnu/project3/.svn

repo/gnu/project3/src/.svn

repo/gnu/project3/doc/.svn

repo/project4/.git

One would expect to update each of the ‘projectX’ directories, but not their subdirec-
tories (src, doc, etc.). To locate the project roots, we would need to find the least deeply
nested directories containing an SCM-related subdirectory. The following command dis-
covers those roots efficiently. It is efficient because it avoids searching subdirectories inside
projects whose SCM directory we already found.

find repo/ -exec test -d {}/.svn -o -d {}/.git -o -d {}/CVS \; -print -prune

In this example, test is used to tell if we are currently examining a directory which
appears to the a project’s root directory (because it has an SCM subdirectory). When we
find a project root, there is no need to search inside it, and -prune makes sure that we
descend no further.

For large, complex trees like the Linux kernel, this will prevent searching a large portion
of the structure, saving a good deal of time.

Chapter 10: Security Considerations 85

10 Security Considerations

Security considerations are important if you are using find or xargs to search for or process
files that don’t belong to you or which other people have control. Security considerations
relating to locate may also apply if you have files which you do not want others to see.

The most severe forms of security problems affecting find and related programs are
when third parties bring about a situation allowing them to do something they would
normally not be able to accomplish. This is called privilege elevation. This might include
deleting files they would not normally be able to delete. It is common for the operating
system to periodically invoke find for self-maintenance purposes. These invocations of
find are particularly problematic from a security point of view as these are often invoked
by the superuser and search the entire filesystem hierarchy. Generally, the severity of any
associated problem depends on what the system is going to do with the files found by find.

10.1 Levels of Risk

There are some security risks inherent in the use of find, xargs and (to a lesser extent)
locate. The severity of these risks depends on what sort of system you are using:

High risk Multi-user systems where you do not control (or trust) the other users, and on
which you execute find, including areas where those other users can manipulate
the filesystem (for example beneath ‘/home’ or ‘/tmp’).

Medium Risk
Systems where the actions of other users can create file names chosen by them,
but to which they don’t have access while find is being run. This access might
include leaving programs running (shell background jobs, at or cron tasks, for
example). On these sorts of systems, carefully written commands (avoiding use
of ‘-print’ for example) should not expose you to a high degree of risk. Most
systems fall into this category.

Low Risk Systems to which untrusted parties do not have access, cannot create file names
of their own choice (even remotely) and which contain no security flaws which
might enable an untrusted third party to gain access. Most systems do not fall
into this category because there are many ways in which external parties can
affect the names of files that are created on your system. The system on which
I am writing this for example automatically downloads software updates from
the Internet; the names of the files in which these updates exist are chosen by
third parties1.

In the discussion above, “risk” denotes the likelihood that someone can cause find,
xargs, locate or some other program which is controlled by them to do something you did
not intend. The levels of risk suggested do not take any account of the consequences of this
sort of event. That is, if you operate a “low risk” type system, but the consequences of a
security problem are disastrous, then you should still give serious thought to all the possible
security problems, many of which of course will not be discussed here – this section of the
manual is intended to be informative but not comprehensive or exhaustive.

1 Of course, I trust these parties to a large extent anyway, because I install software provided by them; I
choose to trust them in this way, and that’s a deliberate choice

Chapter 10: Security Considerations 86

If you are responsible for the operation of a system where the consequences of a security
problem could be very important, you should do two things:-
1. Define a security policy which defines who is allowed to do what on your system.
2. Seek competent advice on how to enforce your policy, detect breaches of that policy,

and take account of any potential problems that might fall outside the scope of your
policy.

10.2 Security Considerations for find

Some of the actions find might take have a direct effect; these include -exec and -delete.
However, it is also common to use -print explicitly or implicitly, and so if find produces
the wrong list of file names, that can also be a security problem; consider the case for
example where find is producing a list of files to be deleted.

We normally assume that the find command line expresses the file selection criteria and
actions that the user had in mind – that is, the command line is “trusted” data.

From a security analysis point of view, the output of find should be correct; that is, the
output should contain only the names of those files which meet the user’s criteria specified
on the command line. This applies for the -exec and -delete actions; one can consider
these to be part of the output.

On the other hand, the contents of the filesystem can be manipulated by other people,
and hence we regard this as “untrusted” data. This implies that the find command line is
a filter which converts the untrusted contents of the filesystem into a correct list of output
files.

The filesystem will in general change while find is searching it; in fact, most of the
potential security problems with find relate to this issue in some way.

Race conditions are a general class of security problem where the relative ordering of
actions taken by find (for example) and something else are critically important in getting
the correct and expected result2 .

For find, an attacker might move or rename files or directories in the hope that an action
might be taken against a file which was not normally intended to be affected. Alternatively,
this sort of attack might be intended to persuade find to search part of the filesystem which
would not normally be included in the search (defeating the -prune action for example).

10.2.1 Problems with -exec and filenames

It is safe in many cases to use the ‘-execdir’ action with any file name. Because ‘-execdir’
prefixes the arguments it passes to programs with ‘./’, you will not accidentally pass an
argument which is interpreted as an option. For example the file ‘-f’ would be passed to
rm as ‘./-f’, which is harmless.

However, your degree of safety does depend on the nature of the program you are running.
For example constructs such as these two commands

risky
find -exec sh -c "something {}" \;
find -execdir sh -c "something {}" \;

2 This is more or less the definition of the term “race condition”

Chapter 10: Security Considerations 87

are very dangerous. The reason for this is that the ‘{}’ is expanded to a filename
which might contain a semicolon or other characters special to the shell. If for example
someone creates the file ‘/tmp/foo; rm -rf $HOME’ then the two commands above could
delete someone’s home directory.

So for this reason do not run any command which will pass untrusted data (such as
the names of files) to commands which interpret arguments as commands to be further
interpreted (for example ‘sh’).

In the case of the shell, there is a clever workaround for this problem:
safer
find -exec sh -c ’something "$@"’ {} \;
find -execdir sh -c ’something "$@"’ {}\;

This approach is not guaranteed to avoid every problem, but it is much safer than
substituting data of an attacker’s choice into the text of a shell command.

10.2.2 Changing the Current Working Directory

As find searches the filesystem, it finds subdirectories and then searches within them by
changing its working directory. First, find reaches and recognises a subdirectory. It then
decides if that subdirectory meets the criteria for being searched; that is, any ‘-xdev’ or
‘-prune’ expressions are taken into account. The find program will then change working
directory and proceed to search the directory.

A race condition attack might take the form that once the checks relevant to ‘-xdev’ and
‘-prune’ have been done, an attacker might rename the directory that was being considered,
and put in its place a symbolic link that actually points somewhere else.

The idea behind this attack is to fool find into going into the wrong directory. This
would leave find with a working directory chosen by an attacker, bypassing any protection
apparently provided by ‘-xdev’ and ‘-prune’, and any protection provided by being able to
not list particular directories on the find command line. This form of attack is particularly
problematic if the attacker can predict when the find command will be run, as is the case
with cron tasks for example.

GNU find has specific safeguards to prevent this general class of problem. The exact
form of these safeguards depends on the properties of your system.

10.2.2.1 O NOFOLLOW

If your system supports the O NOFOLLOW flag3 to the open(2) system call, find uses
it to safely change directories. The target directory is first opened and then find changes
working directory with the fchdir() system call. This ensures that symbolic links are not
followed, preventing the sort of race condition attack in which use is made of symbolic links.

If for any reason this approach does not work, find will fall back on the method which
is normally used if O NOFOLLOW is not supported.

You can tell if your system supports O NOFOLLOW by running
find --version

This will tell you the version number and which features are enabled. For example, if I
run this on my system now, this gives:

3 GNU/Linux (kernel version 2.1.126 and later) and FreeBSD (3.0-CURRENT and later) support this

Chapter 10: Security Considerations 88

GNU find version 4.2.18-CVS
Features enabled: D_TYPE O_NOFOLLOW(enabled)

Here, you can see that I am running a version of find which was built from the de-
velopment (CVS) code prior to the release of findutils-4.2.18, and that the D TYPE and
O NOFOLLOW features are present. O NOFOLLOW is qualified with “enabled”. This
simply means that the current system seems to support O NOFOLLOW. This check is
needed because it is possible to build find on a system that defines O NOFOLLOW and
then run it on a system that ignores the O NOFOLLOW flag. We try to detect such cases
at startup by checking the operating system and version number; when this happens you
will see “O NOFOLLOW(disabled)” instead.

10.2.2.2 Systems without O NOFOLLOW

The strategy for preventing this type of problem on systems that lack support for the
O NOFOLLOW flag is more complex. Each time find changes directory, it examines the
directory it is about to move to, issues the chdir() system call, and then checks that it
has ended up in the subdirectory it expected. If all is as expected, processing continues as
normal. However, there are two main reasons why the directory might change: the use of an
automounter and the someone removing the old directory and replacing it with something
else while find is trying to descend into it.

Where a filesystem “automounter” is in use it can be the case that the use of the chdir()
system call can itself cause a new filesystem to be mounted at that point. On systems that
do not support O NOFOLLOW, this will cause find’s security check to fail.

However, this does not normally represent a security problem, since the automounter
configuration is normally set up by the system administrator. Therefore, if the chdir()
sanity check fails, find will make one more attempt4. If that succeeds, execution carries on
as normal. This is the usual case for automounters.

Where an attacker is trying to exploit a race condition, the problem may not have gone
away on the second attempt. If this is the case, find will issue a warning message and
then ignore that subdirectory. When this happens, actions such as ‘-exec’ or ‘-print’ may
already have taken place for the problematic subdirectory. This is because find applies tests
and actions to directories before searching within them (unless ‘-depth’ was specified).

Because of the nature of the directory-change operation and security check, in the worst
case the only things that find would have done with the directory are to move into it and
back out to the original parent. No operations would have been performed within that
directory.

10.2.3 Race Conditions with -exec

The ‘-exec’ action causes another program to be run. It passes to the program the name
of the file which is being considered at the time. The invoked program will typically then
perform some action on that file. Once again, there is a race condition which can be
exploited here. We shall take as a specific example the command

find /tmp -path /tmp/umsp/passwd -exec /bin/rm

4 This may not be the case for the fts-based executable

Chapter 10: Security Considerations 89

In this simple example, we are identifying just one file to be deleted and invoking /bin/rm
to delete it. A problem exists because there is a time gap between the point where find de-
cides that it needs to process the ‘-exec’ action and the point where the /bin/rm command
actually issues the unlink() system call to delete the file from the filesystem. Within this
time period, an attacker can rename the ‘/tmp/umsp’ directory, replacing it with a symbolic
link to ‘/etc’. There is no way for /bin/rm to determine that it is working on the same
file that find had in mind. Once the symbolic link is in place, the attacker has persuaded
find to cause the deletion of the ‘/etc/passwd’ file, which is not the effect intended by the
command which was actually invoked.

One possible defence against this type of attack is to modify the behaviour of ‘-exec’ so
that the /bin/rm command is run with the argument ‘./passwd’ and a suitable choice of
working directory. This would allow the normal sanity check that find performs to protect
against this form of attack too. Unfortunately, this strategy cannot be used as the POSIX
standard specifies that the current working directory for commands invoked with ‘-exec’
must be the same as the current working directory from which find was invoked. This
means that the ‘-exec’ action is inherently insecure and can’t be fixed.

GNU find implements a more secure variant of the ‘-exec’ action, ‘-execdir’. The
‘-execdir’ action ensures that it is not necessary to dereference subdirectories to process
target files. The current directory used to invoke programs is the same as the directory in
which the file to be processed exists (‘/tmp/umsp’ in our example, and only the basename
of the file to be processed is passed to the invoked command, with a ‘./’ prepended (giving
‘./passwd’ in our example).

The ‘-execdir’ action refuses to do anything if the current directory is included in the
$PATH environment variable. This is necessary because ‘-execdir’ runs programs in the
same directory in which it finds files – in general, such a directory might be writable by
untrusted users. For similar reasons, ‘-execdir’ does not allow ‘{}’ to appear in the name
of the command to be run.

10.2.4 Race Conditions with -print and -print0

The ‘-print’ and ‘-print0’ actions can be used to produce a list of files matching some
criteria, which can then be used with some other command, perhaps with xargs. Unfortu-
nately, this means that there is an unavoidable time gap between find deciding that one
or more files meet its criteria and the relevant command being executed. For this reason,
the ‘-print’ and ‘-print0’ actions are just as insecure as ‘-exec’.

In fact, since the construction

find ... -print | xargs ...

does not cope correctly with newlines or other “white space” in file names, and copes
poorly with file names containing quotes, the ‘-print’ action is less secure even than
‘-print0’.

10.3 Security Considerations for xargs

The description of the race conditions affecting the ‘-print’ action of find shows that
xargs cannot be secure if it is possible for an attacker to modify a filesystem after find has
started but before xargs has completed all its actions.

Chapter 10: Security Considerations 90

However, there are other security issues that exist even if it is not possible for an attacker
to have access to the filesystem in real time. Firstly, if it is possible for an attacker to create
files with names of their choice on the filesystem, then xargs is insecure unless the ‘-0’
option is used. If a file with the name ‘/home/someuser/foo/bar\n/etc/passwd’ exists
(assume that ‘\n’ stands for a newline character), then find ... -print can be persuaded
to print three separate lines:

/home/someuser/foo/bar

/etc/passwd

If it finds a blank line in the input, xargs will ignore it. Therefore, if some action is
to be taken on the basis of this list of files, the ‘/etc/passwd’ file would be included even
if this was not the intent of the person running find. There are circumstances in which
an attacker can use this to their advantage. The same consideration applies to file names
containing ordinary spaces rather than newlines, except that of course the list of file names
will no longer contain an “extra” newline.

This problem is an unavoidable consequence of the default behaviour of the xargs com-
mand, which is specified by the POSIX standard. The only ways to avoid this problem are
either to avoid all use of xargs in favour for example of ‘find -exec’ or (where available)
‘find -execdir’, or to use the ‘-0’ option, which ensures that xargs considers file names
to be separated by ASCII NUL characters rather than whitespace. However, useful as this
option is, the POSIX standard does not make it mandatory.

POSIX also specifies that xargs interprets quoting and trailing whitespace specially in
filenames, too. This means that using find ... -print | xargs ... can cause the com-
mands run by xargs to receive a list of file names which is not the same as the list printed
by find. The interpretation of quotes and trailing whitespace is turned off by the ‘-0’
argument to xargs, which is another reason to use that option.

10.4 Security Considerations for locate

10.4.1 Race Conditions

It is fairly unusual for the output of locate to be fed into another command. However, if
this were to be done, this would raise the same set of security issues as the use of ‘find
... -print’. Although the problems relating to whitespace in file names can be resolved
by using locate’s ‘-0’ option, this still leaves the race condition problems associated with
‘find ... -print0’. There is no way to avoid these problems in the case of locate.

10.4.2 Long File Name Bugs with Old-Format Databases

Old versions of locate have a bug in the way that old-format databases are read. This bug
affects the following versions of locate:
1. All releases prior to 4.2.31
2. All 4.3.x releases prior to 4.3.7

The affected versions of locate read file names into a fixed-length 1026 byte buffer,
allocated on the heap. This buffer is not extended if file names are too long to fit into the
buffer. No range checking on the length of the filename is performed. This could in theory
lead to a privilege escalation attack. Findutils versions 4.3.0 to 4.3.6 are also affected.

Chapter 10: Security Considerations 91

On systems using the old database format and affected versions of locate, carefully-
chosen long file names could in theory allow malicious users to run code of their choice as
any user invoking locate.

If remote users can choose the names of files stored on your system, and these files are
indexed by updatedb, this may be a remote security vulnerability. Findutils version 4.2.31
and findutils version 4.3.7 include fixes for this problem. The updatedb, bigram and code
programs do no appear to be affected.

If you are also using GNU coreutils, you can use the following command to determine
the length of the longest file name on a given system:

find / -print0 | tr -c ’\0’ ’x’ | tr ’\0’ ’\n’ | wc -L

Although this problem is significant, the old database format is not the default, and use
of the old database format is not common. Most installations and most users will not be
affected by this problem.

10.5 Summary

Where untrusted parties can create files on the system, or affect the names of files that
are created, all uses for find, locate and xargs have known security problems except the
following:

Informational use only
Uses where the programs are used to prepare lists of file names upon which no
further action will ever be taken.

‘-delete’ Use of the ‘-delete’ action with find to delete files which meet specified criteria

‘-execdir’
Use of the ‘-execdir’ action with find where the PATH environment variable
contains directories which contain only trusted programs.

Chapter 11: Error Messages 92

11 Error Messages

This section describes some of the error messages sometimes made by find, xargs, or
locate, explains them and in some cases provides advice as to what you should do about
this.

This manual is written in English. The GNU findutils software features translations of
error messages for many languages. For this reason the error messages produced by the
programs are made to be as self-explanatory as possible. This approach avoids leaving
people to figure out which test an English-language error message corresponds to. Error
messages which are self-explanatory will not normally be mentioned in this document.
For those messages mentioned in this document, only the English-language version of the
message will be listed.

11.1 Error Messages From find

Most error messages produced by find are self-explanatory. Error messages sometimes
include a filename. When this happens, the filename is quoted in order to prevent any
unusual characters in the filename making unwanted changes in the state of the terminal.

‘invalid predicate ‘-foo’’
This means that the find command line included something that started with
a dash or other special character. The find program tried to interpret this as
a test, action or option, but didn’t recognise it. If it was intended to be a test,
check what was specified against the documentation. If, on the other hand,
the string is the name of a file which has been expanded from a wildcard (for
example because you have a ‘*’ on the command line), consider using ‘./*’ or
just ‘.’ instead.

‘unexpected extra predicate’
This usually happens if you have an extra bracket on the command line (for
example ‘find . -print \)’).

‘Warning: filesystem /path/foo has recently been mounted’
‘Warning: filesystem /path/foo has recently been unmounted’

These messages might appear when find moves into a directory and finds that
the device number and inode are different from what it expected them to be.
If the directory find has moved into is on an network filesystem (NFS), it will
not issue this message, because automount frequently mounts new filesystems
on directories as you move into them (that is how it knows you want to use the
filesystem). So, if you do see this message, be wary — automount may not have
been responsible. Consider the possibility that someone else is manipulating
the filesystem while find is running. Some people might do this in order to
mislead find or persuade it to look at one set of files when it thought it was
looking at another set.

‘/path/foo changed during execution of find (old device number 12345, new
device number 6789, filesystem type is <whatever>) [ref XXX]’

This message is issued when find moves into a directory and ends up somewhere
it didn’t expect to be. This happens in one of two circumstances. Firstly, this

Chapter 11: Error Messages 93

happens when automount intervenes on a system where find doesn’t know how
to determine what the current set of mounted filesystems is.
Secondly, this can happen when the device number of a directory appears to
change during a change of current directory, but find is moving up the filesys-
tem hierarchy rather than down into it. In order to prevent find wandering off
into some unexpected part of the filesystem, we stop it at this point.

‘Don’t know how to use getmntent() to read ‘/etc/mtab’. This is a bug.’
This message is issued when a problem similar to the above occurs on a system
where find doesn’t know how to figure out the current list of mount points.
Ask for help on bug-findutils@gnu.org.

‘/path/foo/bar changed during execution of find (old inode number 12345, new
inode number 67893, filesystem type is <whatever>) [ref XXX]"),’

This message is issued when find moves into a directory and discovers that
the inode number of that directory is different from the inode number that it
obtained when it examined the directory previously. This usually means that
while find was deep in a directory hierarchy doing a time consuming operation,
somebody has moved one of the parent directories to another location in the
same filesystem. This may or may not have been done maliciously. In any case,
find stops at this point to avoid traversing parts of the filesystem that it wasn’t
intended to. You can use ls -li or find /path -inum 12345 -o -inum 67893
to find out more about what has happened.

‘sanity check of the fnmatch() library function failed.’
Please submit a bug report. You may well be asked questions about your
system, and if you compiled the findutils code yourself, you should keep your
copy of the build tree around. The likely explanation is that your system has a
buggy implementation of fnmatch that looks enough like the GNU version to
fool configure, but which doesn’t work properly.

‘cannot fork’
This normally happens if you use the -exec action or something similar (-ok
and so forth) but the system has run out of free process slots. This is either
because the system is very busy and the system has reached its maximum
process limit, or because you have a resource limit in place and you’ve reached
it. Check the system for runaway processes (with ps, if possible). Some process
slots are normally reserved for use by ‘root’.

‘some-program terminated by signal 99’
Some program which was launched with -exec or similar was killed with a fatal
signal. This is just an advisory message.

11.2 Error Messages From xargs

‘environment is too large for exec’
This message means that you have so many environment variables set (or such
large values for them) that there is no room within the system-imposed limits
on program command line argument length to invoke any program. This is an
unlikely situation and is more likely result of an attempt to test the limits of

mailto:bug-findutils@gnu.org

Chapter 11: Error Messages 94

xargs, or break it. Please try unsetting some environment variables, or exiting
the current shell. You can also use ‘xargs --show-limits’ to understand the
relevant sizes.

‘can not fit single argument within argument list size limit’
You are using the ‘-I’ option and xargs doesn’t have enough space to build a
command line because it has read a really large item and it doesn’t fit. You
can probably work around this problem with the ‘-s’ option, but the default
size is pretty large. This is a rare situation and is more likely an attempt to
test the limits of xargs, or break it. Otherwise, you will need to try to shorten
the problematic argument or not use xargs.

‘cannot fork’
See the description of the similar message for find.

‘<program>: exited with status 255; aborting’
When a command run by xargs exits with status 255, xargs is supposed to
stop. If this is not what you intended, wrap the program you are trying to
invoke in a shell script which doesn’t return status 255.

‘<program>: terminated by signal 99’
See the description of the similar message for find.

11.3 Error Messages From locate

‘warning: database ‘/Languages/gnu_lang/4.0/install/var/locatedb’ is more
than 8 days old’

The locate program relies on a database which is periodically built by the
updatedb program. That hasn’t happened in a long time. To fix this problem,
run updatedb manually. This can often happen on systems that are generally
not left on, so the periodic “cron” task which normally does this doesn’t get a
chance to run.

‘locate database ‘/Languages/gnu_lang/4.0/install/var/locatedb’ is corrupt or
invalid’

This should not happen. Re-run updatedb. If that works, but locate still
produces this error, run locate --version and updatedb --version. These
should produce the same output. If not, you are using a mixed toolset;
check your ‘$PATH’ environment variable and your shell aliases (if you have
any). If both programs claim to be GNU versions, this is a bug; all versions
of these programs should interoperate without problem. Ask for help on
bug-findutils@gnu.org.

11.4 Error Messages From updatedb

The updatedb program (and the programs it invokes) do issue error messages, but none
seem to be candidates for guidance. If you are having a problem understanding one of these,
ask for help on bug-findutils@gnu.org.

mailto:bug-findutils@gnu.org
mailto:bug-findutils@gnu.org

Appendix A: GNU Free Documentation License 95

Appendix A GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 96

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 97

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 98

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 99

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 100

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 101

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

find Primary Index 102

find Primary Index

This is a list of all of the primaries (tests, actions, and options) that make up find expres-
sions for selecting files. See Section 1.3 [find Expressions], page 3, for more information on
expressions.

!
! . 19

(
() . 19

,
, . 20

-
-a . 20
-amin . 11
-and . 20
-anewer . 13
-atime . 11
-cmin . 11
-cnewer . 13
-ctime . 11
-d . 18
-daystart . 12
-delete . 34
-depth . 17
-empty . 13
-exec . 27, 28
-execdir . 27, 28
-executable . 16
-false . 20
-fls . 22
-fprint . 21
-fprint0 . 30
-fprintf . 22
-fstype . 19
-gid . 15
-group . 15
-ignore_readdir_race . 19
-ilname . 10
-iname . 5
-inum . 10
-ipath . 6
-iregex . 6
-iwholename . 6
-links . 11
-lname . 10
-ls . 21
-maxdepth . 17
-mindepth . 17
-mmin . 11

-mount . 19
-mtime . 11
-name . 5
-newer . 13
-newerXY . 12
-nogroup . 15
-noignore_readdir_race . 19
-noleaf . 18
-not . 19
-nouser . 15
-o . 20
-ok . 33
-okdir . 33
-or . 20
-path . 5
-perm . 16
-print . 21
-print0 . 30
-printf . 22
-prune . 18
-quit . 18
-readable . 15
-regex . 6
-regextype . 6
-samefile . 10
-size . 13
-true . 20
-type . 14
-uid . 15
-used . 13
-user . 15
-wholename . 5
-writable . 15
-xdev . 19
-xtype . 14

A
ago in date strings . 50
am in date strings . 48

D
day in date strings . 49, 50

F
first in date strings . 46
fortnight in date strings . 49

find Primary Index 103

G
get_date . 46

H
hour in date strings . 49

L
last day . 49
last in date strings . 46

M
midnight in date strings . 48
minute in date strings . 49
month in date strings . 49

N
next day . 49

next in date strings . 46
noon in date strings . 48
now in date strings . 50

P
pm in date strings . 48

T
this in date strings . 50
today in date strings . 50
tomorrow in date strings . 50

W
week in date strings . 49

Y
year in date strings . 49
yesterday in date strings . 50

	Introduction
	Scope
	Overview
	find Expressions

	Finding Files
	Name
	Base Name Patterns
	Full Name Patterns
	Fast Full Name Search
	Shell Pattern Matching

	Links
	Symbolic Links
	Hard Links

	Time
	Age Ranges
	Comparing Timestamps

	Size
	Type
	Owner
	File Mode Bits
	Contents
	Directories
	Filesystems
	Combining Primaries With Operators

	Actions
	Print File Name
	Print File Information
	Escapes
	Format Directives
	Name Directives
	Ownership Directives
	Size Directives
	Location Directives
	Time Directives

	Time Formats
	Time Components
	Date Components
	Combined Time Formats
	Formatting Flags

	Run Commands
	Single File
	Multiple Files
	Unsafe File Name Handling
	Safe File Name Handling
	Unusual Characters in File Names
	Limiting Command Size
	Interspersing File Names

	Querying

	Delete Files
	Adding Tests

	File Name Databases
	Database Locations
	Database Formats
	LOCATE02 Database Format
	Sample LOCATE02 Database
	slocate Database Format
	Old Database Format

	Newline Handling

	File Permissions
	Structure of File Permissions
	Symbolic Modes
	Setting Permissions
	Copying Existing Permissions
	Changing Special Permissions
	Conditional Executability
	Making Multiple Changes
	The Umask and Protection

	Numeric Modes

	Date input formats
	General date syntax
	Calendar date items
	Time of day items
	Time zone items
	Day of week items
	Relative items in date strings
	Pure numbers in date strings
	Seconds since the Epoch
	Specifying time zone rules
	Authors of get_date

	Reference
	Invoking find
	Filesystem Traversal Options
	Warning Messages
	Optimisation Options
	Debug Options
	Find Expressions

	Invoking locate
	Invoking updatedb
	Invoking xargs
	xargs options
	Invoking the shell from xargs

	Regular Expressions
	findutils-default regular expression syntax
	awk regular expression syntax
	egrep regular expression syntax
	emacs regular expression syntax
	gnu-awk regular expression syntax
	grep regular expression syntax
	posix-awk regular expression syntax
	posix-basic regular expression syntax
	posix-egrep regular expression syntax
	posix-extended regular expression syntax

	Environment Variables

	Common Tasks
	Viewing And Editing
	Archiving
	Cleaning Up
	Strange File Names
	Fixing Permissions
	Classifying Files

	Worked Examples
	Deleting Files
	The Traditional Way
	Making Use of xargs
	Unusual characters in filenames
	Going back to -exec
	A more secure version of -exec
	Using the -delete action
	Improving things still further
	Conclusion

	Copying A Subset of Files
	Updating A Timestamp File
	Updating the Timestamp The Wrong Way
	Using the test utility to compare timestamps
	A combined approach
	Using -printf and sort to compare timestamps
	Solving the problem with make
	Coping with odd filenames too

	Finding the Shallowest Instance

	Security Considerations
	Levels of Risk
	Security Considerations for find
	Problems with -exec and filenames
	Changing the Current Working Directory
	O_NOFOLLOW
	Systems without O_NOFOLLOW

	Race Conditions with -exec
	Race Conditions with -print and -print0

	Security Considerations for xargs
	Security Considerations for locate
	Race Conditions
	Long File Name Bugs with Old-Format Databases

	Summary

	Error Messages
	Error Messages From find
	Error Messages From xargs
	Error Messages From locate
	Error Messages From updatedb

	GNU Free Documentation License
	find Primary Index

