0)

VOS COBOL Forms Management System

R035-01

Stratus Computer, Inc.

Notice

The information contained in this document is subject to change without notice.

STRATUS COMPUTER, INC.,, MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Stratus Computer, Inc., shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Stratus Computer, Inc., assumes no responsibility for the use or reliability of its software on equipment that is not furnished by
Stratus Computer, Inc.

This document is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Stratus Computer, Inc.

Stratus, Continuous Processing, VOS, StrataNET, and the Stratus logo are registered trademarks of Stratus Computer, Inc.

XA, StrataLINK, and the SQL/2000 logo are trademarks of Stratus Computer, Inc.

Manual Name: VYOS COBOL Forms Management System

Part Number: R035
Revision Number: 01
Printing Date: June 1989
VOS Release Number: 9.0

Stratus Computer, Inc.
55 Fairbanks Blvd.
Marlboro, Massachusetts 01752

©1985, 1989 by Stratus Computer, Inc. All rights reserved.

Contents

PART 1: Introduction to FMS

LOverview e e e e e e e e e e e 1-1
FMS Concepts and Terminology 1-1
Components of FMS e 1-3

The Forms Editor, 1-5
The screen Statements o0 e e e e . 1-6
The Forms Processor o o v v v i i e 1-8

2. Developing an FMS Application 2-1
The Development Process v v v v it i e 2-1
Planningthe Form 2-2

Information to Displaytothe User 2-2
Information to Be Entered bythe User 2-3
Required Information and Optional Information 2-3
Arranging the Fields, 2-3
Communication between the Form and the Program 2-4
Incidental Data 2-5
Traps o e e e 2-6

The Complete Form Layout 2-7
The Forms Editor e e e e 2-8
Invoking the Forms Editor 2-8
Creating Fields and Background Text 2-9
Setting the Form Options 2-18
The set/modify form options Form 2-18

The MASKKEYSForm 2-19
Testingthe Form 2-20
Changing Video Attributes 2-21
Fields e e 2-22
RequiredFields 2-22
General Background Text 2-23
Specific Background Text 2-23
Savingthe Form 2-24
Ending the Forms Editor Session 2-25
Writing the Application Program 2-25
Declaring the Variables and Constants 2-26
Field-Value Variables 2-26

VOS COBOL Forms Management System (R035) iii

Contents

Field-ID Constants« ¢ v v v v v v v v v oo . 2-26

Other Variables« . . oo o v 2-27
Initializing the Display List 2-27
Altering Initial Values o 00000 2-28
Displayingthe Form 00000 2-28
Processing the FormData 2-29

The Key . o o v e e e e e e e e e e e e e e 2-30
Creating a Data-Entryloop e e e e e e e e e 2-31
Manipulating Data States 000000 2-36
Changinga Display Type oo oo oo 2-39
FormsInputMode« . o000 oo 2-42
Compiling and Binding the Application 2-42

PART 2: FMS Reference Guide

3.The Elements of FMS 0o 3-1
Form Components v v o0 0o e e e e e e e 3-1
Fields o e e e e e e e e e e e e e e 3-1

Numeric and Alphanumeric Fields 3-2
Input Fields and Output Fields 3-3

Null Field Values« oo o v v v v o v v oo 3-4
Initial Output Values o ..o 0o e 35
International Character Set Support00 3-6
Specifying the Character SetforaField 3-7
Storing ICSS Stringso e 3-7

3270 Device Dependencies o000 oo o0 e e e 3-8
Forms and the Application Program 3-9
OperationsonForms e e e e e e e 39
DefiningaForm 000 3-9
Initializinga Form00 0. 3-10
DisplayingaForm 0. 3-10
ModifyingaForm 000000 3-11

Getting Information aboutaForm 3-11
SavingaForm00 e e 3-12
DiscardingaForm 3-12

Control Transfer between an ApplicationandaForm 3-13
Form Submission 0000 e e e e e 3-13

Form Cancellation o o v o v oo 3-14

Traps e 3-14

Form Time-OutPeriod 3-15

Form Knocked Downo 3-16
Output-Only Forms« o v v v v v v v v o 3-16

Other Situations« v v v v e e e 3-16

4. The Forms Editor 000 o e e e e e 4-1
Overview of the Forms Editor 4-1

The Form Design Process e e e e e e e e e e e e e e e 4-2

iv VOS COBOL Forms Management System (R035)

\’ y

Contents

The Two Forms Editors 4-2

The qess_edit_formCommando 4-4
Definitions L e e e e 4-10
Entering Text L e e 4-11
EditRequests. e e 4-12
Direct Edit Requests e 4-13
Menu Edit Requests 4-21

The Add/modify field Request 4-25
Modifying Existing Fields 4-26
Creating New Fields 4-26
Simple Fields 4-26

Array Fields L. oo 4-27
Uncommitted Fields 4-27

The Add/modify fietld Form 4-28

The Field Options 4-29
Display-Type Options v v v v i e 4-36

The Insert window fieldRequest 4-41
The Set/modify form options Request 4-43
The Define/modify video display modes Request 4-51
The Files Produced by the Forms Editor 4-52
The Form Definition File 4-53

The Form Object Module 4-53

The Field-Values File 4-53

The Field-IDsFile 4-54

The Forms Editor Keystrokes File 4-54

The Field Definition Files 4-54
Contents of the Form Definition File 4-56
The Field-IDsInclude File 4-58
The Field-Values Include File 4-61
S.Form Options L L e e e e e e e e e e, 5-1
Form Option Summary e e e e 5-1
Form Option Reference Guide 52
6. Field Descriptions o e 6-1
DefiningaField. e e e e e e e e e e e 6-2
Defining a Form Dynamically ". 6-2
Adding a Field Dynamically e e e e e e e 6-4
Modifyinga Field e 6-6
Obtaining Field Information 6-6
DeletingaField, 6-7
Field Option Summary e 6-8
Field Option Reference Guide 6-9
T.Display Types L e e e e e e e 7-1
Display-Type Descriptionso e e 7-2
Classes of Display Types o v v i v i it i e 7-3

VOS COBOL Forms Management System (R035) v

Contents

Predefined Display Typeso 7-4

Global Display Types« « v v v v v e e e e e e e e 7-4
Temporary Display Types« o .. .o 7-5

Setting the Action and Visual Attributes00 7-5
Cycle Display Types« v v v v v v e e e e e e e e e e e 7-7
Indexed Cycle Lists v v v v v v v v v e 7-9

Obtaining Cycle List Values 7-11
Display-Type Option Reference Guide PR 7-11

8. DataStates L .o e e e e e e e e e e e e e e e e 8-1
The Data-State Switches oo 00000 8-1
Data States in the Forms Editoro 00, 8-2
Referencing Data States ina Program 8-2
Data-State Variables o000 o000 8-2

Reading Data States00 8-4

Single Field o000 00 n o0 8-4

AllFields o e e e 8-4

Changing Data States e e e e e 8-5

Data State Reference Guide00 8-6

9. Field Pictures and Filtering 0. 9-1
Field Pictures« « v v v v v e e e e e e e e e e e e e e e 9-1
Specifyinga Pictureo oo oo 9-2
Alphanumeric Pictureso oL o e 9-3

Numeric Pictures o . o o e e e e e e 9-3

Field Precision e e e e e 9-3

Periodsand Commas « . o 0 e e e e e . 9-3

Filtering« . . . oo e e e e e e e 9-4
Special Numeric Characterso 9-5

The Filtering Process oo oo 9-6

Filtering Output Values 9-6

Filtering Input Values oo 9-7

10. Error Handling and Field Validation 10-1
Handling Forms Errors« . oo oo 10-1
Field Validation o o o e e e e e e e e e e 10-4

The Validation Suiteo oo oo 10-4
Programmer-Defined Field Validation Routines 10-5

11. Windows and Subformso oo o e e e 11-1
Defining a Window Field o000 11-1
Initializing the Formso 11-2
Displaying the Formso oo 11-3
Example of Windowso oo 11-4

12. Form Caching oo e e e e e e e 12-1

vi VOS COBOL Forms Management System (R035)

Contents

) The Forms Reference Count 12-2

Example of Form Caching o000 12-3
13.Trapso e e e e e e e e e e e e e e 13-1
Establishing Traps« . . o« o o oo e e e 13-1
Trapon FieldEntry oo o000 o 13-2
Trapon Field Exit o oo 13-3
Returned Valueso oL e 13-3
Field Validationo e e e e e 13-3
Example Using a Trapon Field Exit 13-4
Vertical Scroll Trapo oo e e 13-5
Scrolling between Formso 0oL, 13-5
Scrolling withinaForm o000 0oL 13-6
FormsInputMode oo oo oo 13-10
)
14. Subroutines L L oo oo e e e e e e e e e e e e e e 14-1
Forms InputMode o000 0o 14-1
s$begin_forms_input L . . . o e e e e e e e e e e e e e 14-3
s$end_forms_input L 0w e e e e e e e e e e e e e 14-4
15. Built-In Functions L L. . .o e e e e e e e e 15-1
) Built-In Function Summary 000000 15-1
) Built-In Function Reference Guide« .« 15-4
16. Statements L L L L e e e e e e e e e e e e e e e e e e 16-1
The accept Statement v« vt v v e e e e e e e e e e e e e e 16-2
The perform screen delete Statement « « « « o . 16-6
The perform screen discard Statement 16-8
The perform screen initialization Statement 16-9
The perform screen input Statement « « « « o o o o . .. 16-12
} The perform screen inquire Statement « .« o 16-15
’ The perform screen output Statement 16-17
The perform screen save Statement« . o o 16-19
The perform screen update Statement+ 16-21
Appendix A: The accept Statement A-1
The Display List o v e e e e A-2
Initial Display and Redisplay A-2
The into and update Form Options A-4
Field Modes o v v i e A-5
Initializing Field Modes A-6
Modifying Field Modes00 A-6
Modes Exampleo o e e e e e A-7
Field-Value Justification00 A-9
; Obsolete Field Options o v v v v v v v v e e e e A9
) Field Output VAIUES« « © v v v o v e e e e e e e e e e A-10

VOS COBOL Forms Management System (R035) vii

Contents

Predefined Form with the into or update Form Option A-11

Imitial Display, A-11

Redisplayo A-11

Predefined Form without the into or update Form Option A-11

Initial Display A-12

Redisplay 00 A-12

No Predefined Form A-12

Imitial Displayo, A-13

Redisplay A-13

Appendix B: The edit_formCommand B-1
The edit_formCommand B-2

The Add/modify field Request. B-7

The Set/modify form options Request B-10

The Insert literal Request B-11
Appendix C: Converting Old-Style Applications C-1
Converting Predefined Forms . . , C-1
Updating the Application Program C-2

The intoand update Options C-3

The formand formid Options C3

Obsolete Optionso e e e e e C4
Dynamically Altering Formso .. C-5
Output-OnlyForms C-11

Multiple Formso C-11

Binding the New Application C-11
Appendix D: Terminal Requirements D-1
Input Requests L. e e e e e D-1

The Forms Editor o0, D-1

Menu Edit Requests, D-1

Direct Edit Requests00 D-2

FMS Applicationso o D-3

Output Requestso e e e e D-4

The Forms Editoro 0o D-4

EMS Applicationso Lo oo oL D-5

Attribute Requests00 o000 e e e e e e e e e D-5
Appendix E: Form Storage Sizeso 0.0 E-1
Appendix F: Global Control Operations F-1
FormsInput Mode o F-1
Knocking DownForms oo F-4
Appendix G: Stratus Character Code Set G-1

viii VOS COBOL Forms Management System (R035)

~

Contents

.........................

VOS COBOL Forms Management System (R035)

ix

Figures

1-1. Sample FMS Form Lo e e e e e e e e 1-2
1-2. Overview of FMS e e e e e e e 1-5
2-1. Layoutof Sample Formo .00 0000 2-7
2-2. Sample Application Programo ... 2-33
4-1. Forms Editor Terminology oo 4-11
4-2. Insert Mode and Overlay Mode 4-12
4-3. The Forms Editor Request Menu 4-21
4-4. Form Displayed by the F (Add/modify field) Request 4-28
4-5. Form Displayed by the I (Insert window field) Request 4-42
4-6. Form Displayed by the S (Set/modify form options) Request 4-43
4-7. The Forms Editor Mask-Keys Form 4-45
4-8. Form Displayed by the V (Define/modify video display modes) Request 4-51
4-9. Sample Form Definition File 4-56
4-10. Generalized Field-IDsFile 4-59
4-11. Generalized Field-IDs File with a Prefix Specified 4-60
10-1. Sample Validation Routine 10-6
11-1. Example Program Using Subforms 11-6
12-1. Example Program Using Subforms 12-4
13-1. Vertical Scroll Trap Example Program e e e e e e e 13-7
X VOS COBOL Forms Management System (R035)

Tables

3-1. The Numeric Picture Characters« v v v v v v v v o o 32
3-2. The Alphanumeric Picture Characters 3-3
3-3. Sample Field Pictures and Corresponding Null Values 34
4-1. Explanation of Current Word o000 4-10
4-2. The Forms Editor Field Options oo .. 4-29
4-3. Data Types for Field-Values Variable Declarations 4-34
4-4, Auxiliary Information for Data Types oo 4-35
4-5. The Forms Editor Display-Type Options« . .. 4-36
4-6. Form and Field Options Affected by ALTERABLE BY ACCEPT 4-47
4-7. Files Created by the Forms Editor 4-52
5-1. The screen and accept Statement Form Options 5-2
5-2. Codes Returned by the keyused Form Option« . .. 5-9
5-3. Characters Used in the maskkeys Form Option 5-10
6-1. The accept and screen Statement Field Options 6-8
7-1. The Display-Type Options« . o« o v o o v v v v v v 7-2
7-2. The Display-Type Classes« o o o o v v v v v v v v v e 7-3
8-1. The Data-State Switches« . o« o oo e e 8-1
9-1. The Field Picture Characters« . v v v v v v v v v o v . 9-2
9-2. Examples of Filtering oo 9-6
12-1. Form Reference Count Manipulation 12-3
15-1. Display-Type Built-In Functions oo 15-2
15-2. Field Built-In Functions00 00 e . 15-3
16-1. The FMS Statements v v v« v v v v v v o o o e e e e e e e 16-1
A-1. The Mode Switches o o o 0 oo e e e e e e e e A-5
C-1. Replacements for Old Form and Field Options C4
C-2. Replacements for Mode Switches o000 C-5
D-1. Alternatives for Menu Input Requests D-2
D-2. Forms-Related Generic Input Requests D-3
E-1. Storage Requirements of Form Components« .« .. E-1
G-1. Stratus Character Code Set oo e s e G-1

VOS COBOL Forms Management System (R035) xi

\
_/

Introduction

The Purpose of This Manual

The VOS COBOL Forms Management System (R035) documents how to write
application programs that use the Forms Management System (FMS) to perform
I/O to the user’s terminal display.

Audience

This manual is intended for application programmers who are experienced in
COBOL. Before working with the YOS COBOL Forms Management System (R035),
you should be familiar with the YOS COBOL Language Manual (R010).

Revision Information

This manual is a revision. For information on which release of the software this
manual documents, see the Notice page.

The FMS program interface has been significantly redesigned since the last revision
of this manual. The manual has been substantially rewritten to incorporate the
new material and has been reorganized. Introductory material has been expanded
to more fully describe the process of creating an FMS application.

Manual Organization
This manual has two parts, plus eight appendixes.

Part 1: “Introduction to FMS” consists of two chapters.
Chapter 1, “Overview,” describes the major features and components of FMS.

Chapter 2, “Developing an FMS Application,” describes in detail the process of
creating a sample FMS application.

Part 2: “FMS Reference Guide” consists of 14 chapters.

Chapter 3, “The Elements of FMS,” describes the basic components and concepts
of FMS in a reference format.

Chapter 4, “The Forms Editor,” provides the description of the icss_edit_form
command and fully documents the features of the Forms Editor.

Chapter 5, “Form Options,” describes each of the screen statement form options.

VOS COBOL Forms Management System (R035) xiii

Introduction

Chapter 6, “Field Descriptions,” discusses the field description clause of the screen
statement and documents each of the field options.

Chapter 7, “Display Types,” explains how display types are manipulated and
includes descriptions of each of the screen statement display-type options.

Chapter 8, “Data States,” describes how to read and update field data states within
a program.

Chapter 9, “Field Pictures and Filtering,” discusses the use of field pictures to
restrict field values and explains the process of filtering numeric data.

Chapter 10, “Error Handling and Field Validation,” explains how to handle status
codes returned by screen statements and documents the field validation suite.

Chapter 11, “Windows and Subforms,” discusses the use of multiple windows to
display more than one form on the screen at a time.

Chapter 12, “Form Caching,” describes how to save the internal image of a form
so that it can be used later without being re-initialized.

Chapter 13, “Traps,” explains the use of features that can cause the form to be
submitted when certain cursor movements occur.

Chapter 14, “Subroutines,” documents two subroutines related to FMS.

Chapter 15, “Built-In Functions,” documents a set of VOS COBOL functions
related to FMS.

Chapter 16, “Statements,” gives the full syntax of the accept statement and each
of the screen statements.

The first three appendixes document obsolete FMS features and describe how to
convert old-style applications to use the newer features. Other appendixes describe
the terminal features required to use FMS and the Forms Editor, discuss the
storage size of forms, document some global control operations related to FMS,
and provide tables of the ASCII and Latin alphabet No. 1 character sets.

Notation

Xiv

Stratus documentation uses italics to introduce or define new terms. For example:
A field’s null value is the value displayed when the field is empty.

Computer font is used to represent text that would appear on your CRT screen or
on a line printer. (Such text is referred to as literal text.) For example:

The picture zzzzz9 limits each character in the field to a digit.

Introduction

Introduction

Slanted font is used to represent general terms that are to be replaced by literal
values. In the following example, the term form_name shows that the user must
supply an actual form name.

icss_edit_form form_name -into —~cobol
Boldface is used to emphasize words within the text. For example:
The perform screen initialization statement does not display the form.

Syntax Notation

A syntax format is a specific arrangement of the elements of a VOS COBOL
statement (or portion of a VOS COBOL statement). When VOS COBOL permits
more than one arrangement, the documentation presents the arrangements as
consecutively numbered formats. The text may also supply additional information
defining the syntax formats,

The next table explains the syntax notation used to document the formats.

The Notation Used in Syntax Formats

Notation Meaning
element Required element.
element - - - Required element that can be repeated.
{ element_1 element_z} Required list of elements.
{ element_1 element_z} Required list of elements that can be
repeated.
element_1 You are required to use one element of
element_2 this set, but you cannot use more than
one.
[etement] Optional element.
[etement] --. Optional element that can be repeated.
[etement_1 element_2 | Optional list of elements.
[etement_1 element 2] - - Optional list of elements that can be
repeated.
element_1 Set of optional elements that are mutually
element_2 exclusive; you can use only one.
Note: Dots, brackets, and braces are not literal characters; you should
not type them. Any list or set of elements can contain more than two
elements.

VOS COBOL Forms Management System (R035) XV

Introduction

In the table, the term element stands for the following elements of the VOS COBOL
language:

e reserved words (in computer font)

e generic terms (in slanted font) that are to be replaced by such items as
expressions, identifiers, literals, constants, or statements

e statements or portions of statements.

The elements in a list of elements must be entered in the order shown in a syntax
format, unless the text specifies otherwise.

Brackets ([]) and braces ({ }) are sometimes nested in syntax formats.

Three dots (---) in a syntax format represents the position at which repetition
can occur. The scope of the dots is either the preceding element or the segment
of the syntax format enclosed in the preceding brackets or braces.

The following is an example of a syntax format used in this manual.

cycle_value [,cycle_value] ...
cycle (
cycle_value_array [,value_count]

In examples, three dots in a column indicates that a portion of a language construct
or program has been omitted. For example:

01 action_switches comp-5.
01 visual_switches comp-5.

perform screen inquire with status (status_code),
giving displaytype (12) action (action_switches)
visual (visual_switches).

When an exact input or output value is shown, a special character, ., is sometimes
used to represent a space character. For example, the following output value has
three leading space characters:

uuy123

Format for Commands
Stratus manuals use the following format conventions for documenting commands.

xvi Introduction

Introduction

command_name

The name of the command is at the top of the first page of the command
description.

Privileged

This notation appears after the name of a command that can be issued only
from a privileged process. (See the Glossary for the definition of privileged
process.)

Purpose

Explains briefly what the command does.

CRT Form

Shows the form that is displayed when you type the command name and
press the key or when you type the command name followed by
the option -form. The values displayed in the form are the command’s default
values. (See the Glossary for the definition of default value.)

The next table explains the notation used in CRT forms.

The Notation Used in CRT Forms

Notation Meaning
] Required field with no default value.
| The cursor, which indicates the current

position on the screen. It may be on
the first character of a value, as in

gLt

current_user The default value is the current user,
current_module module, system, or disk. The actual
current_system name will be displayed when you
current_disk give the command.

VOS COBOL Forms Management System (R035) xvii

Introduction

Lineal Form

Shows the syntax of the command with its arguments. You can display an
online version of the lineal form of a command by typing the command name
followed by the option -usage.

The next table explains the notation used to document lineal forms. In the
table, the term multiple values refers to explicitly stated separate values, such
as two or more object names. Giving multiple values is not the same as giving
a star name. (See the Glossary for the definition of star name.) When you
give multiple values, you must separate the values with a space.

The Notation Used in Lineal Forms

Notation Meaning
argument_1 Required argument.
argument_1- -~ Required argument for which you can
give multiple values.
argument_1 You are required to give one argument of
argument_2 this set, but you cannot give both.
[argument_1] Optional argument.
[argument_1] e Optional argument for which you can give
multiple values.
argument_1 Set of optional arguments that are
argument_2 mutually exclusive; you can give only one.

Note: Dots, brackets, and braces are not literal characters; you should
not type them. Any list or set of arguments can contain more than two
clements.

xviii Introduction

Introduction

Arguments

Describes the command’s arguments. The next table explains the notation
used to document command arguments.

The Notation Used in Argument Descriptions

Notation Meaning
Only predefined values are allowed for this

argument. In the CRT form, you display these values
in sequence using the key.

Required You cannot enter the command without supplying a
value for this argument.

If an argument is required but has a default value,
it is not labeled Required, since you do not have to
include it when using the lineal form. With the CRT
form, however, you must have a value in the field —
either the displayed default or a value that you type
in.

(Privileged) Only a privileged process can give a value for this
argument.

Explanation

Explains how to use the command and gives supplementary information. Not
every command description requires an Explanation section.

Examples

Illustrates uses of the command.

Related Information

Refers you to related documentation (in this manual or other Stratus manuals),
including descriptions of commands, subroutines, and requests you can use
with or in place of this command.

Format for Subroutines
Stratus manuals use the following format conventions for documenting subroutines.

subroutine_name

The name of the subroutine is at the top of the first page of the subroutine
description.

VOS COBOL Forms Management System (R035) xix

Introduction

Purpose

Explains briefly what the subroutine does.

Usage

Shows how to declare the variables passed as arguments to the subroutine,
declare the subroutine entry in a program, and call the subroutine.

Arguments

Describes the subroutine’s arguments.

Explanation

Provides information about how to use the subroutine. Not every subroutine
description requires an Explanation section.

Related Information

Refers you to other subroutines and commands similar to or useful with this
subroutine.

Related Manuals
Refer to the following Stratus manuals for related documentation.

® YOS COBOL Language Manual (R010)

e VOS COBOL Subroutines Manual (R019)

o VOS Communications Software: Asynchronous Communications (R025)
o VOS Communications Software: Defining a Terminal Type (R096)

A Note on the Contents of Stratus Manuals

Stratus manuals document all the subroutines and commands of the user interface.
Any other commands and subroutines contained in the operating system are
intended solely for use by Stratus personnel and are subject to change without
warning.

How to Comment on This Manual

You can comment on this manual by using the command comment_on_manuat,
described in the VOS System Administrator’s Guide (R012). Type comment_on_manual,
press RETURN), and then complete the form that appears on your screen. You must
fill in this manual’s part number, R035. When you have completed the form, press
{ENTER). Your comments are sent to Stratus over the Remote Service Network. Note
that the operating system includes your name with your comments.

Stratus welcomes any corrections and suggestions for improving this manual.

XX Introduction

PART 1: Introduction to FMS

—

Chapter 1:
Overview

The Forms Management System (FMS) is a set of tools, system software, and
programming language extensions that gives your programs a consistent interface
for the entry and display of data on a video display terminal. The interface is
designed to be efficient for applications in which the user performs transactions
that each require the entry of several specific pieces of information.

FMS Concepts and Terminology

In FMS, the entire terminal screen, or a portion of it, is used as a form in which
data can be entered or displayed. An FMS form is analogous to a paper form,
such as a job application, tax return, or balance sheet. Just as a paper form allows
for an orderly exchange of information (for example, between a job applicant and
an employer; between a taxpayer and the Internal Revenue Service; between a
corporation and its stockholders), an FMS form allows a program and a user to
exchange information in an organized way.

An FMS form contains fields in which the program can display information or the
user can enter information. The meaning of the data is derived from its location.
For example, a specific field might be used for displaying or entering a telephone
number. The same value entered in a different field might be interpreted as an
invoice number. To indicate the field’s meaning, a label might appear next to the
field in the form. Labels and other text that appears outside of fields is called
background text.

VOS COBOL Forms Management System (R035)

FMS Concepts and Terminology

Figure 1-1 shows a sample FMS form.

4)
09/26/89

Date:
Customer name: Customer number:
New customer? no Invoice number: 038A-10-45
Item number Quantity Price/unit

-)

Figure 1-1. Sample FMS Form

The form in Figure 1-1 contains fields in which the user can do the following:

e type a customer’s name and number
e specify whether the customer is new
e enter several item numbers along with quantities and prices.

The values in the fields labeled bate'and Invoice number are set by the program
that displays the form and cannot be altered by the user. These two ficlds are
output fields. The other fields are input fields.

In Figure 1-1, several of the input fields do not yet contain any data. These fields
are said to be null or to contain their null value.

The user can move freely among the input fields of a form, typing and editing field
values. Within each field, the user can issue most of the same editing requests as in
a command line or in the CRT form of a command. Field values are not returned
to the program until the user submits the form — for example, by pressing the
key. When the form is submitted, control returns to the program. The user
can also cancel the form, usually by pressing the key. When the form is
canceled, control returns to the program, but no field values are returned to the
program.

Within the program, a specific variable receives the value from each field when
the form is submitted. Such a variable is called a field-value variable.

1-2 Chapter 1: Overview

FMS Concepts and Terminology

The field labeled New customer in Figure 1-1 is a cycle field. A cycle field can accept
only values from a specified list. The list of valid values is called the cycle list. In
the case of the New customer field, the list might contain just two values: yes and
no. The user cannot type a value in a cycle field. Instead, the user can change the
field value by pressing either the key or the left or right arrow key.

Note that fields in Figure 1-1 have different attributes and restrictions. Some fields
appear in low intensity; others, in normal intensity. The field labeled New customer is
a cycle field; the other fields are not. A set of specific characteristics such as these
constitutes the field’s display type. A display type determines the visual appearance
of a field, specific actions associated with the field, and certain restrictions on field
values. Display types provide a convenient means of specifying and dynamically
changing field characteristics. Display types are fully described in Chapter 7,
“Display Types.”

Another set of field characteristics is collectively known as the field data state.

A field data state is a series of switches that determine whether a field is input
or output, whether it requires an input value or is optional, and so forth. These
switches can be altered dynamically for each field. Other data-state switches return

information about a field, such as whether the field value changed during the most
recent form display. Data states are fully described in Chapter 8, “Data States.”

Components of FMS
¥MS has three major components:
e The Forms Editor, which allows you to create and modify forms.
e The screen statements. These statements are extensions to VOS COBOL
that allow you to invoke a form within a program. (Another statement that
invokes a form, the accept statement, is obsolete but is supported for existing

applications.)

e The Forms Processor, the system software that is invoked by the screen
statements. The Forms Processor manages form displays.

Each of these components is discussed later in this section.
In a typical forms application, the three components work together as follows:
1. Using the Forms Editor, you design a form. The Forms Editor stores the form
description as a form object module that can be referenced by a program.

(The Forms Editor also produces other files that are discussed later.)

2. Within a program, you reference the form in screen statements.

VOS COBOL Forms Management System (R035) 1-3

Components of FMS

1-4

3.

4.

When you compile your program, the compiler translates the screen statements
to object code that calls the Forms Processor run-time software.

When you bind your program, the binder links your program object module
with the form object module and the Forms Processor software.

When control reaches a screen statement during program execution, the
Forms Processor is invoked to manage the form. For example, when a
perform screen input statement is executed, the Forms Processor displays the
form. The Forms Processor then allows the user to move the cursor and
type values within the form. When the user submits the form, the Forms
Processor validates the input values and loads them into program variables
specified within the screen statement. Control then returns to the program,
and execution continues with the statement following the screen statement.

Chapter 1: Overview

\
N

Components of FMS

Figure 1-2 illustrates the FMS development process and execution.

-

Form
Forms Definition
Editor File

Include

Program
4 Source
Code

compile

| Program

Object
bind Module

Form

Forms Processor
Displays Form on Screen

Name
Address
Phone

Program

Manages Operator Editing Module

Validates Input Values

Loads Input Values
into Program Variables

PD00O1

Figure 1-2. Overview of FMS

The Forms Editor

The Forms Editor is a program used to create, modify, and save FMS forms. To
invoke the Forms Editor, issue the icss_edit_form command. (An older version
of the Forms Editor, invoked by the edit_form command, is supported for older
applications.)

The Forms Editor is similar to a word processor. It includes most of the direct
edit requests found in the Word Processing Editor. In addition, the Forms Editor

VOS COBOL Forms Management System (R035)

1-5

Components of FMS

contains a number of special menu requests. The menu requests allow you to do
the following:

e add, delete, and modify fields in the form

e store field descriptions into a library and recall field descriptions from that
library

e test the appearance and behavior of the form
e save the form description in two formats:

— In a form definition file. This is a text file that you can modify in a
subsequent invocation of the Forms Editor.

— In a form object module. This file can be bound into a program.

Optionally, the Forms Editor generates the following include files for one or more
programming languages:

o the field-values file, which contains declarations for the field-value variables
that store the value of each field

e the field-IDs file, which defines mnemonic constants for the integer IDs that
the Forms Processor uses to reference fields within the form.

A form created with the Forms Editor is called a predefined form. The fields defined
with the Forms Editor are called predefined fields.

For more information on the Forms Editor, see Chapter 4, “The Forms Editor.”
For information on the older version of the Forms Editor, see Appendix B, “The
edit_form Command.”

The screen Statements

Eight screen statements have been added to VOS COBOL (the older accept
statement is supported for older applications). The screen statements provide a
forms interface for the COBOL programmer.

1-6 Chapter 1: Overview

.

pON—

Components of FMS

Briefly, the purpose of each screen statement is as follows:

® perform screen initialization creates an internal representation of a
form in the user heap. This representation is called the display list. The
perform screen initialization statement does not display the form.

® perform screen input displays a previously initialized form and accepts input
from the user.

® perform screen output displays a previously initialized form but does not
accept input from the user.

® perform screen update alters the display list but does not display the form.

® perform screen delete removes a field or a display type from the display list.
The perform screen delete statement does not display the form.

® perform screen inquire returns information about the display list. The
perform screen inquire statement does not display the form.

® perform screen save retains the storage of a form when that form is not
currently displayed.

® perform screen discard cancels the effect of a perform screen save statement.

The first screen statement to operate on a form within a program must be the
perform screen initialization statement. The other statements operate on the
internal representation of the form that the perform screen initialization statement
creates.

Usually, the perform screen initialization statement references a predefined
form created by the Forms Editor. However, you can define a form dynamically
within the perform screen initialization statement. Defining a form dynamically
is difficult and inefficient; if possible, avoid doing so.

The next most important screen statement is the perform screen input statement.
The perform screen input statement displays the form on the user’s screen and
allows the user to modify any input fields. Control does not return to the program
until the user submits or cancels the form (unless the application uses special
features).

The perform screen output statement displays the form on the user’s screen, but does
not allow the user to operate on the form in any way. Control returns immediately
to the program.

The other screen statements modify the internal display list, but do not affect the

user’s screen. The user does not see changes made by these statements until a
perform screen input or perform screen output statement is executed.

VOS COBOL Forms Management System (R035) 1-7

Components of FMS

Each of the screen statements is described in Chapter 16, “Statements.” The use
of the perform screen save and perform screen discard statements is described in
more detail in Chapter 12, “Form Caching.”

The Forms Processor

1-8

The Forms Processor is the system run-time software that manages forms. When
a screen statement is executed within a program, control transfers to the Forms
Processor. The Forms Processor performs the operation indicated by the screen
statement and then returns control to the program.

For example, when a perform screen initialization statement is executed, the
Forms Processor reads the form definition and creates the display list. When a
perform screen input statement is executed, the Forms Processor does the following:

e Reads the display list. (If the perform screen input statement contains options
that update the display list, the Forms Processor performs those updates first.)

e Writes the form to the screen. (If the form has been displayed before, the
Forms Processor determines whether the entire form must be rewritten, or if
only certain fields must be updated.)

e Handles cursor movement and field editing requests from the user.

e Displays any help messages requested by the user.

e Validates field data when the user submits the form.

e Converts each field value to the data type of its field-value variable, and loads
the converted values into the field-value variables.

When the Forms Processor completes the requested action, control returns to the

application program. Execution continues with the statement following the screen
statement.

Chapter 1: Overview

Chapter 2:
Developing an FMS Application

An FMS application consists of one or more forms and an application program that
invokes those forms. Developing an FMS application, therefore, involves designing
the form or forms and writing the application program.

This chapter explains these two tasks by showing how to develop a sample form
and how to write the program that invokes it. The sample application allows the
user to enter data into an employee database.

The Development Process
The general procedure for developing an FMS application is as follows:

Plan the form.

Create the form with the Forms Editor.
Write the application program.
Compile and bind the application.

Calall ol o

Note: It is possible to design a form from within the application program.
However, when possible, it is usually easier and is always more efficient
to define the form separately with the Forms Editor. You should
define forms within the program only when the information needed
to structure the form is not available until run time. For information
on designing a form within the program, see the description of the
perform screen initialization statement in Chapter 16, “Statements.”
(For applications using the accept statement, see Appendix A, “The
accept Statement.”)

In this chapter, the steps are arranged to clarify the decisions you must make and
the operations you must perform to create an FMS application. In practice, you do
not have to follow the procedures exactly as outlined in this chapter. For example,
many programmers find it easier to plan the form while using the Forms Editor.
The Forms Editor is designed to allow you to experiment with the form design.

VOS COBOL Forms Management System (R035)

The Development Process

Some programmers find it easier to write the program first and create the form
afterwards. Use whatever procedure works best for you.

Note that the last step in developing an FMS application is always to compile the
program and bind the application.

Planning the Form

This section describes the process of planning the form. The process can be
summarized as follows:

Decide what information must be displayed to the user.
Decide what information can be entered by the user.
Decide which information is required and which is optional.
Design an appropriate layout of the information.

Plan the communication between the form and the program.

e e

The following subsections explain each step in detail.

Information to Display to the User

2-2

Some forms serve primarily to display information to the user; others serve primarily
as a means for the user to enter information into the program. The sample form
developed in this chapter is of the latter type. However, two kinds of information
must still be displayed to the user:

e Background text to explain the form fields and to help the user to fill in the
appropriate information. The exact background text is determined when the
form is designed. It cannot be changed by the program.

o Output information derived by the program. Some information to be displayed
on the form cannot be determined until run time. For example, the form
might display the current date, or it might display current information derived
from a database.

The sample application will supply one piece of output information that is
determined at run time: a unique ID number for each new employee. This will
require an output field in the form. The form will also require background text to
label the form input fields. The exact background text will be determined when
designing the form layout.

Chapter 2: Developing an FMS Application

)

)

/

N

.‘\‘_/

Planning the Form

Information to Be Entered by the User

The user will be allowed to enter the following information about each employee.

e Name (first, middle initial, and last)
® Social Security number

e Department number

e Salary

Each of these pieces of information requires an input field in the form. Because
the name will be stored as three separate pieces of information (first name, middle
initial, and last name) in the database, the form will use three input fields for that
information.

Required Information and Optional Information

The user is required to enter some data, but other data is optional. In the sample
application, the information entered by the user will be entered as a record in a
database. The database requires the following information for each record.

e Employee ID number
e First name

®] ast name

® Social Security number

The other items are optional. The first of the required pieces of information, the
employee ID number, is generated by the program and displayed in an output
field. The other required items are entered by the user. These fields will be
required fields. This means that the user cannot submit the form until information
is provided for these fields. All other input fields in the form will be optional. This
means that the user does not have to supply values for these fields.

Arranging the Fields

Once you know the fields that the form must contain, you can begin to plan an
appropriate arrangement of the fields. First, you must consider the overall size of
the form.

Some forms fill the entire terminal display. The size of these forms is limited by
the size of the screen on which they will be displayed. For example, the Stratus
V101 and V102 terminals have 24 usable lines and 80 usable columns.

If a form is to be displayed within a window in another form, or if it must share the
screen with other information, additional constraints are imposed on form size.

The sample form is a full-screen form. It will be designed to fit within 24 lines
and 80 columns.

VOS COBOL Forms Management System (R035) 2-3

Planning the Form

At least one space character must immediately precede and follow each field.

Designing an appropriate arrangement for fields within a form is largely subjective.
However, the following guidelines can be helpful.

e Group related information together.

e Put the most important or distinctive information near the top of the form.

e Arrange the information in a format that is convenient or familiar to the user.

e] cave space around information to improve readability. Once you have
determined the size constraints of the form, use the available space.

For the sample application, the most distinctive piece of information is probably
the employee’s name. Therefore, the employee’s name should appear at the top
of the form. The fields will be arranged approximately as follows:

Name: -
(first) (middle) (last)

Employee number: #### Social Security number:

Department number: .

Salary: $ per month

Note that labels are used to the left of the fields. In some cases, additional labels
below fields clarify what information is expected from the user. In addition, the
salary field is preceded by a dollar sign and followed by the words “per month” to
clarify what value is expected. More detailed information will be available to the
user through the request. The help text for the sample form is established
within the Forms Editor.

Communication between the Form and the Program

2-4

When you have planned the design of the form, you must determine when and
how control will transfer between the form and the application program.

Early in the form design process you have to begin thinking about why the program
invokes the form. This allows you to decide what information the form must display
and what information the user should enter. More complex questions about the
interaction between the form and the program arise later in the design process.

If a form is used strictly to display information to the user, communication between

the form and the program is almost always simple. If the program is obtaining
input through the form, communication can be simple or complex.

Chapter 2: Developing an FMS Application

Planning the Form

Incidental Data. In a simple case, the program displays the form, the user fills in
all the appropriate information and submits the form, and the program receives the
input. Note that the input received by the program can include all of the following:

e the data in each field when the user submitted the form

e what action caused the form to be submitted (for example, which key the
user pressed to submit the form)

o the location of the cursor when the form was submitted.

Each of these pieces of information can be meaningful. For example, the key used
to submit the form might indicate what is to be done with the field values. One key
might indicate that the program should add the values to a database, and another
key might indicate that the program should search a database for matching values.
For more information on using the submission key to indicate information, see
the description of the MASKKEYS option under the heading “The Set/modify form
options Request” in Chapter 4, “The Forms Editor,” and the description of the
maskkeys form option in Chapter 5, “Form Options.”

Similarly, the cursor location might indicate the action to be taken by the program.
For example, the form might contain several fields specifying different actions
such as depositing or withdrawing money, or checking an account balance. The
user could indicate which action the program should perform by positioning to
the corresponding field and submitting the form. For more information on using
the cursor position to indicate information, see the description of the getcursor
option in Chapter 5, “Form Options.”

If an application uses indicators such as the key used or the cursor position as data,
the meaning of that data must be understood by the user filling in the form and
by the application program that processes the form. When you design the form,
you should include background text to explain the meaning of such indicators to
the user.

In the sample application, the key used by the user will determine what the program
does with the data. The user can indicate either that the data be added directly to
the employee database, or that the data be held elsewhere until approved. The
application activates two function keys for this purpose.

‘Note: The forms software allows you to enable VOS generic function keys.
The specific keys to which the generic function keys are mapped
depend on the terminal-type definition. For the sample application,
assume that it will be run on a V102 terminal.

VOS COBOL Forms Management System (R035) 2-5

Planning the Form

To make the meanings of the function keys known to the user, add the following
to the bottom of the form:

FUNCT-1: Add to employee database

FUNCT-3: Hold for approval

Traps. In some cases, one or more fields must be filled in by the user before the
program can determine all the values that it must display in the form. To handle
this, the application can display the form and allow the user to fill in only some
of the fields before trapping, or returning to the program. The program can then
determine additional output values and redisplay the form with those values. The
user can then continue filling in field values and finally submit the form.

Traps can be associated with individual fields. You can establish a trap that
occurs whenever the user moves the cursor into a specific field. You can also
establish a trap that occurs whenever the user moves the cursor out of a specific
field. For further information on these kinds of traps, see the descriptions of
the TRAP ON FIELD ENTRY and TRAP ON FIELD EXIT options under the heading “The
Add/modify field Request” in Chapter 4, “The Forms Editor.” See also the
descriptions of the TRAP_ON_FIELD_EXIT and TRAP_ON_FIELD_ENTRY switches in the
discussion of the action display-type option in Chapter 7, “Display Types.”

The sample application does not require any traps.

2-6 Chapter 2: Developing an FMS Application

‘\5_/"

N)
e

The Complete Form Layout

Planning the Form

Figure 2-1 shows the entire layout of the form. Note that the label Employee Information
has been added to identify the form. For a more complex form, you can give a

label to each section of the form.

-

Employee Information

Name:

(firsD (middle) Clast)

Department number: L
Salary: $ per month

FUNCT-1: Add to employee database

FUNCT-3: Hold for approval

\-

Employee number: #### Social Security number:

~

Figure 2-1. Layout of Sample Form

VOS COBOL Forms Management System (R035) 2-7

The Forms Editor

The Forms Editor

This section describes how to use the Forms Editor to create a form. The main
steps in the process are as follows:

Invoke the Forms Editor.

Create the fields and background text.
Set the form options.

Test the form.

Save the form.

End the Forms Editor session.

ARl i

Each of these steps is explained in detail in the following subsections. An additional
subsection describes how to change video attributes within a form.

Invoking the Forms Editor

2-8

Invoke the Forms Editor with the icss_edit_form command. This command is fully
described in Chapter 4, “The Forms Editor.” For the sample application, only four
of the command arguments are of interest.

input_path
form_path
-into
-cobol

The input_path and form path arguments indicate the form definition files to be
accessed by the Forms Editor. The input_path argument specifies a file from which
an existing form definition is to be read. The form_path argument specifies the file
to which the new or modified form definition is to be written. Both the input_path
and form_path file names must end with the suffix .form, but you can omit that
suffix in the command line.

By default, the name of the form is the simple name of the output file,
form_path, without the suffix . form. For example, if the name of the output file is
%s1#d01>Sales>Jones>menu. form, the default form name is menu.

The input_path argument is required. The form_path argument is optional. If you
omit the form_path argument, the file you specify in input_path is used for both
reading and writing.

For the sample application, a new form is being created; no existing form definition
is used. However, the input_path argument is still required. Since you do not want
to modify an existing form, you must supply the name of a form definition file that
does not exist. You could give a random string of characters; but remember that
the file name you specify is also the default value for form_path. If you give the
name you want for the output file in input_path, you do not need to specify a value
for form_path. Also, this is a way of checking that the file name you choose is not

Chapter 2: Developing an FMS Application

——

- i

The Forms Editor

already in use. If a form definition file with that name exists, the Forms Editor
displays an edit buffer containing information on the existing form definition.

The -into and ~cobol arguments indicate what include files the Forms Editor is
to generate when it writes the form definition. The language arguments, such as
-cobol, indicate for which languages the Forms Editor is to generate field-IDs files.
If you specify —into, then the Forms Editor also creates a field-values file for each
programming language you specify. For more information on these include files,
see Chapter 4, “The Forms Editor.”

For the sample application, the name of the new form will be employee_info. The
application program that invokes the form will be written in VOS COBOL and will
require a field-values file. Assume that the current directory does not currently
contain a file named employee_info.form. The following command invokes the Forms

Editor:
jcss_edit_form employee_info =into -cobol

When you issue this command, the Forms Editor is invoked. It searches for a file
named employee_info.form in the current directory, but does not find it. It then
displays an empty edit buffer and puts you at edit request level.

Creating Fields and Background Text

When the Forms Editor first displays the edit buffer, the cursor is in the upper
left-hand corner of the buffer. You can move the cursor and type background
text in the same way that you would in the Word Processing Editor. For more
information, see “Direct Edit Requests” in Chapter 4, “The Forms Editor.”

For example, to put the title Employee Information in the middle of the fourth line,
do the following:

1. Move the cursor down three lines by pressing the down-arrow key, (D), three times.
2. Move the cursor to the right by pressing the key five times.
3. Type the heading Employee Information.

Next, move the cursor down three more lines. Position to the beginning of the line
by issuing the @070 request. Type a space character, and then type the label of
the first field, Name:. Note that you must leave the first character position of each

line blank.

Type another space character after the label. The cursor is now positioned to where
the first field will begin. Note that you must leave a space character immediately
to the left of each field.

To add a field in the current cursor location, issue the Add/modify field request.

"This is a Forms Editor menu request. To issue a menu request, you first press the

MEND) key. The Forms Editor then displays a screen of requests. Each request

VOS COBOL Forms Management System (R035) 29

The Forms Editor

2-10

has a letter associated with it. Find the request you want to issue, and type the
associated letter. The letter for the Add/modify field request is F. You can issue the
request by typing an uppercase or lowercase F while the request menu is displayed.
The Add/modify field request is commonly called the F request.

When you issue the F request, the Forms Editor displays a screen in which

you can enter information about the field you are defining. In this example, the
screen will appear as follows:

f . " Field Options: \

FIELD NAME name
POSITION 7, 8

ARRAY LAYOUT T, ROW SPACING COLUMN SPACING 1
LENGTH - T -

FIELD TYPE input

DISABLE no

REQUIRED no

DISAPPEARING no

IN FIELD-VALUES yes

SHIFT, DCS = none field-values sequence 0
INITIAL

HELP

" Displaytype Options *°

DISPLAYTYPE NAME

PICTURE
VALUE RESTRICTION none VALIDATE
INTENSITY high underiine not inverse
non blinking not blanked
JUSTIFICATION TRIM BLANKS yes CHAR SET any
AUTO TAB no BANK TELLER DECIMAL no INDEXED CYCLE LIST no
TRAP ON FIELD EXIT no TRAP ON FIELD ENTRY no
\\\EORCE INSERT MODE no FORCE OVERLAY MODE no A’//

Note that the Forms Editor is itself displaying an FMS form. For complete
information on the F form, see Chapter 4, “The Forms Editor.”

The Forms Editor derives the initial value of FIELD NAME from the background
text that appears to the left of the field. In the current example, this field name
is not appropriate. The form being created has three name fields: first name,
middle initial, and last name. The field currently being defined is for the first
name. Therefore, change the value to first_name. This change does not change
the background text or the form’s appearance.

The Forms Editor derives the POSITION values from the current cursor location. In
the current example, the cursor was located at row 7, column 8. If you change

Chapter 2: Developing an FMS Application

~

o

The Forms Editor

these values, the location of the field changes. In this example, the values do not
need to be changed.

All other values displayed in the F form are default values. You can change
the characteristics of the field by changing these values.

Before submitting the F form, you must indicate the length of the field you
are defining. You can do this in either of two ways: you can specify a value for the
LENGTH field option, or you can specify a value for the PICTURE display-type option.
For the first_name field, specify 24 for LENGTH.

Recall that first_name is a required field. To enforce this, set the REQUIRED field to
yes. The REQUIRED field is a cycle field. To change the value, position to the field
and press the key.

It is a good practice to provide a help message for every input field in a form. The
user can display the help message to get information to aid in filling in the field.
To set a help message for the first_name field, position to the HELP field and type
the following message:

Enter the employee's first name.

When you have set all the information appropriately, submit the F form by
pressing the key. Rather than returning you to the edit buffer, the Forms
Editor redisplays the F form that you have just filled in. The following message
appears at the bottom of the screen:

Pata type information has changed.

Two new fields appear to the right of the FIELD TYPE field. The new fields are
labeled coBoL. The first field contains the value display-2 and the second field
contains the value pic x(48). These fields indicate the data type to be used in the
field-values file for the variable associated with the first_name field. The Forms
Editor derives the default data type from the length of the field and the field picture
(if any). In this example, the default COBOL data type is pic x(48) display-2.
For information on how the Forms Editor derives data types, see Chapter 4, “The
Forms Editor.” You can change the data type by cycling the first data-type field
and by overwriting the extent value in the second data-type field. In the current
example, use the data type derived by the Forms Editor.

VOS COBOL Forms Management System (R035)

2-11

The Forms Editor

2-12

The screen should now appear as follows:

f - '’ Field Options \

FIELD NAME first_name

POSITION 7, 8

ARRAY LAYOUT T, ROW SPACING COLUMN SPACING 1
LENGTH T2 -

FIELD TYPE input COROL display-2 pic x(48)

DISABLE no

REQUIRED yes

DISAPPEARING no

IN FIELD-VALUES yes

SHIFT, DCS = none field-values sequence 0
INITIAL

HELP Enter the employee's first name.

" Displaytype Options *

DISPLAYTYPE NAME

PICTURE
VALUE RESTRICTION none VALIDATE
INTENSITY high underline not inverse
non blinking not blanked
JUSTIFICATION TRIM BLANKS yes CHAR SET any
AUTO TAB no BANK TELLER DECIMAL no INDEXED CYCLE LIST no
TRAP ON FIELD EXIT no TRAP ON FIELD ENTRY no
Q)RCE INSERT MODE no FORCE OVERLAY MODE no j

Resubmit the F form by again pressing the key. This time, the submission
should succeed. The Forms Editor returns you to the edit buffer. A row of 24 block
characters now appears in the buffer to hold the place of the first_name field. The
cursor is immediately to the left of the block characters.

If you want to change the values you specified in the F form, leave the cursor
positioned immediately to the left of the field (or move it back to there) and reissue
the F request. The same form is redisplayed with the values you specified.
You can then modify any value you wish and resubmit the F form.

When you have finished with the first_name field, move the cursor to the right by
pressing the & key. Note that the cursor jumps from the beginning of the field

to the end of the field. Press the & key again, and the cursor jumps two more
positions to the right. This is the first position in which you can create a new field in
the current row. Recall that each field must be preceded and followed by a space.

Create the middle_initial field at the current location. To do this, you must issue
the F request and again fill in the form displayed by the Forms Editor. In this
case, the FIELD NAME field is initially blank because no background text immediately
precedes the field. Type middle_initial into the FIELD NAME field.

Chapter 2: Developing an FMS Application

The Forms Editor

To establish the length of the field, you can set the LENGTH field to 1, or you can set
the PICTURE option to U. The picture U restricts the field to a single uppercase letter.
For information on field pictures, see Chapter 9, “Field Pictures and Filtering.”

Do not change the setting of the REQUIRED field. The middle initial is not required
information.

Set the HELP field to the following:
Enter the employee's middle initial (if any).

As an added convenience to the user, cycle the AUTO TAB field to yes. This means
that as soon as the user enters a value that fills the middle_initial field, the cursor
moves automatically to the next field. The user does not have to manually move the
cursor. This option is useful if the field value has a known length and the user can
be expected to normally move immediately to the next field after completing this
field. For the middle_initial field, the length of the value (if given) is always one
character, and the user will normally want to fill in the last name field immediately
after the middle initial.

If you were to set the AUTO TAB field to yes for a field that accepts values of different
lengths, the behavior of the field might seem inconsistent to the user. If the user
types a value that fills in the entire field, the cursor automatically moves to the
next field, but in other cases, the cursor does not move automatically. In these
cases, it is usually best not to use the AUTO TAB feature.

When you first submit the F form for the middle_initial field, the form is
redisplayed with the data-type fields added. The default data type is pic x(2) display-2.
You do not need to change this type. Resubmit the form to return to the edit
buffer. The middle_initial field is represented by a single block character.

Move the cursor eight positions to the right of the middle_initial field, and create
the last_name field. Within the F form, set the values as follows:

FIELD NAME LENGTH REQUIRED AUTO TAB
Last_name 24 yes no

Also, compose an appropriate help message.

When you submit the form, the Forms Editor redisplays the form with the data-type
fields indicating the pic x(48) display-2 type. You do not need to change this
value. Resubmit the form.

Next, move to the line below the name fields, and type in the following background
text directly below the corresponding fields. Refer to Figure 2-1 for the exact
location.

(first) (middle) (last)

VOS COBOL Forms Management System (R035) 2-13

The Forms Editor

2-14

Move down three more lines and position the cursor to the left of the screen. Type
a space character, and then type the background label for the next field: Employee
Number:. Type a space character, and then issue the F request.

Unlike all the preceding fields, the employee_number field is output-only. Recall that
the employee number will be generated by the application and displayed to the
user. Therefore, cycle the FIELD TYPE field to output only. Fill in the rest of the

F options as follows:

FIELD NAME LENGTH REQUIRED AUTO TAB PICTURE
employee_number 6 no no 222229

The picture 2zzzz9 limits each character in the field to a digit. The field characters
represented by z picture characters will be suppressed if they are leading zeros.
This means, for example, that the value 32 will appear in the field as 32, rather
than as 000032. The single 9 character ensures that the value zero is represented as
0, rather than as a blank field. For information on pictures, see Chapter 9, “Field
Pictures and Filtering.”

When you first submit the F form, not only do the data-type fields appear,
but several of the display-type field values change. The following message appears
at the bottom of the screen:

The modes have changed (according to the rules for default modes).

The INTENSITY field changes from high to low, and the value underline changes to

no underline. These are the default values for output-only fields. These values appear
when you define an output-only field without changing the standard defaults. You
could change the values back to the previous setting (or to any other setting) if you
wish. For the current example, leave the values set to the defaults for output-only
fields.

The data type derived by the Forms Editor for the employee_number field is

pic x(12) display-2. However, since the field value is strictly numeric, it is better to
store it in a numeric variable. Therefore, cycle the first data-type field to comp=5,
and delete the value 12 from the second data-type field. This changes the field
data type to comp-5. Resubmit the form to return to the edit buffer.

The remaining fields in the form are all input fields. Type the background text for
the social_security_number field and create that field. Refer to Figure 2-1 for the
appropriate layout. Within the F form, enter the following values:

FIELD NAME LENGTH REQUIRED AUTO TAB PICTURE
social_security_number 11 yes yes 999-99-9999

Compose an appropriate help message for the field.

Chapter 2: Developing an FMS Application

o

The Forms Editor

Accept the data type derived by the Forms Editor. Resubmit the form to return to
the edit buffer.

Move down three more lines, and type the background text for the department_number
field. Type a space and issue the F request. The department_number field differs
from other fields in that it is a cycle field. This means that the allowed values for
the field are restricted to a specific list of values. Rather than typing a value in the
field, the user cycles to the correct value using the €YCLE), CYCLEBACK), and arrow keys.

Within the F form enter the following values:

FIELD NAME LENGTH REQUIRED AUTO TAB PICTURE
department_number 3 no no 999

In addition, cycle the VALUE RESTRICTION display-type option to cycle. This establishes
that department_number is a cycle field.

Also, compose an appropriate help message.

When you submit the F form, not only do the data-type fields appear, but
the value of the underline mode changes to no underline. The following message
appears at the bottom of the screen:

The modes have changed (according to the rules for default modes).

By default, cycle fields are not underlined. If you want the field to be underlined,
you can change the mode value before resubmitting the form. For the current
example, accept both the default modes and the data type derived by the Forms
Editor.

VOS COBOL Forms Management System (R035) 2-15

The Forms Editor

When you submit the F form for the second time, rather than returning you
to the edit buffer, the Forms Editor displays a form in which you can enter cycle
values. This form appears as follows:

Enter a list of cycle values. \

~

Lo o~ O W B N e D

o]

10
"M
12
13
1%
15
16
17
18

= Y

You can enter up to 20 cycle values for the field. Each cycle value is three characters
wide because you specified 3 as the length of the field. The allowable values for
the department_number field are 010, 020, 030, and 040. Remember, however, that
the department_number field is not required. To allow the user to omit this field,
include a blank value in the cycle list.

The first value in the cycle list is the default initial output value for this field. You
can override this default by specifying a different value in the INITIAL field of the
F form. You can also override it from within the application program. For
the current example, the field should be initially blank. Therefore, leave the first
value in the cycle list blank, and put the other department_number values in fields 2
through 5 of the cycle-list form. Blank fields at the end of this form are ignored,
so in this example, the cycle list contains five values.

After typing the values, press to submit the cycle-list form. The Forms Editor
returns you to the edit buffer. If you subsequently wish to alter the cycle list,
position to the department_number field and issue the F request. The Forms
Editor displays the F form. When you submit that form, the Forms Editor
displays the cycle-list form again with the values you specified previously. You can
then update the list and resubmit the form to return to the edit buffer.

2-16 Chapter 2: Developing an FMS Application

R

The Forms Editor

Move the cursor down three more lines in the edit buffer, and type the label that
precedes the salary field as in Figure 2-1. Note that the label includes a dollar
sign ($) to clarify the expected field value. Type a space after the dollar sign, and
issue the F request. The initial value for FIELD NAME is salary_$. Change this
value to salary. Set the other values in the F form as follows:

FIELD NAME LENGTH REQUIRED AUTO TAB PICTURE
salary 9 no no 2z,229.99

Also, provide an appropriate help message.

Submit the form. The data type derived by the Forms Editor is pic x(18) display-2.
Because the value of salary is a number that might be used in arithmetic operations,
it is more efficient to store it as numeric data. Therefore, cycle the first data-type
field to comp-6 and change the second data-type field to pic s9(7)v9(2). This
establishes pic s9(7)v9(2) comp—6 as the data type of the field.

After resubmitting the F form and returning to the edit buffer, type the
background text per month after the field. This further clarifies the value the user
should type in the field. Note that you must leave a space between the end of the
field and the background text.

Type the rest of the form background text as shown in Figure 2-1. This additional
text indicates the meaning of function keys to the user.

Note: You might find that the form is too long to fit in the edit window.
However, if you try to move beyond the last line of the window, the
displayed text scrolls up and you can complete the form. If you then
move the cursor up beyond the beginning of the edit window, the
top part of the form is again displayed. The final form must fit on
the terminal screen on which it is displayed, but the edit window is
shorter than the screen. You can check the size of the form by using
the X request, Show exact form, as described later in this section.
You can also use the N request, En/disable line number mode, to
display line numbers in the edit buffer. The N request is discussed
in Chapter 4, “The Forms Editor.”

This completes the definition of fields and background text for the form. The next
step is to set some general form attributes.

VOS COBOL Forms Management System (R033) 2-17

The Forms Editor

Setting the Form Options

This subsection describes how to set some general attributes and options for the

form.

The Set/modify form options Form. Issue the S request, Set/modify form options.
When you issue this request, the Forms Editor displays the following form.

PREFIX

//’— == Form Options —— for employee_info

MASKKEYS no
PRODUCE INTO yes

BASIC no

COROL. yes

FORTRAN no STRINGS yes
PASCAL no

PLA no

C no

VALIDATE and report errors
WIBE CURSGR no

MESSAGE

BANK TELLER DECIMAL no (default)
decimal is period
CURRENCY SYMBOL $
INITIAL DISPLAY clear
ALTERABLE BY ACCEPT yes
BEEP no
TIME OUT (sec) -1

+ (171024ths)
CHECK 3270 MODEL no
VERTICAL SCROLL TRAP no

~

CURSOR FIELD

INDEX 1

ERROR MESSAGE FIELD

BACKGROUND MODE
INTENSITY: Low

REQ FIELD MODE TOGGLES

INTENSITY TOGGLE: same intensity

not inverse
not blanked

no underline
non blinking

toggle inverse
same blanking

same underlining
same blinking

J

The s form is described fully in Chapter 4, “The Forms Editor.”

The cursor appears initially in the MASKKEYS field.

Note that the form name, employee_info, appears at the top of the form. This is the
form name derived by the Forms Editor based on the name of the output file. You
can position to the form name and change its value. For the sample application,

leave the default form name.

The values of the PRODUCE INTO and COBOL fields are yes because you specified the

~into and -cobol options on the command line. The other language fields are
initialized to no because you did not specify the corresponding command-line

options. As discussed earlier in this chapter, these options determine what include

files are created when you save the form. You can override the command-line

2-18 Chapter 2: Developing an FMS Application

The Forms Editor

options by changing these values in the s form. For the sample application,
leave these fields as they are.

You can position to the PREFIX field and type a prefix for the form. The prefix you
specify is applied to field-ID names in the field-IDs file. If an application uses
more than one form, you should specify a unique prefix for each form to ensure
that no two fields have the same field-ID name. Since the sample application uses
only one form, a prefix is not necessary.

Because the form uses function keys, you must cycle the MASKKEYS field to yes. If
MASKKEYS is yes, then when you submit the s form, the Forms Editor displays
another form in which you can specify what function keys to enable.

Leave the other fields in the s form set to the default values. For information
on these fields, see Chapter 4, “The Forms Editor.”

Make sure the value of MASKKEYS is yes and submit the s form. Because
MASKKEYS is set to yes, the Forms Editor displays the MASKKEYS form.

The MASKKEYS Form. The following is the MASKKEYS form displayed by the Forms
Editor.

Define Key Mask

1T 2 3 4 5 6 7 8 9 101 12 13 14 15 16

B B B B B B B B B B B B B B B B

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
B B B B B B B B B B B B B B B B
E <= Yenter', B <= "beep” and € <=> Yeancel”

. _/

This form allows you to associate an action with each of the 32 VOS generic
function keys.

Most terminal types map specific terminal keys to some (but not all) of the generic
function keys. For example, the standard VOS v102 terminal type maps the first
generic function key to the sequence (. The user issues this sequence by

VOS COBOL Forms Management System (R035) 2-19

The Forms Editor

holding down the key and pressing (). The first 19 generic function keys
have similar mappings in the v102 terminal type. For information on key mappings
for a specific terminal, ask your system administrator, or refer to the terminal type
definition file in the VOS Communications Software: Defining a Terminal Tjpe (R096).

The MASKKEYS form contains a cycle field for each of the 32 generic function keys.
The value for each field indicates what the Forms Processor should do if the user
issues a key sequence associated with that generic function key from within the
form. The meanings are as follows:

E Submit the form.
B Beep and take no further action.
¢ Cancel the form.

The default value for each key, B, indicates that the Forms Processor should beep
and take no other action if the user issues that key from within the form. The
user remains within the form until the form is either submitted or canceled.

For the sample application, the form should be submitted if the user issues the
sequence associated with either the first or third generic function key. Therefore,
cycle the first and third fields in the form to E. Leave the other fields set to the
default value, B.

Submit the MASKKEYS form and return to the edit buffer. If you wish to modify the
values you specified in the MASKKEYS form, reissue the s request and resubmit
that form with the MASKKEYS option set to yes. The Forms Editor again displays the
MASKKEYS form. You can change any of the displayed values and resubmit the form.

You have now completed the definition of the employee_info form. Before saving
the form and ending the edit session, you should test the form as described in the
next subsection.

Testing the Form

2-20

The X request, Show exact form, allows you to see how the form you have
defined will appear to a user. Issue this request. The Forms Editor clears your
screen and displays the employee_info field that you have defined. The first_name,
Last_name and social_security_number fields appear in inverse video because they
are required. Most of the other fields contain a number indicating the field ID.

You can attempt to submit the form by pressing the key or by issuing the
sequence associated with either the first or third generic function key. However, if
you have not supplied a value for each of the required fields, the submission fails.

Fill out the form in the same way that a user might. Use a typical value for each

field. Note that you cannot position to the employee_number field because it is
output-only.

Chapter 2: Developing an FMS Application

The Forms Editor

Within each field, you can press the key to display the help text for that field.
Cycle through the possible values for the department_number field.

When you position to the salary field, the cursor is initially located at the decimal
point. Type a number of dollars, and then type a decimal point. (Do net type a
dollar sign.) When you type the decimal point, the cursor moves to the right. You
can now type a number of cents.

You can now submit the form with either the key or one of the enabled
function keys, or you can cancel the form by pressing the key.

If you submit the form, the Forms Processor checks the values you have specified.
If the form passes validation, the Forms Editor returns you to the edit buffer.
If you cancel the form, the Forms Editor returns you to the edit buffer without
validating any field values.

You might want to repeat the test of the form for various field values. Try submitting
the form with each of the enabled function keys.

As you test the form, consider the appearance of the screen. You might decide,

for example, that the descriptions of the function keys should stand out from the
rest of the background text. One way to make them stand out better is to make

them visually different than the other background text. The following subsection
describes how to change the video attributes of text within a form.

When you have finished testing the form, return from the test buffer to the normal
edit buffer by submitting or canceling the form.

Changing Video Attributes

Each field and each segment of background text in a form has certain video
characteristics. The following are the five video attributes supported by FMS:

‘e low, normal, or high intensity

o blinking or not blinking

e underlined or not underlined

e inverse video or not inverse video
o blanked or not blanked.

VOS COBOL Forms Management System (R035) 2-21

The Forms Editor

2-22

The Forms Editor allows you to change the following video attributes:

e the video attributes of each field

o the video attributes used to designate required fields
e the video attributes of all background text

e the video attributes of specific background text.

Note: Video attributes are highly device-dependent. Your terminal might
not support all of the attributes supported by FMS.

Fields. To change the video attributes of a specific field, first position to that
field and invoke the F form. Within the display-type options in that form are
five cycle fields that specify the field’s video attributes. You can position to each
of these fields and cycle to a new value. When you have set the attributes as you
want them, submit the F form to return to the edit buffer.

In the current example, leave the field video attributes set to their default values.

Required Fields. When the Forms Processor displays a form to the user, it
changes one or more video attributes of each required field that is initially null.
This indicates that the user must supply a non-null value for the field. By default,
the Forms Processor changes the inverse attribute of a field to indicate that the
field is required. That is, if the field is normally displayed in non-inverse video, it
is displayed in inverse video if it is required; if the field is normally displayed in
inverse, it is displayed in non-inverse. The other video attributes of the field are
unchanged. As soon as the user types in the field, the field reverts to its normal
attributes.

You can make the Forms Processor use any video attribute, or any combination
of video attributes, to indicate required fields. The Forms Editor s form
contains a section labeled REQ FIELD MODE TOGGLES. The five fields in this section
of the form indicate how required fields with null values are to be displayed. For
each of the five attributes, you can do the following:

e specify that the attribute be the same as it normally is for the field (for
example, same blinking)

e specify that the attribute be switched, or toggled, to the opposite of the
normal value for the field (for example, toggle blinking)

e specify a specific setting for the attribute regardless of the normal setting for
the field (for example, not blinking or blinking).

Note that the default is toggle inverse, with the other video attributes retaining
their normal settings. For the sample form, use the defaults.

Chapter 2: Developing an FMS Application

N .
N e’

The Forms Editor

General Background Text. The s form also contains five fields labeled
BACKGROUND MODE. These five fields indicate the default video attributes of all
background text in the form. The default settings are low intensity, no underline,
not inverse, not blinking, and not blanked. For the sample form, use the defaults.

Note that these switch settings control the attributes of all background text in the
form, unless you specify other attributes for specific areas of background text.

Specific Background Text. To set the attributes of a specific area of background
text, do the following:

1. Set a mark at the beginning of the region.

2. Move the cursor to the end of the region. This causes the Forms Editor to
highlight all text in the region.

3. Issue the V request, Define/modify video display modes.

In the sample application, the descriptions of the function keys will stand out if
they are in normal intensity and inverse video. Position the cursor to the F in
FUNCT-1. Press the key. Move the cursor to the right. Note that when you
first move the cursor, text after the cursor moves right. Text between the mark
and the cursor is highlighted. Move the cursor to the space following the word
database. Issue the V request, Define/modify video display modes. The Forms
Editor displays the following form.

~= Video Display Modes --

INTENSITY: same intensity same underlining same inversion
same blinking same blanking

The v form has five fields that allow you to set five video attributes of the
region of background text you have highlighted. For each attribute, you can specify
one of the following:

e that the Forms Processor display the highlighted region with the same attribute
as other background text (for example, same underlining)

e that the Forms Processor switch, or toggle, the attribute for the region
to the opposite of the default value for background text (for example,
toggle underlining)

e that the Forms Processor display the region with a specific setting for the
attribute (for example, underlined or not underlined).

VOS COBOL Forms Management System (R035) 2-23

The Forms Editor

For the current region, set the intensity field to normal intensity, and set the
inverse field to inverse. Submit the form to return to the edit buffer.

When you return to the buffer, the region that had been highlighted is no longer
highlighted, but is underlined. The Forms Editor uses underlining within the edit
buffer to indicate a region that has special video attributes. When you test the
form with the X request, the region has the attributes you specified.

Highlight the instruction.that reads FUNCT=3: Hold for approval. Issue the v
request, and set the attributes for that region. When you are done, test the form
with the X request to see if the appearance is as expected.

Saving the Form

2-24

When you are satisfied with the appearance and behavior of the form, you can
save the form definition by instructing the Forms Editor to write it to the form
definition file. The path name of the file to which the Forms Editor writes the
definition is determined when you issue the icss_edit_form command as described
earlier in this chapter.

To save the form definition, issue the W request, Write. The Forms Editor
then writes the form definition to the output file. The Forms Editor also writes
any include files that you have requested through command line options or (MEND) S
options. Finally, the Forms Editor creates a form object module. The name of the
object module is the same as the name of the form definition output file, except
that the suffix .form is replaced by the suffix .obj.

For the sample form, the Forms Editor creates the file employee_info.form
and writes the form definition to that file. It also creates the include files
employee_info_ids.incl.cobol and employee_info.incl.cobol. Finally, it creates an
object module named employee_info.obj.

When the W request finishes, the terminal bell sounds and the following
message appears at the bottom of your screen:

Include file(s) are new: You must recompile the programs which use them.

This message indicates either that the include files did not exist before or that
they did exist before, but have now been modified. When creating a new form,
you can ignore this message.

Chapter 2: Developing an FMS Application

S—

The Forms Editor

Ending the Forms Editor Session

After saving the form, you can end the Forms Editor session by issuing the Q
request, Quit.

If you have not saved the form before you issue the a request, or if you have
modified the form since you saved it, the Forms Editor writes the following message:

A buffer has been modified and not written.
The Forms Editor then writes the following prompt:
Quit anyway?

If you answer yes or y, the Forms Editor ends the session and returns you to VOS
command level. Any modifications you made since saving the form are lost. If you
give any other answer, the Forms Editor returns you to the edit buffer. You can
then save the form with the W request and reissue the a request. The
Forms Editor then ends the session and returns you to VOS command level.

At this point, the definition of the form is complete. The rest of this chapter deals
with the other half of the forms application: the program that invokes the form.

Writing the Application Program

This section discusses a VOS COBOL application program that invokes a form.
Only those parts of the program directly related to the Forms Management System
are discussed. For general information on VOS COBOL, refer to the VOS COBOL
Language Manual (R010).

The following are the major steps in a typical FMS program.

Declare the variables and constants.

Initialize the display list.

Display the form and accept input through the form.
Process the returned data.

el .

The following subsections discuss each of the steps in detail. Subsequent subsections
discuss the following topics:

e creating a program loop to process multiple input records
e reading and changing the data state of a field

e changing the display type of a field

e using forms input mode.

VOS COBOL Forms Management System (R035) 2-25

Writing the Application Program

Declaring the Variables and Constants

2-26

This subsection describes how to declare field-value variables and field-ID constants
in a VOS COBOL program.

Field-Value Variables. In order to read information from a form field, you must
associate a program variable with that field. This is also the most convenient way
to write information to a field. Such variables are called field-value variables.

The data type of the field-value variable should be the same as the data type you
specified in the coBoL field of the Forms Editor F form. You can declare a

record containing all the field-value variables for a form by using the field-values
include file produced by the Forms Editor.

The field-values include file produced for the sample form, employee_info.incl.cobol,
begins with a comment indicating when the form was last modified. The rest of
the file is as follows:

02 first_name pic x(48) display-2. // 07, 08
02 middle_initial pic x(2) display-2. // 07, 35
02 last_name pic x(48) display-2. // 07, 46
02 employee_number comp-5. /7 11, 19
02 social_security_number pic x(22) display-2. // 11, 59
02 department_number pic x(6) display-2. /! 14, 45
02 salary pic s?(7)v9(2) comp-6. /117, 33

You can use this file to declare a record of field-value variables as follows:

01 employee_fields.
copy 'employee_info.incl.cobol’.

For information on the copy statement, see the VOS COBOL Language Manual
(R010).

Field-ID Constants. To specify the cursor position within the form, or to change
the data state or display type of a field, you must reference fields by their integer
IDs. The field-IDs include file created by the Forms Editor specifies mnemonic
names for all the field-IDs of a form.

Chapter 2: Developing an FMS Application

)

e

Writing the Application Program

Like the field-values file, the field-IDs file for the sample form,
employee_info_ids.incl.cobol, begins with a comment indicating when the
form was last saved. The rest of the file is as follows:

%replace first_name_id by 1 // 07,08
%replace middle_initial_id by 2 // 07,35
%replace last_name_id by 3 // 07, 46
%replace employee_number_id by & // 11,19
%replace social_security_number_id by 5 // 11,59
%replace department_number_id by 6 // 14, 45
%replace salary_id by 7 // 17,33
%replace employee_info_max_ids by 7

You can include this file in your program as follows:

copy 'employee_info_ids.incl.cobol'.

Other Variables. The sample application also requires the following declarations:

01 beep_switch comp=4.
01 employee_form_id comp—4.
01 error_code comp=4.
01 key_code comp=t.

The purpose of each of these variables is discussed in the following subsections.

Initializing the Display List

Before you can display a form, you must load that form into your address space.
The loaded version of the form is called the display list. You invoke the Forms
Processor to load the form (and initialize the display list) by executing the
perform screen initialization statement.

The perform screen initialization statement is fully described in Chapter 16,
“Statements.”

The sample application requires only the following simple version of the statement:

perform screen initialization 'employee_info'
into (employee_fields)
with formid (employee_form_id) status (error_code).

This version of the perform screen initialization statement has four operands. The
value 'employee_info' provides input from the program to the Forms Processor.
The other operands return output from the Forms Processor. The first two
operands, 'employee_info' and the into option, are the form specifier. The value
1employee_info' specifies the predefined form that is to be loaded. The into operand,

VOS COBOL Forms Management System (R035) 2-27

Writing the Application Program

employee_fields, is a record that returns the initial value for each field. Note that
this is the same record that you declared with the field-value include file. The
formid operand, employee_form_id, returns an integer ID for the form. This form
ID is used to reference the form in subsequent statements. The status operand,
error_code, returns a VOS status code. If no error or exceptional condition occurs,
the Forms Processor returns the value 0 in error_code.

After the perform screen initialization statement, the program should check the
value of error_code. If it is not 0, the program should handle the error. For more
information, see Chapter 10, “Error Handling and Field Validation.”

Altering Initial Values

The perform screen initialization statement sets each member of the employee_fields
record to the initial value for the corresponding field. For information on how
initial field values are determined, see Chapter 3, “The Elements of FMS.”

For the sample application, most of the returned initial values are acceptable.

The one exception is the value for the employee_number field. Recall that this is an
output-only field in which the application displays a unique ID number for the
employee. Before the form is displayed, the application program must generate this
unique value. The procedure by which this is done is not directly related to the forms
software and is therefore beyond the scope of the current discussion. However, the
application must assign an appropriate value to employee_number of employee_fields
before displaying the form.

Displaying the Form

2-28

After the form is initialized, you can execute the perform screen input statement.
This statement invokes the Forms Processor to display the form and allow the user
to enter data. (Another statement, perform screen output, displays the form but
does not accept input from the user.) The perform screen’ input statement is fully
described in Chapter 16, “Statements.”

For the sample application, the perform screen input statement is as follows:
perform screen input 'employee_info' update (employee_fields)
with formid (employee_form_id) keyused (key_code)
status (error_code).
This version of the perform screen input statement has four operands. The first
operand provides input to the Forms Processor. The update option provides input
and also returns output. The other operands are output-only.

The first operand, 'employee_info', indicates which form is to be displayed.

The update operand, employee_fields, is a record. On input, this operand specifies
initial values to be displayed in the fields of the form. Recall that this record was

Chapter 2: Developing an FMS Application

—

Writing the Application Program

initialized in the perform screen initialization statement. On output, if the user

submits the form, employee_fields returns the values that appeared in the fields of
the form when it was submitted. If the user cancels the form, the values returned
in employee_fields are unchanged.

The keyused operand, key_code, returns an integer code either indicating that the
user canceled the form, or indicating which key the user pressed to submit the
form. For the sample application, the values in the following table are possible.

Value Meaning

-1 User canceled the form.
0 User submitted the form with the key.
1 User submitted the form with the sequence that maps to function-key-1.
3 User submitted the form with the sequence that maps to function—key-3.

For the complete list of values that keyused can return, see the description of the
keyused option in Chapter 5, “Form Options.”

The status operand, error_code, returns a VOS status code. You should check this
value immediately after the perform screen input statement. If the returned value
is not 0, you should handle the error appropriately. For more information, see
Chapter 10, “Error Handling and Field Validation.”

Processing the Form Data

After checking the returned status code, you can process the other data returned
to the perform screen input statement. In the sample application, you should first
check the value returned in the keyused option. The value should be interpreted as
follows:

e If the returned value is -1, the user canceled the form. No new data is
returned in the update option.

o If the returned value is 1, the user requests that the information returned in
the update option be added directly to the employee database.

e If the returned value is 3, the user requests that the information returned in
the update option be held for approval. (Add the data to a specific database
for this purpose.)

e If any other value is returned in keyused, then the appropriate action is
undefined. Handle this case as an error.

VOS COBOL Forms Management System (R035) 2-29

Writing the Application Program

You can handle these actions through a series of nested if statements. For the
current application, you can code a series of if statements as follows:

if key_code equal -1 then
go to exit-program
else if key_code equal 1 then
perform add-employee-record
else if key_code equal 3 then
perform hold-employee-record
else go to fatal-error.

Note: To make the code more readable, you could create mnemonic constants
for the expected key_code values. The following %replace statements
create such constants for the sample application.

Zreplace ADD_EMPLOYEE by 1
%replace .CANCEL by -1
%replace HOLD_EMPLOYEE by 3

The Key

The key is always activated as a submission key; it cannot be disabled. An
application should either assign a meaning to that key (and make that meaning
known to the user), or specifically code for the case where the key is used.

If the form is submitted with the key, the value 0 is returned in keyused.

2-30 Chapter 2: Developing an FMS Application

Writing the Application Program

In the sample application, the key could have been used in place of, or as
an alternative to, the first function key. Alternately, the application can effectively
disable the key. That is, if the user submits the form with the key, the
application could redisplay the form with the field values unchanged. This can be
done by enclosing the perform screen initialization statement in a loop as follows:

%replace ENTER by O

move ENTER to key_code.
move O to error_code.
move 0 to beep_switch.

perform get-input until ((key_code not equal ENTER) or
(error_code not equal 0)).

get-input.

perform screen input 'employee_info' update (employee_fields)
with formid (employee_form_id) beep (beep_switch)
keyused (key_code) status (error_code).

move 1 to beep_switch.

In this example, whenever the user submits the form with the key, the program
loops back and re-executes the perform screen input statement. This means that
the form remains on the user’s screen and the cursor is again positioned within

the form. The beep option is used to sound the terminal bell on each form display
after the first (that is, the bell sounds each time the user presses the key).

For more information on the beep option, see Chapter 5, “Form Options.”

Creating a Data-Entry Loop
The application program described thus far in this chapter accepts data for only
one employee. To enter data about a second employee, the user would have to
re-invoke the program. The application could be more useful if it allowed the user
to enter information about several employees in one invocation. You can do this
by creating a data-entry loop within the program.

The application needs to execute the perform screen initialization statement only
once. Therefore, this statement is not part of the loop.

VOS COBOL Forms Management System (R035) 2-31

Writing the Application Program

2-32

" The loop must do the following:

1. Make any necessary preparations or alterations for the fresh form display.
2. Display the form and accept input from the user.
3. Process that input.

Steps 2 and 3 are no different than before. (However, if you expect to process
many records, you might prefer to just add them to a list in step 3 and process
them fully after the data-entry loop.)

Step 1 involves the following items:

e setting (or resetting) the input fields to their initial values
® generating a unique value for the employee_number field
e positioning the cursor to the first field of the form.

Previously, the first of these items was performed by the perform screen initialization
statement. Now, however, the field values must be reset for each pass through

the loop. Executing a perform screen initialization statement for each pass is
time-consuming. Instead, you can save a copy of the initial values before entering

the loop. This implies that the application requires two sets of field-value variables:
one set to hold the initial field values and another to hold the current field values.
Therefore, in addition to the employee_fields structure, declare the following:

01 initial_fields. v
copy 'employee_info.incl.cobol’.

To put the initial field values into this record, reference it instead of the employee_info
record in the perform screen initialization statement. Within the data-entry loop,
you must copy the values from initial_fields to employee_info before each fresh
display of the form (including the first display).

After copying the initial values to employee_info, the application must set
employee_number of employee_info to a unique value for each pass through the loop.

Finally, before displaying the form, the application should position the cursor to the
first input field, first_name. On the first display of the form, this is done automatically,
unless you specify otherwise. On subsequent displays, the cursor appears in the
same field to which it was positioned when the form was last submitted, unless

you specify otherwise. You can specify the initial cursor position for each display
with the putcursor option of the perform screen input statement. You reference the
position by field ID. Recall that the field-IDs file establishes mnemonic constants
for field IDs. The constant for the first_name field is first_name_id.

Chapter 2: Developing an FMS Application

Whriting the Application Program

Figure 2-2 shows the entire application program with the data-entry loop.

01

M

01
0
01
01
01

identification division.
program-id. enter_employees.

data division.
working-storage section.

%replace ADD_EMPLOYEE
%replace CANCEL
%replace ENTER
%replace HOLD_EMPLOYEE

copy 'employee_info_ids’'.

employee_fields.
copy 'employee_info'.

initial_fields.
copy 'employee_info'.

beep_switch comp—é.
cursor_field comp—4.
employee_form_id comp—é.
error_code comp=4.
key_code comp—4.

procedure division.

Initialize the display list.

by 1
by -1
by O
by 3

perform screen initialization 'employee_info'

into (initial_fields)

with formid (employee_form_id) status (error_code).

if error_code not equal O then
go to fatal-error.

Figure 2-2. Sample Application Program

(Continued on next page)

VOS COBOL Forms Management System (R0O35)

2-33

Writing the Application Program

2-34

Figure 2-2. (Continued)

*

Execute the data entry loop.
perform input-ltoop until error_code not equal 0.

if error_code not equal O then
go to fatal-error.

go to exit-program.

input-~loop.

Copy the initial values to the employee_fields structure.
move initial_fields to employee_fields.

Move a new employee number to employee_number of employee_fields.

Set (or reset) the initial cursor position to first_name field.
move first_name_id to cursor_field.

Display the form until the user cancels or presses an
appropriate function key (reject ENTER).

move ENTER to key_code.
move O to error_code.
move O to beep_switch.

perform get-input until ((key_code not equal ENTER) or
(error_code not egual 0)).

if error_code not equal O then
go to fatal-error.

(Continued on next page)

Chapter 2: Developing an FMS Application

Writing the Applicétion Program

Figure 2-2. (Continued)

* Execute the action requested by the user.

if key_code equal CANCEL then
go to exit-program.

if key_code equal ADD_EMPLOYEE then
perform add-employee-record

else if key_code equal HOLD_EMPLOYEE then
perform hold-employee-record

else go to fatal-error.

get-input.
* Display the form.

perform screen input 'employee_info' update (employee_fields)
with beep (beep_switch) keyused (key_code)
putcursor (cursor_field) status (error_code).

move 1 to beep_switch.

add-employee-record.

hold~employee-record.

fatal-error.

* Handle error.

exit-program.

exit program.

VOS COBOL Forms Management System (R035)

Writing the Application Program

Note that a new variable, cursor_field, has been added to hold the field ID of
the first field. The paragraphs add-employee-record, hold-employee~record, and
fatal-error have been added, but left undefined. For information on error handling,
see Chapter 10, “Error Handling and Field Validation.”

Manipulating Data States

The sample application developed in this chapter does not read or alter the data
state of any field. An application can read data states to determine whether a
value has been specified for a field or whether the field value has been changed by
the user. By altering a field’s data states, you can change characteristics such as
whether the field is required or optional, or whether the field is an input field or
an output field.

For example, in the sample application, the department_number field is optional. By
reading the data state of that field after the perform screen input statement, you can
determine whether the user specified a value for that field or not. By changing the
data state value, you can dynamically change department_number to a required field.

Within a screen statement, you can reference the data state of a specific field with
the datastate field option, or you can reference the data states for all fields in
the form with the datastates form option. This section describes the use of the
datastates form option. For more information on the datastate field option, see
Chapter 6, “Field Descriptions.”

If you want to reference data states in a program, first declare a table to hold the
data-state value of each field. The table must contain one element for each field.
The field-IDs include file defines a constant, form_name_max_ids, that indicates the
number of fields in the form. Each element of the table must be a comp-4 item.
Each element holds the binary coding of several switches. The VOS include file
(master_disk)>system>include_Library>form_datastate.incl.cobol defines mnemonic
names for these switches as follows:

%replace FILTER_FOR_CONVERSION by 256
%replace DISABLE_ENTIRE_FIELD by 128
%replace NEW_DATA_IN_FIELD by 64

%replace INPUT_FIELD by 32
%replace REQUIRED_FIELD by 16
%replace MARKED_FIELD by 8

%replace FIELD_HAS_CHANGED by 4
%replace FIELD_VALUE_GIVEN by 2
Zreplace DISAPPEARING_DEFAULT by 1

The meaning of each data-state switch is described in Chapter 8, “Data States.”

2-36 Chapter 2: Developing an FMS Application

Writing the Application Program

T ”W You can include the form_datastate.incl.cobol file in the sample program and
declare a data-states table as follows:

copy 'form_datastate.incl.cobol’.

01 emp_data_state.
20 data_state_value comp-4 occurs employee_info_max_ids.

Note that this example assumes you have included the field-IDs file that contains
the definition of employee_info_max_ids.

To initialize the emp_data_state table, use the datastates form option in the
perform screen initialization statement.

perform screen initialization 'employee_info'
into (initial_fields)
) with formid (employee_form_id) datastates (emp_data_state)
' status (error_code).

You can then reference the data state of an individual field, such as department_number,
by subscripting the emp_data_state array with the field ID. :

The data state for the department_number field is stored in
data_state_value (department_number_id). If you want to check if the department_number
field is required, examine the REQUIRED_FIELD bit as follows:

S’

01 quotient comp—4.

if data_state_value (department_number_id) >= O then
compute quotient =
data_state_value (department_number_id) /
/ REQUIRED_FIELD
else compute quotient =
(data_sfate_value (department_number_id) +
REQUIRED_FIELD - 1) / REQUIRED_FIELD.

if Imod (quotient, 2) equal 1 then
/* field is required */
else /* field is not required */ .

You can also use the subroutines s$decode_flags and s$encode_flags to read and
set data-state values. For information on these routines, see the VYOS COBOL
Subroutines Manual (R019).

If you want to alter the data states within the program, the perform screen input
statement must both read from and write to the data-states array. If you include the

e

VOS COBOL Forms Management System (R035) 2-37

Writing the Application Program

2-38

datastates form option within the perform screen input statement, that statement
writes to the array for each form display. To make the perform screen input
statement read from the array, you must turn on the COPY_DATASTATE switch for the
form. To set this switch, you must use the options form option.

The options form option allows you to specify a set of 32 switches for the form.
The VOS include file (master_disk)>system>include_library>form_options.incl.cobol
defines mnemonic constants for these switches:

Zreplace SPECIAL_OPTION_30 by 1073741824 /% 2%%30 */
%replace SPECIAL_OPTION_29 by 536870912 /% 2%*29 */
Zreplace SPECIAL_OPTION_28 by 268354456 /* 2%%28 */
%replace VALIDATE_ONE_FIELD by 32768°

%replace CHECK_3270_FORMS_MODEL by 8192

%#replace COPY_DATASTATE by 256

%replace NO_COPY_UPDATE by 128

%replace VALIDATE_ERRORS_OFF by 64

%#replace WIDE_CURSOR . by 4

%replace VERTICAL_SCROLL_TRAP by 2

‘The meaning of each switch is described in the discussion of the options form
option in Chapter 5, “Form Options.”

You can include the form_options.inct.cobol file in your program and define the
set of form switches as follows:

copy ‘'form_options.incl.cobol'.
01 emp_info_options comp-5.
Before reading emp_info_options in a screen statement, you must initialize it. You
can specify values for some of the form switches within the Forms Editor. To
initialize those switches to the values specified in the Forms Editor, execute the

perform screen inquire statement after the perform screen initialization statement.

perform screen inquire with formid (employee_form_id)
options (emp_info_options) status (error_code).

Remember to check the returned status code.
You can then turn on the COPY_DATASTATE switch as follows:

add COPY_DATASTATE to emp_info_options.

Chapter 2: Developing an FMS Application

Writing the Application Program

You can then include the options and datastates form options within the
perform screen input statement as follows:

perform screen input 'employee_info' update (employee_fields)
with formid (employee_form_id) beep (beep_switch)
keyused (key_code) options (emp_info_options)
datastates (emp_data_states) putcursor (cursor_field)
status (error_code).

If the COPY_DATASTATE switch is true, the perform screen input statement reads the
data-state table and applies any changes to the fields before displaying the form.
When the user submits the form, the perform screen initialization statement
writes any changes in the data state to the table.

For example, to determine whether the user gave a value for the
department_number field, check the value of the FIELD_VALUE_GIVEN switch
within emp_data_state (department_number_id). If the switch is true, then a value
was given; if the value is false, then the field value is null.

If you want to make the department_number field required, set the value of the
REQUIRED_FIELD switch of emp_data_state (department_number_id) to true before
displaying the form.

* Check current value of required switch. If it is false,
* set it to true.

if data_state_value (department_number_id) >= O then
compute quotient =
data_state_value (department_number_id) /
REQUIRED_FIELD
else compute quotient = '
(data_state_value (department_number_id) +
REQUIRED_FIELD = 1) / REQUIRED_FIELD.

if Imod (quotient, 2) not equal 1 then
add REQUIRED_FIELD to
emp_data_state (department_number_id).

You can change this value between form displays so that a field is required in some
cases and not in others.

Changing a Display Type
In the sample application, the display type of each field is defined in the Forms
Editor and never altered. You can, however, assign a new display type to a field at
any time within the program.

VOS COBOL Forms Management System (R035) 2-39

Writing the Application Program

A display type consists of several field visual attributes (such as intensity and
justification), several field action attributes (such as traps and auto-tab), and other
attributes such as a field picture, a cycle list, or a range of valid values. For an
explanation of each display-type attribute, see Chapter 7, “Display Types.”

The visual attributes of a display type are indicated by a set of 32 switches. The
action attributes are indicated by another set of 32 switches. The VOS include file
(master_disk)>system>include_Llibrary>form_displaytype.incl.cobol defines mnemonic
constants for these switches.

Display types defined within the Forms Editor are called predefined display types.
You cannot alter predefined display types, but you can alter the display-type
characteristics of a field by defining a new display type and assigning it to the field.
For example, in the sample application you can make the employee_number field
blink by creating a blinking display type and assigning it to that field.

Eveyy display type has a unique display-type ID. Predefined display types have
negative IDs. You can define display types with IDs in the range of 11 to 16,383,
inclusive.

You can define a display type in a display-type clause of the perform screen initialization,
perform screen input, or perform screen output statement. Alternately, you can

define the display type in a display-type description clause of a perform screen update
statement. The following example defines a new display type for the employee_number

field in the sample application.

%replace LOW_BLINKING_DT by 11

copy 'form_displaytype.incl.cobol'.

perform screen update with status (error_code),
giving displaytype (LOW_BLINKING_DT)
visual (LOW_INTENSITY_VISUAL, BLINKING_VISUAL)
picture ('zzzz29').

The new display type retains the low-intensity attribute and the picture from the
predefined display type of the employee_number field while adding the blinking
attribute. Note that the perform screen update statement only defines the display
type. It does not assign it to any field.

Within a screen statement, you can reference the display type of a specific field
with the displaytype field option, or you can reference the display types for all
fields in the form with the displaytypes form option. This section describes the use
of the displaytypes form option. For more information on the displaytype field
option, see Chapter 6, “Field Descriptions.”

2-40 Chapter 2: Developing an FMS Application

Writing the Application Program

To reference the display types of a form, first declare a table of display-type IDs.
The table must contain one element for each field in the form, and each element
must be a two-byte integer. You can use the value form_name_max_ids from the
form-IDs file to define the extent of the table. The following example declares a
table of display-type IDs for the sample application.

01 emp_dt_ids.
02 dt_id_value comp-4 occurs employee_info_max_ids.

This example assumes that the employee_info_ids.incl.cobol include file is referenced
earlier in the program.

You can initialize the emp_dt_ids table to the predefined display-type IDs by
referencing it in the displaytypes form option in the perform screen initialization
statement as follows:

perform screen initialization 'employee_info'
into (initial_fields)
with formid (employee_form_id) displaytypes (emp_dt_ids)
status (error_code).

You can then change the display type of a field by changing the associated value
in the table. For example, to assign the newly defined display type LOW_BLINKING_DT
to the department_number field, execute the following assignment.

move LOW_BLINKING_DT to dt_id_value (department_number_id).

Caution: If you might want to subsequently change back to the predefined
display type, you should save the original display-type ID before
executing this assignment,

For the new display type to take effect in the form display, you must reference
the emp_dt_ids table in a displaytypes form option within the perform screen input
statement as follows:

perform screen input 'employee_info' update (employee_fields)
with formid (employee_form_id) displaytypes (emp_dt_ids)
beep (beep_switch) keyused (key_code)
putcursor (cursor_field) status (error_code).

You can assign a different display type to any field prior to subsequent form displays.
You can also alter any display types that you have defined. These changes are
automatically applied to every field that has that display type. For more information
on display types, see Chapter 7, “Display Types.”

VOS COBOL Forms Management System (R035) 2-41

Forms Input Mode

Forms Input Mode
If all input for an application (or a part of an application) is performed through a
series of form displays, consider putting the input port into forms input mode. In
this mode, all input typed by the user is assumed to be forms input.
If a port is in forms input mode and VOS receives input characters when a form
is not displayed, the characters are saved until a form is displayed. The characters
are then applied to that form. This allows the user to anticipate the next form and
begin typing input before the form is displayed.

If the port is not in forms input mode, any characters typed between form displays
are echoed to the screen (possibly corrupting a subsequent form display) and are
not applied to the next form display.

For more information on forms input mode, see Chapter 14, “Subroutines,” and

Appendix F, “Global Control Operations.” The cobol command is described in
the VOS Commands Reference Manual (R09S).

Compiling and Binding the Application
You can compile an FMS program in the same way that you would compile any
program. No special options are necessary. If you use the include file produced by
the Forms Editor, you must ensure that the directory containing those files is in
your include library search library paths. If you use include files from the system
include_Library directory, you must ensure that directory is in your search paths.
To compile the sample program, you can invoke the COBOL compiler as follows:
cobol enter_employees
The cobol command is described in the VOS Commands Reference Manual (R09S).
When you bind the application, you must ensure that the form object module
created by the Forms Editor is in your object search paths. You must also include
the following directory in your object library search paths:
(master_disk)>system>icss_fms_object_library
To bind the sample application, you can invoke the binder as follows:
bind enter_employees employee_info -search >system>icss_fms_object_Library

The bind command is described in the VYOS Commands Reference Manual (R098).

The name of the application program module created by the binder is enter_employees.pm.

2-42 Chapter 2: Developing an FMS Application

PART 2: FMS Reference Guide

e

Chapter 3:
The Elements of FMS

This chapter describes basic concepts and components of FMS screen forms. The
first section introduces the components of an FMS form. The second section
describes field characteristics. The third section describes how International
Character Set Support (ICSS) is supported for FMS applications. The final section
describes how forms interact with an application program.

Form Components
A form consists of three things.

o General form attributes
e Background text
e Fields

The general form attributes are set and modified with the Forms Editor S
request and with the form options within screen statements. For information on
the Forms Editor, see Chapter 4, “The Forms Editor.” For information on the
form options, see Chapter 5, “Form Options.”

The Forms Editor allows you to establish background text to guide the user through
the fields of the form. For more information, see Chapter 4, “The Forms Editor,”
and Chapter 2, “Developing an FMS Application.”

The fields are the most important element of most forms. The following section
describes how fields are defined and discusses some of the characteristics of fields.

Fields

You can initially define fields in the Forms Editor or in an application program.
Each field in a form is assigned a unique integer field ID.

Within the Forms Editor, you can define fields using the F request. For more
information, see Chapter 4, “The Forms Editor.”

VOS COBOL Forms Management System (R035)

Fields

Within a program, you can create, modify, and delete fields with the field description
clause of the screen statements.

Chapter 6, “Field Descriptions,” explains the field characteristics you can specify
or modify in field descriptions. Two of these characteristics are described further
in separate chapters: display types in Chapter 7, “Display Types,” and data states
in Chapter 8, “Data States.”

The remainder of this section describes some general characteristics of fields. The
subsections discuss the following topics.

e Numeric fields versus alphanumeric fields
o Input fields versus output fields (and output-only fields)

e Null field values
o Initial output values

Numeric and Alphanumeric Fields

Fields can be categorized in many ways. Two important categories are numeric and
alphanumeric fields. All fields can be classified as either numeric or alphanumeric.

A field is numeric if either of the following is true.
e The field has no associated picture, and the field data type is numeric.

e The field has an associated picture, and that picture contains only numeric
picture characters.

Table 3-1 lists the numeric picture characters.

Table 3-1. The Numeric Picture Characters

Picture
Character Meaning

9 Allow a digit or hyphen (negative sign). Do not suppress
leading zero.

Zorz Allow a digit or hyphen (negative sign). Suppress a leading
zZero.

Fix the location of the decimal point.t

’ Group digits in large numbers.t

T The meanings of the period (.) and comma (,) picture characters are
reversed if you set the decimal is comma option in the Forms Editor. The
decimal is comma option is described in Chapter 4, “The Forms Editor.”

For more information on field pictures, see Chapter 9, “Field Pictures and Filtering.”

3-2 Chapter 3: The Elements of FMS

N

A field is alphanumeric if either of the following is true.

e The field has no associated picture, and has a non-numeric field-value variable.

e The field has an associated picture containing alphanumeric picture characters.

Table 3-2 lists the alphanumeric picture characters.

Table 3-2. The Alphanumeric Picture Characters

Fields

Picture

Character Meaning

- Insert a literal hyphen.

/ Insert a literal slant.

Borb Insert a literal space.

ot Allow a decimal digit. Do not suppress a leading zero.

Aora Allow a letter or a space.

X or x Allow a letter, a digit, or a space.

Lorl Allow a letter, a digit, or a space. Convert a letter to lowercase.
uoru | Allow a letter, a digit, or a space. Convert a letter to uppercase.

T The 9 picture character can appear in both numeric and alphanumeric
pictures. A picture that contains only 9 characters is alphanumeric.

For more information on field pictures, see Chapter 9, “Field Pictures and Filtering.’

By default, numeric fields are right-justified, and alphanumeric fields are left-justified.

You can override the default field justification with the CENTER_FIELD_DATA,
RIGHT_JUSTIFY_FIELD_DATA, and LEFT_JUSTIFY_FIELD_DATA display-type visual switches.
The visual switches are described in Chapter 7, “Display Types.”

Input Fields and Output Fields

At any point in time, each field in a form is either an input field or an output field.
An input field is a field that the user can position to. Typically, the user can change
the value of an input field. An output field is a field that the user cannot position to.

The INPUT_FIELD data-state switch must be true for an input field. Setting this
switch to false changes the field to an output field.

In the Forms Editor you can define a field as input, output, or output only. If
you specify input, the Forms Editor creates an input field. If you specify either
output or output only, the*Forms Editor creates an output field. If you specify
output, an application program can change the field to an input field by setting
the INPUT_FIELD data-state switch to true. If you specify output only, an application

VOS COBOL Forms Management System (R035)

Fields

cannot change the field to an input field. The value of the INPUT_FIELD data-state
switch is ignored for output-only fields.

For information on the INPUT_FIELD data-state switch, see Chapter 8, “Data States.”
For information on the Forms Editor, see Chapter 4, “The Forms Editor.”

The default video display attributes for output fields differ from those of input
fields. For output fields, the defaults are low intensity and no underline. For
non-cycle input fields, the defaults are high intensity and underlined. For cycle
input fields, the defaults are high intensity and no underline.

Null Field Values
A field’s null value is the value displayed when the field is empty.

A field’s null value is a string of spaces the length of the field if either of the
following is true.

¢ The field does not have an associated picture.

¢ The field’s picture does not include any of the following self-insertion
characters: decimal point, slant, or hyphen.

If a field’s picture contains self-insertion characters, those characters appear in the
null value. If a numeric picture contains any 9 characters, zeros appear in those
positions of the null value.

Table 3-3 lists some field pictures and the associated null field value. Note that
digit-grouping characters never appear in the null value.

Table 3-3. Sample Field Pictures and Corresponding Null Values

Picture Null Value
none ! !
XXLLUU ! '
999999 ! !
X=X/XX t-/ 0
771.99 v .00
27,217 ! !

For information on pictures, see Chapter 9, “Field Pictures and Filtering.”

If a field is required, the form cannot be submitted if the field contains its null
value. For information on required fields, see Chapter 8, “Data States.”

3-4 Chapter 3: The Elements of FMS

Fields

A cycle field can contain its null value only if the null value is in the cycle list. For
information on cycle fields, see Chapter 7, “Display Types.”

Initial Output Values
A field’s initial output value is the value displayed in a field when the form is
first displayed by the Forms Processor (as the result of executing an accept,
perform screen input, or perform screen output statement).

The following rules determine the initial output value when screen statements are
used. The rules for the accept statement are different and are given in Appendix A,
“The accept Statement.”

1. If a field description in the perform screen input or perform screen output
statement specifies an initial field value, then that value is the initial output
value.

2. If Rule 1 does not apply, and the perform screen input or perform screen output
statement contains the update form option, and the NO_COPY_UPDATE options
switch is false for the form, then the value of the field-value variable specified
in the update option is the initial output value. You can initialize this value
in the into form option of the perform screen initialization statement. The
value stored by the into option is discussed later in this subsection. The
value can subsequently be altered if referenced in the update option of a
perform screen update statement that includes a field description specifying a
different initial value.

3. If neither Rule 1 nor 2 applies, and a field description in a perform screen update
statement between the perform screen initialization statement and the
perform screen input or perform screen output statement specifies an initial
field value, then that value is the initial output value.

4. If Rules 1 through 3 do not apply, and the form is alterable by accept, and a
field description in the perform screen initialization statement specifies an
initial field value, then that value is the initial output value.

5. If Rules 1 through 4 do not apply, and an initial field value is specified in the
F request within the Forms Editor, then that value is the initial output
value.

6. If Rules 1 through 5 do not apply, and the field is a cycle field, then the first
value in the cycle list is the initial output value.

7. If Rules 1 through 6 do not apply, then the null value for the field is the
initial output value.

VYOS COBOL Forms Management System (R035) 35

Fields

If the perform screen initialization statement includes the into form option, the)
field-value variables referenced in that option are initialized. In this case, the
following rules determine the initial value of each field.

1. If the form is alterable by accept, and the perform screen initialization
statement includes a field description that specifies an initial value for the
field, then that value is used.

2. If Rule 1 does not apply, and an initial value for the field is specified in the
F request of the Forms Editor, then that value is used.

3. If neither Rule 1 nor 2 applies, and the field is a cycle field, then the first
value in the cycle list is used.

4. If Rules 1 through 3 do not apply, then the field’s null value is used.

For more information on the into and update form options, see Chapter 5, “Form
Options.” For information on the NO_COPY_UPDATE options switch, see the description
of the options form option in Chapter 5, “Form Options.”

For information on field descriptions and the initial field option, see Chapter 6,
“Field Descriptions.”

For information on the ALTERABLE BY ACCEPT option, see the discussion of the S
Forms Editor request in Chapter 4, “The Forms Editor.” Also, for information on]
the F Forms Editor request, see Chapter 4, “The Forms Editor.”

International Character Set Support

3-6

This section describes how to provide International Character Set Support (ICSS)
within an FMS application.

VOS supports the following character sets.

e ASCII

e Latin alphabet No. 1
e Kanji

e Katakana

e Hangul

The non-ASCII character sets are called supplemental character sets. The
supplemental set that is currently in use is sometimes referred to as the right graphic
set because it is located on the right half of the internal code page (composed of
bytes in the range from 160 to 255 decimal).

Chapter 3: The Elements of FMS

International Character Set Support

Within a program, the character sets are typically referred to by integer IDs, as
follows:

Character Character
Set ID Set Name

ASCII_CHARACTER_SET
LATIN_1_CHAR_SET
KANJI_CHAR_SET
KATAKANA_CHAR_SET
HANGUL_CHAR_SET

BAAENN -0

Constants for these values are defined in the file
(master_disk)>system>include_Library>char_sets.incl.cobol.

Specifying the Character Set for. a Field

At most, each field of an FMS form can support ASCII, katakana, and one other
supplementary character set. Optionally, you can limit a field to any single character
set by using the charset display-type option. The charset option takes one operand,
a character-set ID.

You can set an initial value for the charset option for each predefined field in the
Forms Editor.

For more information on the charset option, see Chapter 7, “Display Types.”

Storing ICSS Strings

Within program variables, character-string values that contain characters from
supplemental character sets can be stored in several different formats.

Each supplemental character might be preceded by a special control character
called a single-shift character. A single-shift character indicates to which character
set the following character belongs.

Sometimes, a default character set is established for a string. Characters from
the default character set do not require a single-shift character. That is, any
supplemental character in the string that is not preceded by a single-shift is
assumed to be of the default character set. If a string contains many characters
from a specific supplemental set, omitting the single-shift characters for that set
can significantly reduce the storage size of the string.

When the Forms Processor transfers a character-string value from a field-value
variable to a field, it must correctly interpret any supplemental characters in the
string. Similarly, when the Forms Processor transfers a field value to a character-string
field-value variable, it must put the correct single-shift characters in the stored

VOS COBOL Forms Management System (R035) 3-7

International Character Set Support

value. You can use the shift and unshift field options to indicate how you want
supplemental characters translated.

The shift and unshift field options each take one operand: a character-set ID.
The shift option indicates that all supplemental characters except those of the
specified character set must be preceded by single-shifts in the field-value variable.
The unshift option indicates that the field-value variable contains no shifts and
that all supplemental characters in the string are assumed to be of the specified
character set. The Forms Processor uses the information provided by the shift or
unshift option to determine how to interpret the variable value on input to the
form and how to store the value on output from the form.

For more information on the shift and unshift field options, see Chapter 6, “Field
Descriptions.”

3270 Device Dependencies

3-8

Some FMS features behave differently under different configurations. In particular,
because the 3270 is a block-mode terminal, FMS behavior under 3270 Support is
somewhat unusual.

The following features are not fully supported on 3270 terminals.

e Traps

o Right-justified fields

® Required fields

e Cycle fields

o Field pictures

e Window fields

® NEW_DATA_IN_FIELD data-state switch

e Disappearing default _

e Blinking, underlining, and inversion attributes

Traps are not handled at all by 3270 terminals. Right justification, field pictures,
required fields, cycle fields, and window fields are partially supported. Test the
behavior of these features before using them in a 3270 application.

If you set the CHECK_3270_FORMS_MODEL options switch for a form, an error is indicated
if the form uses any critical features that are not supported by 3270 terminals.
The use of convenience features such as blinking fields and disappearing defaults
is not diagnosed as an error. For information on the options form option, see
Chapter 5, “Form Options.”

For further information on 3270 Support, see VOS Communications Software: 3270
Support and 3270 Emulation (R026).

Chapter 3: The Elements of FMS

P

Forms and the Application Program

» 3 Forms and the Application Program
This section describes how an application program interfaces with screen forms.

An application program can deal with just one form or with several forms
simultaneously. A program can have several active forms, each identified by a form
ID that is unique within the program. An active form is stored in the user heap
and can be modified or displayed by the program.

More information on using multiple active forms appears under the headings
“Initializing a Form,” “Saving a Form,” and “Discarding a Form” in the following
subsection.

The first of the following subsections describes the operations an application
~ program can execute on a form. The second subsection describes how and when
i control transfers between the application and the Forms Processor.

Operations on Forms
This subsection describes the operations you can execute on a form:

e defining the form
_ e initializing the form
) : e displaying the form (and optionally accepting user input)
‘ e modifying the form

e getting information about the form

e saving the form

e discarding the form.

Defining a Form. You can define a form either in the Forms Editor or in a

perform screen initialization statement. If possible, you should define all forms in
the Forms Editor. Defining a form within the application program is more difficult
/ and less efficient. For information on the Forms Editor, see Chapter 4, “The Forms

Editor.”

—

Within an application, you invoke a form predefined in the Forms Editor by referencing
it in the form specifier of a perform screen initialization statement. If you do not
invoke a predefined form, then the form options, field descriptions, and display-type
descriptions in the perform screen initialization statement define the form. For
more information on defining a form within the perform screen initialization
statement, see Chapter 6, “Field Descriptions.”

You can also define a form in the obsolete accept statement. For more information,
see Appendix A, “The accept Statement.”

VOS COBOL Forms Management System (R035) 39

Forms and the Application Program

3-10

Initializing a Form. You initialize a form with the perform screen initialization
statement. When you initialize a form, an internal representation of the form,
called the display list, is created.

The perform screen initialization statement can reference a predefined form,
or it can define the form. In the latter case, the perform screen initialization
statement both defines and initializes the form.

The perform screen initialization statement does not display the form.

When a form is initialized, it becomes active. It also becomes the current form for
the window in which it is initialized.

For more information on the perform screen initialization statement, see Chapter 16,

“Statements.”

You can also initialize a form with the obsolete accept statement. For more
information, see Appendix A, “The accept Statement.”

Displaying a Form. You display a form with either the perform screen input or
perform screen output statement. The perform screen input statement invokes the
Forms Processor to display the form and wait for the user to submit or cancel
the form (or for some other action to cause return to the application). The
perform screen output statement invokes the Forms Processor to display the form,
but does not accept input from the user.

Information on submitting and canceling forms and on the flow of control between
a form and an application appears later in this chapter.

A form must be initialized before it can be displayed.
You can specify which form you want to display with the formid form option in the
perform screen input Or perform screen output statement. If you omit this option,

the most recently referenced form is displayed.

For more information on the perform screen input and perform screen output
statements, see Chapter 16, “Statements.”

The obsolete accept statement can also display a form. For more information, see
Appendix A, “The accept Statement.”

Chapter 3: The Elements of FMS

e

- _//

N’

Forms and the Application Program

Modifying a Form. You can modify a form with form options, field descriptions, and
display-type descriptions in the perform screen initialization, perform screen input,
or perform screen output statement. In addition, two special screen statements

are provided exclusively for modifying an active form: perform screen update and
perform screen delete.

The perform screen update statement allows you to specify the following:

e form options to change the form’s appearance and behavior
e field descriptions to add new fields or change the attributes of existing fields
e display-type descriptions to define new display types or modify existing display

types.

The form options are described in Chapter 5, “Form Options.” Field descriptions
are described in Chapter 6, “Field Descriptions.” Display-type descriptions are
described in Chapter 7, “Display Types.”

The perform screen update statement changes the internal image of the form
(the display list), but it does not display the form. Changes you specify in a
perform screen update statement become visible to the user the next time a
perform screen input or perform screen output statement is executed.

The perform screen delete statement allows you to delete fields, display types, or
both from a display list. You can delete a display type only if no field in any active
form references it. If you delete a field, that field is absent when the form is next
displayed.

For more ixformation on the perform screen update and perform screen delete
statements, see Chapter 16, “Statements.”

Getting Information about a Form. The perform screen inquire statement returns
information about an active form. The perform screen inquire statement has the
following parts:

e form options to return general information about the form
e field descriptions to return information about specific fields
e display-type descriptions to return information about specific display types.

Many form options, field options, and display-type options that provide information
to the form in other statements return information about the form in the
perform screen inquire statement, In addition, some options are provided for use
only in the perform screen inquire statement.

For more information on form options, see Chapter 5, “Form Options.” For

information on field descriptions, see Chapter 6, “Field Descriptions.” For
information on display-type options, see Chapter 7, “Display Types.”

VOS COBOL Forms Management System (R035)

311

Forms and the Application Program

3-12

For more information on the perform screen inquire statement, see Chapter 16,
“Statements.”

Saving a Form. You can use the perform screen save statement to prevent a form
from becoming inactive.

Normally, if a form has been displayed, and another form is then displayed in place of
it in the same window, the first form becomes inactive. This means that to redisplay
the first form, you must re-initialize it with the perform screen initialization
statement. Because form initialization consumes time and resources, it is usually
better to save the form if you expect to display it again.

Saving a form with the perform screen save statement is referred to as caching the
form.

The perform screen save statement increments an internal form reference count.
The form remains active as long as its reference count remains positive.

For further information on form reference counts and form caching, see Chapter 12,
“Form Caching.”

Discarding a Form. You can discard a cached form by using the perform screen discard
statement. Discarding a form frees heap space.

The perform screen discard statement decrements the internal form reference
count. If the reference count becomes 0 or negative, the form is deactivated and
its heap space is freed.

Note that one perform screen discard statement negates exactly one perform screen save
statement.

For further information on form reference counts and form caching, see Chapter 12,
“Form Caching.”

Chapter 3: The Elements of FMS

M

Forms and the Application Program

Control Transfer between an Application and a Form

When an application program executes a perform screen input statement, the
Forms Processor is invoked to display the specified form. The Forms Processor
maintains control while the user manipulates the form. Control returns from the
Forms Processor to the program when any of the following occur.

o The user submits the form.

e The user cancels the form.

e A trap occurs.

e The time-out period for the form expires.

e The form is knocked down by another process or task.
e The form is output-only.

e Certain errors or other unusual situations occur.

Each of these cases is discussed later in this subsection. In each case, when control
returns from the Forms Processor, program execution continues with the statement
following the perform screen input statement.

Form Submission. A user can submit a form by pressing the key or by
pressing any function key designated as an entry key in the maskkeys form option.

When a form is submitted, the Forms Processor validates that each field value
conforms to the field display type. First, if the field’s display type has an associated
picture, the Forms Processor checks that the field value conforms to that picture.
Next, if the display type has a restriction on the range of valid values, the Forms
Processor checks that the field value is in that range. Finally, if the display type
has an associated validation routine, that routine is invoked to test the field value.

If no errors occur, the values in the form are converted and stored into the
program variables specified in the update form option or update field options in

the perform screen input statement. Control then returns to the application, and
execution continues with the statement following the perform screen input statement.

If a validation error does occur, control does not return to the application. Instead,
the Forms Processor redisplays the form, sounds the terminal bell, positions the
cursor to the field that failed validation, and displays an error message to the user.
The user can then either correct the error and submit the form again, or cancel
the form. Each time the user submits the form, the full validation suite for each
field is performed.

For further information on field validation and validation routines, see Chapter 10,

““Error Handling and Field Validation.” See also the descriptions of the picture

and range display-type options in Chapter 7, “Display Types.”

VOS COBOL Forms Management System (R035) 3-13

Forms and the Application Program

Form Cancellation. The user can cancel the form by pressing the key or by
pressing any function key designated as a cancel key in the maskkeys form option.

When a form is canceled, the field values in the form are not returned to the
application. No field validation is performed, and field values are not loaded into
program variables.

If the perform screen input statement includes the keyused form option, the value -1
is returned in that option when the form is canceled. For more information on the
keyused option, see Chapter 5, “Form Options.”

If the perform screen input statement does not contain the keyused option, but does
contain the status form option, the error code e$form_aborted (1453) is returned in
the status option when the user cancels the form. The statement following the
perform screen input statement should normally check the value returned by the
status option and take appropriate action. For more information on the status
option, see Chapter 5, “Form Options.”

If the perform screen input statement contains neither the keyused nor the status
option, the error condition is signaled when the user cancels the form. For information
on signaled conditions, see the description of the subroutine s$enable_condition in
VOS COBOL Subroutines Manual (R019).

Traps. A trap is a return from the form to the application caused by the user
moving the cursor. Two kinds of traps can be defined on individual fields.

e Trap on field entry
e Trap on field exit

In addition, you can define a vertical scroll trap on a form.

You can establish the individual field traps by setting the TRAP_ON_FIELD_ENTRY and
TRAP_ON_FIELD_EXIT display-type action switches. You can establish a vertical scroll
trap by setting the VERTICAL_SCROLL_TRAP switch in the options form option.

If the TRAP_ON_FIELD_ENTRY action switch is true for a field, then when the user positions
the cursor to that field, control returns to the program. If the perform screen input
statement includes the keyused form option, the value -9 is returned in that option
when a trap on field entry occurs.

If the TRAP_ON_FIELD_EXIT action switch is true for a field, then when the user moves
the cursor out of that field, control returns to the program. If the perform screen input
statement includes the keyused form option, the value -2 is returned in that option
when a trap on field exit occurs.

If the VERTICAL_SCROLL_TRAP options switch is true, then control returns to the

application whenever the user tries to move the cursor beyond the last field in the
form or before the first field in the form. (If the VERTICAL_SCROLL_TRAP switch is

3-14 Chapter 3: The Elements of FMS

Forms and the Application Program

false, and the user attempts to move beyond the last field in the form, the cursor
moves to a field at the top of the form; if the user attempts to move before the
first field in the form, the cursor moves to a field at the bottom of the form.)

When a trap occurs, field values from the form are validated and loaded into
the program variables. You can limit the fields that are validated by setting the
VALIDATE_ERRORS_OFF or VALIDATE_ONE_FIELD switch in the options form option.

When a trap occurs, control always transfers to the statement following the
perform screen input statement. Typically, the application updates the form (based
on the cursor position or field values already given) and redisplays the form.

The nextcursor form option returns the logical position for the cursor in the
redisplayed form.

For a trap on field exit or on field entry, the getcursor form option returns the
field ID of the trap field. For a vertical scroll trap, the getcursor option returns
the field ID of the field from which the cursor is being moved.

Form Time-Out Period. The form time-out period is the maximum amount of
time the Forms Processor waits for the user to submit or cancel a form. If the
user does not submit or cancel the form before the time-out period expires, the
form is automatically canceled, and the error code e$timeout (1081) is returned in
the status form option. Form cancellation is discussed earlier in this section.

The timeout form option specifies the time-out period for a form. For a predefined
form, you can specify an initial value for this option in the s Forms Editor

request. If you do not specify a time-out period, or if you specify a period of -1, the
Forms Processor waits indefinitely for the user to either submit or cancel the form.

For further information on the timeout and status options, see Chapter 5, “Form

Options.” For information on the s Forms Editor request, see Chapter 4,
“The Forms Editor.”

VOS COBOL Forms Management System (R035) 3-15

Forms and the Application Program

3-16

Form Knocked Down. A form can be knocked down by another process or another
task that needs to use the same output device. A process or task knocks down a
form by calling the subroutine s$control with opcode 240, KNOCK_DOWN_FORM_OPCODE,
or opcode 264, KNOCK_DOWN_FORM_OK_OPCODE.

For further information on these operations, see Appendix F, “Global Control
Operations.”

If a form is knocked down, field values are returned without any kind of validation.
The value -6 is returned in the keyused form option. If you want the application
to behave appropriately when the form is knocked down, you should specifically
check for this value.

For information on the keyused option, see Chapter 5, “Form Options.”

Note: Knocking down a form requires cooperation between the process or
task that displays the form and the process or task that knocks it down.
This operation is most common in tasking applications.

Output-Only Forms. An output-only form is a form with no input fields and no
keys masked. If you attempt to display such a form with the perform screen input
statement, the form is not displayed; instead, control returns immediately to the
application. If the perform screen input statement includes the keyused option, the
value -1 is returned in that option. If the statement includes the status option,
the error code e$form_needs_input_field (3918) is returned in that option.

You should use the perform screen output statement to display output-only forms.

Other Situations. Other situations that can cause premature return from a
perform screen input or perform screen output statement include device, channel,
and network problems. For more information on these cases, see Chapter 10,
“Error Handling and Field Validation.”

Chapter 3: The Elements of FMS

e

Chapter 4:
The Forms Editor

This chapter describes the Forms Editor used to create, modify, and save FMS
forms. The following topics are discussed:

e overview of the Forms Editor

the icss_edit_form command that invokes the Forms Editor
definitions of Forms Editor terms

entering background text

the Forms Editor edit requests

the files produced by the Forms Editor.

Overview of the Forms Editor
The Forms Editor is an interactive screen editor, similar to the Word Processing
Editor. The text you enter and modify is displayed on your terminal screen so that
you always see an up-to-date version of the text. When you change the text, the
Forms Editor immediately updates the screen, showing the revised version.

The Forms Editor lets you build a full-scale mode] of a form on your terminal
screen. The Forms Editor enables you to do the following:

e define input and output fields, choosing from a variety of action and display
options for each field

e type background text to provide instructions and field titles

e move fields in the form and alter their characteristics

e view and test the latest version of a form during the editing session.
A form constructed with the Forms Editor is called a predefined form because it
is defined before the application is run. Because some form options and field

definitions in the screen statements can override those in the predefined form, you
can modify the form in an application.

VOS COBOL Forms Management System (R035)

Overview of the Forms Editor

The Form Design Process

The design process can be generalized as follows:
e Set the form options using the S (Set/modify form options) Forms Editor request.
e Type in background text.
e Insert form fields using the F (Add/modify field) Forms Editor request.
e Test the form using the X (Show exact form) Forms Editor request.

e Write the form definition, object module, and include files using the W
(write) Forms Editor request.

The Two Forms Editors

VOS supports two versions of the Forms Editor. The command edit_form invokes
the older version. This version is supported for compatibility with existing forms
applications. The command icss_edit_form invokes the newer version. This version
supports many new features, including International Character Set Support (ICSS).
You should use this version for the development of new forms applications.

The command interface to the two Forms Editors is almost identical. The
jess_edit_form command has one additional argument: -fortran_strings. Other
visible differences occur in the forms displayed by the F and s menu edit
requests. The new Forms Editor also supports a new menu option: Insert Lliteral
(MENY) L). The forms shown in this chapter are for the icss_edit_form command.
The forms for the old Forms Editor are shown in Appendix B, “The edit_form
Command.”

The form object modules produced by the two Forms Editors are not compatible.
The form definition file produced by the new Forms Editor contains options that
are unknown to the old Forms Editor. Therefore, a form that has been created or
modified with the new Forms Editor cannot be modified by the old Forms Editor.
A form created with the old Forms Editor can be modified by the new Forms
Editor, after which it can no longer be modified by the old Forms Editor.

You can create a new-style form object module from an old-style form definition
file without modifying the form definition file by issuing the following command:

icss_edit_form old_form_name -no_edit

Because this form of the icss_edit_form command does not modify the form
definition file, you can still edit that file with the old Forms Editor.

4-2 Chapter 4: The Forms Editor

N

Overview of the Forms Editor

The icss_edit_form command is described in the next section. For more information
on the edit_form command and the old Forms Editor, see Appendix B, “The
edit_form Command.”

VOS COBOL Forms Management System (R035) 4-3

The icss_edit_form Command

The icss_edit_form Command

Purpose

The command icss_edit_form invokes the Forms Editor.

CRT Form

jess_edit forwm *‘\\\

input_path:
form_path:
~into:
-prefix:

-~ ibrary:
~gciite
=packup:
~force_write:
~basics
=cobol:
~fortran:
~fortran_strings:
~pascal:
-olt:

~C1

\\\:produceusymtab:

no
no
accept_field_definitions
yes

yes

no

no

no

no

yes

no

no

no
pes)

4-4 Chapter 4: The Forms Editor

The icss_edit_form Command

ﬂ Lineal Form

/
icss_edit_form input_path
[form_path]
[—into]
[-prefix]
[—Library field_defim'tions_directory_name]
[—no_edit]
[—no_backup]
[-force_write :I
[-basi c]
' \ [-coboL :I
' [-fortr‘an]

[—no_fortran_stri ngs]

[-pascal]
[-ot1]
[]

[-no_produce_symtab]

S’

Arguments
p input_path Required

The path name of an input form definition file. If the file exists, its name
must have the suffix .form. You can omit the suffix when specifying the name
in the command. If the file does not exist, the Forms Editor behaves as if
the file is empty.

VOS COBOL Forms Management System (R035) 4-5

The icss_edit_form Command

4-6

p form_path

An option specifying the file to which the edited form definition is to be
written. If form_path does not have the suffix .form, the command adds that
suffix. If you do not specify a value for form_path, it defaults to a file in the
current directory with the same name as the file specified in the input_path
option. If the specified file does not exist when you write out the form, the
Forms Editor creates it.

The form being edited is given the simple name of the output form definition
file without the suffix .form. A form name should not exceed 15 characters;
otherwise, the names of some automatically generated include files may
exceed 32 characters and be truncated.

Note: Do not give a form the same name as the program that displays
it — both a form and its related program require uniquely named
object modules.

An option to create a field-values file for each programming language
specified by the language options. The Forms Editor names the field-values
file (an include file) form_name.incl.language and puts the file in the current
directory. You can override this argument with the Forms Editor s
request, described later in this chapter.

» -prefix

An option to add a prefix to each field-identifier name in any field-IDs file
that the Forms Editor generates. The default prefix is the name of the form
followed by an underline. You can specify a different prefix with the S
request in the Forms Editor. You can override this argument with the Forms
Editor s request, described later in this chapter.

If you choose the -prefix option, the Forms Editor also adds the prefix to
each variable name in any VOS BASIC or VOS FORTRAN field-values file
that it generates. The field-values files for other languages are not affected.

p -library field_definitions_directory_name

An option to specify a directory for storing and retrieving field definition files.
The Forms Editor searches the directory for field definition files when you use
the R request and writes field definition files to the directory when you
use the E request. If you do not specify this option, the default value is
a subdirectory of your current directory named accept_field_definitions. If
the directory you specify, either directly or by default, does not exist when
you issue a E request, the Forms Editor creates the directory.

Chapter 4: The Forms Editor

The icss_edit_form Command

p -no_edit CYCLE

An option to create new language include files and a new object module
from an existing form definition file without editing the form. If you specify
the ~force_write option with this option, the Forms Editor also writes a new
form definition file. By choosing the -no_edit option, you can run the Forms
Editor in either a batch process or a started process. If you do not use the
-no_edit argument, the Forms Editor reads the form definition file, displays
a representation of the form, and lets you edit it.

p» -no_backup

An option to specify that no backup file is created for the input_path file. If
you do not use the -no_backup argument, and the input_path and form_path
files are in the same directory, the Forms Editor renames the old file and
gives it the name of the input_path file (including its suffix .form), with the
suffix .backup added. The backup file is created each time you write out the
form with the W request; it replaces a previous backup file of the same
name if one exists.

p -force_write CYCLE]

An option to write a new form definition file (form_name.form) when you invoke
jcss_edit_form with the -no_edit option. If you do not use the -force_write
argument, -no_edit produces the object module and specified include files
only. Use —force_write with -no_edit to generate a .backup form file or to
rename your form without re-editing it.

Note: Do not use the command rename to rename a form; object and include
files must be renamed, and prefixes in include files need to be reassigned.

p -basic

An option to create VOS BASIC versions of the field-IDs file and the
field-values file. If you do not use the -basic argument, the Forms Editor does
not create VOS BASIC versions of the files. You can override this argument
with the Forms Editor s request, described later in this chapter.

p -cobol

An option to create VOS COBOL versions of the field-IDs file and the
field-values file. If you do not use the —cobol argument, the Forms Editor does
not create VOS COBOL versions of the files. You can override this argument
with the Forms Editor s request, described later in this chapter.

VOS COBOL Forms Management System (R035) 4-7

The icss_edit_form Command

>

-fortran CYCLE

An option to create VOS FORTRAN versions of the field-IDs file and the
field-values file. If you do not use the -fortran argument, the Forms Editor
does not create VOS FORTRAN versions of the files. You can override
this argument with the Forms Editor s request, described later in this
chapter.

-no_fortran_strings CYCLE

An option to not use the string data type in FORTRAN include files. The
string type is a VOS FORTRAN extension that might not be compatible
with other FORTRAN compilers. You can override this argument with the
Forms Editor s request, described later in this chapter.

~pascal

An option to create VOS Pascal versions of the field-IDs file and the
field-values file. If you do not use the ~pascal argument, the Forms Editor does
not create VOS Pascal versions of the files. You can override this argument
with the Forms Editor s request, described later in this chapter.

-pt1 CYCLE

An option to create VOS PL/I versions of the field-IDs file and the field-values
file. If you do not use the -pl1 argument, the Forms Editor does not create
VOS PL/I versions of the files. You can override this argument with the
Forms Editor s request, described later in this chapter.

-c

An option to create VOS C versions of the field-IDs file and the field-values
file. If you do not use the -c argument, the Forms Editor does not create
VOS C versions of the files. You can override this argument with the Forms
Editor s request, described later in this chapter.

-no_produce_symtab CYCLE

An option to produce a form object module without a runtime symbol table.
Because the forms runtime symbol table is small, use the -no_produce_symtab
option only if there is a shortage of virtual memory.

Explanation

4-8

The icss_edit_form command invokes the Forms Editor. After you issue the
jcss_edit_form command, your process is at edit request level. At edit request level,
you can enter text, or you can make a number of edit requests. These requests are
described later in this chapter under the heading “Edit Requests.”

Chapter 4: The Forms Editor

The icss_edit_form Command

If you give the path name of an existing input form definition file when you
issue the jcss_edit_form command, the Forms Editor reads the file and displays a
representation of the defined form.

The Forms Editor trims trailing spaces from all values you enter into the editor’s
request forms and from all lines you enter into the form you are constructing. It
also deletes all empty lines from the bottom of the form. When you write the
form definition file and the other files described previously, the files reflect these
deletions.

If you choose the -into option when you invoke the Forms Editor, but do not

specify any of the languages at that time, you can specify languages using the

Forms Editor requests. If you do not specify any of the language options in the
command line or in the Forms Editor, the -into option is ignored.

If you choose the -into option, the -prefix option or any of the language options
(-basic, -cobol, ~fortran, =no_fortran_strings, -pascal, -pl1, —c) for a particular
form, these options are saved in the form definition file, and you do not have to
respecify them with the Forms Editor requests or in future invocations of the
Forms Editor on that form.

Access Requirements

You need read access to a form definition file to read it; you need write access to
a form definition file, include file, or object module to write it.

VOS COBOL Forms Management System (R035) 49

Definitions

Definitions

This section defines some terms used in describing the forms edit requests.

p buffer

A temporary storage area where the form you are editing is stored. This is
sometimes referred to as the work area.

» current line

The line that currently contains the cursor. See Figure 4-1.
» current word

The word to which the cursor is currently positioned. See Table 4-1 and
Figure 4-1.

Table 4-1. Explanation of Current Word

" Cursor Current
Position Word Description
Bctive active The cursor is on the first character of a word.
The entire word is the current word.
actfve act The cursor is in a word, but not at the first
character.
The characters to the left of the cursor
comprise the current word.
active]] active The cursor is not in a word.
The word to the left of the cursor is the
current word.

4-10 Chapter 4: The Forms Editor

Definitions

(Cursor
¥

This is a Liﬁe of text in a form. <— Current Line —

i

Current Word

~

form_path_name
overlay.

Figure 4-1. Forms Editor Terminology

P screen

The full video display area of your terminal.

Note: Your form should not exceed the size of the screen on which it will be
displayed.

Entering Text

Letters, digits, or other visible ASCII characters typed at edit request level are
entered at the current position. This allows you to put background text in a form.
Background text provides instructions, help, and field labels for the user. Like
fields, background text cannot occupy the first character position of any line in the

form. The first character position of each line is reserved for attribute information.

To enter characters from supplemental character sets in the background text, use
the insert Lliteral ((MEND) L) request described later in this chapter.

VOS COBOL Forms Management System (R035)

4-11

Entering Text

You can enter characters in two modes: insert and overlay. In insert mode, the
Forms Editor enters the character you type at the current position and moves all
subsequent characters on the current line to the right. In overlay mode, the Forms
Editor replaces the character at the current position with the new typed character.
In both cases, after entering a character, the cursor and the current position move
one character position to the right. Figure 4-2 shows how insert and overlay modes
work.

inﬁrt ovﬂrLay

TYPE s TYPE e
i nsEr't oveﬂl.ay
Insert Mode Overlay Mode

PD0002
Figure 4-2. Insert Mode and Overlay Mode

You can switch from one mode to the other with the En/disable overlay mode edit
request ((MEND) 0) or with the key, if one is defined for your terminal

type.

The following keys also enter characters or change the way characters are entered.
e The inserts or overlays a space at the current position.

e The key simultaneously with another key puts in the uppercase version
of the letter or the upper character shown on the key.

e The key in its down (or locked) position causes all typed letters to
appear in uppercase. In its up (or unlocked) position it has no effect. It has
no effect when typing the non-letter keys.

Edit Requests

4-12

Edit requests can modify the text or the text display. For example, there are edit
requests for changing the current position and for moving or deleting characters,
words, or blocks of text.

You can issue some requests by using function keys on the keyboard. To issue other
requests, you must select an item from a menu of requests. The key displays
the request menu. Unless you specify otherwise (with the A request), the
Forms Editor displays the menu each time you press the key. In all cases, you
make a menu request by typing a letter after pressing the key. The uppercase
and lowercase versions of a letter are equivalent when making menu requests.

Chapter 4: The Forms Editor

N Y

Edit Requests

The edit requests that you make directly are explained in the next subsection. The
requests that you choose from the request menu are described in the subsequent
subsection.

Press the key for an online explanation of any Forms Editor request.

Direct Edit Requests

This subsection lists the direct edit requests available within the Forms Editor. The
specific key mappings for each request depend on your terminal type. If you are not
sure of the key mappings for your terminal, check with your system administrator.
For information on defining a terminal type, see VYOS Communications Software:

* Defining a Terminal Type (R096).

=
Moves the cursor left one column in the current line.
@
Moves the cursor down one line. The current column does not change.
@®
Moves the cursor up one line. The current column does not change.
=
Moves the cursor right one column in the current line.
Moves the cursor back one position and deletes the character at the new
cursor position. In insert mode, characters on the current line to the right of
the new cursor position move left one column. In overlay mode, the Forms
Editor puts a space at the new cursor position.
Moves the cursor to the right to the next column position established by text
on a preceding line. This action is sometimes referred to as a fab relative.
BLANKS) (&

Moves the cursor left to the position immediately following the nearest visible
character on the left. If no characters appear to the left of the cursor on the
current line, this request moves the cursor to the first column of the line.

VOS COBOL Forms Management System (R035) 4-13

Edit

4-14

Requests

» BLANKYS

Moves the cursor to the nearest visible character right of the cursor in the
current line. If no characters appear to the right of the cursor on the current
line, this request moves the cursor to the end of the line.

» (CANGEL

Cancels a multi-key request if you have not completed the sequence; cancels
highlighting if you have enabled highlighting with a request; or cancels
a request that prompts you for input.

P (CHANGE CASE)(])

Changes the letter at the cursor to lowercase. The cursor moves right one
column.

P (CHANGE CASE)(D)

Changes the letter at the cursor to uppercase. The cursor moves right one
column.

>
Enables column highlighting, if you have enabled highlighting with a

request. The mark and the cursor define the corners of a box, called a column.

Pressing the key highlights the column.

» (YCLE

Displays the next choice from a predefined set of values in a cycle field. Press
the key again to change the value. You can use this request within a
cycle field in the forms displayed by the (MENU) F, (MEND) s, (MEND) v, and X
requests. These requests are described later in this chapter.

p (CYCLE BAC

Displays the preceding choice from a predefined set of values in a cycle field.
You can use this request within a cycle field in the forms displayed by the
(MEND) F, (MEND) S, (MEND) v, and X requests. These requests are described
later in this chapter.

» (EC
Deletes the character at the cursor. In insert mode, characters to the right
of the cursor move left one column, but the cursor does not move. In overlay
mode, the Forms Editor puts a space at the cursor and the cursor moves
right one column.
Chapter 4: The Forms Editor

R

Edit Requests

p (DELETE

Deletes any highlighted text and pushes it onto the saved-text stack. In
insert mode, characters right of the marked region move back to replace
the deleted characters, and the cursor is set to the beginning of the moved
text. In overlay mode, the Forms Editor replaces the deleted characters with
spaces, and the cursor does not move.

> CEEBE

Deletes (insert mode) or replaces with spaces (overlay mode) all the characters
in the current line to the left of the cursor. In insert mode, any text to the
right of the cursor shifts left, and the cursor moves to the first column. In
overlay mode, the cursor and any text to the right of the cursor do not move.

» PEEDE

Deletes all the characters in the current line to the right of the cursor. The
cursor does not move.

p (DELETE) GLANKS

Deletes any space characters to the left, to the right, and at the cursor position
in the current line. The cursor moves left to the nearest visible character, or
to the beginning of the line, and the remaining characters move left to the
new cursor position. This has the effect of joining a word after the cursor
with a word before the cursor. works the same way in both
insert and overlay modes.

» (DELET) GETLRN)

Deletes any blank lines above or below the current position.

» (ELET) WORD)

Deletes (insert mode) or replaces with spaces (overlay mode) the current
word.

» (DISCARD)

Discards the block of text on the top of the saved-text stack. This operation
is sometimes referred to as “popping the stack.”

VOS COBOL Forms Management System (R035) 4-15

Edit Requests

4-16

>
Submits a form you have completed for any of the following menu edit
requests:
Add/modify field F
Insert window field 1
Set/modify form options S
Update fields u
Define/modify video display modes v
Show exact form X

When the form is submitted, the current buffer is redisplayed and the Forms
Editor returns to edit request level.

G0 10) (@)

Moves the cursor to the first column in the current line.

GoT10) (1)

Moves the cursor forward to the first column of the last line in the current
region,

Go10(d

Moves the cursor backward to the first column in the first line of the current
region.

G105

Moves the cursor to the end of the current line.

GO TO){COLUMN

Prompts you for a column number, and moves the cursor to that column in
the current line.

GO 10

Prompts you for a line number, and moves the cursor to the first column in
that line.

GO TO)@NE) (1) (or (GOTO) (CINE) RETURN))

Moves the cursor to the first column of the last line in the text buffer.

G010 CN (D

Moves the cursor to the first column of the first line in the text buffer.

Chapter 4: The Forms Editor

Edit Requests

(G0 T0) {ONE) RETURN) (or GOTOCND (D))

Moves the cursor to the first column of the last line in the text buffer.

Exchanges the cursor and the mark, highlighting the text between.

Lists the Forms Editor requests, then displays explanatory text for the Forms
Editor request you specify.

INSERT DEFAUL

Displays the default response to the current prompt. You can issue this
request only when prompted for a response by a preceding request.

INSERT SAVED

Inserts or overlays, at the cursor position, the block of text on the top of the
saved-text stack.

{INSERT SAVED)(DISCARD)

Inserts or overlays, at the cursor position, the block of text on the top of the
saved-text stack, and then deletes it from the text and discards it from the
saved-text stack. This allows you to examine and discard text from the top of
the stack until you find the text you want. (This request is equivalent to the
following sequence: (NSERT SAVED), (GO T0)(MARK), (OELETE), (DISCARD), (DISCARD).)

LINE FEED

Inserts a new line at the cursor without moving the cursor.

MARK]

Sets the mark at the cursor position. To highlight a region, set the mark at
one end of the region, and move the cursor to the other end of the region.

MENU

Displays the request menu, enabling you to make a menu request.

REDISPLA

Displays the current region again, thus removing any discrepancies between
the actual text in an edit buffer and the displayed text.

VOS COBOL Forms Management System (R035) 4-17

Edit Requests

» (REDISPLAY) (REDISPLAY)

This request sequence is the first remedy you should try for unusual terminal
behavior. You can also use it to return the edit buffer to its current state
after the terminal’s power supply has been disconnected.

» (RETURN

Inserts a new line at the current position. If you give the request from
within the response to a prompt, the request issues the response.

> (SAVE

Places the highlighted text onto the saved-text stack. This operation is also
referred to as pushing text onto the stack.

> RO

Scrolls the displayed text left one screen column. The cursor moves left one
screen column, maintaining its location in the text.

> SR (D

Scrolls the displayed text down one line. The cursor moves down one screen
line, maintaining its location in the text.

» ECROD (D

Scrolls the displayed text up one screen line. The cursor moves up one screen
line, maintaining its location in the text.

> GO

Scrolls the displayed text right one screen column. The cursor moves right
one screen column, maintaining its location in the text.

» (SCROLOGHI (D)

Scrolls the displayed text down five screen lines. The cursor moves down five
screen lines, maintaining its location in the text.

» ECROLDEHAE©

Scrolls the displayed text left 20 screen columns. The cursor moves left
20 screen columns, maintaining its location in the text.

4-18 Chapter 4: The Forms Editor

Edit Requests

» (ECROLD GHI (1)

Scrolls the displayed text up five screen lines. The cursor moves up five screen
lines, maintaining its location in the text.

» (CROLD G &

Scrolls the displayed text right 20 screen columns. The cursor moves right
20 screen columns, maintaining its location in the text.

> GG (or W)

Moves the cursor left to the first letter of the current word or, when the cursor
is at the beginning of the current word, to the first letter of the previous
word. If you issue this request when the cursor is at or to the left of the
beginning of the first word on the line, the cursor moves to the first column
of the current line.

» G

Changes the cursor position to the region below the current region. The last
line of the current region is included in the new region, redisplayed as the
top line. After this request is executed, the new region becomes the current
region.

» GHD(®)

Changes the cursor position to the region above the current region. The first
line of the current region is included in the new region, redisplayed as the
last line. After this request is executed, the new region becomes the current
region.

> GG (or WD)

Moves the cursor right, to the first letter of the word following the current
word. If you issue this request when the cursor is to the right of the beginning
of the first word on the line, the cursor moves to the last column of the
current line.

> STATUS
Displays the Forms Editor status message on the system status line.

p (STATUS

Displays the system message on the system status line.

>
Moves the cursor to the next tab stop to the right.

VOS COBOL Forms Management System (R035) 4-19

Edit Requests

> @R (or EDE)

Moves the cursor left, to the first letter of the current word or, when the
cursor is at the beginning of the current word, to the first letter of the
previous word. If you issue this request when the cursor is at or to the left
of the beginning of the first word on the line, the cursor moves to the first
column of the current line.

> @WRE (or DR

Moves the cursor right, to the first letter of the next word. If you issue this
request when the cursor is to the right of the beginning of the first word on
the line, the cursor moves to the last column of the current line.

» (WORD) (CHANGE CASE) ()

Changes the first letter of the current word to uppercase.

» (WORD) CHANGE CASE) (1)

Changes all letters of the current word to lowercase.

» (WORD) CHANGE CASE) (1)

Changes all letters of the current word to uppercase.

4-20 Chapter 4: The Forms Editor

Edit Requests

‘ Menu Edit Requests

To issue a menu edit request, first press the key to display the request menu.
Then type a letter corresponding to one of the options listed.

When you press the key, the Forms Editor displays the form shown in

Figure 4-3.
Quit \

Q
R Read field
S Set/modify form options
U Update fields
Global replace V Define/modify video display modes
W
X
z

ﬁ En/disable request menu display
Delete field

Enter field
Add/modify field

Insert window field Write
Show exact form
Set bell column

D
E
F
G
I
L Insert literal
N En/disable Line number mode
\0 En/disable overlay mode

Figure 4-3. The Forms Editor Request Menu

Note: Some terminal types might not define a key. For these terminals,
each of the menu edit requests can be implemented as a direct edit
request. Check with your system administrator. (See also Appendix D,
“Terminal Requirements.”)

—’

This section gives an explanation of each menu request. For an online explanation
of any Forms Editor request, press the key while in the Forms Editor.

> A En/disable request menu display

This request allows you to stop the Forms Editor from displaying the menu
whenever the key is pressed. Normally, the menu is displayed whenever
you press the key. After you have learned the contents of the menu,
you might find this unnecessary. The keystrokes you use to issue menu edit
requests do not change, but execution is slightly faster if the menu is not
displayed. You can re-enable menu display by issuing the A request again.

> D Delete field

This request removes a previously defined field from the form. When you
issue this request, the Forms Editor prompts you for the name of the field to
delete.

VOS COBOL Forms Management System (R035) 4-21

Edit Reguests

» (MENU) E Enter field

p (VENU

This request stores a copy of a field definition so that it can be used for
another field in the same form or in another form. When you issue the E
request, the cursor must be positioned to a field. The Forms Editor writes
the field definition for the field to a file in the field-definitions directory.
You specify the field-definitions directory with the -library option in the
icss_edit_form command. The default directory is a subdirectory of your
current directory named accept_field_definitions. The Forms Editor creates
the directory, if necessary. The name of the file is the name of the field. If
you specify a prefix for the form, that prefix is not applied to the file name.
The cursor blinks once to indicate that the field definition has been saved.
The form is not modified.

E allows you to build a library of field definitions.

To retrieve a previously saved field definition, use the R request.

F Add/modify field

This request allows you to define or modify a field at the current position.
The Forms Editor displays a form in which you enter information about the
field and its display type. The Forms Editor shows the initial or default value
for each option; when modifying an existing field, the values are the current
values for that field. The form is described later in this chapter under the
heading “The Add/modify field Request.”

» G Global replace

This request replaces every instance of a specified character string in the
text with another. The Forms Editor prompts you for the two strings. The
replacement is performed on all background text between the current position
and the end of the edit buffer.

» (MENU) I Insert window field

This request allows you to define or modify a window field. The Forms Editor
displays a form in which you enter the window options. The Forms Editor
shows the initial or default values for the options. If you are modifying an
existing window field, the values shown are the current values for that field.
The form is described later in this chapter under the heading “The Insert
window field Request.”

4-22 Chapter 4: The Forms Editor

Edit Requests

p (MENU) L Insert literal

This request allows you to insert characters from any supplemental character
set into the form’s background text. After issuing this request, you can type
either the hexadecimal rank of a character from the default character set, or
the hexadecimal rank of a single-shift character followed by the hexadecimal
rank of a supplemental character. The specified character is inserted at the
current position in the form.

For information on supplemental characters, see the subsection “International
Character Set Support” in Chapter 3, “The Elements of FMS.”

| 2 N En/disable Lline number mode

This request allows you to display line numbers at the left edge of the edit
buffer. These numbers have no effect on the form. If you reissue the N
request, the line numbers disappear.

> 0 En/disable overlay mode

This request allows you to change the edit mode from overlay to insert or from
insert to overlay. These modes are explained under the heading “Entering
Text” earlier in this chapter. At the start of each editing session, the Forms
Editor is in overlay mode.

p> (MENU) @ aQuit

This request ends the editing session and returns you to command level. The
Forms Editor produces no new files when a is executed; you must issue
the W request first to save your work. The Forms Editor prompts you
before quitting if you have made changes without writing the form.

> R Read field

This request creates a field at the current position, based on a previously
saved field definition. The Forms Editor prompts you for the name of a field
definition file. You can give either the path name of a field definition file or a
simple file name. If you give a simple file name, the Forms Editor looks for
that file in the field-definitions directory you specify with the -Library option
of the icss_edit_form command. (The default directory is a subdirectory of
your current directory named accept_field_definitions.)

Field definition files are created by the E request.
The R request reads the field definition file you specify, and displays
the information in the same form displayed by the F option. This form

is described later in this chapter under the heading, “The Add/modify field
Request.” You can modify the information before submitting the form.

VOS COBOL Forms Management System (R035) 4-23

Edit Requests

4-24

When you submit the form, a field is created with the options and attributes
specified.

» S Set/modify form options

This request allows you to set or modify the form options. The Forms Editor
displays a form in which you enter the options. This form shows the initial
or default values for the options. If you are modifying an existing form, the
values shown are the current values for that form. The form displayed by this
request is explained later in this chapter under the heading “The Set/modify
form options Request.”

> U Update fields

This request allows'you to update one or more fields in the form. The
Forms Editor prompts for the name of a field. The name you specify can
be a star name. To update all fields, supply an asterisk for the field name.
An asterisk by itself matches any name. The Forms Editor displays a form
for each field that matches the star name and lets you modify the field
options and display-type options. The form is the same one displayed by the
Add/modify field menu request. This form is described later in this chapter
under the heading “The Add/modify field Request.”

> V Define/modify video display modes

This request allows you to define or redefine the video attributes of a field or
a region of background text. To specify a field, move the cursor to the field
and issue the Vv request. To specify a region of background text, first
move the cursor to the beginning or end of the region and issue the edit
request to enable highlighting. Next, move the cursor to the other end of the
region. You can further restrict the region by issuing the edit request.
When the region you wish to modify is highlighted, issue the V request.

When you issue the vV request, the Forms Editor displays a form in which
you choose the video attributes for the field or region. The Forms Editor
shows the initial or default values for the attributes. If you are modifying the
video attributes of an existing field, the default values are the current values
for that field’s display type.

The form and the video attributes you can set are explained later in this
chapter under the heading “The Define/modify video display modes Request.”

Chapter 4: The Forms Editor

Edit Requests

p (END) W Write

This request writes the following files:

e the form definition file form_name.form

e the form object module form_name.obj

e any field-values or field-IDs files requested in icss_edit_form options
or with the S request.

Note: The Forms Editor deletes trailing spaces from all values you enter into
the editor’s request forms, and from all lines entered in the form you
are constructing. It also deletes all empty lines from the bottom of the
form. The files written by the Forms Editor reflect these deletions.

p (MENU) X Show exact form

This request displays the form as it is currently defined. The Forms Editor
clears the screen before constructing the form. While you are in the edit
buffer, the Forms Editor fills each defined field with block graphic characters
and underlines each region of the form for which you have defined modes.
However, in response to this request, the Forms Editor shows the form as the
Forms Processor will display it when the program runs. (One exception: field
IDs appear in the fields during a X display, but not at execution time.)

You can test the form’s layout by entering values in the fields as a terminal
user would. Return to edit request level by pressing the key, the
key, or any of the function keys defined for the form, just as a user would
submit or cancel the form. The editing/function keys available while the form
is displayed are the same ones available for a user when the form is displayed
at execution time.

> Z Set bell column

This request sets the column at which the Forms Editor sounds the terminal
bell. The Forms Editor prompts you for a column number. If you type in or
beyond that column during the editing session, the Forms Editor sounds the
terminal bell.

The Add/modify field Request

This section describes in detail the F request, Add/modify field. Use the
F request to create or modify any non-window field.

Note: Use the I request to create or modify a window field.

VOS COBOL Forms Management System (R035) 4-25

The Add/modify field Request

When you issue the F request, the Forms Editor displays a form containing
field options and display-type options. The form is shown in Figure 4-4. Complete
and submit this form to define or redefine a field and place it in your form. The
display-type options you specify describe the predefined display type for the field.

Fields defined in the Forms Editor can be modified in a screen statement. See
Chapter 6, “Field Descriptions” for further information. For information on changing
the display-type of a field within an application, see Chapter 7, “Display Types.”

The F request can be used either to modify an existing field or to create a
new field. These two uses are described in the following subsections.

Modifying Existing Fields

To modify an existing field within the Forms Editor, move the cursor to the
field, and issue the F request. The Forms Editor displays a field options
and display-type options form for you to update; the form contains the current
definition of the field and its display type.

Caution: Using this request on an existing window field converts the window
to an array field.

Creating New Fields

4-26

When you use the F request to create a field, you must first specify the
position of the field. You can do this in two ways. You can highlight the character
positions in the form you want the field to occupy, or you can just position the
cursor to the location where you want the field to start.

If you create a field that does not have a position within the form, or that would
overlap another field, that field is uncommitted. Uncommitted fields are discussed
later in this subsection.

Remember that every field or array element in a form must be preceded and
followed by a space character on the same line of the form. However, one field’s
trailing space can double as the next field’s leading space. The Forms Processor
requires these blank positions to control the attributes of the fields and background
regions on some types of terminals. A field can never begin in column 1 of a form.

You can create two types of fields with the F request: simple fields and array
fields. The following subsections describe how to define these two types of fields.

Simple Fields. A simple field is a single non-array field. A simple field takes up
one or more columns on one row of a form.

If you want to specify the position of a simple field by highlighting a region of
text, first position to one end of the region. Set a mark with the edit request,

Chapter 4: The Forms Editor

The Add/modify field Request

and move the cursor to the other end of the region. The highlighted characters
appear in reverse video. (Note that if you highlight a region of empty space, the
highlighting is not visible, as it is when characters are highlighted.) The entire
region must be on a single line. Next, issue the F request. The field-options
form appears with the POSITION and LENGTH values already filled in. You can alter
the field by changing the displayed values.

Alternatively, you can specify the field position by just moving the cursor to the
location where you want the field to start and issuing the F request. In this
case, you must supply a LENGTH value in the field-options form.

Array Fields. You can use highlighting to mark the location of an array field only
if the array elements are arranged in a single column in the form, with no blank
lines between the elements. First, position to one corner of the array and issue the
edit request. Next, position to the opposite (diagonal) corner of the array
and issue the edit request. The region where the array will be located is
now highlighted. Issue the F request. The Forms Editor derives the field’s
LENGTH, POSITION, and ARRAY LAYOUT values from the highlighted region.

Alternatively, you can specify the location of the array by placing the cursor at the
top left corner of the array before typing F. In this case, the field’s POSITION
value appears in the field-options form, but its LENGTH and ARRAY LAYOUT values do
not. Note that you must use this method for multi-column arrays or for arrays that
use blank lines to separate elements.

See the array field option in Chapter 6, “Field Descriptions,” for more information
on array fields.

Uncommitted Fields. If you define a field without specifying a position (by deleting
the values in the POSITION option of the F form), that field is uncommitted.
Similarly, if you define a field that partially or completely overlaps an existing field,
the Forms Editor rejects the field’s position value, leaving the field uncommitted.

An uncommitted field is associated with the form but does not appear in it.
However, the Forms Editor assigns a field ID and any other field options you specify
to the field and writes the field to the form definition file. The DISABLE_ENTIRE_FIELD
options form option switch is initially true for an uncommitted field. A screen
statement can commit the field by specifying a location with the position field
option and setting the DISABLE_ENTIRE_FIELD switch to false. You can also commit a
field by choosing a position for it during any editing session.

Within the Forms Editor, you must use the U request to reference an
uncommitted field.

VOS COBOL Forms Management System (R0335) 4-27

The Add/modify field Request

The Add/modify field Form

4-28

CELD NAME

When you invoke the F option, the form in Figure 4-4 appears on your screen.

Note: Some fields of the F form appear only when certain form options
are enabled. See the description of each field for information.

S T SRS

 Field Options = ;

POSITION 1 2

ARRAY LAYOUT T, ROW SPACING COLUMN SPACING 1
LENGTH T T easic $=

FIELD TYPE input COBOL display

DISABLE no FORTRAN character*

REGUIRED no PASCAL char array

DISAPPEARING no PL/1 char / pic

IN FIELD-VALUES yes ¢ char [J

SHIFT, DCS = none field~values sequence 0
INITIAL

HELP

" Displaytype Options

DISPLAYTYPE NAME

PICTURE

VALUE RESTRICTION none
INTENSITY high
JUSTIFICATION

AUTO TAR no

TRAP ON FIELD EXIT no

\\\f?RCE INSERT MODE no

VALIDATE

underline

non blinking

TRIM BLANKS yes
BANK TELLER DECIMAL no
TRAP ON FIELD ENTRY no
FORCE QVERLAY MODE no

not inverse

not blanked

CHAR SET

INDEXED CYCLE LIST

any
no

_/

Chapter 4: The Forms Editor

Figure 4-4. Form Displayed by the F (Add/modify field) Request

The following subsection describes the field options part of Figure 4-4. The
subsequent subsection describes the display-type options part.

)

The Field Options

The Add/modify field Request

Table 4-2 lists the field options from the F field options form and their
screen statement counterparts. The field option descriptions in Chapter 6, “Field
Descriptions,” contain more detailed information on these options.

Table 4-2. The Forms Editor Field Options

Forms Editor

Field Description

ARRAY LAYOUT ’
ROW SPACING » COLUMN SPACING 1

array (number_rows, number_columns)

DISABLE (no, yes)

datastate (data_state_switches)

DISAPPEARING (no, yes)

datastate (data_state_switches)

) FIELD NAME

field (field_id)

FIELD TYPE (input, output, output only)

update (field_value_variable)
datastate (data_state_switches)

field-values sequence N/A
HELP help (help_message)
IN FIELD-VALUES (yes, no) N/A
INITIAL initial (initial_value)
or initial_value_string
) > LENGTH length (field_length)
POSITION ’ position (line, columm

REQUIRED (no, yes)

datastate (data_state_switches)

SHIFT, DuS = (none, latin 1, kanji,
katakana, hangul)T

shift (character_set_id)

UNSHIFT, RGS = (none, latin 1, kanji,
katakana, hangul)¥

unshift (character_set_id)

;) BASIC ($=, $<=, #=, %4=31, #=15, =15, =6) N/A

COBOL (display, display-2, comp-6, comp-5, N/A
comp~4, comp—2, comp-1, comp-3)

FORTRAN (character¥, stringx, integer#4, N/A
integer*2, real*8, real*4)

PASCAL (char array, string, integer, N/A
~32K..32K, real)

PL/1 (char / pic, char var, fixed dec, N/A
fixed(31), fixed(15), float(53),
float(24))

C (char [J, char_var'ng, int, short, N/A

double, float, uns'd short, unsigned)

t The title of the SHIFT, DCs = field is itself a two-value cycle field. The second

value is UNSHIFT, RGS =.

VOS COBOL Forms Management System (R035) 4-29

The

4-30

Add/modify field Request

The remainder of this subsection describes the field options that appear in the

F form. They are described in the same order in which they appear in the
form, except that the language data-type fields are grouped together and described
at the end.

Where appropriate, cycle list values are written to the right of the option name.
The first value in a cycle list is the default value.

B FIELD NAME

This option specifies the name of the field. Every field must have a name.
When you create a new field, the Forms Editor derives an initial field name
from any background text to the right of the field. When you are modifying
an existing field, the Forms Editor initially displays the current name of the
field. You can rename an existing field by changing the name displayed in
the FIELD NAME option.

p POSITION

This option specifies the starting row and column of the field. If you are
modifying an existing field, the field’s current starting row and column are
displayed. If you are defining a new field and have highlighted the region that
the field will fill, the initial values are the row and column of the start of
the field. If you are defining a new field and have not highlighted a region,
the initial values are the current cursor position. You can change the initial
values. (Remember that a field can never begin in column 1, because an
empty space is required at the beginning and end of every form field.)

p ARRAY LAYOUT

This option allows you to create an array field by specifying the number
of rows and columns in the array. (The LENGTH option in the F form
specifies the length of each element of the array.) See the description of the
array field option in Chapter 6, “Field Descriptions.”

P ROW SPACING

This option specifies the number of blank rows between rows of elements in
an array field. The default is 0.

p COLUMN SPACING

This option specifies the number of blank columns between columns of
elements in an array field. The default is 1. The value must be at least 1,
because a blank space is required before and after every form field or array
element.

Chapter 4: The Forms Editor

The Add/modify field Request

j P LENGTH

This option specifies the length of the field, in character positions. For an
array field, the LENGTH option specifies the length of each array element. You
must specify a positive value for this option.

p FIELD TYPE (CYCLE} input, output, output only

This option specifies whether the user can position to and type in the field.
The user can position to (and usually type in) input fields; the user cannot

position to output or output-only fields. For any of the three field types, the
Forms Editor declares a data-structure component that corresponds to the

form field in any field-values file it creates.

The default video attributes of input fields differ from that of output-only

) fields. If you select the type output, the field is given the attributes of an
output-only field, but the application program can change the field to an
input field by setting the INPUT_FIELD data-state switch to true. Output-only
fields cannot be changed to input fields by the application.

The distinction between the field types output and output only is relevant
only if a field-values file is generated.

For more information, see the description of the INPUT_FIELD switch in
) Chapter 8, “Data States.” See also the information under the heading “Input
’ Fields and Output Fields” in Chapter 3, “The Elements of FMS.”

p DISABLE (CYCLE) no, yes

This option allows you to initially disable the entire field. If you set DISABLE
to yes, the DISABLE_ENTIRE_FIELD data-state switch is set to true.

For more information, see the description of the DISABLE_ENTIRE_FIELD switch
in Chapter 8, “Data States.”

P REQUIRED {CYCLE) no, yes

This option allows you to specify that a value must be given for the field
before the form is submitted. If you specify yes, the REQUIRED_FIELD data-state
switch is initially true for the field. For more information, see the description
of the REQUIRED_FIELD switch in Chapter 8, “Data States.”

By default, required fields appear in reverse video in a form. You can change
the default appearance of required fields by using the S (Set/modify
form options) request.

VOS COBOL Forms Management System (R035) 4-31

The Add/modify field Request

4-32

SHIFT, DCS =
UNSHIFT, RGS =

p DISAPPEARING no, yes

This option allows you to specify that the output field value disappears when
the user begins typing in the field. If you specify yes, the DISAPPEARING_DEFAULT
data-state switch is initially true for the field.

For further information, see the description of the DISAPPEARING_DEFAULT
switch in Chapter 8, “Data States.”

p IN FIELD-VALUES yes, no

This option allows you to specify whether a variable declaration for the field
should be included in the field-values file. (An entry for the field is included
in any field-IDs file regardless of the value of this option.)

One use for this option is to effectively create an area of background text
that can have its visual attributes changed by a program. To do this, create
an output field with the IN FIELD-VALUES option set to yes, and set its initial
value to the appropriate background text.

} CYCLE) none, Latin 1, kanji, katakana, hangul

The title for this option is itself a cycle field. The title SHIFT, DCS = enables
the shift field option with the character set specified. In this case, the field
value is the default character set for the field (the only character set that is
not to be shifted). The title UNSHIFT, RGS = enables the unshift field option.
In this case, the field value specifies the only right graphic set that the field
supports.

This option does not appear in the Field Options form until either the INTO
form option or the -into command line option has been specified along with
one or more language options.

The shift and unshift field options are described in Chapter 6, “Field
Descriptions.”

Chapter 4: The Forms Editor

The Add/modify field Request

p field-values seguence

This option allows you to specify the position of the field’s corresponding
declaration in any field-values include files that the Forms Editor constructs
for the form. The default value for the sequence number is zero.

The field-values sequence option does not appear in the F form until
either the INTO form option or the -into command-line option has been
specified along with one or more language options.

The Forms Editor determines the order of the declarations in the field-values
file by sorting the fields by the specified sequence number: lowest numbers
sort first. If two or more fields have the same field-values sequence number
(as in the default case, where all fields have a sequence number of zero),
then the Forms Editor sorts those fields according to the cursor order of the
fields (left-to-right in the first row, then left-to-right in the second row, etc.)
The sequence number can be any positive or negative integer.

p INITIAL

This option allows you to specify an initial output value for the field. See
Chapter 3, “The Elements of FMS,” for information on initial output values.

This option provides a one-line message or instruction for the user. The
message appears on the bottom line of the screen when the user moves the
cursor into the field and presses the key.

P BASIC COBOL FORTRAN PASCAL PL/1 C (See Table 4-3)

These options allow you to select the data type of the variable or data-structure
member that will hold the field’s value. Table 4-3 shows the possible data
types for each language.

The Forms Editor only enables and displays the fields of the programming
languages for which it is constructing field-values include files. The language
data-type fields appear in the F form only if you have selected one
or more languages with either the command-line options or the s
form options, and specified either the -into command-line option or set
the PRODUCE INTO field of the s form to yes. Furthermore, no language
data-type field appears in the form until a LENGTH value is supplied.

VOS COBOL Forms Management System (R035) 4-33

The Add/modify field Request

4-34

When constructing include files for more than one language, the data types selected
must be consistent. If you do not specify any data type for the field, the Forms
Editor assigns a default data type to the field. The default data type is derived by
the following rules:

1. If the UNSHIFT option is used for the field, then the default data type is a
fixed-length character string with the same length as the field.

2. If Rule 1 does not apply and a field-values file is being created for FORTRAN
and the S FORTRAN STRINGS field is set to no, then the default data type
is a fixed-length character string with twice the length of the field.

3. If Rules 1 and 2 do not apply, then the default data type is a varying-length
character string with a maximum length of twice the length of the field.

The string data types derived by Rules 2 and 3 are twice as long as the field to
allow space for single-shift characters within the string.

When a language and the PRODUCE INTO option are specified after fields have already
been defined, the field input variables are assigned the default data type. You can
change the data type by modifying the fields with either the F or u
option.

In addition to the data-type cycle field, each language has a second field for
auxiliary information on the data type. Table 4-4 shows the auxiliary information
required for some data types in each language.

Table 4-3. Data Types for Field-Values Variable Declarations

BASIC { COBOL | FORTRAN | Pascal PL/1 C

$= display character* | char array | char / pic| charl]

$<= display-2 | string* string char var char_var'ng

#= comp-6 fixed dec

#=31 comp-5 integer¥4 integer fixed(31) int

%#=15 comp~4 integer*2 -32K..32K | fixed(15) | short

=15 comp-2 real*8 real float(53) | double

= comp—1 real*4 float(24) float
uns'd short
unsigned

comp-3

Chapter 4: The Forms Editor

Table 4-4. Auxiliary Information for Data Types

The Add/modify field Request

Language Data Type Auxiliary Information
BASIC $= number_of _characters
$<= max_number_of_characters
#= precision, scale
c charl(] number_of_characters
char_var'ng max_number_of_characters
COBOL display picture
display-2 pic x{max_number_of_characters)
comp~3 numeric_picture
comp—6 numeric_picture
FORTRAN character* number_of_characters
string* max_number_of_characters
PASCAL char array number_of_characters
string max_number_of_characters
PL/1 char / pic number_of_characters
'picture’
char var max_number_of_characters
fixed dec precision, scale

Note: The FORTRAN string data type is converted to a common block
if the -no_fortran_strings command-line option is given and the

FORTRAN STRINGS S option is set to no.

In Table 4-4, the values number_of_characters and max_number_of_characters must be
positive integers. The precision value must be a positive integer, and scale must
be an integer. The precision is the maximum number of decimal digits allowed

in the value. The scale gives the implicit location of the decimal point. Thus, a
positive scale is the number of digits in the fractional part, and a negative scale
represents the number of omitted zeros in the value entered by the user.

VOS COBOL Forms Management System (R035) 4-35

The Add/modify field Request

Display-Type Options

Table 4-5 lists the display-type options from the F form and their screen

statement counterparts. The display-type option descriptions in Chapter 7, “Display

Types,” contain more detailed information on these options.

4-36

Table 4-5. The Forms Editor Display-Type Options

Forms Editor

Display-Type Description

AUTO TAB (no, yes)

action (action_switches)

BANK TELLER DECIMAL (no, yes)

action (action_switches)

CHAR SET (any, ascii, latin 1,
kanji, katakana, hangul)

charset (char_set_id)

DISPLAYTYPE NAME

N/A

FORCE INSERT MODE (no, yes)

action (action_switches)

FORCE OVERLAY MODE (no, yes)

action (action_switches)

INDEXED CYCLE LIST (no, yes)

action (Caction_switches)

INTENSITY
(high, normal, low)

(underline, no underline)

(not inverse, inverse)

(non blinking, blinking)

(not blanked, blanked)

visual (visual_switches)

JUSTIFICATION (, left, right, center)

visual (visual_switches)

PICTURE

picture (picture)

TRAP ON FIELD ENTRY (no, yes)

action (action_switches)

TRAP ON FIELD EXIT (no, yes)

action (Caction_switches)

TRIM BLANKS (yes, no)

action (action_switches)

VALUE RESTRICTION (none, range, cycle)

cycle (value ,[,value] “es)
range (low,high)

VALIDATE

validate (validation_entry)

Chapter 4: The Forms Editor

The remainder of this subsection describes the display-type options that appear in
the F form. They are described in the same order in which they appear in
the form.

Where appropriate, cycle list values are written to the right of the option name.
The first value in a cycle list is the default value.

The Add/modify field Request

p DISPLAYTYPE NAME

This option is currently disabled.

p PICTURE

This option allows you to specify a picture that restricts the values the user
can type in the field. The value you specify is used as the initial value for the
picture display-type option.

For further information on field pictures, see Chapter 9, “Field Pictures and
Filtering.” See also the description of the picture display-type option in
Chapter 7, “Display Types.”

P VALUE RESTRICTION none, range, cycle

This option enables you to restrict the allowed values of an input field.

If you select range, the Forms Editor displays a form in which you enter the
low and high limits of a range of values that a user can enter in the field. See
the description of the range display-type option in Chapter 7, “Display Types.”

If you select cycle, the Forms Editor displays a form in which you enter a list
of up to 20 possible values for the field. For information on cycle fields, see
the section “Cycle Display Types” and the description of the cycle display-type
option in Chapter 7, “Display Types.”

Note: If you specify an initial value for a field, it must satisfy any range
or cycle restriction. A form with an invalid initial value might
cause the application program to fail.

) VALIDATE

This option allows you to specify the name of a validation procedure,
subroutine, or subprogram that checks the value the user types in an input
field. The validation routine can be written in any language. It must be
bound with any program that displays the form. The Forms Processor calls a
validation routine to check the value after the form is submitted. If you leave
this option blank, the Forms Processor does not call any validation routine for
the particular input field. For more information, see the description of the
validate display-type option in Chapter 7, “Display Types.” For information
on coding a validation routine, see Chapter 10, “Error Handling and Field
Validation.”

VOS COBOL Forms Management System (R035) 4-37

The Add/modify field Reguest

p INTENSITY

The five cycle fields in the middle of the display-type options form specify the
video display attributes of the field. They specify initial values for display-type
visual switches. For non-cycle input fields, the default video display is high
intensity and underlined. For cycle fields, the default video display is high
intensity with no underline. For output and output-only fields, the default
video display is low intensity with no underline.

The default attributes for a non-cycle input field are initially shown on the
F form. If you submit the form for an output, output-only, or cycle
field without changing the video attributes, the form is redisplayed with the
appropriate default attributes. You can change the attributes for any field.

For more information on the video attributes, see the description of the
visual display-type option in Chapter 7, “Display Types.”

p JUSTIFICATION null, teft, right, center

This option allows you to specify the justification for the field. It initializes
the LEFT_JUSTIFY_FIELD_DATA, RIGHT_JUSTIFY_FIELD_DATA, and CENTER_FIELD_DATA
visual switches for the display type. At most, one of these switches can be
true. You can set a switch to true by cycling to the value left, right, or
center. If you set the option to null, all three switches are false.

If all three switches are false, the Forms Processor uses the default justification
for the field.

See the discussion of justification under the heading “Numeric and Alphanumeric
Fields” in Chapter 3, “The Elements of FMS,” and the description of the
visual display-type option in Chapter 7, “Display Types.”

p TRIM BLANKS (YCLE) yes, no

This option allows you to initialize the NOTRIM_FIELD_SPACES display-type visual
switch. If you specify yes for the TRIM BLANKS option, then the NOTRIM_FIELD_SPACES
switch is false and normal trimming occurs. If you specify no for the TRIM
BLANKS option, then the NOTRIM_FIELD_SPACES switch is true and trimming is
inhibited. For more information, see the description of the visual display-type
option in Chapter 7, “Display Types.”

4-38 Chapter 4: The Forms Editor

The Add/modify field Request

» CHAR SET any, ascii, latin 1, kanji, katakana, hangul

This option allows you to specify an initial value for the charset display-type
option. This option specifies which character set the field supports. The
default value, any, puts no restrictions on the field. If you specify a character
set for the CHAR SET option, only characters from that set are allowed in the
field.

The valid character sets for a field can also be restricted by the unshift field
option or by limitations of the device on which the form is displayed.

p AUTO TAB (CYCLE) no, yes

This option allows you to initialize the AUTO_TAB_TO_NEXT_FIELD display-type
action switch. If this switch is true for a field’s display type, then as soon as
the user has filled the field, the cursor moves automatically to the next field.

For more information, see the discussion of the display-type action option in
Chapter 7, “Display Types.”

p BANK TELLER DECIMAL no, yes

This option allows you to initialize the BANK_TELLER_DECIMAL display-type
action switch. If this switch is true for an input field with a numeric picture
containing a decimal point, the field acts in the way common to bank-teller
terminals: the cursor remains at the field’s right boundary, and typed numerals
move left without regard for the decimal point. For example, if you type 123
in a field with the display picture z.99, the display is initially .00, then .01,
then .12, and finally 1.23. (The digits 0-9 are the only valid input characters
in a bank-teller decimal numeric field.)

If the BANK_TELLER_DECIMAL switch is false, the cursor remains at the decimal
point until the decimal point is typed; typed digits move left of the decimal.
Digits typed after the decimal point appear to the right of the decimal.

You can specify the default value for the BANK TELLER DECIMAL option in the
s form.

For more information on numeric fields, see Chapter 3, “The Elements of
FMS.” See also the information on the BANK_TELLER_DECIMAL switch in the
description of the action display-type option in Chapter 7, “Display Types.”

VOS COBOL Forms Management System (R035) 4-39

The Add/modify field Request

4-40

p INDEXED CYCLE LIST (CYCLE) no, yes

This option allows you to specify the initial setting of the INDEXED_CYCLE_LIST
display-type action switch. If this switch is true for a cycle field, the value
returned to the field-value variable is an integer index into the cycle list,
rather than a value from the cycle list. If you use this option and the cycle
list contains only two values, the field-value variable can be either an integer
or a bit (1) aligned variable. If the cycle list contains more than two values,
the field-value variable must be an integer.

For more information, see the discussion under the heading “Indexed Cycle
Lists” and the description of the action display type option in Chapter 7,
“Display Types.”

P TRAP ON FIELD EXIT no, yes

This option allows you to initialize the TRAP_ON_FIELD_EXIT display-type action
switch. If this switch is true, control returns to the application program as
soon as the user moves the cursor out of the field. This allows a program to
check the user’s input before redisplaying the form and allowing further input.

If control returns to the application because of a trap on field exit, the
value -2 is returned in the keyused form option.

For more information on the TRAP_ON_FIELD_EXIT switch, see the description
of the action option in Chapter 7, “Display Types.”

p TRAP ON FIELD ENTRY no, yes

This option allows you to initialize the TRAP_ON_FIELD_ENTRY display-type action
switch. If this switch is true, control returns to the application program as
soon as the user positions to the field. This allows a program to check the
user’s input or compute initial output values before redisplaying the form
and allowing further input.

If control returns to the application because of a trap on field entry, the
value -9 is returned in the keyused form option.

For more information on the TRAP_ON_FIELD_ENTRY switch, see the description
of the action option in Chapter 7, “Display Types.”

Chapter 4: The Forms Editor

)

The Add/modify field Request

p FORCE INSERT MODE no, yes

This option allows you to initialize the FORCE_INSERT_MODE display-type action
switch. If this switch is true, the initial edit mode for the field is insert
mode. If both this switch and the FORCE_OVERLAY_MODE switch are false, the
default edit mode is overlay if the field is left-justified, and insert if the field
is right-justified. However, field justification and initial edit modes are very
device dependent.

The user can change the edit mode with the key.

For more information, see the description of the FORCE_INSERT_MODE switch

in the description of the action display-type option in Chapter 7, “Display
Types.” For information on field justification, see the discussion under the

heading “Numeric and Alphanumeric Fields” in Chapter 3, “The Elements
of FMS.”

p FORCE OVERLAY MODE (CYCLE) no, yes

This option allows you to initialize the FORCE_OVERLAY_MODE display-type action
switch. If this switch is true, the initial edit mode for the field is overlay
mode. If both this switch and the FORCE_INSERT_MODE switch are false, the
default edit mode is overlay if the field is left-justified, and insert if the field
is right-justified. However, field justification and initial edit modes are very
device dependent.

The user can change the edit mode with the key.

For more information, see the description of the FORCE_OVERLAY_MODE switch
in the description of the action display-type option in Chapter 7, “Display
Types.” For information on field justification, see the discussion under the
heading “Numeric and Alphanumeric Fields” in Chapter 3, “The Elements
of FMS.”

The Insert window field Request
This section describes the I request, Insert window field.

Use I to define a window field and insert it in your form. A window field
is a rectangular region of a form in which a second form can be displayed and
managed by the Forms Processor. A form containing a window field is called a
master form; a form displayed in a window field is called a subform.

For more information on windows and subforms, see Chapter 11, “Windows and
Subforms.” See also the description of the window field option in Chapter 6, “Field
Descriptions.”

VOS COBOL Forms Management System (R035) 4-41

The Insert window field Request

When you issue the I request, the form shown in Figure 4-5 appears on your
screen.

If you are creating a new window, you must indicate the position of the window
before you issue the I request. You indicate the position in two ways: by
highlighting the entire region the window will occupy, or by positioning to the top
left corner of the region.

To highlight a window region, first position to one corner of the region, and set
a mark by issuing the edit request. Next, move the cursor to the opposite
(diagonal) corner of the region, and issue the request. The region the
window will occupy is now highlighted. Issue the I request to finish defining
the window. When you highlight a region before issuing the I request, the
Forms Editor derives the POSITION and SUB~FORM SIZE values from the highlighted
region. You can change these values if you wish.

If you just position to the top left corner of a region and issue the I request,
the Forms Editor derives the POSITION values from the cursor position, but you
must supply the SUB-FORM SIZE.

As with all other fields, you must precede and follow every line of a window field
with a space character. For a window with more than one row, you must allow for
a column of space characters both to the left and to the right of the window. The
Forms Processor positions a subform in the master form so that the subform’s
leading column of attribute characters overlaps the window field’s column of
attribute characters.

-- Window Field Options —

POSITION
SUB~FORM SIZE

’

Figure 4-5, Form Displayed by the I (Insert window field) Request

The following are descriptions of the fields in the 1 form.

p FIELD NAME

This option specifies the name of the window field. If you are modifying an
existing field, its current name is the default value.

p POSITION

This option specifies the row and the column of the left corner of the window.
Note that the row number is specified first.

4-42 Chapter 4: The Forms Editor

The Insert window field Request

» SUB-FORM SIZE

This option specifies the number of lines (or rows) in the window followed
by the number of characters (or columns) in each line.

The Set/modify form options Request
This section describes the S request, Set/modify form options.
Use the S request to specify the form options of a form.

When you type s, the Forms Editor displays the form shown in Figure 4-6.

/ == Form Options == for form_name \

PREFIX
MASKKEYS no BANK TELLER DECIMAL no (default)
PRODUCE INTO no decimal is period

BASIC no CURRENCY SYMBOL $

COROL no INITIAL DISPLAY clear
FORTRAN no STRINGS yes ALTERABLE BY ACCEPT yes

PASCAL no BEEP no

PLM no TIME OUY {sec} -1

¢ no + (1/1024ths)

VALIDATE and report errors CHECK 3270 MODEL no
WIDE CURSOR no VERTICAL SCROLL TRAF no

MESSAGE

CURSOR FIELD TNDEX 1

ERROR MESSAGE FIELD

BACKGROUND MODE

INTENSITY: Low no underline not inverse
non blinking not blanked
REG FIELD MODE TOGGLES
INTEMSITY TOGGLE: same intensity same underlining toggle inverse
same blinking same blanking /

Figure 4-6. Form Displayed by the S (Set/modify form options) Request

The rest of this section describes the options shown in Figure 4-6. The options are
described in the order they appear in the form, except that the language options
and the STRINGS option are grouped together and described at the end.

VOS COBOL Forms Management System (R035) 4-43

The Set/modify form options Request

p form_name

The name of the form is displayed on the top line of the form. You can
position to the name and change it. The form name is used to name the files
produced by the Forms Editor.

p PREFIX

This option allows you to specify a prefix for the field-ID constant names in
the field-IDs files. If you specified the -prefix option in the icss_edit_form
command, the form name followed by an underline is the default value for
this option. Otherwise, the default is not to use a prefix. Any prefix value
you supply in the Form Options form replaces any prior value.

You should use a prefix unless you plan to use only one form in any application
that calls the form. If an application calls two or more forms with common
field names and no PREFIX value, the respective field-IDs include files will
have conflicting %replace statements for the common field names.

See also the description of the -prefix argument of the icss_edit_form
command earlier in this chapter.

4-44 Chapter 4: The Forms Editor

The Set/modify form options Request

P MASKKEYS no, yes

This option allows you to enable function keys other than ENTER) and (CANCED
that a user can use to submit or cancel the form. The program can determine
what key was used to submit or cancel the form and can then choose a
course of action based on that information. A code specifying the key used

is returned by the keyused form option. Masked keys are commonly .used in
menu forms.

If you have set the MASKKEYS option to yes, a mask-keys form appears when
you submit the Form Options form. This form is shown in Figure 4-7.

N

~

Define Key Mask

12 3 4 5 & 7 8 9 10 11 12 13 14 15 16

B B B B B B B B B B B B B B B B

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
B B B B B B B B B B B B B B B B

E <= Yenter”, B <=> "beep"” and { <= “cancel”

) Figure 4-7. The Forms Editor Mask-Keys Form

The mask-keys form contains cycle fields for 32 function keys. For each

function key, you define the action of the key: E (enter) means a user can
submit a form by pressing the key, ¢ (cancel) means a user can cancel a
form by pressing the key, and B (beep) means the key has no function for

this form and the terminal bell sounds when the key is pressed. The default
is B for all function keys.

Note: Most terminals have fewer than 32 available function keys; MASKKEYS
settings for unusable function keys are ignored.

For more information, see the description of the maskkeys form option in
Chapter 5, “Form Options.”

VOS COBOL Forms Management System (R035) 4-45

The Set/modify form options Request

P BANK TELLER DECIMAL (CYCLD no, yes

This option allows you to set the default for the BANK TELLER DECIMAL option of
the F (Add/modify field) form. For information on the BANK TELLER DECIMAL
option of the F form, see the discussion of that form earlier in this
chapter.

p PRODUCE INTO no, yes

This option allows you to specify whether you want the Forms Editor to
generate field-values files for the languages specified in the s form. If
you specify yes for PRODUCE INTO, the Forms Editor produces field-value files
for each of the languages specified. If you specify no for PRODUCE INTO, no
field-value files are produced. The PRODUCE INTO and s language options
override the equivalent -into and language options of the icss_edit_form
command. For information on the command-line options, see the description
of the icss_edit_form command earlier in this chapter.

P decimal is period (CYCLE) decimal is period, decimal is comma

This option allows you to choose the decimal-point character for numeric
fields. If you specify decimal is period, the period character acts as a decimal
point and the comma character is used to group digits. If you specify
decimal is comma, the meanings of these two characters are reversed.

For more information on decimal points and grouping characters in numeric
fields, see Chapter 9, “Field Pictures and Filtering.”

p CURRENCY SYMBOL

This option allows you to specify a currency symbol. The currency symbol is
filtered from field values before they are loaded into numeric variables, and
from program-generated output values before they appear in form fields.

The default currency symbol is the dollar sign ($).

For more information on filtering field values, see Chapter 9, “Field Pictures
and Filtering.”

p INITIAL DISPLAY (CYCLE) clear, scroll

This option allows you to specify how the form is initially displayed. If
INITIAL DISPLAY is set to clear, the Forms Processor clears the user’s screen
and displays the form at the top of the screen. If you choose scroll, the Forms
Processor scrolls up text on the user’s screen and displays the form below
the text. See also the description of the origin form option in Chapter 3,
“Form Options.”

4-46 Chapter 4: The Forms Editor

e

p ALTERABLE BY ACCEPT

CYCLE) yes, no

The Set/modify form options Request

This option allows you to specify that certain attributes of the form cannot
be changed in an accept or perform screen initialization statement. If a
form is not ALTERABLE BY ACCEPT, values supplied in the Forms Editor for the
form and field options listed in Table 4-6 cannot be changed by an accept

or perform screen initialization statement. A statement option that would
normally override the Forms Editor value is ignored when ALTERABLE BY ACCEPT
is set to no and a value is given for the option in the Forms Editor.

Table 4-6. Form and Field Options Affected by ALTERABLE BY ACCEPT

Form Options

Field and
Display-Type Options

((MENY) S) ((MENY) F)

BEEP AUTO TAB

MASKKEYS cycle list values

MESSAGE DISAPPEARING
FIELD TYPE

FORCE INSERT MODE
FORCE OVERLAY MODE
HELP

INITIAL

PICTURE

range limits

TRAP ON FIELD ENTRY
TRAP ON FIELD EXIT
VALIDATE

The five video

attribute options

The preset values for all of these options can be changed in a

perform screen initialization statement if ALTERABLE BY ACCEPT is set to yes, the
default value. Furthermore, if no value is supplied for the option in the Forms
Editor, a value can be supplied in an accept or perform screen initialization
statement, whether the form is ALTERABLE BY ACCEPT or not.

Note that the ALTERABLE BY ACCEPT option does mot inhibit changes made
in perform screen update, perform screen input, Or perform screen output

statements.

VYOS COBOL Forms Management System (R035) 4-47

The Set/modify form options Request

p BEEP (CYCLE) no, yes

This option specifies whether the terminal bell sounds every time the Forms
Processor displays or redisplays the form. The default is no. If you select no,
the terminal bell sounds only if you specify so in a beep form option within a
screen statement. If you select yes, the Forms Processor disregards a beep
form option in a screen statement, and the terminal bell sounds each time
the form is displayed. '

p TIME OUT (sec) + (1/1024ths)

These two fields allow you to specify a maximum period of time to wait for
user input for a perform screen input statement. These fields specify the
initial value for the timeout form option.

In the S options, you can specify the timeout period as an integral
number of seconds and an integral number of 1024ths of a second. For
example, to set a timeout period of four and one-half seconds, specify 4 in
the TIME oUT (sec) field and 512 in the + (1/1024ths) field.

The default value of -1 does not set any timeout period for the form. If no
timeout period is specified, the Forms Processor waits indefinitely for user
input. ’

For further information, see the description of the timeout form option in
Chapter 5, “Form Options.”

D VALIDATE (CYCLE) and report errors, and ignore errors, field under cursor

This option allows you to initialize the VALIDATE_ERRORS_OFF and VALIDATE_ONE_FIELD
switches of the options form option. These switches indicate how field
validation routines are treated when a trap on field exit or trap on field entry
occurs. If you specify and report errors, both switches are set to false. This
means that when a trap on field exit occurs, all field validation routines are
invoked and errors are reported.

If you specify and ignore errors, the VALIDATE_ERRORS_OFF switch is set to true.
This means that when a trap on field exit occurs, all validation routines are
invoked, but validation errors are reported only for the trap field.

If you specify field under cursor, the VALIDATE_ONE_FIELD switch is set to true.
This means that when a trap on field exit occurs, only the validation routine
for the trap field is invoked; validation routines for other fields are ignored.

For more information, see the description of the options form option in
Chapter 5, “Form Options.”

4-48 Chapter 4: The Forms Editor

The Set/modify form options Request

p CHECK 3270 MODEL no, yes

This option allows you to ensure that the form you define will work on a
3270 terminal. If you specify yes for this option, then when you write the
form with the W request, the Forms Editor checks for form options or
display-type action options that make the form unusable on a 3270. If such a
feature is in use, the Forms Editor returns one of the following messages:

This form OPTION does not work at all on a 3270.
This displaytype ACTION does not work at all on a 3270.

In addition, the Forms Editor does not write any field-values files, field-IDs
files, or a form object module.

Note that only features that significantly affect form processing are flagged.
Such features include the VERTICAL SCROLL TRAP s option, and the
TRAP ON FIELD ENTRY and TRAP ON FIELD EXIT F options. Convenience
features, such as the REQUIRED and DISAPPEARING form options, are not flagged.

The CHECK 3270 MODEL option also initializes the CHECK_3270_FORMS_MODEL
options form option switch. If this switch is true, the Forms Processor checks
at application runtime for features unsupported by 3270 terminals. For
information on this switch, see the description of the options form option in
Chapter 5, “Form Options.”

p WIDE CURSOR no, yes

This option allows you to initialize the WIDE_CURSOR switch in the options form
option. If this switch is true, the user cannot type in input fields. When the
cursor is positioned to an input field, the entire field is highlighted. The user
can position to a particular field and then submit the form. The application
can determine which field the user chose by using the getcursor option.

For more information on the WIDE_CURSOR switch, see the description of the
options form option in Chapter 5, “Form Options.”

P VERTICAL SCROLL TRAP no, yes

This option allows you to initialize the VERTICAL_SCROLL_TRAP switch in the
options form option. If this switch is true, when the user tries to move
beyond the last field in the form or before the first field, control returns to
the application.

For more information on the VERTICAL_SCROLL_TRAP switch, see the description
of the options form option in Chapter 5, “Form Options.”

VOS COBOL Forms Management System (R035) 4-49

The set/modify form options Request

4-50

) MESSAGE

This option allows you to specify an initial value for the message form option.
When the form is displayed, the message you supply is displayed on the
terminal’s bottom line.

» CURSOR FIELD, INDEX

These two options allow you to specify the initial cursor position for the form.
In the CURSOR FIELD option, you can specify the name of the field to which you
want to position the cursor. In the INDEX option, you can specify the cursor’s
character position within that field. If INDEX is 1 (the default), the cursor is
positioned to the first character position in the field; if INDEX is 2, the cursor
is positioned to the second character position in the field, and so forth.

The INDEX value is ignored for some devices.

The putcursor form option overrides these options. For more information,
see the description of the putcursor option in Chapter 5, “Form Options.”

p ERROR MESSAGE FIELD

This option is currently disabled.

p> BACKGROUND MODE

This set of options allows you to choose the default video display attributes
for background text in the form. You can change the video display attributes
for specific text by using the vV option. If you want the ability to change
video attributes in the application, put the text in an output-only field.

p REQ FIELD MODE TOGGLES

This set of switches describes how required fields should be highlighted when
the field contains its null value. Highlighting is accomplished by changing — or
toggling — one or more video attributes of the field.

These five cycle fields indicate whether each video attribute should be changed
from the field definition (toggle) or left the same as in the field definition
(same) for all required fields. With the INTENSITY TOGGLE, you can choose to
toggle the intensity of low-intensity fields only, high-intensity fields only, or
both low- and high-intensity required fields by choosing the cycle values tow,
high, or low & high, respectively.

By default, the inverse attribute chosen for every required field is reversed,
while all other video display modes are left as defined in the respective field
definitions.

Chapter 4: The Forms Editor

—

The Set/modify form options Request

As soon as the user types a non-null value in the field, the video attributes
return to their normal state. For information on null field values, see Chapter 3,
“The Elements of FMS.”

p BASIC COBOL FORTRAN PASCAL PL/1 C (CYCLE} no, yes

These options allow you to select the programming languages for which the
Forms Editor will generate field-ID files and field-values files. If icss_edit_form
was invoked with any language options, or if the form was written out
previously with any language options enabled, then the corresponding S
language options are initially cycled to yes. You can change the cycle values
as you wish.

» STRINGS yes, no

This option has the same effect as the -fortran_strings argument of the
icss_edit_form command.

The Define/modify video display modes Request

The V option, Define/modify video display modes, allows you to change the
video attributes for a region of a form.

When you issue the V request, the Forms Editor displays the form shown in
Figure 4-8.

-- Video Display Modes —-

INTENSITY: same intensity same underlining same inversion
same blinking same blanking

Figure 4-8. Form Displayed by the V (Define/modify video display modes)
Request

The five cycle fields in Figure 4-8 allow you to define or redefine the video display
modes of a region of the form you are creating. The region can consist of a single
field, a region with already defined modes, or a region that is highlighted when you
issue the v request. Thus, the region can contain more than one field and
can include part or all of the background text. vV is normally used to alter
the video display attributes of background text only. You can change the video
display attributes of a field with the F, Add/modify field, request.

The term same in the default cycle values means to leave the display mode as it is
currently set for the region.

VOS COBOL Forms Management System (R035) 4-51

The Files Produced by the Forms Editor

The Files Produced by the Forms Editor

4-52

This section briefly describes the files produced by the Forms Editor. Subsequent
sections in this chapter fully describe the form definition file, form field-values

file, and field-IDs file.

The Forms Editor can generate six types of files. These types are listed in Table 4-7.

Table 4-7. Files Created by the Forms Editor

Editor-Generated
Files

File Name

Description/Use

form definition

form_name.form

Saves form in a format that can be
edited or printed.

form object module

form_name.obj

Bound with calling program to form
an executable image.

field-values

form_name.incl. language

An include file that declares
data-structure components
corresponding to the form’s

fields.

field-IDs form_name_ids.incl. language | An include file that assigns constant
names to integer field IDs.
keystrokes _edit_form. terminal_name Saves keystrokes typed in the edit

buffer.

field definition

field_name

Saves a field definition in a format
the Forms Editor can read ((MEN)
E stores a field definition;
R reads a field definition into a
form).

The following subsections briefly describe these files. The contents of the form
definition, field-values, and field-IDs files are described in detail later in this chapter.

Chapter 4: The Forms Editor

The Files Produced by the Forms Editor

The Form Definition File

A form definition file is a text file containing a form description. You can specify the
path name of this file in the icss_edit_form command. If you do not specify a path
name, the file is put in the current directory. The file is named form_name.form.

You can give the form definition file as input in a later invocation of the Forms
Editor. You can also display or print it.

The contents of the form definition file are described later in this chapter under
the heading “Contents of the Form Definition File.”

Note: Do not give a form and a program that uses the form the same name;
each requires a uniquely named object module.

The Form Object Module

A form object module is a description of a form that can be read by the binder.
The form object module is written to the same directory as the form definition
file and is named form_name.obj. To reference the form in a program, you must
declare form_name as an external procedure and include the form object module in
your search paths when you bind the program.

You can reference the external procedure form_name in the form specifier
of a perform screen initialization statement. For information on the
perform screen initialization statement, see Chapter 16, “Statements.”
For information on the form specifier, see Chapter 5, “Form Options.”

Note: Do not give a form and a program that uses the form the same name;
each requires a uniquely named object file.

The Field-Values File
A field-values file is a programming-language include file that contains declarations
for a set of record elements that correspond to the fields in the form. If you specify
-into on the icss_edit_form command line, or if you set the S PRODUCE INTO
field to yes, a field-values file is created for each language you specify in the
command line or in the s request. The name of the COBOL field-values file

is form_name.incl.cobol.

You can use the field-values file to declare a record of field-value variables. For
example, if the form name is dept_info, you can declare the record as follows:

01 dept_fields.
copy 'dept_info.incl.cobol’.

VOS COBOL Forms Management System (R035) 4-53

The Files Produced by the Forms Editor

You can reference this record in the into or update form option of screen statements.
For information on these options, see Chapter 5, “Form Options.”

Using the field-values file to declare the record ensures consistent declarations in
all programs using a particular form. The format of the field-values file is fully
described later in this chapter under the heading “The Field-Values Include File.”

The Field-IDs File

The field-ID:s file is a programming-language include file that defines mnemonic
constants for a form’s integer field IDs. A field-IDs file is created for each language
you specify in the icss_edit_form command line or in the s form. The name
of the COBOL field-IDs file is form_name_ids.incl.cobol.

The COBOL field-IDs file contains Zreplace statements that assign meaningful
names to the field IDs. A field ID is a two-byte integer assigned to a field by the
Forms Processor. Each field in a form has a field ID that is unique within that
form. The field-IDs file permits you to refer to a field by a name, rather than by a
number. The field-IDs file is fully described later in this chapter under the heading
“The Field-IDs Include File.”

The Forms Editor Keystrokes File

A Forms Editor keystrokes file contains the keystrokes you typed in the edit buffer
during the Forms Editor session. The keystrokes file is generated in your home
directory and is named _edit_form. terminal_name, where terminal_name is the device
name of the terminal from which you invoked the Forms Editor.

Note: Unlike a Word Processing Editor keystrokes file, the Forms Editor
keystrokes file cannot be used to reconstruct an editing session. The
keystrokes file does not contain information entered on forms for the
{VEND) F, MERD) 1, (MEND) S, and v requests. However, you can display
the file to view the keystrokes you typed in the edit buffer.

The Field Definition Files

4-54

A field definition file contains the definition of a single field in a format that the
Forms Editor can interpret. Field definition files are written to a library directory
specified in the -library option of the icss_edit_form command. The file name is
the name of the field. The -library option is described under the heading “The
icss_edit_form Command” earlier in this chapter.

Chapter 4: The Forms Editor

The Files Produced by the Forms Editor

A field definition file has the same format as an entry in the field options part
of a form definition file. This format is described later in this chapter under the
heading “Contents of the Form Definition File.”

You create a field definition file by issuing the Enter field request ((#END) E) in
the Forms Editor. You can read in a field definition file — thereby inserting the
defined field into a form you are editing — with the Read field request ((MEND) R).
It is possible to write a field definition file in one editing session and read it in
during another, creating identically defined fields in two or more forms. You can
build a library of standard field definitions for use in different forms. The E
and R Forms Editor requests are described under the heading “Menu Edit
Requests” earlier in this chapter.

VOS COBOL Forms Management System (R035) 4-55

Contents of the Form Definition File

Contents of the Form Definition File

Figure 4-9 shows the contents of a form definition file for a simple menu form as
it would appear if displayed on a terminal. (The appearance is slightly different if
the file is printed.) The form defined by the file has two fields: employee_number
and department.

PERSONNEL ADMINISTRATION MENU

Press the CANCEL key at any time to cancel a form and return to the menu.
To select an operation, press the corresponding function key.

UPDATE EMPLOYEE RECORD FUNCT-1
UPDATE PERFORMANCE RECORD FUNCT-2
UPDATE PAYROLL RECORD FUNCT-3
LIST EMPLOYEES FUNCT-4

Employee Number:
Employee Number: employ

HEHBHE
Department:
Department: dep
#iH

Figure 4-9. Sample Form Definition File

(Continued on next page)

4-56 Chapter 4: The Forms Editor

Contents of the Form Definition File

Figure 4-9. (Continued)

FORM OPTIONS
form(*per')
highest_assigned_field_id(2)
date_ids_reused('89-09-08 19:22:06 gmt')
date_modified('89-09-08 20:01:03 gmt')
clear_first
maskkeys (' EEEEBBBBBBBBBRBBBBBEEBBBBBBBBBEB ')
background_mode(’ Low_intensity')
required_field_mode('inverse')
alterable
new_mode_defaults
currency_symbol (*$')
produce_into
Llanguage(*cobol')
language('pl1")
Llanguage('c')
fortran_strings
Locked_global_features('old_features','maskkeys','displaytypes')
Locked_field_features('old_features','pos','len’, 'help', 'displaytype’
,'window')
Locked_displaytype_features('visual',‘action’,'form_picture','cycle’,
"range','validate’,'required_displaytype','marked_displaytype")
Locked_global_dt_features('visual’,'action’,'form_picture','cycle’,
"range','validate’,'required_displaytype','marked_displaytype');

FIELD OPTIONS

field('employee_number') id(1) position(13, 51) length(6)
visual('undertine','high_intensity")
action()
picture(*zzzzzz")
help('Type the employee''s number, if known.') shift_char_set(0)
shift_flags (1);

field('department') id(2) position(14, 51) Llength(3)
visual('underline', high_intensity")
action()
picture('999")
help('Type the department number.') shift_char_set(0) shift_flags(1);

VOS COBOL Forms Management System (R035) 4-57

Contents of the Form Definition File

The form definition file is a description of a form that can be written and read by
the Forms Editor.

The form definition file has three parts.
e The form picture
e The form options

e The field options

The form picture shows the layout of the form in a manner that the Forms Editor can
interpret. All background text is shown, along with a representation of each field.

The form options part of the file specifies the form options given in the s
Forms Editor request and some internal attributes of the form.

The field options part of the file specifies, for each field, the field and display-type
options specified with the F Forms Editor request.

The Field-IDs Include File

4-58

A COBOL field-IDs file contains %replace statements. The name of the field-IDs file
is form_name_ids.incl.cobol. For example, if the name of the form is order_entry,
then the name of the field-IDs file is order_entry_ids.incl.cobol. You include the
file in your program with the following statement:

copy 'form_name_ids.incl.cobol'.

The Forms Editor generates a COBOL field-IDs file if you specify the -cobol
command-line option, or if you set the s form option COBOL to yes.

In designing a form, you create fields, and the Forms Editor assigns consecutive
integer identifiers called field IDs to these fields. The Forms Editor also assigns
a unique field ID to each element of an array field. (The field ID of the first
component in an array field is the same as the field ID of the array field.) To
modify a predefined form field in a screen statement, refer to the field by its field
ID. Therefore, you need to know the field ID that the Forms Editor assigns to
each field and array field element.

The Forms Editor constructs a field-ID name, field_name_id, from the field name. If
you specify a prefix with either the ~prefix option of icss_edit_form or the s
PREFIX form option, the field-ID name is prefix_field_name_id.

The field-IDs file contains %replace statements of the following form:

7replace field name_id by field_id

Chapter 4: The Forms Editor

R

e’

The Field-IDs Include File

When writing a program, if you include the field-IDs file and later refer to a field
by its field-ID name, the compiler replaces the field-ID name with the field ID
before compiling the program. This lets you refer to a field by a convenient name
(field_name_id) instead of a number.

For example, assume you are editing a form named form1, and you insert a field
named customer. Assume also that you specified the default prefix form_name. The
Forms Editor assigns a field ID to the field customer and gives this ID the name
form1_customer_id in the field-IDs file. To reference the customer field in your
program, use the field-ID name form1_customer_id.

The field-IDs file contains one %replace statement for each simple field (input,
output, or output-only), and two for each array or window field. Of the two Z%replace
statements for an array or window field, the first assigns a field-ID name to the
field ID (just as for a simple field), and the second specifies either the number of
elements in the array or the number of rows in the window. The field-IDs file also
contains a %replace statement that assigns a name to the greatest field ID used by
the form.

Figure 4-10 shows the general format of a VOS COBOL field-IDs file when a
prefix is not specified for the form. Figure 4-11 shows the general format of a
field-IDs file when a prefix is specified for the form.

%replace field _name_id by I

%replace array_field _name_id by J
Zreplace array_field name_ct by K
%replace window_field_name_id by L
%replace window_field_name_ct by M

%replace form_name_max_ids by N

Figure 4-10. Generalized Field-IDs File

VOS COBOL Forms Management System (R035)

4-59

The Field-IDs Include File

4-60

sreplace prefix_field name_id by I

%replace prefix_array_field _name_id by J
%replace prefix_array_field name_ct by K

%replace prefix_window_field name_id by L
%replace prefix_window_field name_ct by M

%replace form_name_max_ids by N

Figure 4-11. Generalized Field-IDs File with a Prefix Specified

In Figures 4-10 and 4-11, I is the identifier of a field, J is the identifier of an array
field, K is the number of elements in that array field, L is the identifier of a window
field, and M is the number of rows in that window field. The value N is the total
number of predefined fields in the form.

The following are the common uses of the declarations in a field-IDs file.

e When ydu use field definitions to modify a predefined form, each field
definition must refer to the field by its field ID.

e Several form options take or return field IDs as arguments:
— getcursor (field id_variable)
— nextcursor (field_id_variable)

— origin ¢ [form_id,]window_id)
— putcursor (field id)

Chapter 4. The Forms Editor

The Field-IDs Include File

W e When you use the datastates and displaytypes form options, you can declare
the operands for these options as follows:

01 data_states.
02 data_state_values comp=4 occurs form_name_max_ids.

01 display_types.
02 display_type_values comp=4 occurs form_name_max_ids.

e To alter the data state of a field, or to assign a new display type to a field, you
must know the field’s ID number to use it as an index into the appropriate
table: data_states or display_types.

Note: If fields are deleted from an existing (previously written out) form, the
field IDs assigned to those fields are not reassigned to existing fields.
\ To reassign field IDs, thereby eliminating any gaps in the sequence
of assigned IDs, deléte the line highest_assigned_field_id(n from
the form definition file, and write out the form with the command
icss_edit_form form_name -no_edit -force_write. Renaming the form
with the following command also causes field IDs to be reassigned.

icss_edit_form form_name new_name -no_edit -force_write

) The Field-Values Include File

A field-values file contains declarations for a set of field-value variables; include
the declarations in your program with a copy statement.

The Forms Editor generates a VOS COBOL field-values file named form_name.incl.cobol,
if you use the icss_edit_form options =into and -cobol, or if you set the s
form options PRODUCE INTO and COBOL to yes.

) A VOS COBOL field-values file defines the items of a record, with which you
can declare a record variable in your program. Every field in the form has a
corresponding record member, unless you explicitly exclude a field by cycling
the in field-values option of the F form to no. If you declare a variable,
field_values_structure, in your program, and reference that variable in an into
or update form option within a perform screen input statement, then the Forms
Processor automatically loads all form field values into field values_structure
when the form is submitted.

The following sequence of statements causes all form field values to be loaded
into field_values_structure when the user submits the form.

VOS COBOL Forms Management System (R035) 4-61

The Field-Values Include File

01 field_values_structure.
copy 'form_name.incl.cobol'. /* The field-values file */

perform screen input 'form_name' update (field_values_structure).
The record members in the field-values file can have any of the simple data types

allowed by the Forms Editor, or they can be one-dimensional tables of any of these
types. The following are the possible VOS COBOL data types for a simple form

field.
® display pic x(W
® display-2 pic x{(M
® comp-6 pic numeric_picture
® comp-5
® comp~4
® comp-3 pic numeric_picture
® comp-2
® comp-1

A field-values file declaration that corresponds to a simple form field has the
following form:

20 field_name field data_type.

The simple_field_name is the name of the form field, and field_data_type is the
data type assigned to the field in the Forms Editor with the F request.

A field-values file declaration that corresponds to an array field has the following
form:

20 array_field_name,
21 array_field_name_1 field data_type occurs number_elements.

The array_field_name is the name of the array field, and field_data_type is the
data type assigned to the field in the Forms Editor with the F request.

The following fragment uses a form named form1 and a field-values file named
forml.incl.cobol.

01 fields.
copy 'formi.incl.cobol’.

perform screen initialization 'form1' into (fields) ...

When the perform screen initialization statement is executed, the Forms Processor
loads the initial field values for form1 into the record fields.

4-62 Chapter 4: The Forms Editor

Chapter 3:
Form Options

Form options describe characteristics that apply to an entire form, rather than to
an individual field. Form options can be specified in accept or screen statements,
and most can be initialized with the Set/modify form option ((MEND S) request of

the Forms Editor.

Three of the form options, form_name, into, and update, comprise the form specifier.
These options specify a predefined form and a set of field-value variables for that
form. The form specifier has the following syntax.

into (field_values_structure) }

¥ 1
form_name [update (field_values_structure)

The form specifier must precede any other statement options.

The keyword with introduces the form options within an accept or screen statement.
This keyword comes after the form specifier (if any) and before any other form
options. Therefore the form options clause of an accept or screen statement has
the following syntax:

' , into (field_values_structure)
orm_name update (field_values_structure)

[with form_option. .. :I

This chapter describes the form options as they appear in accept and screen
statements. For information on initializing form options with the Forms Editor,
see Chapter 4, “The Forms Editor.”

Form Option Summary

Table 5-1 lists the form options with their arguments.

VOS COBOL Forms Management System (R035)

Form Option Summary

Table 5-1. The screen and accept Statement Form Options

Option Argument Option Argument
beep (beep_switch) message (message_string)
clear modes (modes_array)
datastates (data_states_array) name (form_name)
displaytypes (display_types_array) nextcursor | (field_id_variable

[,Character_position])
' form_name* options (option_switches

[soption_switches] saa)
formid (form_id) origin ([form_id,] window_id)
functionkey (function_code_variable) portid (port_idd
getcursor (field_id_variable putcursor | (field_id

[,character_position]) [,Ccharacter_position])

into (field_values_structure) redisplay | (redisplay_switch)
keyused (key_code_variable) status (status_code_variable)
maskkeys (mask_string) timeout (time_period)
max_displaytype_id | (max_display_id) update (field_values_structure)
max_field_id (max_field_id)

Form Option Reference Guide

5-2

This section describes each of the form options. The options are given in alphabetical
order. In the accept or screen statements, you can specify the form options in any

order.

P beep (beep_switch)

The beep option determines whether the terminal bell sounds when the form

is displayed.

The operand beep_switch must be a comp—4 value or the constant on or off. If
beep_switchis 1 or on, the terminal bell sounds when the form is displayed or
redisplayed. If beep_switch is 0 or off, the terminal bell does not sound.

If the value of beep_switch is 1 or on and the port is in forms input mode,
the Forms Processor discards any pending input. You can use this feature to
prevent the Forms Processor from applying type-ahead characters to a form.
For information on forms input mode, see Chapter 14, “Subroutines.”

Chapter 5: Form Options

Form Option Reference Guide

You can specify the beep option in the following statements:

accept

perform screen initialization
perform screen input

perform screen output

perform screen update

p clear

Note: The clear option is obsolete and is supported in the accept statement
only for compatibility with previous releases.

The clear option indicates that the entire screen or a window of the screen
is to be cleared.

If you specify only the clear option in an accept statement, that statement
clears the entire screen. If you specify the origin option with clear, the
statement clears the specified window.

The clear option is meaningful only for the initial display of a form; it is
ignored when the form is redisplayed. See the redisplay option for more
information on initial display and redisplay.

You can specify that the screen or window is to be cleared before the form
display within the s form in the Forms Editor. For more information
on the Forms Editor, see Chapter 4, “The Forms Editor.”

P datastates (data_states_array)

The datastates option returns the data-state switches for all the fields in a
form.

The operand data_states_array must be a reference to a table of comp-4
values. The table must contain one element for each field in the form.

The integer in the kth element of the table specifies the data-state switches

of the field with field ID k. The following table shows how the switches are
encoded.

VOS COBOL Forms Management System (R035) 5-3

Form Option Reference Guide

Bit Switch Name

1 DISAPPEARING_DEFAULT
2 FIELD_VALUE_GIVEN
4 FIELD_HAS_CHANGED
16 REQUIRED_FIELD
32 INPUT_FIELD
64 NEW_DATA_IN_FIELD
128 DISABLE_ENTIRE_FIELD
256 FILTER_FOR_CONVERSION

All unused bits are reserved for future use and must be set to zero.
For an explanation of each data-state switch, see Chapter 8, “Data States.”

The Forms Editor creates a field-IDs include file to provide mnemonic names
for the field IDs.

You can specify the datastates option in the following statements:

accept

perform screen initialization
perform screen input

perform screen inquire
perform screen output
perform screen update

You cannot use the datastates option with the clear, modes, or redisplay form
options.

The datastates option is output-only when used in the perform screen initialization
and perform screen inquire statements; the initial values in data_states_array

are ignored. These values are also ignored in all other statements unless you

set the COPY_DATASTATE switch in the options form option to true.

You can override specific input values in the data_states_array with the
datastate field option described in Chapter 6, “Field Descriptions.”

5-4 Chapter 5: Form Options

~

Form Option Reference Guide

- displaytypes (display_types_array)

The displaytypes option specifies or returns the display-type IDs for all fields
in the form.

The operand display._types_array must be a reference to a table of comp=4
variables. The table must contain one element for each field in the form.

The integer in the kth element of the table specifies the display-type ID of the
field with field ID k. For more information on display types, see Chapter 7,
“Display Types.”

The Forms Editor creates a field-IDs include file to provide mnemonic names
for the field IDs.

You can specify the displaytypes option in the following statements:

accept

perform screen initialization
perform screen input

perform screen inquire
perform screen output

perform screen update

You cannot use the displaytypes option with the clear, modes, or redisplay
form options.

The displaytypes option specifies the display types on input and returns the
current display types on output. For the perform screen initialization and
perform screen inquire statements, the displaytypes option is output-only — the
initial values in the table are ignored.

You can override specific input values in the display_types_array with the
displaytype field option described in Chapter 6, “Field Descriptions.”

» form (form_entry)

The form option returns the entry value of a predefined form.
The operand form_entry must be a reference to an entry variable.

In the perform screen inquire statement, the form option returns the entry
value used to invoke a predefined form.

You can specify the form option only in the perform screen inquire statement.

VOS COBOL Forms Management System (R035) 5-5

Form Option Reference Guide

» ' form_name’

The ' form_name' option specifies a predefined form to be displayed and
processed.

The value form_name must be the entry name of a predefined form.
You can specify the ' form_name' option in the following statements:

accept

perform screen delete
perform screen discard
perform screen initialization
perform screen input

perform screen inguire
perform screen output

perform screen save

perform screen update

p formid (form_id)

The formid option specifies the integer ID of a form.

The operand form_id must be an expression convertible to comp-4. In the
accept and perform screen initialization statements, form_id must be a
reference to a comp-4 variable.

In the perform screen initialization statement and in the initial-display
accept statement, the formid option is output-only. In these cases, it returns
a unique identifier for the form. In all other cases, the formid option is
input-only and specifies which form the statement operates on.

You can specify the formid option in the following statements:

accept

perform screen delete
perform screen discard
perform screen initiatization
perform screen input

perform screen inquire
perform screen output

perform screen save

perform screen update

5-6 Chapter 5: Form Options

R

Form Option Reference Guide

p functionkey (function_code variable)

The functionkey option returns the code associated with the function key
used to submit or cancel the form.

The operand function_code_variable must be a reference to a comp-4 variable.
The functionkey option is output-only. It returns the generic input request
code for the key that caused return from the form. The returned value is in
the range 0 through 255.

For information on the generic input requests, see the VYOS Communications
Software: Asynchronous Communications (R025).

You can specify the functionkey option in the accept or perform screen input
statement.

P getcursor (field_id_variable [,character_position])

The getcursor option returns the position of the cursor when the form is
submitted.

The operands field_id_variable and, if given, character_position must be
references to comp-4 variables. On return from the form to the application,
these variables contain the final position of the cursor. The field ID of the
field containing the cursor is returned in field_id_variable. The operand
character_position, if specified, is set to the character position of the cursor
within the field: 1 for the first character position, and so forth.

If control returns to the program as the result of a trap, the field ID returned
in the getcursor option is the ID of the trap field.

The Forms Editor creates a field-IDs include file to provide mnemonic names
for the field IDs.

You can specify the getcursor option in the following statements:
accept

perform screen initialization
perform screen input

VOS COBOL Forms Management System (R035) 5-7

Form Option Reference Guide

P into (field_values_structure)

The into option returns the value specified for each field of a form.

The operand field_values_structure must be a reference to a record to
receive the values from the fields in the form. You can use the field-values
file produced by the Forms Editor to declare this record.

The into option is output-only; the initial values in the referenced record
are ignored.

You can use the into option in the accept and perform screen initialization
statements only. You can specify the into option only within the form specifier.
The form specifier must include the name of a predefined form. You cannot
use the into option with the update option.

When used in the perform screen initialization statement, the into option
returns any initial field values specified in the Forms Editor. If no initial value
is specified for a field, the null value for the field is returned. For information
on null field values, see Chapter 3, “The Elements of FMS.”

In the accept statement, the into option is similar to update with the
NO_COPY_UPDATE options switch set to true. For further information, see the
description of the accept statement in Chapter 16, “Statements.”

p keyused (key_code_variable)
The keyused option returns a code associated with the key used to submit or
cancel the form.

The operand key_code_variable must be a reference to a comp—4 variable.

The keyused option is output-only. The value returned is a code identifying
either the key used to submit or cancel the form, or another action that
caused control to return from the form to the application. Table 5-2 lists the
codes that can be returned in the keyused option.

5-8 Chapter 5: Form Options

Form Option Reference Guide

Table 5-2. Codes Returned by the keyused Form Option

Code Meaning

-9 trap on field entry
-6 form knocked down f
-5 form is output-only#
-2 trap on field exit or vertical scroll trap
-1 form canceled or timeout occurred
0 form submitted with key
1 form submitted with function key 1
2 form submitted with function key 2

32 form submitted. with function key 32

t See Appendix F, “Global Control Operations.”

% This value is returned only by the accept statement. The perform screen input
statement returns -1 in the keyused option and e$form_needs_input_field (3918)
in the status form option.

For information on enabling function keys 1 through 32, see the description
of the maskkeys form option.

You can use the keyused option in the accept or perform screen input statement.

P maskkeys (mask_string)

The maskkeys option specifies how the Forms Processor should interpret each
of the 32 generic function key requests.

The operand mask_string must be convertible to pic x(32) display-2. In
the perform screen inquire statement, mask_string must be a reference to a
variable of the type pic x(32) display=2 or pic x(32) display.

Each character in the string corresponds to one of the generic function keys
(function-key-1 through function-key=-32). The corresponding mask_string
character indicates what action is associated with the generic function key.
The possible values are listed in Table 5-3.

VOS COBOL Forms Management System (R035) 5-9

Form Option Reference Guide

5-10

Table 5-3. Characters Used in the maskkeys Form Option

Mask String
Character Action

b, B, Or space Sound bell and take no other action (invalid key).

corcC Cancel the form.

eoOrE Submit the form.

For example, if the first character in mask_string is e, then the sequence
associated with the function-key-1 request causes the form to be submitted
and field values to be loaded into program variables in the same way the
key does. However, the application can differentiate between these two ways
of submitting the form by using the keyused form option described earlier.

Similarly, if the second character in mask_string is c, then the sequence
associated with the function-key-2 request behaves like the key, except
that it returns a different value to the keyused option.

If the third character in mask_string is b, then the sequence associated
with the function-key-3 request does not cause the form to be submitted
or canceled. If the user presses this key, the terminal bell sounds and the
following message appears at the bottom of the screen:

Invalid function key.
The Forms Processor then continues to wait for a valid sequence.

The default for each generic function key is to sound the terminal bell and
wait for another sequence.

Each generic function key can be associated with an actual key sequence via
the terminal-type table. If you do not know which generic function keys are
enabled for your terminal, or if you do not know the associated key sequences,
ask your system administrator. For information on defining terminal types,
see the VOS Communications Software: Defining a Terminal Type (R096).

Note that if you supply a null string for the maskkeys option, all generic
function keys are disabled. In this case, if the form does not have any input
fields, it is an output-only form.

Chapter 5: Form Options

e

M

Form Option Reference Guide

You can specify the maskkeys option in the following statements:

accept

perform screen initialization
perform screen input

perform screen inquire
perform screen output

perform screen update

p max_displaytype_id (max_display_id)
The max_displaytype_id option returns the greatest display-type ID value
currently allocated for the form.

The operand max_display_id must be a reference to a comp-4 variable.
The max_displaytype_id option is output-only and is valid only in the
perform screen inquire statement.

For information on display types and how they are allocated, see Chapter 7,
“Display Types.”

» max_field_id (max_field_id)
The max_field_id option returns the greatest field-ID value currently allocated
for the form.

The operand max_field_id must be a reference to a comp-4 variable. The
max_field_id option is output-only and is valid only in the perform screen inquire
statement.

P message (message_string)

The message option specifies a message to be displayed at the bottom of the
screen when the form is displayed.

The value message_string must be convertible to pic x(80) display-2.
If the message is too long to fit on the message line, it is truncated.
You can specify the message option in the following statements:

accept

perform screen initialization

perform screen input

perform screen output
perform screen update

VOS COBOL Forms Management System (R035) 5-11

Form Option Reference Guide

5-12

p modes (modes_array)

Note: The modes option is obsolete and is supported in the accept statement
only for compatibility with previous releases. New applications should
use the displaytypes and datastates options instead.

The modes option specifies the mode values for each field in the form.

The operand modes_array must be a reference to a table of comp-4 variables.
The table must contain one element for each field in the form.

The kth element of modes_array corresponds to the field with field ID k. (The
Forms Editor creates a field-IDs include file to provide mnemonic names for
the field IDs.) Each element of the modes table encodes switches for the
associated field. The following table shows how the switches are encoded.

Bit Switch Name

1 BLANKED
2 BLINKING
4 INVERSE
8 UNDERLINED
16 LOW_INTENSITY
32 HIGH_INTENSITY
64 (reserved)
128 (reserved)
256 INPUT_DISABLED
512 NO_OVERLAY
1024 AUTO_TAB
2048 IMMEDIATE_RETURN
4096 NOT_EDITABLE
8192 TRAP_ON_ENTRY
16384 (reserved)
32768 (reserved)

For an explanation of each mode, see Appendix A, “The accept Statement.”

On initial display, the modes option is output-only. Field modes are returned
in modes_array. On redisplay, the modes option is both input and output.
Before redisplaying the form, mode values are read from modes_array and
applied to the fields. This allows you to change field modes between the
initial display and the redisplay.

To alter predefined modes on initial display, use the mode field option described
in Chapter 6, “Field Descriptions.”

Chapter 5: Form Options

EO—

Form Option Reference Guide

p name (form_name)

The name form option returns the name of the form.

The operand form_name must be a reference to a fixed- or varying-length
character string variable. If the string is less than 32 characters long, some
names might be truncated. The name option is output-only and is valid only
in the perform screen inquire statement.

P nextcursor (field_id_variable [,char_position_variable])

The nextcursor option returns the logical cursor position for the next display
of the form.

The operands field_id_variable and char_position_variable must be references
to comp-4 variables. Both operands are output-only.

When control returns to the application from the form, the nextcursor option
returns the location where the cursor would be if control had not returned.
This is often the best place to put the cursor the next time the form is
displayed.

In the perform screen input statement, the nextcursor option usually returns
the same values as getcursor. Exceptions to this occur when control returns
from the form because of a trap on field exit or a vertical scroll trap. In these
cases, nextcursor returns the location the cursor would have moved to if
the trap had not occurred. In the perform screen initialization statement,
the nextcursor option returns an initial position for the cursor. In the
perform screen inquire statement, it returns the current cursor position.

You can specify the nextcursor option in the following statements:

perform screen initialization
perform screen input
perform screen inquire

P options (options_switches [,options_sw*itches] vee)

The options form option specifies a series of switches related to the form.
Each options_switches must be a value convertible to comp=5. In the
perform screen inquire statement, options_switches must be a comp-5 variable.

The operand is output-only in the perform screen inguire statement and is
input-only in all other contexts.

VOS COBOL Forms Management System (R035) 5-13

Form Option Reference Guide

5-14

Each options_switches encodes a set of switches for the form. The following table
shows how the switches are encoded.

Bit Switch Name

2 VERTICAL_SCROLL_TRAP
4 | WIDE_CURSOR
64 VALIDATE_ERRORS_OFF
128 NO_COPY_UPDATE
256 | COPY_DATASTATE
8192 | CHECK_3270_FORMS_MODEL
32768 VALIDATE_ONE_FIELD
2”® | SPECIAL_OPTION_28
2% | SPECIAL_OPTION_29
2 | SPECIAL_OPTION_30

VERTICAL_SCROLL_TRAP

If this switch is true, control returns from the form to the application
when the user tries to move beyond the last field or before the first
field, or if the user issues a @ or (3 request.

WIDE_CURSOR

If this switch is true, the user cannot modify input fields. When the
cursor is moved into a field, the entire field is highlighted.

VALIDATE_ERRORS_OFF

If this switch is true and a trap on field exit or trap on field entry occurs,
the validation routines for all ficlds are invoked, but validation errors
are returned for the trap field only. Other validation errors are ignored.

NO_COPY_UPDATE

If this switch is true, the update form option and update field options
are output-only.

COPY_DATASTATE

If this switch is true, the datastates form option is input-output, rather
than output-only.

CHECK_3270_FORMS_MODEL

If this switch is true and the form employs an option that makes it
unusable on a 3270, an error is indicated. If a form option makes the
form unusable, the code e$form_invalid_3270_option (3888) is returned.
If a display-type action switch makes the form unusable, the code
e$form_invalid_3270_action (3889) is returned.

Chapter 5: Form Options

s

Form Option Reference Guide

VALIDATE_ONE_FIELD
If this switch is true and a trap on field exit or a trap on field entry
occurs, only the validation routine for the trap field is invoked. Any
other validation routines are not invoked.

SPECIAL_OPTION_28
SPECIAL_OPTION_29
SPECIAL_OPTION_30

Specific device drivers might assign meaning to these switches. The
values of these switches are passed through the Forms Processor to the
driver.

The special option bits are available for driver-specific use. All other unused bits
are reserved for future use and must be set to 0.

If you supply more than one options_switches value, then a switch is considered to
be true if it is true in any of the values. A switch is considered false if it is false in
all of the values.

You can specify the options form option in the following statements:

accept

perform screen initialization
perform screen input

perform screen inquire
perform screen output
perform screen update

You cannot use options with the clear, modes, or redisplay form options.
Note that the options form option is input-only in the perform screen initialization
statement. If you want to preserve the option switch values that were set in the

Forms Editor, you must use the perform screen inquire statement to obtain those
values.

VOS COBOL Forms Management System (R035) 5-15

Form Option Reference Guide

5-16

» origin C [form_id, | window_id)

The origin option specifies a window field in which a form is to be displayed,
or it specifies that the form is to be scrolled onto the screen.

The operand form_id, if given, must be the form ID of an active form. The
operand window_id must be the field ID of a window field in that form. You
can obtain field IDs for a predefined form from the field-IDs include file
produced by the Forms Editor.

To display a subform within a master form, use the origin option to specify
the window field in which the form is to be displayed. For information on
windows and subforms, see Chapter 11, “Windows and Subforms.”

To initialize a scrolling form, omit the form_id and specify 0 as the window_1id.

When the form is displayed, the screen is not cleared. Instead, text on the
screen scrolls up, and the form is displayed beneath it.

» portid (port_id)

The portid option specifies which port the statement is to perform I/O on.
The operand port_id must be a comp-4 VOS port ID value.
If you do not specify a port ID for a statement, the terminal port is used.

The portid option applies only to the statement on which it is given. The
value is not stored for future reference by the Forms Processor.

Note: Some device attachments support only the terminal port.
You can specify the portid option in the following statements:

accept

perform screen delete
perform screen discard
perform screen initialization
perform screen input

perform screen inquire
perform screen output
perform screen save

perform screen update

Chapter 5: Form Options

e

Form Option Reference Guide

» putcursor (field_id [,character_position])

The putcursor option specifies where to initially position the cursor when
the form is displayed.

The operands field_id and, if given, character_position must be convertible
to comp—4.

The field_id specifies the ID of the field in which to put the cursor. If you
supply the operand character_position, that value specifies the character on
which to put the cursor: 1 for the first character position, and so forth.

Note: Some device drivers might ignore the value of character_position.

The Forms Editor creates a field-IDs include file to provide mnemonic names
for the field IDs.

You can specify the putcursor option in the following statements:

accept

perform screen initjalization
perform screen input

perform screen output
perform screen update

Note: The nextcursor form option returns appropriate values to be used in
the putcursor option for the next display of a form.

» redisplay (redisplay_switch)

Note: The redisplay option is obsolete and is supported in the accept
statement only for compatibility with previous releases.

The redisplay option specifies whether the form is to be redisplayed or
displayed for the first time.

The operand redisplay_switch must be a comp~4 value. If redisplay_switch is 1,
a redisplay of the form is performed, rather than an initial display. The value
of redisplay_switch must be false (0) for the first display of the form.

For information on initial displays and redisplays, see Appendix A, “The
accept Statement.”

VOS COBOL Forms Management System (R035) 5-17

Form Option Reference Guide

The redisplay option is valid for the accept statement only. It must not be used
with any of the following form options:

datastates
displaytypes
formid
options
portid
timeout

The Forms Processor automatically detects initial display and redisplay of forms in
applications that use the screen statements. -

P status (status_code_variable)

The status option returns a VOS status code.

The operand status_variable must be a reference to a comp-4 variable. The
status option is output-only.

If no error or exceptional condition occurs, the returned status code is 0.

For further information on handling error codes, see Chapter 10, “Error
Handling and Field Validation.”.

You can specify the status option in the following statements:

accept

perform screen delete
perform screen discard
perform screen initialization
perform screen input

perform screen ingquire
perform screen output
perform screen save

perform screen update

p timeout (time_period)

The timeout option specifies the maximum amount of time the Forms Processor
will wait for the user to either submit or cancel an input form.

The operand time_period must be convertible to comp-5.

The input timeout period is expressed in 1/1024 of a second. Therefore, the
option timeout(10240) would establish a timeout period of ten seconds.

5-18 Chapter 5: Form Options

Form Option Reference Guide

Although the timeout option affects only the accept and perform screen input
statements, you can specify it in any of the following statements:

accept

perform screen initialization
perform screen input

perform screen inguire
perform screen output
perform screen update

The timeout option is input-only, except in the perform screen inquire
statement, where it is output-only. In the perform screen inquire statement,
the timeout option returns the timeout value currently established for the form.

» update (field values_structure)

The update option specifies and returns the value of each field in the form.

The operand field_values_structure must be a reference to a record containing
field-value variables for the form. When the form is submitted, field values
are loaded into the field value variables.

The update option is usually input as well as output: values are read from
field_values_structure and applied to the display list before the form is
displayed. However, if the NO_COPY_UPDATE switch in the options form option
is true, the update option is output-only.

You can specify the update option in the form specifier within the following
statements:

accept

perform screen initialization
perform screen input

perform screen output
perform screen update

VOS COBOL Forms Management System (R035) 5-19

R

Chapter 6:
Field Descriptions

This chapter describes the field description clause of the accept and screen
statements.

The general syntax of a field description is as follows:
field (field_id) [ﬁetd_option]

Note: The keyword using must precede the first field description in an accept
Or screen statement,

The value field_id must be convertible to comp~4 and must specify the field ID
of the field. You can obtain field IDs for predefined fields from the field-IDs file
produced by the Forms Editor (see Chapter 4, “The Forms Editor”). You can
use built-in functions to allocate new field IDs, find predefined field IDs, or scan
the list of allocated field IDs. For more information on built-in functions, see
Chapter 15, “Built-In Functions.”

The field options are described later in this chapter.

Depending on the context in which it is used, a field description performs one of
the following functions:

o defines a field

e alters an existing field

o returns field information
e deletes a field.

Note: Special rules apply when using field descriptions in an accept statement
to modify existing fields. For more information, see Appendix A, “The
accept Statement.”

VOS COBOL Forms Management System (R035) 6-1

Defining a Field

Defining a Field

If you do not reference a predefined form by using the form specifier in the
perform screen initialization statement, the form is created dynamically. This
means that field descriptions in the perform screen initialization statement define
the initial fields in the form.

Whether the form is predefined or not, the perform screen update, perform screen input,
and perform screen output statements can add fields to a form after it has been
initialized.

The position and Length field options are required when you dynamically create a
field.

Defining a Form Dynamically

If you do not reference a predefined form in a perform screen initialization
statement, field descriptions within that statement define the fields of the form.

Because you cannot specify background text as such in the perform screen jnitialization
statement, you must define each segment of background text as an output-only

field and initialize it to the appropriate value. To define an output-only field, omit

the update field option from the field description.

To establish an updatable input or output field, include the update field option in
the field description.

Each field description must also include the position and length field options.

In the following example, a perform screen initialization statement defines a form.

01 fields.
02 name pic x(32) display-2.
02 street pic x(32) display-2.
02 city pic x(32) display-2.
02 phone pic s9(10) comp-6.

01 display_types.
02 dis_type_value

01 error_code
01 form_id

(Continued on next page)

Chapter 6: Field Descriptions

comp—4 occurs 8 times.

comp—4.
comp—4.

Defining a Field

(Continued)
perform screen initialization with formid (form_id)
displaytypes (display_types) status (error_code),
using field (1) position (1, 2) length (5)
initial (*Name:"),
field (2) position (1, 13) length (32)
update (name of fields),
field (3) position (2, 2) length (7)
initial ('Street:"),
field (4) position (2, 13) length (32)
update (street of fields),
field (5) position (3, 2) lLength (5)
initial ("City:'),
field (6) position (3, 13) .length (32)
update (city of fields),
field (7) position (4, 2) length (&)
initial ('Phone:"),
field (8) position (4, 13) length (10)
update (phone of fields).

The form defined by this statement has four updatable fields (fields 2, 4, 6, and §),
each of which is preceded by a background label (fields 1, 3, 5, and 7). Note that
field-value variables are defined only for the updatable fields.

You cannot specify the initial display types of fields you define in the
perform screen initialization statement. The Forms Processor assigns one of the
reserved global display types to each field as follows:

o If the field is output-only (no update field option is given), the Forms Processor
assigns display-type ID 1 to the field.

o If the field has a numeric field-value variable, the Forms Processor assigns
display-type ID 2 to the field.

e The Forms Processor assigns display-type ID 3 to all other fields.

If you include a displaytypes form option in the perform screen initialization
statement, the Forms Processor returns the data-state ID for each field. If the
display-types table contains extra elements, these elements are set to the null
display-type ID (-32768). You can subsequently assign each field a different
display-type ID if you wish. For information on display types, see Chapter 7,
“Display Types.”

You cannot specify initial data states for fields defined in a perform screen initialization
statement. If you include the datastates option in the perform screen initialization
statement, the Forms Processor returns data-state values with all switches false

for each element. However, if you subsequently display the form with the

perform screen input statement, without the COPY_DATASTATE options form option

switch true, that statement sets the INPUT_FIELD switch to true for every field that

VOS COBOL Forms Management System (R035) 6-3

Defining a Field

uses the update field option. If you want to set other data-state switches, such as
REQUIRED_FIELD, you must manually set the data state of each field. For information
on setting data states, see Chapter 8, “Data States.”

You can display the form with a perform screen input statement such as the
following:

perform screen input with formid (form_id) status (error_code),
using field (2) update (name of fields),
field (4) update (street of fields),
field (6) update (city of fields),
field (8) update (phone of fields).

Note that field descriptions for fields 1, 3, 5, and 7 do not appear in the
perform screen input statement. Once a background field has been established,
you need not reference it again.

If a form is defined within the perform screen initialization statement, you cannot
use the update form option when you display the form. Instead, you must use the
update field option for each updatable field.

Adding a Field Dynamically

6-4

You can dynamically add a field to a form after it is initialized. This holds true
whether the form is predefined or defined within the perform screen initialization
statement.

To add a field, you must do the following:
1. Locate an empty area of the form in which the field can be added.
2. Allocate a field ID for the field.
3. Include a field description for the field in a perform screen update,
perform screen input, Or perform screen output statement.

Typically, you must also establish a data state and a display type for the new field.

The alloc_screen_field built-in function allocates and returns a new field ID. For
information on FMS built-in functions, see Chapter 15, “Built-In Functions.”

For example, the following fragment dynamically adds two fields to the form defined
previously in this section.

Chapter 6: Field Descriptions

-’

S’

Defining a Field

01 ext_data_state comp—t.
01 ext_display_type comp=4.
01 extension_id comp=4.
01 extension_label_id comp-4.
01 extension_number comp—4.

move !alloc_screen_field (form_id) to extension_label_id.
move lalloc_screen_field (form_id) to extension_id.

move INPUT_FIELD to ext_data_state.
move 2 to ext_display_type.

perform screen input with formid (form_id)
options (COPY_DATASTATE) status (error_code),
using field (2) update (name of fields)

datastate (data_states (2))
displaytype (display_types (2)),

field (4) update (street of fields)
datastate (data_states (4))
displaytype (display_types (&),

field (6) update (city of fields)
datastate (data_states (6))
displaytype (display_types (6)),

field (8) update (phone of fields)
datastate (data_states (8))
displaytype (display_types (8)),

field (extension_label_id) position (5, 2)
length (10) initial ('Extension:'),

field (extension_id) position (5, 13) length 4
update (extension_number)
data_states (ext_data_state)
displaytype (ext_display_type).

The two fields added in this example establish an updatable field for an extension
number and a background label for that field. The field IDs are obtained by
invoking the alloc_screen_field function. Each invocation of this function returns
a new field ID.

Note that, in this example, the data state for each updatable field is specified by
a datastate field option. If you instead use a datastates form option to specify
a data-states table, elements from that table are applied only to the previously
defined fields; the data-state switches for the new fields are all set to false.

VOS COBOL Forms Management System (R035)

6-5

Modifying a Field

Modifying a Field

You can use a field description to modify a field in a perform screen update,
perform screen input, or perform screen output statement. You can specify field
options that change the following characteristics of a field:

e the field’s data state (datastate field option)

o the field’s display type (displaytype field option)

e the field’s output value (initial or update field option)
e the field’s help text (help field option).

The following example changes the help text for a field.

perform screen update with formid (form_id) status (error_code),
using field (2) help ('Enter the name of the next employee.').

Obtaining Field Information

6-6

You can use a field description in the perform screen inquire statement to obtain
the following information about a field.

e Name (name field option)

® Position (position field option)

e Length (Length field option)

e Current value (input field option)

e Data state (datastate field option)

e Display-type ID (displaytype field option)

e Help message (help field option)

o Window size (window field option; for window fields only)

The following example returns information about a field.

01 column comp—b4.
01 current_value pic x(32) display=-2.
01 field_Llength comp-4.
01 field_name pic x(32) display-2.
01 row comp—4.

perform screen inquire with formid (form_id)
status (error_code),
with field (2) name (field_name)
position (row, column)
length (field_length)
input (current_name).

Chapter 6: Field Descriptions

Deleting a Field

") Deleting a Field

You can use a field description in the perform screen delete statement to remove
a field from the display list. In this case, no field options are used; the syntax of
the field description is simply field (field_id).

The following example deletes two fields from a form.

peform screen delete with formid (form_id) status (error_code),
field (5), :
field (6).

If you delete a field, that field is absent in any subsequent display of the form and
the field ID is available for reuse.

VOS COBOL Forms Management System (R035) 6-7

Field Option Summary

Field Option Summary

6-8

situations.

Table 6-1. The accept and screen Statement Field Options

Table 6-1 lists the field options. Note that not all field options are valid in all

Option Operands

array (number_rows, number_columns)
center

cycle (cycle_value [,cycle_value] .-
datastate (data_state_switches)
displaytype (display_type_id)

given (values_count)

help (help_message)

initial (initial_value)

input (field_value_variable)

left

length (field_length)

mode ’ (mode_switches)

name (field_name)

picture (field_picture)

position (line, column)

range (low_bound, high_bound)
redisplayfield (redisplay_field_switch)
required

right

shift (character_set_id)

unshift (character_set_id)

update (field_value_variable)

val idate (validation_entry)

window Cnumber_lines, number_columns)

Chapter 6: Field Descriptions

AN

M —r

Field Option Reference Guide

) Field Option Reference Guide

This section describes each field option and explains how each can be used. The
field options are listed in alphabetical order.

p array (number_rows, number_columns)

The array option groups a set of similar fields into an array field.

The operands number_rows and number_columns must be positive integer values
convertible to comp-4.

The array field option has two uses: to define a set of similar fields, and to
group a set of previously defined fields.

) If you use the array option in a field description that defines a field, that

' field description defines a set of similar fields. In this case, the position field
option indicates the position of the topmost, leftmost of the individual fields.
The other fields are laid out as indicated by number_rows and number_columns.
There is always one space between rows and between columns.

After an array field is defined, the individual elements of the array are treated
the same as individually defined fields. Each element has a unique field ID
and can be modified without changing the other elements of the array.

You can also use the array option to group a set of individual fields that are
already defined. If you specify the array option for a field that is already
defined, that field and fields with sequentially following field IDs are treated
as an array field. The number of fields included in the array is the product
of number_rows and number_columns. Any field options you give with the array
option are applied to all fields in the array. If the field description includes
the update field option, the variable referenced in that option must be a table.

In the following example, six fields are grouped into an array.

01 array_var.
02 array_values pic x(12) display occurs 6 times.

perform screen input with status (error_code),
using field (5) array (6, 1) displaytype (11)
update (array_var).

The perform screen input statement in the example establishes a common

display type for the six fields with IDs 5 through 10. The field values for these
fields are returned in the table array_var.

VOS COBOL Forms Management System (R035) 6-9

Field Option Reference Guide

6-10

Grouping existing fields into an array field does not change the location of
the fields.

The field-value variable for an array field can be either a one-dimensional or
two-dimensional table. The number of elements in the field-value variable
must be the same as the number of elements in the array field. However,
the dimensions of the table do not have to be the same as number_rows and
number_columns. In the preceding example, the field-value variable could have
been defined as follows:

01 array_var.
02 array_rows occurs 3 times.
03 array_values pic x(12) display occurs 2 times.

Note: In the obsolete accept statement, you can use the array field option
only when defining a field. The array option is then implicitly applied
to any reference to that field. For information on the accept statement,
see Appendix A, “The accept Statement.”

p center

Note: The center field option is obsolete and is supported in the accept
statement only for compatibility with previous releases. In new
applications, use the CENTER_FIELD_DATA or NOTRIM_FIELD_DATA_SPACES
display-type visual switches instead. See the description of the visual
option in Chapter 7, “Display Types.”

For an input field, the center option changes the handling of leading spaces
in a field value. For an output-only field, the center option forces the field
value to be centered in the field.

The center, left, and right field options are mutually exclusive. For numeric
fields and for fields that have a picture, some device drivers might ignore all
these options. (Any field that has a numeric picture or that has a field-value
variable with a numeric data type is a numeric field. See Chapter 9, “Field
Pictures and Filtering.”)

The center option inhibits the trimming of leading spaces from an input field
value. Ordinarily, leading spaces are trimmed from the left of an input field
value before the value is validated and loaded into a program variable. Spaces
are also trimmed from the left of an output value before it is displayed in
the field. If the center option is specified, this trimming does not occur.

Note: Specifying the center option does not center the initial output value of
an input field.

Chapter 6: Field Descriptions

Field Option Reference Guide

p cycle (cycle_value [,cycle_value] v

Note: The cycle field option is obsolete and is supported in the accept statement
only for compatibility with previous releases. In new applications, use
the cycle display-type option instead. See Chapter 7, “Display Types.”

The cycle field option specifies that a field is a cycle field.

Each cycle_value must be a valid value for the field.

The cycle option establishes a set of allowable field values. This set of values
is called the cycle list. A field with a cycle list is called a cycle field. On input,

the user can choose one of the cycle values by using the €YCLE), (CVCLE BACK), or
left and right arrow keys.

Commonly, the first value in the cycle list appears in the field on initial display.
See the discussions of initial output values in Chapter 3, “The Elements of
FMS,” and in Appendix A, “The accept Statement.”

You can use the cycle option when defining a form dynamically. You can also use
the cycle option to modify an existing field if one of the following is true.

e The field was not defined as a cycle or range field.
e The field was defined as a cycle field, and the form was defined as alterable
by accept.

For information on predefined forms and the ALTERABLE BY ACCEPT option, see
Chapter 4, “The Forms Editor.”

D datastate (data_state_switches)

The datastate field option specifies the settings of the data-state switches for
a field.

The operand data_state_switches must be a reference to a comp~4 variable.

The data-state switches for the field are encoded in the bits of data_state_switches.
The following table shows how the switches are encoded.

VOS COBOL Forms Management System (R035) 6-11

Field Option Reference Guide

Bit Switch Name

1 DISAPPEARING_DEFAULT
2 FIELD_VALUE_GIVEN'
4 FIELD_HAS_CHANGED
16 REQUIRED_FIELD
32 INPUT_FIELD
64 NEW_DATA_IN_FIELD
128 DISABLE_ENTIRE_FIELD
256 FILTER_FOR_CONVERSIONT

T The FIELD_VALUE_GIVEN and FILTER_FOR_CONVERSION switches are output-only.

Constants for these switch values are defined in the include file
(master_disk)>system>include_Library>form_datastate.incl.cobol.

You can use the datastate option to obtain the data-state switches for a
field. When altering a field, you can also use the datastate option to set
some of the data-state switches. To change data-state values, you must set
the COPY_DATASTATE options form option switch to true.

For information on data states, see Chapter 8, “Data States.”

You can use the datastate field option with the array field option to set
the data states for each element of the array. However, the value returned
in the datastate field option for an array field is unpredictable. To obtain
data-state values for array elements, use the datastates form option described
in Chapter 5, “Form Options.”

The data-state value specified in the datastate field option overrides a
data-state value specified for the field in the datastates form option.

You cannot use the datastate option with the modes form option or with any of
the following field options:

center
cycle
given
mode
left
picture
range
redisplayfield
required
right
validate

6-12 Chapter 6: Field Descriptions

)

Field Option Reference Guide

P displaytype (display_type_id)

The displaytype field option specifies the display type for a field.

The operand display_type_id must be convertible to comp-4. In a
perform screen inquire statement, display_type_id must be a reference to
a comp=4 variable. In the perform screen inquire statement, the displaytype
option is output-only. In all other contexts, it is input-only.

In a perform screen inquire statement, the displaytype option returns the
display-type ID for the field. In all other contexts, the displaytype field option
specifies the display-type ID for the field.

A display type must be defined before it is referenced in a displaytype field
option. For information on display types, see Chapter 7, “Display Types.”

A display type specified in the displaytype field option overrides a display

type specified for the field in the displaytypes form option.

You cannot use the displaytype option with the modes form option or with any of
the following field options:

center
cycle
given
mode
left
picture
range
redisplayfield
reguired
right
validate

VOS COBOL Forms Management System (R035) 6-13

Field Option Reference Guide

6-14

p given (values_count)

Note: The given field option is obsolete and is supported in the accept statement
only for compatibility with previous releases. In new applications, use
the FIELD_VALUE_GIVEN switch in the datastate field option instead. See
Chapter 8, “Data States.”

The given option indicates whether the user specified a value for a field.

The operand values_count must be a reference to a comp-4 variable. The given
option is output-only.

The given option returns the value 0 if the user does not give a value for the
field. If the field is a simple (non-array) field and the user supplies a value, the
given option returns the value 1. If the field is an array field, the given option
returns the number of array elements for which the user has given a value.

» help C(help_message)

The help option specifies help text for a field.

The operand help_message must be a character-string value. In the
perform screen inquire statement, help_message must be a reference to a
character-string variable.

In the perform screen inquire statement, the help option returns the help
message for the field. In all other contexts, the help option establishes the
help message for the field.

The help message for a field is displayed on the terminal status line when
the user positions the cursor to the field and presses the key.

If the help message is too long to be displayed on the terminal status line,
only the leftmost characters are displayed.

Chapter 6: Field Descriptions

Field Option Reference Guide

- initial (initial value)
) - { -

initial_value_string }
The initial field option specifies the initial output value for a field.

The operand initial_value, if given, must be convertible to a valid value for the
field. The operand initial_value_string, if given, must be a character-string
constant that is convertible to a valid value for the field.

If you specified an initial value for the field in the Forms Editor and
the form is not alterable by accept, then the initial field option in the
perform screen initialization statement is ignored. In this case, the initial
value specified in the Forms Editor is used.

Note: The initial value for a cycle field must be one of the values in the cycle
list.

» input (field_value_variable)

p» left

The input field option returns the current value of a field.

The operand field_value_variable must be a reference to a variable that can
receive the value of the field. The input field option is output-only.

The input field option can only be used in the perform screen inquire statement.

Note: The Left field option is obsolete and is supported in the accept statement
only for compatibility with previous releases. In new applications, use
the LEFT_JUSTIFY_FIELD_DATA display-type visual switch instead. See
Chapter 7, “Display Types.”

The Left field option specifies that a field is to be left-justified.

If the field has a field picture, for some device drivers the picture determines
the justification of the field. In this case, the left option is ignored. For
information on field pictures, see Chapter 9, “Field Pictures and Filtering.”

The Left option might also be ignored if the field is numeric. For some device
drivers, numeric fields are always right-justified. (A numeric field is any field
having a numeric field picture or having a field-value variable with a numeric
data type and no field picture.) The default justification for alphanumeric
fields is left.

On input, the first character typed by the user in a left-justified field appears

in the leftmost character position. The cursor moves to the right as each
character is typed so that subsequent characters fill to the right.

VOS COBOL Forms Management System (R035) 6-15

Field Option Reference Guide

6-16

On output, the field value for a left-justified field is displayed in the leftmost
positions of the field.

By default, the initial editing mode for a left-justified field is overlay mode.
You can change the initial editing mode by setting either the NO_OVERLAY
mode bit or the FORCE_INSERT_MODE display-type action switch. (See Chapter 7,
“Display Types”.) The user can change the editing mode of a field with the

INSERT/OVERLAY) key.

p ltength (field_length)

The Length field option specifies the length of a field.

The operand field_length must be convertible to comp~4. In the
perform screen inquire statement, field length must be a reference to a
comp-4 variable.

For a simple field, the Length option specifies the number of visible character
positions in the field. Note that a character from a double-byte character
set requires two character positions. For an array field, the length option
specifies the length of each element. In the perform screen inquire statement,
Length returns the length of the field or array elements.

The length option is required when defining a field.

You should not define a field that is too long to fit on the screen.

p mode (mode_switches)

Note: The mode field option is obsolete and is supported in the accept statement
only for compatibility with previous releases. In new applications, use
the datastate and displaytype field options instead. These options are
described earlier in this chapter.

The mode field option specifies the mode settings for a field.

The operand mode_switches must be convertible to comp-4. The mode option is
input-only.

Chapter 6: Field Descriptions

Field Option Reference Guide

The mode field option has two uses:

® to set the mode switches when defining a field
® to alter the mode switches of a predefined field on initial display.

You can use the mode option to alter the mode switches on initial display only if
the form is alterable by accept. When used in this way, the mode option must be
the only field option in the field description. Such a field description is read on
initial display and ignored on redisplay.

The following table shows how the mode switches are encoded in the bits of
mode_switches.

Bit Switch Name

1 BLANKED
2 BLINKING
4 INVERSE
8 UNDERLINED
16 LOW_INTENSITY
32 HIGH_INTENSITY
64 (reserved)
128 (reserved)
256 INPUT_DISABLED
512 NO_OVERLAY
1024 AUTO_TAB
2048 IMMEDIATE_RETURN
4096 NOT_EDITABLE
8192 TRAP_ON_ENTRY
16384 (reserved)
32768 (reserved)

All unused bits are reserved and must be set to 0. For an explanation of each
mode, see Appendix A, “The accept Statement.”

To modify field modes on redisplay, use the modes form option.

VOS COBOL Forms Management System (R035) 6-17

Field Option Reference Guide

» name (field_name) A)

The name field option returns the name of a field.

The operand field_name must be a reference to a character-string variable.
The name option is output-only.

The name option is valid only in the perform screen inquire statement and
only for fields predefined by the Forms Editor.

A field’s name is the name specified for the field in the Forms Editor. This
is the same name used to name the associated variable in the field-values

include file.

p picture (field picture)

Note: The picture field option is obsolete and is supported in the accept
statement for compatibility with previous releases. In new applications,
use the picture display-type option instead. See Chapter 7, “Display
Types.”

The picture option specifies a field picture, or template, for a field.

The operand field_picture must be convertible to a character string that is
no longer than the field. The picture field option is input-only.

Each character in field picture corresponds to a character position in the
field and defines the valid characters for that field position. If field picture
is shorter than the field, the Forms Processor automatically extends the field
picture to the length of the field.

6-18 Chapter 6: Field Descriptions

Field Option Reference Guide

The following table lists the valid picture characters.

Picture

Character Meaning

Aor a Allow space or hyphen.

Borb Insert literal space.

Lort Allow letter, digit, or space; convert letter to lowercase.
uoru Allow letter, digit, or space; convert letter to uppercase.

X or x Allow letter, digit, or space.

Zorz Allow digit or hyphen (negative sign); suppress leading zeros.
9 Allow digit or hyphen (negative sign); display leading zeros.
. Fix decimal point location.t

, Fix digit-grouping character location.t

- Insert literal hyphen.

/ Insert literal slant.

T The meaning of the period and comma can be reversed with the decimal is comma
option in the Forms Editor s form.

For information on field pictures, see Chapter 9, “Field Pictures and Filtering.”
P position (line, columm

The position option specifies the position of a field within the form.

The operands (ine and column must each be convertible to comp-4. In the

perform screen inquire statement, {ine and column must each be a reference

to a comp-4 variable. The position option is input-only, except in the

perform screen inquire statement, where it is output-only.

The position of a simple field is the line and column of the leftmost character

position in the field. The position of an array or window field is the line and

column of the leftmost character position of the topmost, leftmost element.

In the perform screen inquire statement, position returns the position of the
field.

The position option is required when defining a field.

The position you specify for the field must be within the limits of the terminal
screen.

VOS COBOL Forms Management System (R035) 6-19

Field Option Reference Guide

6-20

p range (low_bound, high_bound)

Note: The range field option is obsolete and is supported in the accept statement
only for compatibility with previous releases. In new applications, use
the range display-type option instead. See Chapter 7, “Display Types.”

The range field option specifies a minimum and maximum value for a field.

The operands low_bound and high_bound must each be convertible to the-data
type of the field-value variable for the field. Both values are input-only.

The range option restricts field values by specifying a range of valid values.

When the user submits the form, the Forms Processor checks that the input
value is within the specified bounds. If the value is out of range, the Forms

Processor displays an error message and positions the cursor to the field.

The Forms Processor performs the range test after checking that the value conforms
to the field picture (if any) and before calling the field validation routine (if any).

When altering an existing field, you can use the range option to define or alter the
bounds only if one of the following is true.

e The field was defined with neither a range restriction nor a cycle restriction.
e The field was defined with a range restriction, and the form is alterable by
accept.

p redisplayfield (redisplay_field_switch)

Note: The redisplayfield field option is obsolete and is supported in the
accept statement only for compatibility with previous releases.

The redisplayfield option specifies whether to display the initial output value
for a field or to display the current field value.

The operand redisplay_field_switch must be a comp-4 value.

If redisplay_field_switch is true (1) on redisplay, the current value of the
field-value variable is ignored on input, and the initial output value is displayed
in the field. If redisplay_field_switch is false (0) on redisplay, the current
value of the field-value variable is displayed in the field.

The redisplayfield option is ignored on initial display.

For information on initial display versus redisplay, see the description of the
accept statement in Chapter 16, “Statements.” For information on initial
output values, see Chapter 3, “The Elements of FMS,” and Appendix A,
“The accept Statement.”

Chapter 6: Field Descriptions

» requi

p right

Field Option Reference Guide

red

Note: The required field option is obsolete and is supported in the accept
statement only for compatibility with previous releases. In new
applications, use the REQUIRED_FIELD data-state switch instead. See
Chapter 8, “Data States.”

The required field option specifies that a field is required.

If a field is required, the user cannot submit the form while the field contains
its null value. If the user attempts to do so, an error message is displayed
and the cursor is positioned to the field.

If you use the required field option to alter a field that was predefined by the
Forms Editor, the visual attributes of the field are changed in accordance
with the required field toggles specified in the Forms Editor.

For information on null field values, see Chapter 3, “The Elements of FMS.”
For information on the Forms Editor, see Chapter 4, “The Forms Editor.”

Note: The right field option is obsolete and is supported in the accept statement
only for compatibility with previous releases. In new applications, use
the RIGHT_JUSTIFY_FIELD_DATA display-type visual switch instead. See
Chapter 7, “Display Types.”

The right field option specifies that a field is to be right-justified.

If the field has a field picture, for some device drivers the picture determines
the justification of the field. In this case, the right option might be ignored. For
information on field pictures, see Chapter 9, “Field Pictures and Filtering.”

For some device drivers, numeric fields are always right-justified. (A numeric
field is any field that has a numeric field picture or that has a field-value
variable with a numeric data type and no field picture.) The default justification
for alphanumeric fields is left.

On input, the cursor appears at the right of a right-justified field. The first
character typed by the user appears in the rightmost character position. As
subsequent characters are typed, characters in the field move left. Thus, each
new character initially appears in the rightmost position. The cursor does
not move unless the user explicitly moves it with the cursor motion keys.

On output, the field value for a right-justified field is displayed in the rightmost
positions of the field.

VOS COBOL Forms Management System (R035) 6-21

Field Option Reference Guide

6-22

By default, the initial editing mode for a right-justified field is insert mode. You can
change the initial editing mode by setting the FORCE_OVERLAY_MODE display-type action
switch. The user can change the editing mode of a field with the key.

For information on the FORCE_OVERLAY_MODE switch, see Chapter 7, “Display Types.”

p shift (character_set_id)

The shift field option establishes a default supplemental character set for
a field and specifies how characters from supplemental character sets are
represented within the field value.

The operand character_set_id must be a comp-4 value.

The value of character_set_id indicates the default character set for the field.
The following table lists the allowed values and their meanings.

Character Character
Set ID Set Name

0 none

1 LATIN_1_CHAR_SET
2 KANJI_CHAR_SET

3 KATAKANA_CHAR_SET
4 HANGUL_CHAR_SET

Constants for these values are defined in the file
(master_disk)>system>include_Library>char_sets.incl.cobol.

The shift option specifies the default supplemental character set for the
field. It also indicates that characters from any other supplemental character
sets are preceded by single-shift characters on input and must be preceded
by single-shift characters on output. Characters from the default character
set need not be preceded by shifts on input and are not preceded by shifts
on output.

If you specify shift(0), you must precede all characters from supplemental
character sets by single-shift characters on input, and the Forms Processor
precedes all supplemental characters by single-shift characters on output.

Note: The character_set_idvalue is input-only in all contexts — including
the perform screen inquire statement.

If you omit both the shift field option and the unshift field option, the
default is shift(1).

For more information on supplemental character sets, see the section
“International Character Set Support” in Chapter 3, “The Elements of FMS.”

Chapter 6: Field Descriptions

Field Option Reference Guide

P unshift (character_set_id)

The unshift field option establishes the only supplemental character set
allowed for a field and specifies how supplemental characters are represented
within the field value.

The operand character_set_id must be a comp=4 value.

The value of character_set_id indicates the character set for the field. The
following table lists the allowed values and their meanings.

Character Character
Set ID Set Name

0 none

1 LATIN_1_CHAR_SET
2 KANJI_CHAR_SET

3 KATAKANA_CHAR_SET
4 | HANGUL_CHAR_SET

Constants for these values are defined in the file
(master_disk)>system>include_Llibrary>char_sets.incl.cobol.

The unshift option specifies the only valid supplemental character set for
the field and indicates that the value stored in the field-value variable is to
contain no shift characters.

On input, all supplemental characters are assumed to be of the specified
character set. The user cannot submit a field value containing characters
from any other supplemental sets. If the user attempts to enter such a value,
an error message is displayed, and the cursor is positioned to the field.

On output, the value returned to the field-value variable does not contain any
shift characters. All supplemental characters in the value are of the specified
character set.

If you specify unshift(0), the field cannot contain any supplemental characters.

Note: The character_set_id value is input-only in all contexts — including
the perform screen inquire statement.

If you omit both the shift field option and the unshift field option, the
default is shift(1).

For more information on supplemental character sets, see the section
“International Character Set Support” in Chapter 3, “The Elements of FMS.”

VOS COBOL Forms Management System (R035) 6-23

Field Option Reference Guide

6-24

p update (field_value_ variable)

The update field option specifies the field-value variable for a field.

The operand field_value_variable must be a reference to a variable that can
receive the value of the field.

If the NO_COPY_UPDATE switch in the options form option is true, the update field
option is output-only. In all other cases, it is used for both input and output.

On input, the value of field_value_variable is converted (if necessary) to the
data type of the field and displayed in the field.

On output, the value of the field is converted (if necessary) to the data type
of field_value_variable and assigned to that variable. If the field value cannot
be converted to the data type of field_value_variable, the form cannot be
submitted; an error message is displayed, and the cursor is positioned to the
field.

You can use the update field option when defining or altering an input field.
If a perform screen input statement does not contain an into or update form
option, you must use the update field option for each input field in the form;
otherwise, the field value supplied by the user is lost.

If you omit the update option when defining a field, the field defaults to
output-only.

p validate (validation_entry)

Note: The validate field option is obsolete and is supported in the accept
statement only for compatibility with previous releases. In new
applications, use the validate display-type option instead. See Chapter 7,
“Display Types.”

The validation field option establishes a validation routine for a field.
The operand validation_entry must be a reference to an entry value.

The validation routine is invoked to check the field value when the user
submits the form.

When the form is submitted, the Forms Processor first checks that the field
value conforms to the field picture (if any). It then checks that the value is
within the range specified for the field (if any). It then invokes the validation
routine (if any).

For information on writing validation routines, see Chapter 10, “Error
Handling and Field Validation.”

Chapter 6: Field Descriptions -

\\\/

Field Option Reference Guide

» window (number_Llines, number_columns)

The window field option defines a window field.

The operands number_lines and number_columns must be comp~4 values. In
the perform screen inquire statement, both operands must be references to
comp=4 variables. Both values are output-only in the perform screen inquire
statement and input-only in all other contexts.

The window field option is valid when defining a new field and in the
perform screen inquire statement. When defining a window field, you must
use the position field option to specify the location of the window. The Length
option does not apply to window fields.

For information on window fields, see Chapter 11, “Windows and Subforms.”

VOS COBOL Forms Management System (R035) 6-25

Chapter 7:
Display Types

This chapter describes field display types. It explains the different classes of display
types and how display types are defined and manipulated. The display-type options
are described alphabetically at the end of the chapter.

A display type is a combination of specific field attributes that can be referenced
by an associated integer value. This integer value is the display-type ID.

Each field in a form has an associated display type. Often, several fields in a form
share a common display type. You can change a field’s attributes by assigning it
a different display type. If several fields share a display type, you can alter the
attributes of all those fields by modifying the shared display type.

You initially set the display-type attributes of each field in the new Forms Editor.
The Add/modify field menu includes a section of display-type options. The Forms
Processor assigns an ID to each unique set of display-type attributes you specify.
Display types created in the Forms Editor are called predefined display types. If
two fields have identical display-type attributes, they share a display-type ID.

Within the application program, you can use the displaytypes form option in the
perform screen initialization statement to obtain the predefined display-type
ID for each field. You can use the displaytypes form option in subsequent
perform screen input, perform screen output, and perform screen update statements
to specify different display types. For further information on the displaytypes form
option, see Chapter 5, “Form Options.”

You can use the displaytype field option to specify a new display type for a specific

field. See the description of the displaytype field option in Chapter 6, “Field
Descriptions.”

VOS COBOL Forms Management System (R035)

Display-Type Descriptions

Display-Type Descriptions

7-2

In an accept or screen statement, the display-type description clause has the
following syntax:

displaytype (display_type_id) [display_type_option]

The operand display_type_id must be convertible to comp~4 and must specify the
display type’s ID.

Note: The keyword giving must precede the first display-type description in
an accept Or screen statement.

The display-type options are listed in Table 7-1.

Table 7-1. The Display-Type Options

Display-Type
Option Operands
. action ([action_switches] [,update_switches] eee)
charset (character_set_id)
cycle_value [,cycle_value] cee
cycle ()
cycle_value_array [,value_count]
cycle_array (cycle_value_array, value_count_variable)
picture (picture)
range ([min_value] [,max_value :l)
validate (validation_entry)
visual ([visual_switches] [,update_switches] cen)

Each of the display-type options is described later in this chapter.
Display-type descriptions can perform the following functions:

e Define a display type. You can define a new display type in the
display-type description clause of the accept, perform screen update,
perform screen initialization, perform screen input, and perform screen output
statements. If the display-type ID you reference in the display-type description
is not in use, then the clause defines a new display type having that ID.

e Alter an existing display type. You can alter a display type in the
display-type description clause of the accept, perform screen update,
perform screen initialization, perform screen input, and perform screen output
statements. If the display-type ID you reference is in use, then that clause

Chapter 7: Display Types

Ny .

Display-Type Descriptions

modifies the display type. Note that the modification automatically affects all
fields that reference the display type.

® Obtain information about a display type. You can obtain information about a
display type with a display-type description clause in the perform screen inquire
statement. The display-type ID must reference a currently defined display

type.

® Delete a display type. You can remove a display type from the display list by
referencing it in a display-type description clause in a perform screen delete
statement. The display-type ID must reference a currently defined display type
that is not referenced by any existing field. The display-type description in the
perform screen delete statement must not contain any display-type options.

Note: Some of these operations are not allowed for all display types. The

classes of display types and the restrictions on each are described in
the following section.

Classes of Display Types
A display type must be defined before you reference it in either the displaytypes
or displaytype option. There are three classes of display types which are defined
in different ways.
® Predefined display types
® Global display types
® Temporary display types
There are two subclasses of global display types: reserved and programmer-defined.

Table 7-2 summarizes the distinctions among the classes of display types.

Table 7-2. The Display-Type Classes

Class Defined by -Scope Alterable | Display-Type IDs
Predefined the Forms Editor local to form no negative integers
Global
Reserved the Forms Processor | global to port no 0 through 10
Programmer | the program global to port yes 11 through 16,383
-defined '
Temporéry the Forms Processor | local to form yes 16,384 through 32,767

VOS COBOL Forms Management System (R035) 7-3

Classes of Display Types

Predefined Display Types

Display types established in the Forms Editor are called predefined display types.
Predefined display types have negative IDs and are local to the form for which
they are defined. T

You specify the attributes of a predefined display type when you define a field with
the Add/modify field option ((END) F) in the new Forms Editor. For information on
this option, see Chapter 4, “The Forms Editor.”

You cannot alter or delete predefined display types within an application. To change
the display characteristics of a predefined field, assign it a different display type.

Global Display Types

7-4

Global display types are global to a port and remain valid until the port is detached.
Some global display types are defined by the Forms Processor; others can be defined
by the programmer. Global display types have positive display-type IDs. Display
types defined by the programmer can be altered dynamically by the application.

Display-type IDs 0 through 10 are reserved for global display types defined by the
Forms Processor. You cannot alter or delete these display types.

The following table lists the global display types that are currently defined.

Display-Type
ID Description
0 The display type of the error message field.t
1 The default display type for alphanumeric fields.
2 The default display type for numeric fields.
3 The default display type for output fields.

t Display-type 0 might have limited effect for some device drivers.
The display-type IDs 4 through 10 are reserved for future use.

You can create your own global display types within the application program. You
must assign IDs in the range 11 to 16,383, inclusive, to these display types. You
can create global display types in two ways:

e by referencing the display-type ID in a display-type description in a
perform screen initialization, perform screen update, perform screen input,
or perform screen output statement. (Display-type descriptions are discussed
later in this chapter.)

Chapter 7: Display Types

e’

Classes of Display Types

® by obtaining the display-type ID from the alloc_screen_displaytype built-in
function.

You should always assign display-type IDs sequentially. Using a larger display-type
ID might cause the Forms Processor to waste storage space. If you know that
certain display types must be defined within a program, you should define constants
for those display-type IDs, starting with 11, and create the display types in
perform screen update statements. If other display types need to be defined later
in the application, use the alloc_screen_displaytype built-in function to obtain the
next available display-type ID. The built-in functions are described in Chapter 15,
“Built-In Functions.”

You can alter the characteristics of any global display type you define in an
application program. Changing a global display type effectively changes the attributes
of all fields that use that display type on that port.

Temporary Display Types
Temporary display types are created by the Forms Processor for a form created with
the old Forms Editor or old-style accept statement. Temporary display types have
display-type IDs in the range 16,384 to 32,767, inclusive.

Temporary display types are local to the form for which they are defined.

Setting the Action and Visual Attributes

You can specify attributes that affect the behavior and visual appearance of a
field with the action and visual display-type options, respectively. Each of these
options specifies settings for a series of switches encoded in a comp~5 value.

Each visual and action switch is explained later in this chapter.

To set the visual switches, you can specify a single value that gives the appropriate
settings for each switch. For example, the following statement creates a display
type with the blinking and underlined visual attributes.

perform screen update with status (status_code),
giving displaytype (11) visual (10).

Rather than giving a single value for the switches, you can specify a base value
and one or more sets of update switches to be applied to that base. An update
switches value is always preceded by a comma. For example, the following fragment
is equivalent to the previous example.

VOS COBOL Forms Management System (R035) 7-5

Setting the Action and Visual Attributes

7-6

%replace BLINKING_VISUAL by 2
%replace INVERSE_VISUAL by 4
Zreplace LOW_INTENSITY_VISUAL by 16
%replace UNDERLINED_VISUAL by 8

perform screen update with status (status_code),
giving displaytype (11)
visual (BLINKING_VISUAL, UNDERLINED_VISUAL).

In this example, the value 2 (BLINKING_VISUAL) is specified as the base value for
the visual option. The update value 8 (UNDERLINED_VISUAL) specifies an additional
switch to be set to true. An update value can specify more than one switch to
be set to true. For example, the update value 20 would set the INVERSE_VISUAL
and LOW_INTENSITY_VISUAL switches to true. (You could achieve the same result by
specifying two update values.)

When updating an existing display type, you can omit the base value. The current
switch settings for the display type are then used as the base. For example, the
following statement updates the display type defined in the previous example.

perform screen update with status (status_code),
giving displaytype (11)
visual (, INVERSE_VISUAL, LOW_INTENSITY_VISUAL).

This example sets the INVERSE_VISUAL and LOW_INTENSITY_VISUAL switches to true.
The BLINKING_VISUAL and UNDERLINED_VISUAL switches also remain true.

If an update value is preceded by a circumflex (*), it specifies switches to be set to
false. The following statement updates the display type defined in the previous
example.

perform screen update with status (status_code),
giving displaytype (11) visual (, ~BLINKING_VISUAL).

This example sets the BLINKING_VISUAL switch to false for the display type. All other
switches are unchanged.

The syntax of the action attribute is similar to that of the visual attribute. For
example, the following fragment defines a display type with the FORCE_INSERT_MODE

Chapter 7: Display Tipes

Setting the Action and Visual Attributes

and TRAP_ON_FIELD_EXIT action switches true.

Zreplace FORCE_INSERT_MODE by 8
%replace TRAP_ON_FIELD_EXIT by 2

perform screen update with status (status_code),
giving displaytype (12)
action (FORCE_INSERT_MODE, TRAP_ON_FIELD_EXIT).

You can obtain the current settings of the action or visual switches by using the
action or visual option in a display-type description of a perform screen inquire
statement, as in the following example.

01 action_switches comp~5.
01 visual_switches comp-5.

perform screen inquire with status (status_code),
giving displaytype (12) action (action_switches)
visual (visual_switches).

In the perform screen inquire statement, the action and visual options take only
one operand and are output-only.

Cycle Display Types

If you specify the cycle option for a display type, that display type is a cycle display
type. Any field using that display type is a cycle field.

The cycle option establishes a set of allowable field values. This set of values is
called the cycle list. On input, the user can choose one of the cycle values by using

the (CYCLE), (CYCLE BACK), or left and right arrow keys (& and &).

Commonly, the first value in the cycle list appears in the field on initial display.
See the discussion of initial output values in Chapter 3, “The Elements of FMS.”

You can define the cycle list either in the Forms Editor or with the cycle display-type
option in the application program. For information on the Forms Editor, see
Chapter 4, “The Forms Editor.” The cycle values can be of any data type convertible
to strings.

VOS COBOL Forms Management System (R035) 7-7

Cycle Display Types

7-8

You can also use the cycle display-type option to change the cycle list of a previously
defined display type.

In the cycle display-type option, you can specify the cycle list in two ways. You can
list the cycle values individually, or you can specify a table that contains the cycle
values. If you specify the table, you can also specify the number of cycle values to
be taken from the table.

The following example defines a simple cycle display type.

perform screen update with status (status_code),
giving displaytype (11) cycle ('add', 'change', 'remove').

The display type defined in the preceding example has three cycle values: add,
change, and remove. The following example defines the same display type using the
other syntax of the cycle option.

01 cycle_values.
02 cycle_table pic x(12) display-2 occurs 10.

01 number_values.

move 'add' to cycle_values (1).
move 'change' to cycle_values (2).
move ‘remove’ to cycle_values (3).
move 3 to number_values.

perform screen update with status (status_code),
giving displaytype (11)
cycle (cycle_values, number_values).

In this example, because number_values is 3, the first three elements of the table
are used as the cycle list. The other elements of the table are ignored. If you omit
the second operand of the cycle option, all elements of the table are taken as
cycle values.

Chapter 7: Display Types

Cycle Display Types

Subsequently changing the values of either number_values or the table elements
does not change the cycle list for the display type. To change the cycle list, you
must modify the display type in another display-type description, as in the following
example.

move 'write' to cycle_values (1).
move 'rewrite’ to cycle_values (2).
move 'delete' to cycle_values (3).
move 'read' to cycle_values (4).
move 4 to number_values.

perform screen update with status (status_code),
giving displaytype (11)
cycle (cycle_values, number_values).

In this example, both the size and content of the cycle list are changed.

If you want the user to have the option of omitting a value for a field, you must
include the null field value among the cycle values. For fields without pictures, the
null value is a string of space characters. For more information on null pictures,
see Chapter 3, “The Elements of FMS.”

The following example modifies the display type to allow the user to omit a field
value if the field is not required.

move spaces to cycle_values (5).
move 5 to number_values.

perform screen update with status (status_code),
giving displaytype (11
cycle (cycle_values, number_values).

Note that if a field is required, the user must give a non-null value.

Indexed Cycle Lists
Often it is convenient within the application program to reference cycle values as
an integer index into the cycle list. This is especially true if you use a table to hold
the cycle values. If the INDEXED_CYCLE_LIST display-type action switch is true for
a cycle field, then the value returned to the field-value variable is not the value
that appears in the field, but an integer indicating the position of that value in the
cycle list. The index is zero-based; this means that if the cycle list has N values, the
index returned is in the range 0 to A1, inclusive.

The following example uses a field with an indexed cycle list.

VOS COBOL Forms Management System (R035) 7-9

Cycle Display Tipes

%replace INDEXED_CYCLE_LIST by 2048
copy 'emp_record_ids.incl.cobol’.

01 cycle_values.
02 cycle_table pic x(12) display-2 occurs 3 times.

01 display_types.
02 display_type_value comp~4 occurs emp_record_max_ids times.

01 emp_struct.
02 operation comp—4.

/* Initialize screen and create a new display type. */

move 'write' to cycle_table (1).
move 'rewrite' to cycle_table (2).
move ‘delete' to cycle_table (3).

perform screen initialization 'emp_record'
with displaytypes (display_types) status (status_code),
giving displaytype (11) action (INDEXED_CYCLE_LIST)
cycle (cycle_values).

/* Move the new display type to the operation field. */
move 11 to display_type_value (operation_id).
/* Display the form and get input from the user. */

perform screen input 'emp_record' update (emp_struct)
with displaytypes (display_types) status (status_code).

/% Value specified by the user in the operation
field is cycle_table (operation + 1. */

In this example, the cycle values for the operation field are three character strings.
But because the INDEXED_CYCLE_LIST action switch is set for the field, the value
returned into the operation field-value variable by the perform screen input statement
is an integer in the range 0 to 2, inclusive. Note that operation is defined as comp=4.
Note also that the returned index value must be incremented by one to correctly
subscript the table.

7-10 Chapter 7: Display Types

~—

Cycle Display Types

Obtaining Cycle List Values

You can use the cycle_array option in a display-type description within a
perform screen inquire statement to return the cycle list for a previously defined
cycle display type. The cycle_array option returns a table of cycle values and an
integer indicating the number of cycle values in the table. You can use this option
to obtain information about any display type: global, predefined, or temporary.

perform screen inquire with status (status_code),
giving displaytype (11)
cycle_array (cycle_values, number_values).

The table you specify in the cycle_array option — cycle_values in the example — must

be large enough to hold all the cycle values for the display type. The component
data type of the table must be convertible from a string data type.

Display-Type Option Reference Guide

This section describes each display-type option and explains how to use it. The
display-type options are given in alphabetical order.

p action ({ action_switches [, ["] update_switches] ce } , ["] update_switches...)
The action option specifies action attributes for the display type.

The operands action_switches and update_switches must be comp-5 values. In
the perform screen inquire statement, action_switches must be a reference
to a comp~5 variable.

The operand action_switches is required when defining a field and in the
perform screen inquire statement. In the perform screen inquire statement,
update_switches is not allowed and the action option is output-only. In all
other contexts, the action option is input-only.

VOS COBOL Forms Management System (R035) 7-11

Display-Type Option Reference Guide

The action switches for the display type are encoded in action_switches and in
update_switches. The following table shows how the switches are encoded.

Bit Switch Name

1 AUTO_TAB_TO_NEXT_FIELD
2 TRAP_ON_FIELD_EXIT
4 TRAP_ON_FIELD_ENTRY
8 FORCE_INSERT_MODE

16 FORCE_OVERLAY_MODE
1024 BANK_TELLER_DECIMAL
2048 INDEXED_CYCLE_LIST

2® | SPECIAL_ACTION_28

2” | SPECIAL_ACTION_29

2° | specIAL_AcTION_30

All unused bits are reserved. Reserved bits must be set to 0 on input and
should be ignored on output.

The include file
(master_disk)>system>include_Llibrary>form_displaytype.incl.cobol defines
mnemonic constants for the action switches.

If you omit the action option when defining a display type, all action switches
are set to false.

You can specify the action switches in two parts: a base value and a series of
update values to be applied to that base.

If you specify action_switches, it is taken as the base value for the action
switches. If you do not specify action switches, the current settings of the
action switches for the display type are taken as the base value.

Each update_switches specifies switches to be turned on or off. If the
update_switches value is not preceded by a circumflex (*), any action switches
that are true in update_switches are turned on (set to true) for the display
type. If the update_switches value is preceded by a circumflex (*), any action
switches that are true in update_switches are turned off (set to false) for the

display type.

If an update_switches specifies that a switch that is already true should be
set to true, or that a switch that is already false should be set to false, then
the switch is not changed.

The explanation of each action switch follows.

7-12 Chapter 7: Display Types

—r”

Display-Type Option Reference Guide

AUTO_TAB_TO_NEXT_FIELD

If this switch is true, the field is exited as soon as the user types a
complete value in the field. Normally, when a field is exited, the cursor
moves to the next field. In this context, a complete value refers to a
value that fills all the positions in the field.

If you set both the AUTO_TAB_TO_NEXT_FIELD and TRAP_ON_FIELD_EXIT
switches to true, control returns to the application as soon as the user
gives a complete value for the field.

TRAP_ON_FIELD_EXIT

If this switch is true, control returns to the application when the user
attempts to move the cursor out of the field. The action of returning
control to the application is called a trap.

A trap on field exit is also referred to as an immediate return.

If you supply the keyused form option in a perform screen input statement,
then the value -2 is returned in that option when a trap on field exit
occurs. If you supply the nextcursor form option, the cursor position
returned is the position to which the cursor would have moved if the
trap had not occurred.

When a trap occurs on field exit, the full field validation sequence

is performed. A validation routine (if any) specified for the field is
invoked, and any error message is returned to the user. Other fields in
the form might or might not be validated, depending on the settings of
the VALIDATE_ERRORS_OFF and VALIDATE_ONE_FIELD switches of the options
form option. The options form option is described in Chapter 5, “Form
Options.”

For more information on trapping, see Chapter 13, “Traps.”

VOS COBOL Forms Management System (R035) 7-13

Display-Type Option Reference Guide

7-14

TRAP_ON_FIELD_ENTRY

If this switch is true, control returns to the application when the user
attempts to move the cursor into the field. The action of returning
control to the application is called a trap.

If you supply the keyused form option in a perform screen input statement,
then the value -9 is returned in that option when a trap on field entry
occurs. If you supply the nextcursor form option, the cursor position
returned is the position where the cursor would have been if the trap
had not occurred.

When a trap occurs on field entry, the full field validation sequence is
performed for all fields.

For more information on trapping, see Chapter 13, “Traps.”

FORCE_INSERT_MODE

If this switch is true, the initial edit mode for the field is insert mode.
The user can change the edit mode by pressing the key.

If you do not specify FORCE_INSERT_MODE or FORCE_OVERLAY_MODE, the initial
edit mode is determined by the device driver.

FORCE_OVERLAY_MODE

If this switch is true, the initial edit mode for the field is overlay mode.
The user can change the edit mode by pressing the key.

If you do not specify FORCE_INSERT_MODE or FORCE_OVERLAY_MODE, the initial
edit mode is determined by the device driver.

BANK_TELLER_DECIMAL

This switch is meaningful only if the field has a numeric picture that
includes a decimal point. If this switch is true, the field behaves in a way
common to many bank-teller machines. The cursor appears to the right
of the field. Digits typed in the field appear first at the right edge of
the field (to the right of the decimal point) and move left as additional
digits are typed. The digits 0 through 9 are the only characters a user
can type in a bank-teller decimal field.

For example, if the field picture is z.99, the field value initially appears
as .00. If the user types the digits 123, the field value changes to .01, to
.12, and finally to 1.23.

If the BANK_TELLER_DECIMAL switch is false for a field with a numeric
picture that contains a decimal point, the cursor initially appears at
the decimal point. Digits typed in the field initially appear to the left
of the decimal point and move left as additional characters are typed.

“Chapter 7: Display Types

‘\/

Display-Type Option Reference Guide

The cursor does not move. When the user types a decimal point, the
content of the field does not change, but the cursor moves to the right of
the decimal point. Any additional characters typed by the user appear
to the right of the decimal point, and the cursor moves right as each
additional character is typed.

Note: Some device drivers do not support bank-teller decimal.

INDEXED_CYCLE_LIST

This switch is only meaningful for cycle fields (see the description of
the cycle display-type option later in this chapter). If this switch is
true, the value of the cycle field is not stored in the field-value variable.
Instead, the field-value variable stores an index into the list of cycle
values. The first value in the cycle list corresponds to index value 0, the
second value to index value 1, and so forth.

If the INDEXED_CYCLE_LIST switch is true for a field, the data type of the
associated field-value variable must be comp-4.

Note that using the INDEXED_CYCLE_LIST does not alter the field’s
appearance. Only the value stored in the field-value variable changes.

SPECIAL_ACTION_28
SPECIAL_ACTION_29
SPECIAL_ACTION_30

Specific device drivers might assign meaning to these switches. The
values of these switches are ignored by the Forms Processor.

» charset (character_set_id)
The charset display-type option specifies the only character set supported by
the field.

The operand character_set_id must be a comp-4 value. The charset option is
output-only in the perform screen inquire statement. In all other contexts, it
is input-only.

The value character_set_id indicates which character set is supported by the
field. The following table lists the allowed values and their meanings.

VOS COBOL Forms Management System (R035) 7-15

Display-Type Option Reference Guide

7-16

p cycle (

Character Character
Set ID Set Name

ASCII_CHARACTER_SET
LATIN_1_CHAR_SET
KANJI_CHAR_SET
KATAKANA_CHAR_SET
HANGUL_CHAR_SET

S W 20

Constants for these values are defined in the file
(master_disk) >system>include_library>char_sets.incl.cobol.

If you specify a charset option, any characters in the field value are assumed
to be of the specified character set. If the user attempts to submit a value
that contains characters from another character set, the form is not accepted.

For information on supplemental character sets, see the section “International
Character Set Support,” in Chapter 3, “The Elements of FMS.”

You can specify the manner in which supplemental characters are stored in
the field-value variable by using the shift and unshift field options described
in Chapter 6, “Field Descriptions.”

cycle_value [,cycle_value] e ,
cycle_value_array [,value_count]

The cycle display-type option specifies a cycle list for a display type.

If you specify cycle_value operands, each must be a valid value for the field to
which the display type is applied. If you use the operand cycle_value_array,
it must be a reference to a table of valid values for the field, and value_count
must be a comp-4 value. All the operands are input-only.

Chapter 7: Display Types

S

Display-Type Option Reference Guide

The two syntaxes of the cycle display-type option allow you to specify the cycle list
in two ways:

® by listing the cycle values, using the cycle_value operands
® by specifying a table of cycle values (cycle_value_array) and an integer
indicating the number of cycle values in that table (value_count).

Using the second syntax, you can change the cycle values by changing the values in
cycle_value_array. You can also change the number of cycle values by changing
the value of value_count. Only the first value_count elements of the table are used.

If you use a variable for each cycle_value in the first syntax, you cannot change
the number of cycle values, but you can change the cycle values themselves by
changing the values of those variables.

You can use the cycle_array display-type option to return the current cycle list for
a display type.

» cycle_array (cycle_value_array, value_count_variable)

The cycle_array display-type option returns the cycle list for a cycle display
type.

The operand cycle_value_array must be a reference to a table, and
value_count_variable must be a reference to a comp-4 variable. Both operands
are output-only. The component data type of cycle_value_array must be
compatible with the cycle values.

You can use the cycle_array option only in the perform screen inquire
statement.

The number of values in the cycle list is returned in value_count_variable.
The size of cycle_value_array must be at least large enough to hold that
many values. The cycle values are returned in the first ¥ elements of the
table, where N is the number returned in value_count_variable.

You can use the cycle display-type option to set or change the cycle list for
a display type.

VOS COBOL Forms Management System (R035) 7-17

Display-Type Option Reference Guide

p picture (picture)

The picture display-type option specifies a field picture, or template, for a
display type.

The operand field_picture must be convertible to a character string. In
the perform screen inquire statement, the picture display-type option is
output-only. In all other contexts, it is input-only.

Each character in field picture corresponds to a character position in a
field and defines the valid characters for that field position. If field_picture
is shorter than the associated field, the Forms Processor automatically
extends the field picture to the length of the field. For more information,
see Chapter 9, “Field Pictures and Filtering.”

The following table lists the valid picture characters.

Picture

Character Meaning

Aora Allow space or hyphen.

Borb Insert literal space.

Lorl Allow letter, digit, or space; convert letter to lowercase.
Uoru Allow letter, digit, or space; convert letter to uppercase.

X or x Allow letter, digit, or space.

Zorz Allow digit or hyphen (negative sign); suppress leading zeros.
9 Allow digit or hyphen (negative sign); display leading zeros.
. Fix decimal point location.t

, Fix digit-grouping character location.t

- Insert literal hyphen.

/ Insert literal slant.

T The meaning of the period and comma can be reversed with the decimal is comma
option in the Forms Editor s form.

For information on field pictures, see Chapter 9, “Field Pictures and Filtering.”

7-18 Chapter 7: Display Types

Display-Type Option Reference Guide

w min_value [,max_vatue]
- p range ()

,smax_value

The range display-type option specifies a minimum and maximum field value
for a display-type.

The operands min_value and max_value must each be convertible to the data type
of the field-value variable for the associated field. In the perform screen inquire
statement, both values are output-only. In all other contexts, both values are
input-only.

The range display-type option restricts field values by specifying a range of
valid values. When the user submits the form, the Forms Processor checks
that the input value is within the specified bounds. If the value is out of range,
the Forms Processor displays an error message and positions the cursor to
) the field.

If you omit min_value, the range option establishes an upper bound for the
field, but does not establish a lower bound. Similarly, if you omit max_value,
the range option establishes a lower bound for the field, but does not establish
an upper bound.

‘The Forms Processor performs the range test after checking that the value
conforms to the field picture (if any) and before calling the field validation
) routine (if any).

p validate (validation_entry)

The validate display-type option establishes a validation routine for a display

type.

The operand validation_entry must be a reference to an entry value or a
> character-string containing the name of a validation routine.

The Forms Processor invokes the validation routine to check the field value
when the user submits the form.

When the form is submitted, the Forms Processor first checks that the field
value conforms to the field picture (if any). It then checks that the value is
within the range specified for the field (if any). It then invokes the validation
routine (if any).

For information on writing validation routines, see Chapter 10, “Error
Handling and Field Validation.”

VOS COBOL Forms Management System (R035) 7-19

Display-Type Option Reference Guide

7-20

p visual (]} visual_switches [, ["] update_switches] o } , [A] update_switches--.)
The visual display-type option specifies visual attributes of the display type.

The operands visual_switches and update_switches must be convertible to
comp-5 values. In the perform screen inquire statement, visual_switches must
be a reference to a comp~5 variable.

The operand visual_switches is required when defining a field and in the
perform screen inquire statement. In the perform screen inquire statement,
update_switches is not allowed and the visual option is output-only. In all
other contexts, the visual option is input-only.

The visual switches for the display type are encoded in visual_switches and
in update_switches. The following table shows how the switches are encoded.

Bit Switch Name

1 BLANKED_VISUAL
2 BLINKING_VISUAL
4 INVERSE_VISUAL
8 UNDERLINED_VISUAL
16 LOW_INTENSITY_VISUAL
32 HIGH_INTENSITY_VISUAL
256 CENTER_FIELD_DATA
512 RIGHT_JUSTIFY_FIELD_DATA
1024 LEFT_JUSTIFY_FIELD_DATA
2048 NOTRIM_FIELD_DATA_SPACES
2® | SPECIAL_VISUAL_28
2” | SPECIAL_VISUAL_29
2 | SPECIAL_VISUAL_30

All unused bits are reserved. Reserved bits must be set to 0 on input and
should be ignored on output.

The include file
(master_disk)>system>include_Library>form_displaytype.incl.cobol defines
mnemonic constants for the visual switches.

If you omit the visual option when defining a display type, all visual switches
are set to false.

You can specify the visual switches in two parts: a base value and a series of
update values to be applied to that base.

If you specify visual_switches, it is taken as the base value for the visual

switches. If you do not specify visual_switches, the current settings of the
visual switches for the display type are taken as the base value.

Chapter 7: Display Types

Display-Type Option Reference Guide

Each update_switches specifies switches to be turned on or off. If the
update_switches value is not preceded by a circumflex (), any visual switches
that are true in update_switches are turned on (set to true) for the display
type. If the update_switches value is preceded by a circumflex (%), any visual
switches that are true in update_switches are turned off (set to false) for the
display type.

If an update_switches specifies that a switch that is already true should be
set to true, or that a switch that is already false should be set to false, then
the switch is not changed.

Note: Visual attributes are highly device dependent. Some of the visual
switches might not be supported for some devices. Other visual
switches might behave somewhat differently for different devices.

The explanation of each visual switch follows.

BLANKED_VISUAL

If this switch is true, no visible text appears in the field. If the field is
an input field, the user can type in the field, but the characters are not
displayed. However, the value given is returned to the application in
the field-value variable. This switch is useful for password fields.

BLINKING_VISUAL
If this switch is true, all text in the field blinks on and off.

INVERSE_VISUAL

If this switch is true, the field is in reverse video. This means that if
the terminal normally displays light characters on a dark background,
this field displays dark characters on a light background. Similarly, if
the terminal normally displays dark characters on a light background,
this field displays light characters on a dark background.

UNDERLINED_VISUAL
If this switch is true, the entire field is underlined.

LOW_INTENSITY_VISUAL

If this switch is true, text within the field appears at low intensity. This
switch and the HIGH_INTENSITY_VISUAL switch are mutually exclusive.

HIGH_INTENSITY_VISUAL

If this switch is true, text within the field appears at high intensity. This
switch and the LOW_INTENSITY_VISUAL switch are mutually exclusive.

VOS COBOL Forms Management System (R035) 7-21

Display-Type Option Reference Guide

CENTER_FIELD_DATA

If this switch is true, output values are centered in the field. For most
device drivers, you cannot set this switch to true for input fields.

This switch, the RIGHT_JUSTIFY_FIELD_DATA switch, and the
LEFT_JUSTIFY_FIELD_DATA switch are mutually exclusive.

RIGHT_JUSTIFY_FIELD_DATA

If this switch is true, text in the field is right-justified. This switch, the
CENTER_FIELD_DATA switch, and the LEFT_JUSTIFY_FIELD_DATA switch are
mutually exclusive.

If an input field is right-justified, the cursor appears at the field’s right
edge when the user positions to the field. Each character the user types
initially appears in the rightmost character position. As subsequent
characters are typed, the characters in the field move to the left. The
CUISOr Never moves.

LEFT_JUSTIFY_FIELD_DATA

If this switch is true, text in the field is left-justified. This switch, the
CENTER_FIELD_DATA switch, and the RIGHT_JUSTIFY_FIELD_DATA switch are
mutually exclusive.

If an input field is left-justified, the cursor appears at the field’s left
edge when the user positions to the field. The first character typed by
the user appears in the leftmost character position. As each character is
typed, the cursor moves one position to the right. The second character
typed appears in the second position from the left, and so forth.

NOTRIM_FIELD_DATA_SPACES

If this switch is true, space characters are not removed from the left or
right of a string output value before that value is displayed in the form.
Similarly, space characters are not trimmed from an input value before
that value is stored in a string field-value variable.

SPECIAL_VISUAL_28
SPECIAL_VISUAL_29
SPECIAL_VISUAL_30

Specific device drivers might assign meaning to these switches. The
values of these switches are ignored by the Forms Processor.

7-22 Chapter 7: Display Types

| Chapter 8:
Data States

This chapter describes field data states. It discusses how data states are initialized in
the Forms Editor and how they can be read and altered by an application program.

The Data-State Switches

Each field in a form has an associated set of 16 switches that defines the data
state of the field. Some of the data-state switches are output switches: they return
information about the field. Other switches are input-output: you can alter the
value of these switches to change the field.

Within an FMS program, you can store the data-state switches in a two-byte integer
value. Table 8-1 lists the data-state switches that are currently defined.

Table 8-1. The Data-State Switches

Bit Switch Name Type

1 DISAPPEARING_DEFAULT (input-output)

2 FIELD_VALUE_GIVEN (output)

4 FIELD_HAS_CHANGED (input-output)
16 REQUIRED_FIELD (input-output)
32 INPUT_FIELD (input-output)
64 NEW_DATA_IN_FIELD (input-output)

128 DISABLE_ENTIRE_FIELD (input-output)
256 FILTER_FOR_CONVERSION | (output)

Each switch is either true or false. The meaning of each switch is described later
in this chapter under the heading “Data State Reference Guide.”

VOS COBOL Forms Management System (R035) 8-1

Data States in the Forms Editor

Data States in the Forms Editor

You can initialize some of the data-state switches for each field in the Forms
Editor F form. The table lists data-state switches that are initialized by F
options.

Data-State Switch F Option

DISABLE_ENTIRE_FIELD DISABLE
DISAPPEARING_DEFAULT DISAPPEARING
INPUT_FIELD FIELD TYPE
REQUIRED_FIELD REQUIRED

The DISAPPEARING, REQUIRED, and DISABLE fields of the F form each cycles to
yes or no. A yes value initializes the corresponding data-state switch to true. A no
value initializes the corresponding data-state switch to false.

The FIELD TYPE field cycles to input, output, or output only. If you specify input,
the INPUT_FIELD switch is initialized to true. If you specify output, the INPUT_FIELD
switch is initialized to false. In either of these cases, you can change the field type
within the program by changing the value of the INPUT_FIELD switch. If you specify
output only for FIELD TYPE in the Forms Editor, the INPUT_FIELD switch is initialized
to false, but the effect of changing that value is undefined. If you want to change the
field type dynamically, you should always set FIELD TYPE to either input or output.

Referencing Data States in a Program

Within a program, you can reference the data states of all fields in a form with
the datastates form option, or you can reference the data state of a specific field
with the datastate field option.

If you do not use the datastates form option or the datastate field option for the

form within the program, the data-state values specified by the Forms Editor are
used.

Data-State Variables

The data state for a field can be stored in a comp—4 variable. For example, you
could declare a data-state variable as follows:

01 data_state comp—4.

8-2 Chapter 8: Data States

Referencing Data States in a Program

You can access an individual switch within the data_state variable
mathematically using the following mnemonic constants defined in the file
(master_disk)>system>include_library>form_datastate.incl.cobol.

%replace FILTER_FOR_CONVERSION by 256
zreplace DISABLE_ENTIRE_FIELD by 128
%replace NEW_DATA_IN_FIELD by 64
%replace INPUT_FIELD by 32
Zreplace REQUIRED_FIELD by 16
%replace FIELD_HAS_CHANGED by &
%replace FIELD_VALUE_GIVEN by 2
Zreplace DISAPPEARING_DEFAULT by 1

For example, you can test the REQUIRED_FIELD switch as follows:

if data_state >= 0 then
compute quotient = data_state / REQUIRED_FIELD
else compute quotient = (data_state + REQUIRED_FIELD - 1) /
REQUIRED_FIELD.

if !'mod (quotient, 2) equal 1 then
/* Field is required. */
else /* Field is not required. */.

After you have determined that the REQUIRED_FIELD switch is false, you can set it to
true with the following assignment:

add REQUIRED_FIELD to data_state.

If the REQUIRED_FIELD switch is true, you can set it to false with the following
assignment:

subtract REQUIRED_FIELD from data_state.

To access the data states of all fields in a form, you can declare a table of data-state
variables as follows: ‘

01 data_states.
02 data_state_value comp-4 occurs form_name_max_ids.

The value form_name_max_ids is defined in the field-IDs include file produced by
the Forms Editor. For more information on this file, see Chapter 4, “The Forms
Editor.”

You can reference the data state of a single field from the data_states table as
follows:

data_state_value (field_name_id)

VOS COBOL Forms Management System (R035) 8-3

Referencing Data States in a Program

Definitions of field_name_id for each field are included in the field-IDs include file.

Reading Data States

You can use the datastate field option to read the data state of a single field, or
you can use the datastates form option to read the data state of all fields of a form.

Single Field. You can initialize the data-state variable for a single field by
referencing that variable in the datastate option in a field description clause of
a perform screen initialization statement. The following example initializes the
variable field_data_state to the data state of the name field.

perform screen initialization 'menu_form'
with status (error_code),
using field (name_id) datastate (field_data_state).

The example assumes that the program includes the field-IDs file that defines
name_id. The perform screen initialization statement initializes the value of
field_data_state to the switch values specified for the name field in the Forms
Editor. The variable field_data_state should be declared as comp-4.

You can also use the datastate option in a field description clause of a perform screen input,
perform screen output, perform screen update, or perform screen inquire statement

to obtain the current data state of a field. The following example displays the form,
accepts input from the user, and then updates the value of field_data_state to the
current data state of the name field.

perform screen input with status (error_code),
using field (name_id) datastate (field_data_state).

Note that the value of field_data_state is updated after the form is submitted.
Therefore, the value of FIELD_VALUE_GIVEN, FIELD_HAS_CHANGED, and other output
switches reflect activity from this display of the form.

All Fields. You can initialize a table of data-state variables to the field data states
defined in the Forms Editor by referencing that table in the datastates option of
the perform screen initialization statement. The following example initializes
data_states_array.

perform screen initialization 'menu_form'
with datastates (data_states_array) status (error_code).

The elements of data_states_array should be comp-~4 variables. The data state for the
field whose field ID is 1 is contained in the first element of data_states_array. The
data state for the field whose field ID is 2 is in the second element, and so forth.

You can also use the datastates option in a perform screen input, perform screen output,
perform screen update, Or perform screen inquire statement to obtain the current

8-4 Chapter 8: Data States

Referencing Data States in a Program

data states of all fields in a form. The following example displays the form and
then updates the values in data_states_array to the current data state of the fields.

perform screen output with datastates (datastates_array) status (error_code).
As with the datastate option, the operand of the datastates option is updated

after the form is submitted. The output data-state switches reflect activity from
this display of the form.

Changing Data States

Normally, the datastates form option and the datastate field option are output-only
options. However, you can make them input-output options in a perform screen input,
perform screen output, Or perform screen update statement by turning on the
COPY_DATASTATE option switch. This allows you to specify a new data state for one or
more fields within the application program. For information on the COPY_DATASTATE
switch, see the description of the options form option in Chapter 5, “Form Options.”

Within a program, you can alter the following data-state switches for a field:

DISAPPEARING_DEFAULT
FIELD_HAS_CHANGED
REQUIRED_FIELD
INPUT_FIELD
NEW_DATA_IN_FIELD
DISABLE_ENTIRE_FIELD

If you set the FIELD_HAS_CHANGED or NEW_DATA_IN_FIELD switch to true for a form
display, the display is not affected, but on return from the display, the switch is
still true. The other input data-state switches affect the display of the form.

You can alter a data-state value read in a previous statement, or you can specify
an entirely new data-state value.

For example, if you read the data states for a form into a table of comp=4 variables,
data_state_array, after determining that the REQUIRED_FIELD switch for a field is
false, you can set it to true as follows:

add REQUIRED_FIELD to data_state_array (field_id).

The example assumes that the program includes the system include file
(master_disk)>system>include_library>form_datastate.incl.cobol.

You can subsequently set the REQUIRED_FIELD switch to false as follows:

subtract REQUIRED_FIELD from data_state_array (field_id).

VOS COBOL Forms Management System (R035) 8-5

Referencing Data States in a Program

The changes you make to a data-state variable take effect on the field only if you
reference the data-state variable in a perform screen input, perform screen output,
or perform screen update statement with the COPY_DATASTATE option true.

perform screen input 'menu_form' update (field_values)
with datastates (data_state_struct) options (COPY_DATASTATE)
status (error_code).

The example assumes that the program includes the system include file
(master_disk)>system>include_Library>form_datastate.incl.cobol. For information
on the options form option, see Chapter 5, “Form Options.”

Data State Reference Guide

8-6

In this section, the data-state switches are described in alphabetical order.

DISABLE_ENTIRE_FIELD (input-output)

If this switch is true, the field is invisible to the user. The field is not displayed
and the user cannot position the cursor to the field. By altering the value of
this switch within a program, you can make a field appear on some displays
of a form and not appear on others.

While a field is disabled, the field remains allocated in the display list and
can be re-enabled at any time. To remove a field from the display list, use
the perform screen delete statement described in Chapter 16, “Statements.”

The DISABLE_ENTIRE_FIELD switch is initially true for uncommitted fields and
initially false for all other fields.

DISAPPEARING_DEFAULT (input-output)

If this switch is true, then the initial output value for the field disappears
when the user begins typing at the start of the field. Such fields are sometimes
referred to as non-editable. The user can edit the default value by positioning
the cursor beyond the first character of the field before entering or deleting
any characters. The DISAPPEARING_DEFAULT switch has no effect on the user’s
ability to correct typing mistakes or otherwise change a typed value.

For predefined fields, the DISAPPEARING switch in the F form establishes
an initial value for the DISAPPEARING_DEFAULT switch.

Chapter 8: Data States

Data State Reference Guide

FIELD_HAS_CHANGED (input-output)

If this switch is true, the value of the field was changed by the most recent
perform screen input or accept statement for which the COPY_DATASTATE switch
was false. For information on the COPY_DATASTATE switch, see the description
of the options form option in Chapter 5, “Form Options.”

If the COPY_DATASTATE switch is true for a perform screen input Or accept statement,
then the Forms Processor does not reset the value of the FIELD_HAS_CHANGED
switch. If the COPY_DATASTATE switch is false for a perform screen input or

accept statement, then the FIELD_HAS_CHANGED switch is output-only. In the

latter case, the Forms Processor sets the FIELD_HAS_CHANGED switch to false
before displaying the form, and updates the switch after the form display.

Note: Some device drivers might set this switch more often than necessary.

FIELD_VALUE_GIVEN (output)

If this switch is true, a non-null value was specified for the field in the most
recent perform screen input or accept statement that displayed the form. The
field value might be a value typed by the user, or it might be an initial output
value.

This switch is meaningful only after the form is displayed with the
perform screen input Or accept statement.

FILTER_FOR_CONVERSION (output)

If this switch is true for a perform screen initialization or accept statement,
then the value of the field might be filtered before being converted and stored
in the field-value variable. To filter a value means to remove non-numeric
characters from a numeric value and transform it into a standard representation.

The characters that must be filtered from a numeric value include the
currency character ($ by default), some sign characters, and zero-suppression
characters. For more information on filtering, see Chapter 9, “Field Pictures
and Filtering.”

The Forms Processor determines which fields might require filtering, based

on the picture defined for the field. You cannot directly change the value of
the FILTER_FOR_CONVERSION switch.

VOS COBOL Forms Management System (R035) 8-7

Data State Reference Guide

8-8

INPUT_FIELD (input-output)

If this switch is true, the field is an input field. This means that when the
form is displayed with the perform screen input or accept statement, the user
can position to the field. The user can also modify the field value, unless the
WIDE_CURSOR option switch is true. For information on the WIDE_CURSOR switch,
see the description of the options form option in Chapter 5, “Form Options.”

For a predefined field, the FIELD TYPE option of the Forms Editor F form
determines the initial value for the INPUT_FIELD switch. If the FIELD TYPE value
is input, the INPUT_FIELD switch is true; otherwise, it is false. If the FIELD TYPE

value is output only, you must not change the value of the INPUT_FIELD switch

within the program. If the field type is either input or output, you can change
the value of the INPUT_FIELD switch to dynamically change the field type.

NEW_DATA_IN_FIELD (input-output)

The Forms Processor sets this switch to true whenever a field becomes empty
(that is, it takes on its null value). For example, if the user deletes the entire
field value before typing a new value, the NEW_DATA_IN_FIELD switch is set

to true. If the user modifies the initial value rather than deleting it, the
NEW_DATA_IN_FIELD switch is not altered.

If the COPY_DATASTATE switch is false for the perform screen input or
accept statement that displays the form, the Forms Processor initializes
the NEW_DATA_IN_FIELD switch to false before displaying the form. If the
COPY_DATASTATE switch is true, the Forms Processor takes the current value
of the NEW_DATA_IN_FIELD switch as the initial value. For information on the
COPY_DATASTATE switch, see the description of the options form option in
Chapter 5, “Form Options.”

The NEW_DATA_IN_FIELD switch is useful for applications that must treat fresh
field values differently than modified field values. For example, the application
might expand abbreviations within a fresh value.

Chapter 8: Data States

Data State Reference Guide

REQUIRED_FIELD (input-output)

If this switch is true; the user cannot submit the form without specifying
a non-null value for this field. For information on null field values, see
Chapter 3, “The Elements of FMS.”

If the user attempts to submit a form that has a null value for a required
field, the terminal bell sounds, the cursor is positioned to the required field,
and the following message is displayed:

A required field is missing.

For a predefined field, the value of the REQUIRED field in the Forms Editor
F form determines the initial value of the REQUIRED_FIELD switch.

Note: Some programmers prefer to set the REQUIRED_FIELD switch for each field
to false and use a field validation routine to ensure that a valid value
is specified for a field. For information on field validation routines,
see Chapter 10, “Error Handling and Field Validation.”

VOS COBOL Forms Management System (R035) 8-9

Chapter 9:
Field Pictures and Filtering

This chapter discusses field pictures that you can specify in the Forms Editor or in
the picture display-type option of a screen statement. It also discusses filtering:
the process of translating between a character-string representation of a number
and a true numeric value.

Field Pictures

A field picture is a string of characters that indicates what characters are valid in
each position of a field. The field picture is always the same length as the field it
describes. (If you specify a shorter field picture, the Forms Processor automatically
extends the picture to the length of the field.) The first character of the picture
) indicates what characters are valid for the first character position in the field. The
" second character of the picture indicates what characters are valid for the second
position in the field, and so forth.

R

VOS COBOL Forms Management System (R035) 9-1

Field Pictures

Specifying a Picture

9-2

Table 9-1 lists the characters that you can include in a field picture and the type
and meaning of each.

Table 9-1. The Field Picture Characters

Picture
Character Type Meaning
, Numeric Group digits; or fix location of decimal point.
- Alphanumeric Insert literal hyphen.
. Numeric Fix location of decimal point; or group digits.
Alphanumeric Insert literal slant.
9 Numeric or Allow a digit. In a numeric picture, also
alphanumeric allow a sign.
Aa Alphanumeric Allow a letter or a space character.
B b Alphanumeric Insert literal space character.
Lt Alphanumeric Allow a letter, digit, or space character;
convert a letter to lowercase.
Uu Alphanumeric Allow a letter, digit, or space character;
convert a letter to uppercase.
X x Alphanumeric Allow a letter, digit, or space character.
Zz Numeric Allow a digit or sign; suppress leading zeros.

The uppercase and lowercase versions of a picture character are interchangeable.

The picture characters are explained in more detail later in this chapter.

Note that some picture characters are numeric and others are alphanumeric. A
field picture must contain all numeric characters or all alphanumeric characters.
For example, a picture cannot contain both the X character and the z character.
Note that the 9 character can be either numeric or alphanumeric.

A picture consisting of numeric characters is a numeric picture. A picture consisting
of alphanumeric characters is an alphanumeric picture. Each of these two types of
picture is discussed later in this chapter.

You do not have to specify a field picture for every field in a form. The field picture
is an optional means of restricting field values. Using a picture can reduce errors
by preventing the user from typing invalid values.

You can specify a picture for a field in the PICTURE option of the F form of
the Forms Editor. You can also specify a field picture in the picture display-type

Chapter 9: Field Pictures and Filtering

S

Field Pictures

option in a screen statement. For information on the Forms Editor, see Chapter 4,
“The Forms Editor.” For information on the picture display-type option, see
Chapter 7, “Display Types.”

Alphanumeric Pictures

The alphanumeric picture characters can be divided into two groups: those that
indicate a specific literal character to be inserted into a position of the field, and
those that indicate a set of valid characters for a position of the field.

The hyphen (-), slant (/), and blank (B or b) picture characters specify literal
characters to be inserted into the field. These literals appear in the specified
position whenever the field is displayed. The user cannot type any other character
in that position.

The other alphanumeric picture characters specify a set of valid characters that the
user can type in the position within the field. If no character is in the specified
position when the field is displayed, that character position is blank. The user can
type any character from the set of valid characters in that position.

You can -use the alphanumeric picture characters, for example, to establish the
format for a telephone number ('999-9999") or a date ('99/99/99' or '99buaab9999').

Numeric Pictures

The 9 and z numeric picture characters represent digits of precision within a value.
The period and comma picture characters indicate the location of the decimal
point, and group the digits to make the value easier to read.

Note: The z picture character is valid only to the left of the decimal point
and to the left of any 9 picture characters. The 9 picture character
can appear anywhere within a numeric field, except to the left of a'z
picture character.

Field Precision. The decimal precision of a field with a numeric picture is the
total number of 9 and z characters. The scaling factor of the field is the number of
9 characters to the right of the decimal point. For example, a field with the picture
122,229.99' has a decimal precision of 7 and a scaling factor of 2. To prevent
overflow of the variable, the field-value variable for a numeric field should have at
least as great a precision and scaling factor as the field picture.

Periods and Commas. By default, the period picture character represents the
position of a decimal point within a numeric field, and the comma is a grouping
character. However, you can switch the meanings of these characters if you wish.

VOS COBOL Forms Management System (R035) 9-3

Field Pictures

The Forms Editor s form includes a field that you can cycle to either
decimal is period or decimal is comma. This field determines the meaning of the
period and comma characters in all pictures given within the F form. If
the value is decimal is period (the default), then the period picture character
marks the location of a decimal point, and the comma picture character is used
to separate groups of digits. If the value is decimal is comma, the meanings of the
period and comma picture characters are reversed. Note that the decimal is comma
option applies only to field pictures you specify in the Forms Editor; it does not
affect field pictures you specify in a program.

In VOS COBOL programs, you can switch the meanings of the decimal point
and comma characters by specifying the decimal-point is comma clause in the
special-names paragraph of a program. For information on this clause, see the VOS
COBOL Language Manual (R010).

Note: If you decide to use the comma is decimal option, issue the S
request and set that option before defining any fields. This ensures
that all field pictures are interpreted correctly and consistently.

Grouping characters appear in a field only when the current field value includes
digits to the left of the grouping character. Otherwise, a space character appears
in place of the grouping character. For example, if the field picture is 'zz,zzz"
and the current value is 123, the field value is displayed as ;,,123. If the current
value of the field is 1234, then the field value is displayed as ,1,234.

If the period is used to mark the location of the decimal point within a field
picture, then when the field is displayed, a period appears at that location within
the field. For example, if the picture for a field is 'z,2z2.99', then the null value
of that field is uuuuy =00,

If a comma is used to mark the location of the decimal point within a field picture,
then when the field is displayed, a comma appears at that location within the field.
For example, if the picture for a field is 'zz.z2z,99', then the null value of that
field is vuuuun,00.

Filtering

9-4

Filtering is the process of removing certain special characters from a value to
produce a standard intermediate representation of a numeric value.

The Forms Processor must perform two types of conversion on numeric data.
e On output, before a value can be displayed in a field with a numeric picture,

the Forms Processor must convert the value to a representation that is
compatible with the field picture.

Chapter 9: Field Pictures and Filtering

Filtering

e On input, before a field value can be stored in a numeric field-value variable,
the Forms Processor must convert the field value to a numeric value of the
appropriate data type.

Each of these conversions is a two-step procedure. In the first step, called filtering,
the Forms Processor removes certain special characters from the original value.
This produces a standard representation that serves as an intermediate value. In
the second step, the Forms Processor either edits the intermediate value to fit the
picture of the target field, or converts the intermediate value to the data type of
the target variable.

For example, if the data type of a program variable is picture ('**,%x9'), it
might contain the value ***%12. If this value is to be displayed in a field with the
picture '99,999', it must be transformed. First, the Forms Processor removes the
asterisks to produce the intermediate value 12. The Forms Processor then edits
the intermediate value to fit the field. The value finally displayed in the field is
00,012. If this field value is subsequently returned to the same program variable,
the Forms Processor removes the leading zeros and the comma to produce the
intermediate value 12, which is then converted to the data type of the variable.
The value assigned to the variable is #*x*12.

Special Numeric Characters

The following characters indicate the sign of an unfiltered value:
-, +, cr, CR, db, DB

The plus sign (+) and hyphen (=) can appear at the beginning or end of the value.
The credit (cr or CR) and debit (db or DB) indicators can appear only at the end of
the value. The plus sign (+) indicates a positive value. The other sign characters
indicate a negative value.

In a filtered value, a leading hyphen (-) indicates a negative value. No sign indicator
is used for positive values.

The following characters are valid in unfiltered values, but are not allowed in
filtered values.

e The sign characters (except that a filtered value can contain a leading hyphen)
e The currency symbol ($ is the default)

e The slant (/)

e The asterisk (*)

e The space character

These characters are called special numeric characters. The Forms Processor removes
these characters, but maintains the sign and magnitude of the original value.

VOS COBOL Forms Management System (R035) 9-5

Filtering

The Filtering Process
The Forms Processor performs the following steps to filter a value.

1. The Forms Processor deletes any currency symbols, grouping characters,
spaces, slants, and asterisks from the value.

2. The Forms Processor removes any leading or trailing sign indicators, but
keeps track of whether the number is positive or negative.

3. The Forms Processor determines the location of the decimal point.
4. The Forms Processor deletes any leading zeros.

5. If the value is negative, the Forms Processor puts a hyphen (minus sign) in
front of the value.

6. If the value is now empty or consists only of a decimal point or minus sign,
the Forms Processor replaces the value with a zero.

Table 9-2 lists some examples of unfiltered values and the corresponding filtered
values.

Table 9-2. Examples of Filtering

Unfiltered Filtered
Value Value

123 123
$*xx123db -123
~12.3e+1 -12.3e+1
12.3E-20CR -12.3E-20
$ 0.123+ .123
1,23 123
09/03/90 90390
9 03 1990 9031990

Filtering Output Values
Output values transmitted to the form often require filtering when the value’s data
type is picture or character string. Output values are filtered only when the target
field has an associated picture.
The process of transforming the program value to a field value is as follows:

1. The Forms Processor filters the value.
2. The Forms Processor edits the filtered value to conform to the field picture.

9-6 Chapter 9: Field Pictures and Filtering

pEN—

Filtering

Editing the value might involve aligning the value on a decimal point within the
field, adding leading and trailing zeros, and inserting grouping characters.

Filtering Input Values

Input values transmitted from the form to numeric program variables are filtered
as part of the field validation suite. The validation suite for each field is as follows:

1. The Forms Processor checks that the field value conforms to the field picture.

2. If the field-value variable has a numeric or picture data type, then the Forms
Processor filters the value.

3. The Forms Processor converts the filtered value to the data type of the
field-value variable.

4. 1If the field has a range restriction, the Forms Processor checks that the
converted value is within that range.

5. If you have supplied a validation routine for the field, the Forms Processor
passes the unfiltered value to that routine.

For more information on the field validation suite and, specifically, on

programmer-written validation routines, see Chapter 10, “Error Handling and
Field Validation.”

VOS COBOL Forms Management System (R035) 9-7

Chapter 10:
Error Handling and Field Validation

This chapter discusses the processes by which the Forms Processor validates
fields and detects and reports errors within a forms application. This includes an
explanation of how to write your own field validation routines.

Handling Forms Errors

The Forms Processor recognizes two kinds of errors, which it handles in different
ways.

o If the Forms Processor detects that the user has submitted a form that
contains an invalid field value, the Forms Processor redisplays the form with
an appropriate error message and allows the user to correct the field value.

o If the Forms Processor encounters any other kind of error, it returns control
to the program. The Forms Processor indicates the error to the program in
one of two ways.

— If the screen statement for which the error occurs includes the status
form option, the Forms Processor returns an appropriate non-zero
error code in that option.

— 1If the statement does not contain the status option, the Forms Processor

signals the error condition in the block that contains the screen statement.

The Forms Processor sets the oncode value for the condition to an
appropriate error code.

For information on how the Forms Processor detects and handles the first kind of
error, see the section headed “Field Validation” later in this chapter.

To handle the second kind of error, the best practice is to always include the
status form option in every screen statement within a program and check the
returned value in the next statement. This allows you to explicitly handle any errors
encountered in a specific screen statement.

VOS COBOL Forms Management System (R035)

10-1

Handling Forms Errors

The error codes returned in the status option can be divided into two categories:
those that you anticipate and can handle specifically, and those that you do not
anticipate.

For example, if you do not include the keyused option in a perform screen input
statement, then if the user cancels the form, the error code e$form_aborted (1453) is
returned in the status option. You might want to check for this specific returned
value and, when it is encountered, take a particular action and continue with
normal program execution.

Another class of error codes that you might want to handle explicitly are those
dealing with communication line problems. The exact error codes returned are
dependent on the device driver, but they might include e$parity_error (2916) and
e$line_hangup (1365). When these codes are returned, some applications might loop
back a limited number of times and try executing the screen statement again. A
program should not loop forever on these errors. If the error persists, the program
should execute an error-reporting routine and stop.

Other error codes might be returned because of a programming error or other
unexpected situation. In this case, you cannot check for a specific code, and there is
usually no specific action the program can take to correct the situation. Continuing
with normal program execution might produce unexpected results. Usually, the
best action is to report the error to the user and stop the program.

The following code fragment illustrates forms error code handling for a program
that does not use the keyused form option.

data division.
working-storage section.

01 info_fields.
copy 'info'.

01 e$form_aborted comp=4.

01 error_code comp=~4.

01 info_form_id comp=4.

01 my_name picture x(32) display-2 value "input_info'.
01 empty_string picture x(32) display-2 value ''.

(Continued on next page)

10-2 Chapter 10: Error Handling and Field Validation

N’

(Continued)

procedure division.

*

*

perform screen input 'info' update (info_fields)

status (error_code).

if error_code equal e$form_aborted then

perform cancel-form

else if error_code not equal 0 then

perform report-error—and-abort.

cancel-form.

User canceled form.

report-error-and-abort.

Report error and abort program.

call

's$error' using error_code, my_name, empty_string.

go to exit-program.

exit-program.

exit program.

Handling Forms Errors

VOS COBOL Forms Management System (R035) 10-3

Field Validation

Field Validation

When the user submits a form, the Forms Processor examines the value given for
each field of the form and performs a series of checks to determine if the field
value conforms to any restrictions defined for that field. This series of checks is
called the validation suite.

The order in which the fields are validated is determined by the Forms Processor.
The Forms Processor performs the complete validation suite for one field before
beginning the validation of another field.

The Validation Suite

10-4

The steps in the validation suite are as follows:

1. If the field’s REQUIRED_FIELD data-state switch is true, the Forms Processor
checks that the field value is non-null.

-

2. If the field’s display type has an associated field picture, the Forms Processor
checks that the field value conforms to that picture.

3. If the field-value variable is numeric, the Forms Processor filters the value.

4. The Forms Processor converts the field value to the data type of the field-value
variable.

5. If the field’s display type has a range restriction, the Forms Processor checks
that the field value is within the specified range.

6. If the field’s display type has a programmer-defined validation routine, the
Forms Processor invokes that routine and passes it the unfiltered field value.

For information on the REQUIRED_FIELD data-state switch, see Chapter 8, “Data
States.” For information on field pictures and filtering, see Chapter 9, “Field Pictures
and Filtering” and the description of the picture display-type option in Chapter 7,
“Display Types.” For information on range restrictions, see the description of the
range display-type option in Chapter 7, “Display Types.” Programmer-defined field
validation routines are discussed later in this chapter.

If a field value fails one of the validation checks, the Forms Processor aborts the
validation procedure, sounds the terminal bell, and redisplays the form. The cursor
is positioned to the field that failed validation, and an error message is displayed
at the bottom of the screen. The user can then either correct the field value and
resubmit the form or cancel the form.

Chapter 10: Error Handling and Field Validation

Field Validation

j Programmer-Defined Field Validation Routines
You might want to establish restrictions on a field value that cannot be expressed
using the range, cycle, and picture options. To enforce such restrictions, you can
write a validation routine for the field.

A validation routine is a subroutine that examines a field value and determines if it
is valid. You can specify a validation routine for a field in the F form of the
Forms Editor, or in the validate display-type option. If you establish a validation
routine for a field, the Forms Processor automatically invokes that routine as the
last step in the field validation suite.

A validation routine must have four parameters:

» p_field_value_length (input)
) A two-byte integer indicating the length of the value specified for the field.

» p_field_value_buffer (input)

A 256-byte character string that holds the character-string representation of
the field value.

P p_message_length (input-output)

) A two-byte integer indicating the length of the error message returned to
the Forms Processor. On input, this value is 0. If, on return to the Forms
Processor, p_message_length is non-zero, this indicates that the field value is
invalid.

» p_message_buffer (output)

An 80-byte character string to hold an error message.

) On input, if the value of p_field_value_length is N, then the field value is stored in
the first N bytes of p_field_value_buffer. On output, if the value of p_message_Length
is M, then the Forms Processor reads the error message from the first # bytes of
p_message_buffer.

If p_message_length is non-zero when control returns to the Forms Processor, the
Forms Processor stops field validation, sounds the terminal bell, and redisplays the
form. The cursor is positioned to the field that failed validation, and the message
in p_message_buffer is displayed at the bottom of the screen.

Note that the field value passed to the validation routine is always in unfiltered

character-string format. For a numeric field, the validation routine can convert the
value to an appropriate numeric data type.

VOS COBOL Forms Management System (R035) 10-5

Field Validation

Figure 10-1 shows a sample validation routine that checks if a two-byte integer
field value is odd.

identification division.
program-id. enforce_oddness.

data division.
working-storage section.

01 field_contents pic s9(5).
01 field_value comp—4.

linkage section.

01 p_field_value_length comp=4.

01 p_field_value_buffer pic x(256) display.

01 p_message_Llength comp—4.

01 p_message_buffer pic x(80) display.

procedure division using p_field_value_length,
p_field_value_buffer, p_message_Length,
p_message_buffer.

* Move the numeric-string field value to field_contents.

move p_field_value_buffer (:p_field_value_tength)
to field_contents.

* Convert field_contents to a computational value and move
* it to field_value.

move !comp-4 (field_contents) to field_value.
* If the field_value is even, report an error.
if 'mod (field_value, 2) equal O then
move 'The value must be odd.' to p_message_buffer
move !length('The value must be odd.') to

p_message_Llength.

exit program.

Figure 10-1. Sample Validation Routine

10-6 Chapter 10: Error Handling and Field Validation

Field Validation

The sample in Figure 10-1 first moves the field value from p_field_value_buffer
into a numeric display variable and then to a computational variable. The mod
function is then used to determine if the value is odd or even.

Note: A validation routine should not depend on the results of the validation
routine for another field because the order in which they are invoked
is not defined. A validation routine cannot reference other information
about the current form display, such as the key used to submit the
form, or values given for other fields. If the validation restrictions for
a field require such information, you must check the field value within
the main program after control returns from the perform screen input
statement.

VOS COBOL Forms Management System (R035) 10-7

Chapter 11:
Windows and Subforms

This chapter discusses the use of window fields to display subforms within a master
form.

A window is a rectangular region of the screen in which an application can display
a form. The entire screen is itself a window called the master window. A form
displayed in this window is called a master form. A master form can contain a
special kind of field called a window field. Such a field defines another window in
which the application can display another form. A form displayed in a window
within another form is called a subform. A subform can itself contain a window
field in which another subform can be displayed.

Note: Any predefined form can be used as a master form or as a subform.
These terms refer to how the form is used; they are not characteristics of
the form itself. The window in which a form is displayed is determined
when the form is initialized with the perform screen initialization
statement.

A form can contain more than one window field.

The form that contains the window field in which a subform is displayed is the
immediately containing form of that subform. The immediately containing form of
a subform can be a master form or another subform.

Defining a Window Field

You can define a window field in a predefined form by using the I request

within the Forms Editor. Within the I form, you must specify the location

of the window field and the number of rows and columns it contains. The Forms
Editor assigns a field ID to the window field so that you can reference it within a
program.

For more information on the I Forms Editor request, see Chapter 4, “The
Forms Editor.”

VOS COBOL Forms Management System (R035) 11-1

Defining a Window Field

Within a program, you can create or modify a window field by using the window and
position field options. The window option specifies the number of rows and columns
in the window, and the position option specifies the location of the window.

The following field description defines a window field.

field (window_field_id) window (number_rows, number_columns)
position (row_number, column_number)

Note that the position option specifies the position of the field within the form,
rather than within the screen. The top left corner of the form is always row 1 and
column 1.

For more information on the window and position field options, see Chapter 6,
“Field Descriptions.”

Like any field, each row of a window field must be preceded and followed by a
blank character position. This creates a column of blank positions to the left and
right of the window. These columns are reserved for attribute bytes.

Recall that the first and last columns of a form are also reserved for attribute
bytes. When you display a subform in a window, the Forms Processor overlays the
first column of the subform onto the column of blank characters to the left of the
window. If necessary, the Forms Processor also overlays the last column of the
form onto the column of blank characters to the right of the window. Therefore, if
a window field contains N columns, the widest subform that you can display in that
window contains M2 columns.

If a window contains M rows, the longest subform that you can display in that
window also contains M rows.

Initializing the Forms

11-2

The initialization for a master form requires no special handling. You initialize it
with the perform screen initialization statement as you would any ordinary form.

However, when you initialize a subform, you must indicate in what window the
form will be displayed. The origin form option allows you to specify the form ID of
the immediately containing form and the field ID of the appropriate window field.

perform screen initialization 'subform_name'
with formid (subform_id)
origin (containing_form_id, window_field_id)
status (error_code).

You can omit the form ID of the containing form from the origin option if the
field ID of the window field is unambiguous. However, it is a good practice to

Chapter 11: Windows and Subforms

Initializing the Forms

always include the containing form ID. This makes the program easier to read
and maintain.

For more information on the origin option, see Chapter 5, “Form Options.”

You can initialize a subform any time after the immediately containing form is
initialized.

Normally, no more than one form is active for each window. If you wish to maintain
additional active forms, you must save forms explicitly. For more information, see
Chapter 12, “Form Caching.”

If you want to display a single form in two different windows within an application,
you must initialize the form once for each window. The Forms Processor assigns a
unique form ID for each initialization and treats the two occurrences of the form

as two different forms.

Displaying the Forms

You can display a master form, as you would any ordinary form, using the
perform screen input or perform screen output statement. When you display the
master form, all window fields in the form are initially empty.

If you display the master form with the perform screen input statement, the user can
modify any input fields in the form. The user cannot position to the window field.

You can display a subform only when its immediately containing form is on the screen.
You can display the form with the perform screen input or perform screen output
statement as you would any other form. The Forms Processor displays the form in
the location specified in the perform screen initialization statement.

The user can modify fields in only one form at a time. If you display the subform
with the perform screen input statement, the user can modify any input fields in
the subform. The user cannot position to any fields in the containing form. If you
want to allow the user to modify fields in the containing form, you must redisplay
that form with the perform screen input statement. Fields in the subform are then
inaccessible.

Although the user cannot modify fields in both a subform and its containing form
on the same form display, you can often effectively overcome this restriction by
using the VERTICAL_SCROLL_TRAP options switch. For information on this switch, see
Chapter 13, “Traps.”

VOS COBOL Forms Management System (R035) 11-3

Example of Windows

Example of Windows

11-4

This section shows an example program that displays a master form with a single
window. Depending on the user’s action, the program then displays one of two
subforms in the window.

The master form is called employee_master. It displays an employee’s name and
employee ID number, along with instructions to the user. A window field called
info_window appears in the bottom part of the form. The form layout is as follows:

~

Employee name:

Employee number:

FUNCT-1: Display personal information

FUNCT-2: Display employment information

= /

In the example, the window field is represented by a rectangle. When the form is
displayed on the screen, the window is invisible.

The first subform that can be displayed in the window is called personal_info.
It displays the employee’s home address and phone number. The layout of the
personal_info form is as follows:

Address:

City: State: Zip: -

. _ _/

Chapter 11: Windows and Subforms

Example of Windows

The second subform is called employment_info. It displays the employee’s department
number, Social Security number, and salary. The layout of the employment_info
form is as follows:

Department Number: Social Security Number: - -

Salary: $ - per month

The program displays employee_master and accepts input from the user. If the user
submits the form with the first masked key, the program displays the personal_info
form in the window. If the user submits the master form with the second masked
key, the program displays the employment_info form in the window. After displaying
the appropriate subform, the program loops back and redisplays the master form
to allow the user to make another selection.

The program is shown in Figure 11-1.

VOS COBOL Forms Management System (R035) 11-5

Example of Windows

identification division.
program-id. display_employee_info.

data division.
working-storage section.

%replace CANCEL by -1
%replace ENTER by O

copy 'employee_master_ids'.

01 employment_fields.

copy 'employee_info'.
01 master_fields.

copy 'employee_master'.
01 personat_fields.

copy ‘'personal_info'.

01 error_code comp—4.
01 key_code comp—4.
01 master_form_id comp—4.
01 subform_id comp=4.

procedure division.
* Initialize the master form.
perform screen initialization 'employee_master'

into (master_fields)
with formid (master_form_id) status (error_code).

Figure 11-1. Example Program Using Subforms

(Continued on next page)

11-6 Chapter 11: Windows and Subforms

Example of Windows

Figure 11-1. (Continued)

if error_code not equal 0 then
go to fatal-error.

move ENTER to key_code.
move 0 to error_code.

* Display the master form and any requested subforms.

perform input-Lloop until ((key_code equal CANCEL) or
(error_code not equal 0)).
if error_code not equal O then
go to fatal-error.

go to exit-program.
input-Lloop.

perform screen input 'employee_master!'
update (master_fields)
with keyused (key_code) status (error_code).

if error_code not equal O then
go to fatal-error.

* Examine the value of key_code to determine user's choice.
* Initijalize and display the appropriate subform.

if key_code equal 1 then
perform personal-display

else if key_code equal 2 then
perform employment-display.

personal-display.

* Initialize the personal_info form in info_window
* within the employee_master form.

perform screen initialization 'personal_info!'
with origin (master_form_id, info_window_id)
formid (subform_id) status (error_code).

(Continued on next page)

VOS COBOL Forms Management System (R035) 11-7

Example of Windows

Figure 11-1. (Continued)

if error_code not equal O then
go to fatal-error.

* Set the members of personal_fields to the appropriate values.

* Display the personal_info form.

perform screen output 'personal_info'
update (personal_fields)
with formid (subform_id) status (error_code).

if error_code not equal 0 then
go to fatal-error.

employment-display.

* Initialize the employment_info form in info_window
* within the employee_master form.

perform screen initialization 'employment_info!
with origin (master_form_id, info_window_id)
formid (subform_id) status (error_code).

if error_code not equal O then
go to fatal-error.

* Set the members of employment_fields to the appropriate values.

* Display the employment_info form.

perform screen output 'employment_info’
update (employment_fields)
with formid (subform_id) status (error_code).

(Continued on next page)

11-8 Chapter 11: Windows and Subforms

Example of Windows

Figure 11-1. (Continued)

if error_code not equal O then
go to fatal-error.

fatal-error.

* Handle error.

exit-program.

exit program.

If you expect the user to switch back and forth between the two subforms, it is
more efficient to initialize and cache both subforms before entering the main loop.
This allows you to remove the perform screen initialization statements from inside
the loop. See Figure 12-1 in Chapter 12, “Form Caching.”

VOS COBOL Forms Management System (R035) 11-9

Chapter 12:
Form Caching

This chapter describes how to save forms that are not currently in use so that they
can be used later without re-initializing.

At any time, an application can have several active forms. A display list for each
active form is allocated in the user heap. For each window, the Forms Processor
maintains one current form. The current form of a window is the form most recently
displayed or initialized in that window.

A form first becomes active when it is initialized with the perform screen initialization
statement. At that time, the form also becomes the current form for the window
in which it is initialized.

Normally, a form remains active only when it is the current form for a window. If

a second form becomes the current form for the window, the Forms Processor
discards the first form. This means that if you want to reference the first form again,
you must re-initialize it. Re-initialization consumes system time and resources.

You can prevent the Forms Processor from discarding a form by explicitly caching,
or saving, the form. A cached form remains active even when it is not the current
form for the window. You can later display the cached form without re-initializing
it. When you display a cached form, that form becomes the current form for the
window.

To cache a form, use the perform screen save statement as follows:

perform screen save [formid (form_id)] [por‘t‘id (port_id)]
[status (status_code)] .

If you omit the formid option of the perform screen save statement, the most
recently referenced form is cached. However, in any application that uses more
than one form, you should include the formid option in all screen statements to
help avoid errors and to make the program easier to read and maintain.

VOS COBOL Forms Management System (R035) 12-1

Form Caching

You can discard a cached form by issuing the perform screen discard statement as
follows:

perform screen discard [form‘id (form_ id)] [portid (port_id)]
[status (status_code)] .

Discarding a form frees heap space. If an application displays many forms, you
might have to discard forms that are no longer needed to conserve space.

The Forms Processor determines whether to discard a form by examining an internal
reference count associated with the form. This reference count is incremented
when a form becomes the current form for a window and is decremented when

the form is no longer current. When the reference count becomes less than or
equal to 0, the form is discarded. The perform screen save statement increments
this reference count by 1, and the perform screen discard statement decrements

the count by 1. Therefore, one perform screen discard statement cancels the effect
of exactly one perform screen save statement.

The following section describes in detail how the Forms Processor manipulates
the reference count.

The Forms Reference Count

12-2

You cannot read or directly address the reference count for a form. It is read and
updated only by the Forms Processor.

When a form becomes the current form for a window, its reference count is
incremented. When a form is replaced as the current form, its reference count

is decremented. For a master form, the amount of increment or decrement is
always 1. For a subform, the amount of increment or decrement is the value of the
reference count of the immediately containing form.

The perform screen save statement increments a form’s reference count by 1. The
perform screen discard statement decrements a form’s reference count by 1.

If a form contains one or more window fields, then whenever the reference count
of that form changes, the reference count of the current form in each window of
that form also changes by the same amount. This rule is applied recursively to
nested subforms.

"Whenever the reference count of any form becomes less than or equal to 0, the

form is discarded.

When program execution ends, all active forms are discarded.

Chapter 12: Form Caching

The Forms Reference Count

Consider an application that displays the following forms: main1, main2, sub1, subla,
and sub2. Table 12-1 shows the effect of specific actions on the form reference
counts. In the figure, a hyphen represents the reference count for an inactive form.

Table 12-1. Form Reference Count Manipulation

Reference Counts
Action maint | subl | subla | sub2 | main2
Initialize main1 in master window 1 — — — —
Initialize sub1 in window within main1 1 1 — — -
Save sub1 1 2 — — —
Initialize sub2 in same window as sub1 1 1 — 1 —
Save sub2 1 1 — 2 —
Display main1 1 1 — 2 —
Display sub1 within main1 1 2 - 1 —
Save main1 2 3 — 1 —
Initialize subla in window within sub1 2 3 3 1 —
Display subla within sub1 2 3 3 1 —
Display sub2 in place of sub1 2 1 1 3 —
Initialize main2 in master window 1 1 1 2 1
Display main2 1 1 1 2 1
Discard main1 - 1 1 1 1
Discard sub1 — - — 1 1
Discard sub2 — — — — 1
Discard main2 — — — — —

Example of Form Caching

The example program at the end of Chapter 11, “Windows and Subforms” displays
a master form with a window field in which either of two subforms can be displayed.
The program contains a loop so that the user can switch back and forth between
the two subforms. In the example, the chosen subform is initialized on each pass
through the loop. A better strategy is to initialize and cache both subforms before
entering the loop. This means that either subform can be displayed within the loop
without re-initializing,

Figure 12-1 shows an updated version of the example program using form caching.

VOS COBOL Forms Management System (R035) 12-3

Example of Form Caching

12-4

0
01
01
01
01
0

01
0

*

identification division.
program-id. display_employee_info.

data division.
working-storage section.

%replace CANCEL by -1
%replace ENTER by O

copy 'employee_master_ids’.

employment_fields.
copy 'employee_info'.
master_fields.

copy 'employee_master’'.
personal_fields.

copy 'personal_info'.

error_code comp=4.
key_code comp=4.
master_form_id comp—4.
employment_form_id comp~&.
personal_form_id comp~4.

procedure division.

Initialize the master form.

perform screen initialization 'employee_master’
into (master_fields)
with formid (master_form_id) status (error_code).

if error_code not equal O then
go to fatal—error.

Figure 12-1. Example Program Using Subforms
(Continued on next page)

Chapter 12: Form Caching

Examplé of Form Caching

Figure 12-1. (Continued)

* Initialize the subforms with the master form and save the subforms.

perform screen initialization 'personal_info'
with origin (master_form_id, info_window_id)
formid (personal_form_id) status (error_code).

if error_code not equal O then
go to fatal-error.

perform screen save with formid (personal_form_id)
status (error_code).

if error_code not equal O then
go to fatal-error.

perform screen initialization 'employment_info'
with origin (master_form_id, info_window_id)
formid (employment_form_id) status (error_code).

if error_code not equal O then
go to fatal-error.

perform screen save with formid (employment_form_id)
status (error_code).

if error_code not equal O then
go to fatal-error.

move ENTER to key_code.
move O to error_code.

(Continued on next page)

VOS COBOL Forms Management System (R035) 12-5

Example of Form Caching

Figure 12-1. (Continued)

* Display the master form and any requested subforms.

perform input-loop until ((key_code equal CANCEL) or
(error_code not equal M.
if error_code not equal O then
go to fatal-error.

go to exit-program.
input-Lloop.
perform screen input 'employee_master'
update (master_fields)

with keyused (key_code) status (error_code).

if error_code not equal O then
go to fatal-error.

* Examine the value of key_code to determine user's choice.
* Initialize and display the appropriate subform.

if key_code equal 1 then
perform personal-display

else if key_code equal 2 then
perform employment-display.

personal-display.

*

Set the members of personal_fields to the appropriate values.

* Display the personal_info form.

perform screen output 'personal_info'
update (personal_fields)
with formid (personal_form_id) status (error_code).

if error_code not equal O then
go to fatal-error.

(Continued on next page)

12-6 Chapter 12: Form Caching

~—

Example of Form Caching

Figure 12-1. (Continued)

employment~display.

Set the members of employment_fields to the appropriate values.

* Display the employment_info form.
perform screen output 'employment_info'

update (employment_fields)
with formid (employment_form_id) status (error_code).

if error_code not equal O then
go to fatal-error.

fatal-error.

* Handle error.

go to exit-program.
exit-program. -

exit program.

Note that you do not need to cache the master form in the example program
shown in Figure 12-1, because no other form is initialized in the master window.

VOS COBOL Forms Management System (R035) 12-7

N

N

Chapter 13:
Traps

In FMS, a trap is a return of control from a form to the application program before
the user submits or cancels the form. You can establish three kinds of traps in a
form.

e Trap on field entry. A trap that occurs each time the user positions to a
specific field.

e Trap on field exit. A trap that occurs each time the user positions out of a
specific field.

e Vertical scroll trap. A trap that occurs each time the user tries to position the
cursor to before the first line of the form, or beyond the last line of the form.

Typically, when a trap occurs, the program updates the display list and then executes
another perform screen input statement to redisplay the form. Traps can allow the
program to update a partially completed form based on the information the user
has filled in up to that point.

Note: Some device drivers do not handle traps.

Establishing Traps

Traps on field exit and field entry are controlled by display-type action switches.
You can establish a trap on field exit by setting the TRAP_ON_FIELD_EXIT action
switch for the field to true. Likewise, you can establish a trap on field entry by
setting the TRAP_ON_FIELD_ENTRY action switch for the field to true. For information
on these switches, see Chapter 7, “Display Types.”

For a predefined field, you can specify an initial value for the TRAP_ON_FIELD_EXIT and
TRAP_ON_FIELD_ENTRY switches with the TRAP ON FIELD EXIT and TRAP ON FIELD ENTRY
options of the Forms Editor F form. For information on these options, see
Chapter 4, “The Forms Editor.”

The field for which a trap on field entry or trap on field exit is set is called the
trap field.

VOS COBOL Forms Management System (R035)

13-1

Establishing Traps

The vertical scroll trap is controlled by the VERTICAL_SCROLL_TRAP switch in the
options form option. See the description of the options form option in Chapter 5,
“Form Options.”

For a predefined form, you can specify an initial value for the VERTICAL_SCROLL_TRAP
switch with the VERTICAL SCROLL TRAP option of the Forms Editor s form. For
information on this option, see Chapter 4, “The Forms Editor.”

Trap on Field Entry

13-2

If the TRAP_ON_FIELD_ENTRY action switch is true for a field in a displayed form,
then a trap occurs when the user attempts to move the cursor into that field from
another field. If, on return to the form from the trap, the cursor is positioned to
the trap field, the trap does not recur. The trap is not activated again unless the
user positions the cursor out of the trap field and then back into it.

When a trap on field entry occurs, control returns to the program. The current
field values are returned in the update option of the perform screen input statement
that displayed the form.

If the perform screen input statement contains the keyused form option, the value -9
is returned in that option.

If the perform screen input statement contains the nextcursor form option, the value
returned in that option is the field ID of the trap field. This is typically the field to
which you should initially position the cursor on a subsequent display of the form.

If the perform screen input statement contains the getcursor option, the value
returned in that option is also the field ID of the trap field.

If the perform screen input statement contains the functionkey form option, the
value returned in that option indicates what generic sequence the user issued to
move the cursor into the field.

Note: If the TRAP_ON_FIELD_ENTRY switch is true for the field to which the
cursor is initially positioned in a perform screen input statement, then
the trap is activated immediately: the Forms Processor returns control
to the program without displaying the form. If the cursor is positioned
to that same field for the next perform screen input statement, then
the trap is not activated, and the form is displayed.

Chapter 13: Traps

Trap on Field Exit

j Trap on Field Exit

If the TRAP_ON_FIELD_EXIT action switch is true for a field in a displayed form, then
a trap occurs when the user attempts to move the cursor from that field to another
field. A trap also occurs if the Forms Processor attempts to move the cursor to
another field as the result of the auto-tab feature. For information on auto-tab, see
the description of the AUTO_TAB_TO_NEXT_FIELD action switch in Chapter 7, “Display
Types.”

Returned Values
When a trap on field exit occurs, control returns to the program. The current field
values are returned in the update option of the perform screen input statement that
displayed the form.

) If the perform screen input statement contains the keyused form option, the value -2
is returned in that option.

If the perform screen input statement contains the nextcursor form option, the
value returned in that option is the field ID of the field to which the cursor would
have moved if no trap had occurred. This is typically the field to which you should
initially position the cursor on a subsequent display of the form.

. If the perform screen input statement contains the getcursor option, the value
> returned is the field ID of the trap field.

If the perform screen input statement contains the functionkey form option, the
value returned in that option indicates what generic sequence the user issued to
move the cursor out of the field.

Field Validation

) When a trap on field exit occurs, the Forms Processor can validate all fields

: in the form or it can validate only the trap field. The VALIDATE_ERRORS_OFF and
VALIDATE_ONE_FIELD switches of the options form option determine the level of
validation.

The validation levels are as follows:

e Validate all fields in the form and report any validation errors (the default;
both VALIDATE_ONE_FIELD and VALIDATE_ERRORS_OFF are false).

e Validate only the trap field and report any validation error (VALIDATE_ONE_FIELD
is true; VALIDATE_ERRORS_OFF is false).

e Execute the validation routines for all fields in the form, but report errors only
for the trap field (VALIDATE_ERRORS_OFF is true; VALIDATE_ONE_FIELD is false).

VOS COBOL Forms Management System (R035) 13-3

Trap on Field Exit

You cannot set both the VALIDATE_ERRORS_OFF switch and the VALIDATE_ONE_FIELD
switch to true.

If you disable the reporting of validation errors for other fields by setting either
VALIDATE_ONE_FIELD Or VALIDATE_ERRORS_OFF to true, no errors are returned for any of
the validation checks on those fields. This means that a required field can contain
a null value, a field can have a value outside its prescribed range or inconsistent
with its picture, or a field can fail the checks in a validation routine that you have
written.

Note that the only significant difference between VALIDATE_ERRORS_OFF and
VALIDATE_ONE_FIELD is whether field validation routines that you have written are
invoked. You might choose to set VALIDATE_ERRORS_OFF, rather than VALIDATE_ONE_FIELD,
if some of the field validation routines have side effects that you want to preserve.

You can initialize the values of the VALIDATE_ERRORS_OFF and VALIDATE_ONE_FIELD
switches with the VALIDATE option in the s form of the Forms Editor. For
information on this option, see Chapter 4, “The Forms Editor.”

For information on the options form option, see Chapter 5, “Form Options.”
For information on field validation, see Chapter 10, “Error Handling and Field
Validation.”

Example Using a Trap on Field Exit

13-4

The sample application developed in Chapter 2, “Developing an FMS Application,”
uses a form that allows the user to enter information about an employee. One
piece of information in the form is the employee’s department number. As an aid
to the user, you might want to display the name of the department after the user
has selected the department number. To do this, modify the employee_info form as
follows:

e Add a new output field named department_name.

e Modify the department_number field, setting the TRAP_ON_FIELD_EXIT switch to
true.

e Set the VALIDATE_ONE_FIELD options switch to true for the form.

Within the application program, add the nextcursor form option to the

perform screen input statement. Add a new case to the if statement to handle a
trap on field exit. When the trap occurs, examine the value of department_number of
employee_fields to determine what value the user chose for the department_number
field. Obtain the corresponding department name, and assign the name to
department_number of employee_fields. Assign the field ID returned in the nextcursor
option to cursor_field, and loop back to the perform screen input statement to
redisplay the form. The department name now appears on the user’s screen, and
the cursor is positioned as the user would expect.

Chapter 13: Traps

Vertical Scroll Trap

ﬂ Vertical Scroll Trap

If the VERTICAL_SCROLL_TRAP options form option switch is true for a form display,
then a trap occurs if the user attempts to position the cursor before the first field
in the form or after the last field in the form.

If the VERTICAL_SCROLL_TRAP switch is false, then if the user tries to position before
the first field in the form, the cursor moves to the bottom of the form. If the user
tries 'to position after the last field in the form, the cursor moves to the top of the
form.

The Forms Processor treats a vertical scroll trap exactly the same as it treats a
trap on field exit. The field from which the cursor is being moved is treated as the
trap field. The field ID of this field is returned in the getcursor form option.

j See the “Trap on Field Exit” section earlier in this chapter for information on the
’ values returned to the program and on the level of field validation performed for
a trap on field exit.

Scrolling between Forms

You can use the VERTICAL_SCROLL_TRAP switch to allow the user to scroll between
two forms in a single window. This creates the appearance of a single form that
: is longer than the window. You can also use the VERTICAL_SCROLL_TRAP switch to
> allow the user to move freely between two forms in different windows, such as a
master form and a subform.

To create the appearance of a form that is longer than the window in which it is
displayed, first plan the layout of the long form. Next, divide the long form into
two or more forms that each fit in the window that is available for the form. Define
each of these small forms with the VERTICAL_SCROLL_TRAP switch set to true. Design
the application to initially display the topmost of the small forms. Whenever the
) user attempts to move beyond the bottom of a form, display the next small form.

- If the user attempts to move beyond the top of a small form, display the previous

small form.

VOS COBOL Forms Management System (R035) 13-5

Vertical Scroll Trap

For example, suppose the form you plan is twice as long as the screen. Divide
the long form into two full-screen forms, top and bottom. When you define the
forms, set the VERTICAL_SCROLL_TRAP switch to true for each. Within the application
program, initially display top. If a trap occurs because the user attempted to move
beyond the end of top, display bottom with the cursor positioned to the first field.
If a trap subsequently occurs because the user attempted to move beyond the
beginning of bottom, display top with the cursor positioned to the last field. To the
user, top and bottom appear to be one continuous form.

Note: When the user submits a form, the Forms Processor validates only
fields in that particular form. If fields in the other form or forms also
require validation, the program must perform that validation itself and
handle errors appropriately. You should also consider what type of
validation the Forms Processor should perform when you scroll from
form to form. See the “Field Validation” subsection under “Trap on
Field Exit” earlier in this chapter for more information.

If you are displaying a master form and a subform on the screen, although both
forms are visible on the screen, the user can normally modify only one of the forms
at a time. The user must submit one form before moving into the other. By using
the VERTICAL_SCROLL_TRAP switch for both forms, you can effectively allow the user
to move freely from one form to the other. For example, assume the subform is in
a window at the bottom of the master form. If the user attempts to move beyond
the end of the master form, display the subform with the cursor in the first field.
If the user attempts to move beyond the beginning of the master form, display
the subform with the cursor in the last field. If the user attempts to move beyond
the end of the subform, display the master form with the cursor in the first field.
Finally, if the user attempts to move beyond the beginning of the subform, display
the master form with the cursor in the last field before the window.

Note that the same field validation considerations apply as when scrolling between
two forms in the same window.

Scrolling within a Form

13-6

You can also use the VERTICAL_SCROLL_TRAP switch to scroll a list of values through
a single form. For example, you could define a form, string_list, that contains a
vertical array field in which you can display a list of values (one value in each array
element). The user can select one of these values by positioning the cursor to it and
submitting the form. However, assume you have a list of 50 values to be displayed,
and the array field has only 20 elements. By using the VERTICAL_SCROLL_TRAP switch,
you can allow the user to scroll through all 50 values.

Initially, display the first 20 values in the array field. If the user selects one of these
values and submits the form, then no scrolling is necessary. However, if the user
attempts to position beyond the last field, a trap occurs. At this point, the program
can load the next 20 values into the array field and redisplay the form with the
cursor at the top of the screen. If the user subsequently attempts to move beyond
the beginning of the form, display the first 20 values again. If the user attempts to

Chapter 13: Traps

Vertical Scroll Trap

move beyond the end of the second screen of values, display the final 10 values.
Optionally, you might choose to create overlap between the last two screens by
displaying the last 20 values on the last screen, rather than leaving 10 fields blank.

Figure 13-1 illustrates this algorithm. The form string_list contains an array field
named strings. The values to be displayed in strings are stored in the table values.
In the perform screen input statement, the code returned in the keyused option
indicates whether a vertical scroll trap has occurred, and the field ID returned in
nextcursor indicates the direction in which to scroll.

identification division.
program-id. vscroll.

data division.
working-storage section.

%replace CANCEL by -1
%replace SCROLL_TRAP by -2

copy 'form_options.incl.cobol’.
copy 'string_list_ids.incl.cobol'.

01 fields.
copy 'string_Llist'.

01 bottom_value comp=4.
01 top_value comp—4.

01 values_table.

02 value_string pic x(64) display-2 occurs 50 times.
01 error_code comp~4.
01 1 comp=b4.
01 key_code comp—4.
01 next_cursor comp=4.

Figure 13-1. Vertical Scroll Trap Example Program
(Continued on next page)

VOS COBOL Forms Management System (R035) 13-7

Vertical Scroll Trap

Figure 13-1. (Continued)

procedure division.

* Initialize values_table.

* Initialize the display list.

perform screen initialization 'string_Llist'
with status = error_code.

if error_code not equal O then
go to fatal—-error.

move 1 to next_cursor. /* cursor position for next form display */
move 1 to key_code. /% code returned by most recent display */

The variables top_value and bottom_value are indexes into
the values_table. Set top_value to the index of the first
value on the screen and bottom_value to the index of the
last value on the screen.

* * X *

move 1 to top_value.
move strings_ct to bottom_value.

* Assign beginning of value list to strings of fields.

perform assign-field-value varying i from 1
until 1 is greater than strings_ct.

(Continued on next page)

13-8 Chapter 13: Traps

S

Vertical Scroll Trap

Figure 13-1. (Continued)

* Display the form until user cancels or an error occurs.

perform input-loop until ((key_code equal CANCEL) or
(error_code not equal 0)).

if error_code not equal O then
go to fatal-error.

go to exit-program.
assign—-field-value.

move value_string (top_value = 1 + 1) to strings_1 (i).
input-{oop.

perform screen input 'string_List' update (fields)
with keyused (key_code) nextcursor (next_cursor)
putcursor (next_cursor) status (error_code)
options (VERTICAL_SCROLL_TRAP, WIDE_CURSOR).

if error_code not equal O then
go to fatal-error.

if key_code equal SCROLL_TRAP then
if next_cursor equal 1 then
perform scroll-down
else perform scroll-up
else /* Handle other key_code values. */.

scrol L—-down.

if bottom_value is less than 50 then
compute bottom_value =
!min (50, bottom_value + strings_ct)
compute top_value = bottom_value - strings_ct + 1.

perform assign-field-value varying i from 1
until i is greater than strings_ct
else compute next_cursor =
strings_id + strings_ct - 1. /* bottom of form */

(Continued on next page)

VOS COBOL Forms Management System (R035)

13-9

Vertical Scroll Trap

Figure 13-1. (Continued)

scroll-up.

if top_value is greater than 1 then
compute top_value = Imax(1, top_value - strings_ct)
compute bottom_value = top_value + strings_ct - 1.

perform assign—-field-value varying i from 1
until i is greater than strings_ct
else move strings_id to next_cursor. /* top of form */

fatal-error.

* Handle error.

exit-program.

exit program.

The example in Figure 13-1 is somewhat simplified. In particular, the cursor
positioning is not always as expected.

You might want to change the behavior that occurs when the user tries to position
before the first screen or beyond the last screen. You can create a circular list
by displaying the last screen when the user attempts to position before the first
screen, and displaying the first screen when the user attempts to position beyond
the last screen.

Forms Input Mode

13-10

When using a trap in a form, you should carefully consider the use of forms input
mode. Forms input mode can be convenient because it allows the user to type
ahead while the program is processing the trap. However, if the processing of the
trap might change the form in a way that the user would not expect, allowing this
ability to type ahead could lead to user errors.

You must decide for each application whether forms input mode is helpful. For

example, in the sample program shown in Figure 13-1, forms input mode would
allow the user to scroll through the list of values faster.

For information on forms input mode, see Chapter 14, “Subroutines.”

Chapter 13: Traps

Chapter 14:
Subroutines

This chapter describes two subroutines that change the channel input mode for a
forms application. Changing the input mode affects the way VOS handles characters
that are typed between form displays.

Forms Input Mode

Many FMS applications display more than one form or redisplay the same form
several times. Normally, if the user types some characters after submitting one
form and before the Forms Processor displays the next form, those characters are
not read by the Forms Processor. The characters are echoed to the screen, possibly
corrupting the subsequent form display.

However, if the communications channel is in forms input mode, the characters
typed after the form is submitted are not echoed to the screen. Instead, they are
saved until the next form is displayed. They are then read by the Forms Processor
and applied to the form. This allows the user to anticipate the next form and begin
entering input before the form is displayed.

To put the channel associated with your terminal port into forms input mode, call
the subroutine s$begin_forms_input. To take the channel out of forms input mode,
call s$end_forms_input. You can change any other channel to or from forms input
mode by calling the subroutine s$controt with the SET_MODES_OPCODE (207) or the
SET_INFO_OPCODE (202). For information on s$control, see the VOS Communications
Software: Asynchronous Communications (R025).

While the channel is in forms input mode, all input for the channel must be done

through forms. If you attempt to perform non-forms input (for example, by calling
s$read), that input will fail. Forms input mode does not restrict output operations.

VOS COBOL Forms Management System (R035) 14-1

Forms Input Mode

14-2

When the channel first enters or exits forms input mode, any currently pending
forms input is discarded. The Forms Processor also discards pending input if the
beep option is true for a form display. You can use the beep option when an error
or other exceptional condition changes the usual sequence of form displays.
Forms input mode is sometimes called continuous forms mode.

Note: Forms input mode is not applicable to some device drivers.

Chapter 14: Subroutines

s$begin_forms_input

s$begin_forms_input

Purpose

The s$begin_forms_input subroutine puts the channel associated with your terminal
port into forms input mode.

Usage

01 error_code comp=4.

call 's$begin_forms_input' using error_code.

Arguments

» error_code (output)

A returned status code.

Explanation

The s$begin_forms_input subroutine puts the channel associated with the terminal
port of the current process into forms input mode.

If the chanuel is already in forms input mode, a call to s$begin_forms_input has no
effect and returns the value 0 in error_code.

Error Codes
The s$begin_forms_input subroutine returns standard VOS error codes.

VOS COBOL Forms Management System (R035) 14-3

s$end_forms_input

s$end_forms_input

Purpose

The s$end_forms_input subroutine removes the channel associated with your terminat
port from forms input mode.

Usage

01 error_code comp=4.

call 's$end_forms_input' using error_code.

Arguments

p» error_code (output)

A returned status code.

Explanation

The s$end_forms_input subroutine removes the channel associated with the terminal
port of the current process from forms input mode.

If the terminal port is not in forms input mode when you call s$end_forms_input,
the subroutine has no effect and returns the value 0 in error_code.

Error Codes
The s$end_forms_input subroutine returns standard VOS error codes.

14-4 Chapter 14: Subroutines

*/

Chapter 15:
Built-In Functions

Fourteen built-in functions have been added to VOS COBOL to simplify the
handling of fields and display types in FMS applications.

Conceptually, the Forms Processor maintains three lists that you can reference
through built-in functions.

o A list of all global display types that are currently allocated. This list includes
both reserved global display types and programmer-defined display types. It
is ordered numerically.

o A list of all fields currently in the form. This list includes programmer-defined
fields, and fields defined by the Forms Processor for background text. The
fields are sorted in display order.

e A list of all fields that were changed during the most recent display of the
form. The order of this list is undefined.

You can use built-in functions to step through all the values in each of these lists.
You can also add to the first two lists by using built-in functions to allocate new
fields and new programmer-defined display types.

Other built-in functions allow you to find the field ID for a named field or to find
the field in a specific position.

Built-In Function Summary
The display-type built-in functions allow you to do the following:

e find the next available unused global display-type ID and mark it as in-use
e find all the global display-type IDs that are currently in use.

VOS COBOL Forms Management System (R035) 15-1

Built-In Function Summary

The field built-in functions allow you to do the following:)
e find the next available unused field ID for a form and mark it as in-use
o find all the field IDs that are currently in use for a form

e find the field IDs of all fields that were changed in the most recent form
display

e find the field ID of a field with a specific name
o find the field ID of an input field in a specific location within the form.

Table 15-1 and Table 15-2 list the display-type built-in functions and the field
built-in functions, respectively.

Table 15-1. Display-Type Built-In Functions

Function Explanation
alloc_screen_displaytype Allocates a new display type, and returns
([port_ id]) the display-type ID.
first_screen_displaytype Returns the lowest display-type ID
¢ [port id]) currently allocated.
-) |
last_screen_displaytype Returns the highest display-type ID
¢ [port_id]) currently allocated.
next_screen_displaytype Returns the next highest display-type ID
(display_type_id currently allocated.
[sport_id])
prev_screen_displaytype Returns the next lowest display-type ID
(display_type_id currently allocated. J
[sport_id])

15-2 Chapter 15: Built-In Functions

e

Built-In Function Summary

Table 15-2. Field Built-In Functions

Function Explanation
alloc_screen_field Allocates a new field and returns
([fo,-m_ id [,port_ id]]) the field ID.
find_screen_field Returns the field ID for the
(field_name [,form_ id [,port_id]]) named field.
first_changed_field Returns the lowest field ID of
([form_ id [,po,.t_ id]]) fields that have changed.
first_screen_field Returns the lowest field ID
([fo,.,,,_ id [,port_ id]]) currently allocated.
last_screen_field Returns the highest field ID
([fo,.,,, id [port_ id]]) currently allocated.
next_changed_field Returns the next highest field ID

(field id [,form_ id [,po,.t_ id]]) of fields that have changed.

next_screen_field Returns the next highest field ID
(field_ id [,form_ id [,port_id]]) currently allocated.

prev_screen_field Returns the next lowest field ID
(field id [,form_ id [,port_id]]) currently allocated.

screen_field_position Returns the field ID of the first

input field located at or before

Crow, column [,form_id [,port_ id]]) the speciﬁed position

VOS COBOL Forms Management System (R035) 15-3

Built-In Function Reference Guide

Built-In Function Reference Guide

This section describes each of the VOS COBOL FMS built-in functions. The
functions are described in alphabetical order.

alloc_screen_displaytype ([port id])

This function returns the lowest currently unused global display-type ID for
the most recently referenced form and marks that display-type ID as being
in use.

The value of port_id, if given, must be the integer ID of the port on which the
form is to be displayed. If port_id is omitted or is less than 0, the default is
the ID of the port most recently operated on by a screen or accept statement.

Display types are freed by the perform screen delete statement.

If a program allocates a predetermined number of display types, you do
not need to use the alloc_screen_displaytype function. You can assign
sequential display-type IDs (starting with 11) and use them in the displaytype
option of an accept or screen statement to define the display type. Use the
alloc_screen_displaytype function when you cannot determine the number
of display types to be allocated until runtime.

For further information on display types, see Chapter 7, “Display Types.”

alloc_screen_field ¢ [:fo,-m_id [sport_id]]>

This function returns the lowest currently unused field ID for the form and
marks that field ID as being in use.

The value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. If form id is omitted or is less
than 0, the ID of the most recently referenced form is used. The value of
port_id, if given, must be the integer ID of the port on which the form is to
be displayed. If port_id is omitted or is less than 0, the default is the ID of
the port most recently operated on by a screen or accept statement.

Fields are freed by the perform screen delete statement.

Note: The Forms Processor uses some field IDs for form background text.
Therefore, the field IDs returned by alloc_screen_field usually do not
sequentially follow the field IDs assigned by the Forms Editor. You
should always use the alloc_screen_field function when adding fields
within the application program.

For further information on creating fields, see Chapter 6, “Field Descriptions.”

15-4 Chapter 15: Built-In Functions

Built-In Function Reference Guide

find_screen_field (field_name [,form_ id [,port_ id]])
This function returns the field ID for the named field.

The value of field_name must be a field name given in the Forms Editor.
The value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. The value of port_id, if given, must
be the integer ID of the port on which the form is to be displayed. If port_id
is omitted or is less than 0, the default is the ID of the port most recently
operated on by a screen or accept statement.

If the named field is not found for any reason, the function signals the error
condition.

For information on the Forms Editor, see Chapter 4, “The Forms Editor.”

first_changed_field (¢ [fo,.,,,_ id [,po,‘t_ id]])

This function returns the field ID of the first field in the internal changed-field
list for the form. The returned value can be used as a seed or initial input
value for the next_changed_field function.

The value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. If form_id is omitted or is less
than 0, the ID of the most recently referenced form is used. The value of
port_id, if given, must be the integer ID of the port on which the form is to
be displayed. If port_id is omitted or is less than 0, the default is the ID of
the port most recently operated on by a screen or accept statement.

The internal changed-field list contains all of the fields that were changed

in the most recent display of the form. The order of the list is undefined.

If there are no changed fields, the first_changed_field function returns the
null field ID (-32768).

You can retrieve the IDs of all changed fields in the form by invoking
first_changed_field, followed by a series of invocations of next_changed_field.
See the example in the description of the next_changed_field function later
in this section.

VOS COBOL Forms Management System (R035) 15-5

Built-In Function Reference Guide

first_screen_displaytype ([port id])

This function returns the lowest display-type ID from the list of global display
types. The returned value can be used as a seed or initial input value for the
next_screen_displaytype function.

The value of port_id, if given, must be the integer ID of the port on which the
form is to be displayed. If port_id is omitted or is less than 0, the default is
the ID of the port most recently operated on by a screen or accept statement.

The list of global display types is sorted numerically.

If no global display types are currently allocated, first_screen_displaytype
returns the null display-type ID (-32768).

You can retrieve all global display-type IDs currently in use (in numerical
order) by invoking first_screen_displaytype, followed by a series of invocations
of next_screen_displaytype. See the example in the description of the
next_screen_displaytype function later in this section.

first_screen_field (¢ [form_'id [,port_id]])

This function returns the field ID of the first field in the display list. The
returned value can be used as a seed or initial input value for calls to the
next_screen_field function.

The value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. If form_id is omitted or is less
than 0, the ID of the most recently referenced form is used. The value of
port_id, if given, must be the integer ID of the port on which the form is to
be displayed. If port_id is omitted or is less than 0, the default is the ID of
the port most recently operated on by a screen or accept statement.

The display list includes all fields the program can manipulate, plus all fields
created by the Forms Processor for background text.

If there are no fields, the first_screen_field function returns the null field
ID (~32768).

You can retrieve the IDs of all fields of a form (in display order) by invoking
first_screen_field, followed by a series of invocations of next_screen_field.
See the example in the description of the next_screen_field function later in
this section.

15-6 Chapter 15: Built-In Functions

Built-In Function Reference Guide

last_screen_displaytype ([port._ id])

This function returns the highest display-type ID from the list of global
display types. The returned value can be used as a seed or initial input value
for the prev_screen_displaytype function.

The value of port_id, if given, must be the integer ID of the port on which the
form is to be displayed. If port_id is omitted or is less than 0, the default is
the ID of the port most recently operated on by a screen or accept statement.

The list of global display types is sorted numerically.

If no global display types are currently allocated, last_screen_displaytype
returns the null display-type ID (~32768).

You can retrieve all global display-type IDs currently in use (in reverse
numerical order) by invoking last_screen_displaytype, followed by a series of
invocations of prev_screen_displaytype. See the example in the description
of the prev_screen_displaytype function later in this section.

last_screen_field ¢ [fo,-,,,_ id [,port_ -,‘d]])

This function returns the last field ID in the display list. The returned value
can be used as a seed or initial input value for the prev_screen_field function.

The value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. If form_id is omitted or is less
than 0, the ID of the most recently referenced form is used. The value of
port_id, if given, must be the integer ID of the port on which the form is to
be displayed. If port_id is omitted or is less than 0, the default is the ID of
the port most recently operated on by a screen or accept statement.

If there are no fields, last_screen_field returns the null field ID (-32768).
You can retrieve the IDs of all fields of a form (in reverse of display
order) by invoking last_screen_field, followed by a series of invocations of

prev_screen_field. See the example in the description of the prev_screen_field
function later in this section.

VOS COBOL Forms Management System (R035) 15-7

Built-In Function Reference Guide

next_changed_field (field_id I:,form_ id [,port_ id]])

This function returns the ID of the field following the specified field in the
internal changed-field list.

The value of field_id must be the field ID of a changed field in the form;
typically, this value is the result returned by either first_changed_field or

a previous invocation of next_changed_field. The value of form_id, if given,
must be a valid form ID as returned by the perform screen initialization
statement. If form_idis omitted or is less than 0, the ID of the most recently
referenced form is used. The value of port_id, if given, must be the integer
ID of the port on which the form is to be displayed. If port_id is omitted or
is less than 0, the default is the ID of the port most recently operated on by
a screen Or accept statement.

The internal changed-field list contains all fields that were changed in the
most recent display of the form. The order of the list is undefined.

If the field_id value you give to next_changed_field is the last changed field
in the list, the function returns the null field ID (-32768).

You can retrieve the IDs of all changed fields in a form by invoking
first_changed_field, followed by a series of invocations of next_screen_field.
The following example illustrates this usage.

%replace NULL_FIELD_ID by -32768

01 field_id comp—4.

move !first_changed_field OO to field_id.

perform process~field until field_id equal NULL_FIELD_ID.

process-field.

. /* Process this field. */

move !next_changed_field (field_id) to field_id.

15-8 Chapter 15: Built-In Functions

Built-In Function Reference Guide

next_screen_displaytype (display_type_id [sport_ id])

This function returns the next highest display-type ID from the list of currently
used global display types.

The value of display_type_id must be the ID of a global display type; typically,
this value is the result returned by either first_screen_displaytype or a
previous invocation of next_screen_displaytype. The value of port_id, if given,
must be the integer ID of the port on which the form is to be displayed. If
port_id is omitted or is less than 0, the default is the ID of the port most
recently operated on by a screen or accept statement.

The list of global display types is sorted numerically.

If the display_type_id you give to the next_screen_displaytype function is
the last display type in the list, the function returns the null display-type ID
(-32768).

You can retrieve all global display-type IDs currently in use (in numerical
order) by invoking first_screen_displaytype, followed by a series of invocations
of next_screen_displaytype. The following example illustrates this usage.

Zreplace NULL_DISPLAY_TYPE_ID by -32768

01 display_type_id comp-4.

move !first_screen_displaytype () to display_type_id.

perform process-display-type
until display_type_id equal NULL_DISPLAY_TYPE_ID.

process~display-type.

. /* Process this display type. */

move Inext_screen_displaytype (display_type_id)
to display_type_id.

VOS COBOL Forms Management System (R035) 15-9

Built-In Function Reference Guide

15-10

next_screen_field (field_ id [,form_id [sport_id]]>

This function returns the field ID that follows the specified field ID in the
display list.

The value of field_id must be the field ID of a field in the display list.
The value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. If form_id is omitted or is less
than 0, the ID of the most recently referenced form is used. The value of
port_id, if given, must be the integer ID of the port on which the form is to
be displayed. If port_id is omitted or is less than 0, the default is the ID of
the port most recently operated on by a screen or accept statement.

If the field_id value you give to next_screen_field is the last field in the list,
the function returns the null field ID (-32768).

The list of fields includes all fields the program can manipulate, plus all fields
created by the Forms Processor for background text.

You can retrieve the IDs of all fields of a form (in display order) by invoking
first_screen_field, followed by a series of invocations of next_screen_field.
The following example illustrates this usage.

%replace NULL_FIELD_ID by -32768

01 field_id comp~4.

move !first_screen_field O to field_id.

perform process-field until field_id equal NULL_FIELD_ID.

process-field.

. /* Process this field. */

move !next_screen_field (field_id) to field_id.

Chapter 15: Built-In Functions

Built-In Function Reference Guide

prev_screen_displaytype (display_type_id [,port_ id :l)

This function returns the display-type ID that precedes the specified display-type
ID on the list of currently allocated global display types.

The value of display_type_id must be the ID of a global display type; typically,
this value is the result returned by either last_screen_displaytype or a previous
invocation of prev_screen_displaytype. The value of port_id, if given, must be
the integer ID of the port on which the form is to be displayed. If port_id

is omitted or is less than 0, the default is the ID of the port most recently
operated on by a screen or accept statement.

The list of global display types is sorted numerically.

If the display_type_id you give to the next_screen_displaytype function is
the last display type in the list, the function returns the null display type ID
(-32768).

You can retrieve all global display-type IDs Currently in use (in reverse
numerical order) by invoking last_screen_displaytype, followed by a series of
invocations of prev_screen_displaytype. The following example illustrates this

usage.

Zreplace NULL_DISPLAY_TYPE_ID by -32768

01 display_type_id comp=~4.

move !last_screen_displaytype () to display_type_id.

perform process-display-type
until display_type_id equal NULL_DISPLAY_TYPE_ID.

process-display-type.

/* Process this display type. */

move !prev_screen_displaytype (display_type_id)
to display_type_id.

VOS COBOL Forms Management System (R035) 15-11

Built-In Function Reference Guide

15-12

prev_screen_field (field_ id [,form_id [sport_id]])

This function returns the field ID that precedes the specified field ID in the
display list.

The value of field_id must be the valid field ID of a field in the display
list; typically, this value is the result returned by either last_screen_field or
a previous invocation of prev_screen_field. The value of form_id, if given,

" must be a valid form ID as returned by the perform screen initialization

statement. If form_id is omitted or is less than 0, the ID of the most recently
referenced form is used. The value of port_id, if given, must be the integer
ID of the port on which the form is to be displayed. If port_id is omitted or
is less than 0, the default is the ID of the port most recently operated on by
a screen Or accept statement.

If the field_id value you give to prev_screen_field is the first field in the list,
the function returns the null field ID (-32768).

You can retrieve the IDs of all fields of a form (in reverse of display
order) by invoking last_screen_field, followed by a series of invocations of
prev_screen_field. The following example illustrates this usage.

%replace NULL_FIELD_ID by -32768

01 field_id comp~4.

move !last_screen_field () to field_id.

perform process-field until field_id equal NULL_FIELD_ID.

process—field.

/* Process this field. */

move !prev_screen_field (field_id) to field_id.

Chapter 15: Built-In Functions

e

Built-In Function Reference Guide

screen_field_position (row, column [,form_id [sport_ id]]

This function returns the field ID of the nearest input field that is located at
or before the position specified by row and column.

The value of row must be an integer indicating a line of the screen. The
value of column must be an integer indicating a column of the screen. The
value of form_id, if given, must be a valid form ID as returned by the
perform screen initialization statement. If form_id is omitted or is less
than 0, the ID of the most recently referenced form is used. The value of
port_id, if given, must be the integer ID of the port on which the form is to
be displayed. If port_id is omitted or is less than 0, the default is the ID of
the port most recently operated on by a screen or accept statement.

If the position specified by row and column is the start of an input field, the
function returns the field ID for that field. If row and column do not specify
the start of an input field, but an input field is located on that row to the
left of column, the function returns the field ID of that field. If no field meets
that criteria, then the function returns the field ID of the nearest input field
ON a previous row.

If no input field appears at or after the specified position, the function returns
the null field ID (-32768).

VOS COBOL Forms Management System (R035) 15-13

N

Chapter 16:

Statements

This chapter describes the statements used to manipulate screen forms. Table 16-1
lists these statements.

Table 16-1. The FMS Statements

Statement Purpose

accept Obsolete.

perform screen delete Deletes a field or display type from the display list.

perform screen discard Frees the storage space used by a form.

perform screen initialization | Sets up the display list for a form.

perform screen input Writes a form to the terminal and accepts input
from the user.

perform screen inquire Obtains information about the display list.

perform screen output Writes a form to the terminal; does not accept input
from the user.

perform screen save Stores a form to be retrieved later.

perform screen update Alters the display list; does not change the user’s
screen.

VOS COBOL Forms Management System (R035) 16-1

The accept Statement

The accept Statement

Purpose

The accept statement is obsolete. It displays or redisplays a screen form and accepts
input from the user.

Syntax

¢ i , into (field_values) . p ti
accep orm_name update (field values) [mth orm_option...]

[using field_description. ..] [giving dt_description. ..]

Operands

» form_option

The following form options are valid in the accept statement:

beep into portid
clear keyused putcursor
datastates maskkeys redisplay
displaytypes message status
form modes timeout
formid nextcursor update
functionkey options

getcursor origin

The form options are described in Chapter 5, “Form Options.”

p field description

The description of a field in the form. The following field options are valid
in the accept statement:

array initial redisplayfield
center left required

cycle length right
datastate mode update
displaytype picture validate

given position window

help range

For information on field descriptions, see Chapter 6, “Field Descriptions.”

16-2 Chapter 16: Statements

S —

The accept Statement

Explanation
When an accept statement is executed, the Forms Processor does the following:

o For the initial display of a form, the Forms Processor reads the form definition
as given by the predefined form (if any) and the options of the accept
statement itself. From this definition, it initializes the display list. The Forms
Processor then displays the form on the user’s terminal display.

For the redisplay of a form, the Forms Processor updates the existing display
list with information given in the accept statement. The Forms Processor then
updates the existing form display on the user’s terminal.

e The Forms Processor accepts forms input from the user.
e The Forms Processor handles user forms edit requests.
® The Forms Processor accepts and validates the data entered by the user.

® The Forms Processor converts each field input value to the data type of the
associated field input variable and assigns that value to the variable in the
program.

e The Forms Processor displays help messages, if requested by the user.

See Appendix A, “The accept Statement,” for more information on the accept
statement.

Example

The following is an example of an accept statement that references a predefined
form.

data division.
working-storage section.

01 fields.
copy ‘'name_address.incl.cobol'.

01 error_code comp=4.
01 key_code comp=4.
01 redisplay_switch comp—4.

procedure division.
accept 'name_address' into (fields)

with keyused (key_code) status (error_code)
redisplay (redisplay_switch).

VOS COBOL Forms Management System (R035) 16-3

The accept Statement

In the following example, field descriptions are used to modify the predefined
form. The form contains five predefined fields: name, street, city, state, and phone.

data division.
working-storage section.

copy 'name_address_ids.incl.cobol'.

01 fields.
copy 'name_address.incl.cobol’.

01 error_code comp=4.
01 key_code comp—4.
01 redisplay_switch comp—4.

procedure division.

accept 'name_address'

with keyused (key_code) status (error_code)
redisplay (redisplay_switch)

using
field (name_id) update (name of fields)
field (street_id) update (street of fields)
field (city_id) update (city of fields)
field (state_id) update (state of fields)
field (phone_id) update (phone of fields).

The following is an example of an accept statement with no predefined form.

Zreplace name_title_id by 1
4replace name_id by 2
sreplace street_title_id by 3
Zreplace street_id by 4
%replace city_title_id by 5
“replace city_id by 6
%replace state_title_id by 7
%replace state_id by 8
%#replace phone_title_id by 9
Zreplace phone_id by 10
%replace name_address_max_ids by 10
Z%replace UNDERLINED by 8
Zreplace LOW_INTENSITY by 16
%replace HIGH_INTENSITY by 32

(Continued on next page)

16-4 Chapter 16: Statements

/
—

The accept Statement

(Continued)
01 fields.
20 name pic x(32).
20 street pic x(32).
20 city pic x(32).
20 state pic x(32).
20 phone pic x(12).
01 error_code comp~4.
01 key_code comp—é4.
01 redisplay_switch comp—4.

procedure division.

accept
with keyused (key_code) status (error_code)
redisplay (redisplay_switch)
using
field (name_title_id) position (1,2) Llength (5)
mode (LOW_INTENSITY) 'NAME:',
field (name_id) position (1,13) length (32)
mode (HIGH_INTENSITY + UNDERLINED) update (name of fields),
field (street_title_id) position (2,2) length ()
mode (LOW_INTENSITY) 'STREET:',
field (street_id) position (2,13) length (32)
mode (HIGH_INTENSITY + UNDERLINED) update (street of fields),
field (city_title_id) position (3,2) length (5)
mode (LOW_INTENSITY) 'CITY:',
field (city_id) position (3,13) length (32)
mode (HIGH_INTENSITY + UNDERLINED) update (city of fields),
field (state_title_id) position (4,2) length (6)
mode (LOW_INTENSITY) 'STATE:',
field (state_id) position (4,13) length (32)
mode (HIGH_INTENSITY + UNDERLINED) update (state of fields),
field (phone_title_id) position (5,2) length (6)
mode (LOW_INTENSITY) 'PHONE:',
field (phone_id) position (5,13) length (12)
mode (HIGH_INTENSITY + UNDERLINED)
picture ('999-999-9999') update (phone of fields).

VOS COBOL Forms Management System (R035) 16-5

The perform screen delete Statement

The perform screen delete Statement

Purpose

The perform screen delete statement deletes fields and display types from the
display list.

Syntax

perform screen delete
[portid (port_id)] [formid (form_'id)] [status (status_code)]

field (field_id)
displaytype (display_type_id)

,field (field id
,displaytype (display._type_id) | """

You can give the portid, formid, and status options in any order.
Operands

» port_id
The ID of the port associated with the form display list from which fields and
display types are to be deleted. For more information, see the description of
the portid form option in Chapter 5, “Form Options.”

» form_id

The form ID of the form from which fields are to be deleted. A form ID
is obtained from the perform screen initialization statement. For more

information, see the description of the formid form option in Chapter 5,

“Form Options.”

P status_code

A returned status code. For more information, see the description of the
status form option in Chapter 5, “Form Options.”

p field_id
The integer field ID of a field to be removed from the display list.

16-6 Chapter 16: Statements

The perform screen delete Statement

ﬁ) » display_type_id

The integer display-type ID of a display type to be removed from the display
list.

Explanation

The perform screen delete statement removes the specified fields and display
types from the display list. The statement does not perform any I/O to the user’s
terminal. Therefore, field deletions are not reflected on the screen until the next
perform screen output or perform screen input statement is executed.

If you are deleting fields, the formid option specifies the form from which the fields
are to be deleted. If you omit the formid option, fields are deleted from the most
recently referenced form.

> You can delete a display type only if it is not referenced by any existing field in
any active form. You can delete predefined, temporary, and programmer-defined
global display types. You cannot delete reserved global display types (those with

display-type IDs in the range 0 to 10, inclusive).

VOS COBOL Forms Management System (R035) 16-7

The perform screen discard Statement

The perform screen discard Statement

Purpose
The perform screen discard statement discards a form that has previously been

saved with the perform screen save statement.
Syntax
perform screen discard [with [portid (port_id)]]
[form'id (form_id)]
[status (status_code)] .

You can give the portid, formid, and status options in any order.

Operands
» port_id

The ID of the port associated with the form to be discarded. For more
information, see the description of the portid form option in Chapter 5,
“Form Options.”

» form_id

The form ID of the form to be discarded. A form ID is obtained from the
perform screen initialization statement. For more information, see the
description of the formid form option in Chapter 5, “Form Options.”

p status_code

A returned status code. For more information, see the description of the
status form option in Chapter 5, “Form Options.”

Explanation

The perform screen discard statement decrements the reference count associated
with an active form. When the reference count reaches zero, the form is discarded.
This allows user heap space to be reused.

You can explicitly increment the reference count for a form by executing the
perform screen save statement.

For information on how reference counts are handled, see Chapter 12, “Form
Caching.”

16-8 Chapter 16: Statements

R

The perform screen initialization Statement

The perform screen initialization Statement

Purpose

The perform screen initializat

Syntax

perform screen initialization |

ion statement initializes a form display list.

form_option...
field_description
display_type_description

Operands

p form_option

,field_description
,display_type_description |

The following form options are valid in the perform screen initialization

statement:

datastates
displaytypes
form

formid

into

maskkeys portid
message putcursor
nextcursor status
options timeout
origin update

The form options are described in Chapter 5, “Form Options.”

p field description

The description of a field
statement, field descriptio
field options are valid in t

array
datastate
displaytype
help

in the form. In the perform screen initialization
ns can either define or modify fields. The following
he perform screen initialization statement:

initial unshift
length update
position window
shift

For information on field descriptions, see Chapter 6, “Field Descriptions.”

VOS COBOL Forms Management System (R035) 16-9

The perform screen initialization Statement

p display_type_description

The description of a display type. In the perform screen initialization
statement, display-type descriptions can define or modify display types. The
following display-type options are valid in the perform screen initialization

statement:
action range
charset validate
cycle visual
picture

For information on display-type descriptions, see Chapter 7, “Display Types.”

Explanation

The perform screen initialization statement sets up the internal display list for a
form and is always the first FMS statement to operate on a form. It does not perform
any I/O to the user’s terminal. You can subsequently use the perform screen input
or perform screen output statement to display the form.

The following form options provide input to the perform screen initialization
statement and affect the displayed form:

form

maskkeys (if the form is alterable by accept)
message (if the form is alterable by accept)
options

origin

portid

putcursor

timeout

update

The perform screen initialization statement returns information in the following
form options:

datastates
displaytypes
formid

into
nextcursor

You can use the returned values in subsequent perform screen output and
perform screen input statements.

To reference a predefined form, you must include the form option in the

perform screen initialization statement. If the application references more than
one form, include the formid option to obtain a unique identifier for each form.

16-10 Chapter 16: Statements

The perform screen initialization Statement

The into option allows you to obtain initial values for the variables that you will
use in subsequent perform screen output and perform screen input statements.

If you use the nextcursor form option, the value returned is the ID of the first
field in the form (that is, the default value for the putcursor form option).

The default value for the portid option is the user’s terminal port. If you omit
the origin option, the screen is cleared before initial display of the form. If you
reference a predefined form, the default values for the maskkeys, message, putcursor,
and timeout options are taken from the form definition.

VOS COBOL Forms Management System (R035) 16-11

The perform screen input Statement

The perform screen input Statement

Purpose
The perform screen input statement writes a form to the screen and waits for input
from the user.

Syntax

form_option- - -
perform screen input J field_description

display_type_description
L

,field description
i ,display_type_description o

Operands

» form_option

The following form options are valid in the perform screen input statement:

beep keyused portid
datastates maskkeys putcursor
displaytypes message status
formid nextcursor timeout
functionkey options update
getcursor

The form options are described in Chapter 5, “Form Options.”

p field description

The description of a field in the form. In the perform screen input statement,
field descriptions can either define or modify fields. The following field
options are valid in the perform screen input statement:

array initial unshift
datastate Length update
displaytype position window
help shift

For information on field descriptions, see Chapter 6, “Field Descriptions.”

16-12 Chapter 16: Statements

The perform screen input Statement

p display_type description

The description of a display type. In the perform screen input statement,
display-type descriptions can define or modify display types. The following
display-type options are valid in the perform screen input statement:

action range
charset validate
cycle visual
picture

For information on display-type descriptions, see Chapter 7, “Display Types.”

Explanation

The perform screen input statement writes the form to the user’s terminal and
waits for input from the user. The Forms Processor allows the user to move the
cursor among the input fields of the form and to change the input values.

The following form options are read by the Forms Processor and affect the display
of the form:

beep

datastates (if the COPY_DATASTATE options switch is true)
displaytypes

formid

maskkeys

message

options

portid

putcursor

timeout

update (unless the NO_COPY_UPDATE options switch is true)

Information is returned in the following form options:

datastates getcursor status
displaytypes keyused update
functionkey nextcursor

VOS COBOL Forms Management System (R035) 16-13

The perform screen input Statement

16-14

Control transfers to the statement following the perform screen input statement
when the user either submits or cancels the form, when the timeout period for the
form is exceeded, or when a trap occurs. You can determine what action caused
control transfer by examining the output of the status form option and either
the keyused or functionkey form option. The getcursor form option returns the
location of the cursor when the form was submitted or canceled. If a trap occurs,
the nextcursor option returns the location where the cursor would be if the trap
had not occurred.

The values of the input fields are returned in the update option, unless the user
cancels the form.

Chapter 16: Statements

The perform screen inquire Statement

The perform screen ingquire Statement

Purpose
The perform screen inquire statement returns information about the current display
list.
Syntax
i form_option...
perform screen inquire | field_description
display_type_description
,field_description
,display_type_description o
Operands

p form_option

The following form options are valid in the perform screen inquire statement:

datastates max_displaytype_id origin
displaytypes max_field_id portid
form name status
formid nextcursor timeout
maskkeys options

The form options are described in Chapter 5, “Form Options.”

p field description

The description of a field in the display list. Field descriptions in an
perform screen inquire statement return information about the field. The
following field options are valid in the perform screen inquire statement:

array jnitial shift
datastate length unshift
displaytype name update
help position window

3

For information on field descriptions, see Chapter 6, “Field Descriptions.’

VOS COBOL Forms Management System (R035) 16-15

The perform screen inquire Statement

p display_type_description

The description of a display type used in the display list. Display-type
descriptions in the perform screen inquire statement return information
about the display type. The following display-type options are valid in the
perform screen inquire statement:

action name validate
charset picture visual
cycle_array range

For information on display-type descriptions, see Chapter 7, “Display Types.”

Explanation
The perform screen inquire statement returns information about the display list.

The portid and formid options specify for which form information is to be returned.
The status option returns a status code for the statement. All other form options
return information about the display list.

With the exception of the shift and unshift options, all operands within field
options return information about the field in a perform screen inquire statement.

The shift and unshift options are input-only in all contexts.

In a perform screen inquire statement, all operands within display-type options
receive information about the display type.

16-16 Chapter 16: Statements

R

The perform screen output Statement

The perform screen output Statement

Purpose
The perform screen output statement writes the form to the user’s terminal, but
does not wait for input from the user.

Syntax

form_option. ..
perform screen output J field description
display_type_description

,field _description
,display_type_description T
Operands

» form_option

The following form options are valid in the perform screen output statement:

beep maskkeys putcursor
datastates message status
displaytypes options timeout
formid portid update

The form options are described in Chapter 5, “Form Options.”

p field description

The description of a field in the form. In the perform screen output statement,
field descriptions can either define or modify fields. The following field
options are valid in the perform screen output statement:

array initial unshift
datastate length update
displaytype position window
help shift

For information on field descriptions, see Chapter 6, “Field Descriptions.”

VOS COBOL Forms Management System (R035)

16-17

The perform screen output Statement

» display_type_description

The description of a display type. In the perform screen output statement,
display-type descriptions can define or modify display types. The following
display-type options are valid in the perform screen output statement:

action range
charset validate
cycle visual
picture

For information on display-type descriptions, see Chapter 7, “Display Types.”

Explanation

The perform screen output statement writes the form to the user’s terminal. It does
not wait for input from the user.

The following form options are read by the Forms Processor and affect the display
of the form:

beep

datastates (if the COPY_DATASTATE options switch is true)
displaytypes '

formid

maskkeys

message

options

portid

putcursor

timeout

update (unless the NO_COPY_UPDATE options switch is true)

Information is returned in the following form options:

datastates
displaytypes
status
update

The maskkeys, putcursor, and timeout options take effect on the next perform screen input
statement (unless they are overridden by options in that statement or an intervening
statement).

16-18 Chapter 16: Statements

The perform screen save Statement

The perform screen save Statement

Purpose
The perform screen save statement saves the display list of a form for later retrieval.

Syntax
perform screen save [portid (port_id]
[formid (form_id)]
[status (status_code)] .

You can give the portid, formid, and status options in any order.

Operands

» port_id

The ID of the port associated with the form. For more information, see the
description of the portid form option in Chapter 5, “Form Options.”

p form_id

The ID of the form to be saved. A form ID is obtained from the
perform screen initijalization statement. For more information, see the
description of the formid form option in Chapter 5, “Form Options.”

P status_code

A returned status code. For more information, see the description of the
status form option in Chapter 5, “Form Options.”

Explanation
The perform screen save statement increments the internal reference count for a
form. As long as this reference count is greater than 0, the form’s display list is
saved in the user heap.

You should save a form if you might be using the form again in the application but
currently want to use the screen for other forms. You can use the saved form later
without executing another perform screen initialization statement. This provides

for better performance because initializing a form is relatively inefficient.

VOS COBOL Forms Management System (R035) 16-19

The perform screen save Statement

16-20

You can explicitly decrement the internal reference count for a form by executing -~
the perform screen discard statement. L)

For information on how reference counts are handled, see Chapter 12, “Form
Caching.”

Sea—

Chapter 16: Statements

The perform screen update Statement

The perform screen update Statement

Purpose

The perform screen update statement changes one or more values or attributes
in a form’s display list. The changes appear on the screen when a subsequent
perform screen output or perform screen input statement is executed.

Syntax

perform screen update]

Operands

p form_option

form_option- ..
field_description

display_type_description

,field_description]

sdisplay_type_description

The following form options are valid in the perform screen update statement:

beep
datastates
displaytypes
formid

maskkeys putcursor
message status
options timeout
portid) update

The form options are described in Chapter 5, “Form Options.”

P field description

The description of a field in the form. A field description in the
perform screen update statement can define or modify a field. The following
field options are valid in the perform screen update statement:

array
datastate
displaytype
help

initial unshift
Llength update
position window
shift

For information on field descriptions, see Chapter 6, “Field Descriptions.”

VOS COBOL Forms Management System (R035) 16-21

The perform screen update Statement

» display_type_description

The description of a display type used in the form. A display-type option in
the perform screen update statement creates or modifies a display type. The
following display-type options are valid in the perform screen update statement:

action range
charset validate
cycle visual
picture

For information on display-type descriptions, see Chapter 7, “Display Types.”

Explanation

16-22

The perform screen update statement modifies the display list, but does not change
the screen appearance.

Use the perform screen update statement to make changes to the display list that
do not need to be immediately flushed to the terminal screen. For example, you
can use the perform screen update statement to add fields and display types to the
display list, or to modify existing fields and display types. If you want changes to
be reflected immediately, use the perform screen output or perform screen input
statement instead.

You cannot use the perform screen update statement to delete a field from the
display list. Use the perform screen delete statement for that purpose.

If you specify the displaytypes form option, the perform screen update statement
reads the table of display types and applies the values to the form’s display list.

Chapter 16: Statements

Appendix A:
The accept Statement

The accept statement is an obsolete FMS statement that is supported for existing
applications. New applications should use the screen statements.

The syntax of the accept statement is similar to the syntax of the screen statements.
The accept statement can include the form options, field descriptions, and
display-type descriptions. For information on the syntax of the accept statement,
see Chapter 16, “Statements.” For information about each option allowed on the
statement, see Chapter 5, “Form Options,” Chapter 6, “Field Descriptions,” and
Chapter 7, “Display Types.”

The old-style accept statement can include only form options and field descriptions.
In the old-style statement, those attributes included in display types and data states
are handled by field modes and several obsolete field options.

Several features are unique to the accept statement or are handled differently
for the accept statement than for screen statements. To program with the accept
statement, you must be familiar with the way the accept statement handles the
following:

e display lists

e initial display versus redisplay

o the update form option versus the into form option
o field modes

o field-value justification

e obsolete field options

e field output values.

These issues are discussed in the following sections.

VOS COBOL Forms Management System (R035)

The Display List

The Display List

In old-style applications, multiple accept statements cannot reference a single
display list. The Forms Processor assumes that each accept statement in a program
refers to a unique form.

If an old-style program contains two or more accept statements, the Forms Processor
creates a display list for each of them, even if they reference the same predefined
form. However, if the same accept statement is executed twice, it can use the same
display list each time by using the redisplay form option.

Because of this behavior, if an old-style program displays the same form twice
without intervening screen 1/O, it is most efficient to re-execute the same accept
statement for the second display. This allows the Forms Processor to use the same
display list. Old-style programs are often designed to loop back to the accept
statement for the redisplay. Other programs put the accept statement in a separate
procedure, and invoke that procedure whenever the form must be displayed.

Note: When an old-style form is canceled by the user, the display list is
discarded.

The following section explains how to handle initial displays and redisplays.

Initial Display and Redisplay

A2

The accept statement can perform two types of form displays: initial displays and
redisplays.

For an initial display, the Forms Processor does the following:

e discards an existing display list, if any

e creates and initializes the display list

e writes the entire form to the screen

e accepts input from the user and returns control to the program.

For a redisplay, the Forms Processor does the following:
e updates the existing display list
e writes any changes to the screen
e accepts input from the user and returns control to the program.
Note that a redisplay is more efficient than a second initial display in two ways. For

a redisplay, the display list does not have to be re-created, and the entire form
does not need to be rewritten to the screen.

Appendix A: The accept Statement

N

Initial Display and Redisplay

You can perform a redisplay only if the following conditions are true.

® The accept statement has already been executed at least once for initial
display.

e The form still appears on the user’s screen. That is, no other form has been
displayed in the same window, and no other input or output that would
disrupt the form has been performed.

® The form has not been canceled in its most recent display.

If you wish to display a form again after another form has been displayed in the
window, or after other I/O has interfered with the form display, you must perform
an initial display of the form:

The redisplay form option of the accept statement indicates whether the Forms
Processor is to perform an initial display of the form or a redisplay. If the value
of the operand of the redisplay option is 0, or if the option is omitted, an initial
display of the form is performed. If the operand value is non-zero, a redisplay is
performed.

The first time an accept statement is executed, an initial display of the form must
be performed, not a redisplay. If the statement includes the redisplay option, the
value of its operand must be 0.

An accept statement that performs an initial display is analogous (but not exactly
equivalent) to the combination of a perform screen initialization statement
followed by a perform screen input statement. An accept statement that performs
a redisplay is analogous to a subsequent perform screen input statement.

The following fragment illustrates one method for constructing a loop that displays
and redisplays a form.

move 0 to redisplay_switch.
perform Loop until code not equal O.

Loop.
accept form (employee_info) into (employee_fields)
redisplay (redisplay_switch) status (code).

move 1 to redisplay_switch.

You can also put the accept statement into a procedure that is called from various
points in the program. The following fragment is an example of such a procedure.

VOS COBOL Forms Management System (R035) A-3

Initial Display and Redisplay

identification division.
program-id. display_form.

data division.
linkage section.

01 p_redisplay_switch comp-4.
01 p_code comp-4.

procedure division using p_redisplay_switch, p_code.

accept form (employee_info) into (employee_fields)
redisplay (p_redisplay_switch) status (p_code).

exit program.

Note that you can pass a non-zero value to p_redisplay_switch only if the conditions
necessary for redisplay are met.

The field modes and the into and update form options are also treated differently
on redisplay than on initial display. These differences are discussed in the following
two sections.

The into and update Form Options

A4

An accept statement can include either the into form option or the update form
option to return field values. The distinction between the options is the manner in
which field output values are determined on initial display.

Generally, if the accept statement includes the into form option, any -initial field
values specified in the Forms Editor are used as field output values on initial
display. If the accept statement includes the update option, initial values specified
in the Forms Editor are ignored.

On redisplay, the current values of the field-value variables specified in the into
or update option are displayed in the fields, unless you use the redisplayfield
field option. For information on the redisptayfield option, see Chapter 6, “Field
Descriptions.”

For the complete sets of rules that determine field output values, see the section
“Field Output Values” later in this appendix.

If you use either the into or update form option in an accept statement, most
field descriptions are invalid in that statement. The only field descriptions that are
allowed are those of the following format:

field (field_id) mode (mode_expression)

Appendix A: The accept Statement

The into and update Form Options

The mode field option is discussed in the following section of this appendix and in
Chapter 6, “Field Descriptions.”

For further information on the into and update form options, see Chapter 5, “Form
Options.”

Field Modes

The old-style accept statement does not use display types or data states. Instead,
most of the attributes now specified by display-type visual and action switches and
some of the attributes now specified by data-state switches are specified by a set
of switches called the field modes. (For a complete mapping of old features to new
features, see Appendix C, “Converting Old-Style Applications.”)

A field’s modes are stored as a two-byte integer. A series of switches are encoded
within this integer as shown in Table A-1.

Table A-1. The Mode Switches
Bit Mode Switch

1 BLANKED
2 BLINKING
4 INVERSE
8 UNDERLINED
16 LOW_INTENSITY
32 HIGH_INTENSITY
256 INPUT_DISABLED
512 NO_OVERLAY
1024 AUTO_TAB
(or AUTO_TAB_TO_NEXT_FIELD)
2048 IMMEDIATE_RETURN
(or TRAP_ON_FIELD_EXIT)
4096 NOT_EDITABLE
(or DISAPPEARING_DEFAULT)
8192 TRAP
(or TRAP_ON_FIELD_ENTRY)

All unused bits are reserved and must be set to 0.

The six low-order bits of the mode value have the same meanings as the six low-order
bits of the display-type visual switches. The AUTO_TAB, IMMEDIATE_RETURN, and TRAP
mode switches correspond to the AUTO_TAB_TO_NEXT_FIELD, TRAP_ON_FIELD_EXIT, and
TRAP_ON_FIELD_ENTRY display-type action switches, respectively. The display-type visual
and action switches are described in Chapter 7, “Display Types.” The INPUT_DISABLED
mode switch is the inverse of the INPUT_FIELD data-state switch. The NOT_EDITABLE

VOS COBOL Forms Management System (R035) A5

Field Modes

mode switch has the same meaning as the DISAPPEARING_DEFAULT data-state switch.
The data-state switches are described in Chapter 8, “Data States.”

The meaning of the NO_OVERLAY mode switch is similar to the meaning of the
FORCE_INSERT_MODE display-type action switch. With the old-style accept statement,
the field justification determines whether a field is initially in insert mode or overlay
mode. If the field is left-justified, the initial editing mode is insert. If the field is
right-justified, the initial editing mode is overlay. The NO_OVERLAY mode switch is
meaningful only for right-justified fields. It changes the initial editing mode to
insert. The user can always change the initial editing mode of a field with the
key.

Initializing Field Modes

The F form of the old-style Forms Editor includes options that specify the
modes for each predefined field. For information on the old-style Forms Editor,
see Appendix B, “The edit_form Command.”

If you create a field dynamically in an accept statement, you can specify the modes
for that field in a mode field option within the field description. If you omit the mode
field option from the field description, the default mode values are used: 0 for an
input field, and 16 (low intensity) for an output field.

Note that if you want to dynamically create an input field with input initially
disabled, you must explicitly specify the modes for the field with the INPUT_DISABLED
switch set to true.

Modifying Field Modes

A-6

The mode field option specifies the modes for a specific field; the modes form option
specifies the modes for each field in a form. The operand for the mode field option
is a two-byte integer. The operand for the modes form option is a table of two-byte
integers. This table is called the modes table.

On initial display, the modes form option is output-only; it returns the modes of
each field in the form. On redisplay, the modes option is used for both input and
output. This means that you can change the modes of a field on redisplay by
altering the corresponding value in the modes table.

The mode field option is used only as input and only on initial display. This allows
you to change the modes of a predefined field on initial display. The mode value
you specify is applied to the initial display and is returned into the modes table
given in the modes form option. On redisplay, the mode field option is ignored, and
the field modes are read from the modes form option.

The mode field option is the only field option allowed in the accept statement when
that statement includes either the update or into form option.

Appendix A: The accept Statement

)

S’

Modes Example

Field Modes

The following example illustrates the handling of field modes within a program.

identification division.
program-id. modes_values.

* The program displays a form called name_address. The form's
* fields are "name", "street", "city"”, "state", and "phone".

data division.
working-storage section.

Zreplace
Zreplace
Zreplace
%replace
%replace
Z#replace
%replace
%replace
Zreplace
Zreplace
%replace
%replace
%replace
%replace
Zreplace

BLANKED
BLINKING

-INVERSE

UNDERLINED
LOW_INTENSITY
HIGH_INTENSITY
INPUT_DISABLED
NO_OVERLAY
AUTO_TAB
IMMEDIATE_RETURN
NOT_EDITABLE
TRAP

CANCEL

FALSE

TRUE

by 1

by 2
by 4

by 8

by 16
by 32
by 256
by 512
by 1024
by 2048
by 4096
by 8192
by -1
by O

by 1

copy 'name_address_ids.incl.cobol'.

01 fields.

copy 'name_address.incl.cobol'.

01 redisplay_switch
01 status_code
01 key_code
01 modes_table.
02 mode_info

comp—4.
comp=4.
comp~é.

comp—4

occurs NAME_ADDRESS_MAX_IDS times.

(Continued on next page)

VOS COBOL Forms Management System (R035) A-7

Field Modes

(Continued)

procedure division.
* Prepare for initial form display.
move FALSE to redisplay_switch.
* Display and redisplay the form until user cancels.

perform display-form until ((key_code equal CANCEL)
or (status_code not equal O)).

if status_code not equal O then
go to fatal-error.

display-form.

accept form (name_address) into (fields) keyused (key_code)
status (status_code) redisplay (redisplay_switch)
modes (modes_table),
field (PHONE_ID) mode (INPUT_DISABLED).

* Prepare for subsequent form displays. Subsequent
* displays are redisplays with the phone field enabled.

move TRUE to redisplay_switch.
move HIGH_INTENSITY + UNDERLINED to mode_info(PHONE_ID).
fatal-error.

* Handle error.

exit program.

For further information on the modes form option, see Chapter 5, “Form Options.”
For further information on the mode field option, see Chapter 6, “Field Descriptions.”

A-8 Appendix A: The accept Statement

Field Modes

Note: On initial display, all elements of an array field have the same mode
value. You can specify this value in the Forms Editor or in a mode field
option. However, the modes table contains a value for each element in
the array field. You can change the mode value of a specific element
of an array field on redisplay by changing the corresponding modes
table value.

Field-Value Justification

In old-style accept statements, the left, right, and center field options indicate the
justification of a field. Support of these options is device-dependent. Justification
options that are not supported are ignored.

The Left field option indicates that the field is to be left-justified. Specifying this
option for a field is analogous to setting the LEFT_JUSTIFY_FIELD_DATA display-type
visual switch to true for the field.

The right field option indicates that the field is to be right-justified. Specifying this
option for a field is analogous to setting the RIGHT_JUSTIFY_FIELD_DATA display-type
visual switch to true for the field.

The center field option is not always analogous to the CENTER_FIELD_DATA display-type
visual switch. For fields defined as input or input (initially disabled), the center
field option does not center output values in the field. Rather, it affects the way
the Forms Processor treats leading spaces in field values. Normally, any leading
space characters are trimmed from an output value before it is displayed in the
field, and any leading space characters are trimmed from a field value before it is
validated and returned to the program. If the center field option is specified for
the field, leading spaces are not trimmed on output or input. The untrimmed value
is left-justified in the field. This allows the program to center an output value in a
field by adding spaces to the left of a value before displaying the form.

For output-only fields, the center field option is analogous to the CENTER_FIELD_DATA
display-type visual switch.

Obsolete Field Options

In addition to the mode field option and the justification options discussed earlier
in this appendix, the following field options are unique to the old-style accept
statement.

® cycle (value [,value] -+-) (See Table A-1)

® given (values_count)
® picture (field picture)
® range (low_bound, high_bound)

VOS COBOL Forms Management System (R035) A9

Obsolete Field Options

® redisplayfield (redisplay_field_switch)
® required
e validate (validation_entry)

Of these, the cycle, picture, range, and validate options have been replaced by
like-named display-type options. The given and required options have been replaced
by the FIELD_VALUE_GIVEN and REQUIRED_FIELD data-state switches.

The redisplayfield option indicates what value to display in the field when the form
is redisplayed. If the value of the operand of the redisplayfield option is false,
the field’s initial output value is displayed. If the operand of the redisplayfield
option is true, or if the option is not given, the current value of the field-value
variable is displayed in the field.

For more information on field options, see Chapter 6, “Field Descriptions.”

Field Output Values

A-10

The accept statement has three general formats, depending on its use. The formats
are as follows:

e An accept statement that references a predefined form and includes the
into or update form option. Such an accept statement cannot include field
descriptions except those of the following format:

field (field_id) mode (mode_expression)

e An accept statement that references a predefined form, but does not include
the into or update form option. Such an accept statement must include a field
description with the update field option for each input field.

e An accept statement that does not reference a predefined form. Such an
accept statement must include a field description for each field and cannot
include an into or update form option.

For examples of these formats, see the description of the accept statement in
Chapter 16, “Statements.”

The rules the Forms Processor uses to determine what value to display in each
field differ for the three types of accept statement.

Note: In all cases, if the initial output value derived for a cycle field is not

in the cycle list, then the first value in the cycle list is used instead,
provided it is not the null field value.

Appendix A: The accept Statement

Field Output Values

Predefined Form with the into or update Form Option

This subsection describes the rules that determine the field output value when
the accept statement references a predefined form and includes the into or update
form option.

Initial Display. On the initial display of a form, the following rules apply if the
accept statement includes the into form option.

1. If an initial value for the field is specified in the Forms Editor, then that
initial value is displayed in the field.

2. If Rule 1 does not apply and the field is output-only and the form is alterable
by accept, then the value of the field-value variable given in the into option
is displayed in the field.

3. If Rules 1 and 2 do not apply, then the field’s null value is displayed.

If the accept statement includes the update form option rather than the into form
option, then the following rules apply.

1. If the field is output-only and an initial value for the field is specified in the
Forms Editor, then that initial value is displayed in the field.

2. If Rule 1 does not apply and the field is output-only and the form is not
alterable by accept, then the field’s null value is displayed.

3. If Rules 1 and 2 do not apply, then the value of the field-value variable
specified in the update option is displayed.

Redisplay. On the redisplay of a form, whether the into or update form option is
" used, then the value of the field-value variable specified in that option is displayed
in the field.

Predefined Form without the into or update Form Option

This subsection describes the rules that determine the field output value when the
accept statement references a predefined form but does not include the into or
update form option.

VOS COBOL Forms Management System (R035) A-11

Field Output Values

Initial Display. On initial display of a form, the following rules determine the
output value of a field if the form is alterable by accept.

1.

If the field description includes the initial field option, then the value
specified in that option is displayed in the field.

If Rule 1 does not apply and an initial value is specified in the Forms Editor,
then that initial value is displayed in the form.

If Rules 1 and 2 do not apply, then the value of the field-value variable
specified in the update field option is displayed in the field.

If the form is not alterable by accept, then the following rules apply.

1.

If an initial value for the field is specified in the Forms Editor, then that
initial value is displayed in the field.

If Rule 1 does not apply and the field is output-only, then the null field value
is displayed.

If Rules 1 and 2 do not apply and the field description does not include the
initial field option, then the value of the field-value variable specified in the
update field option is displayed in the field.

If Rules 1 through 3 do not apply, then the value specified in the initial
field option is displayed in the field.

Redisplay. On the redisplay of a form, the following rules determine the output
value for each field.

1

If the field description includes the update field option, then the value of the
field-value variable specified in that option is displayed in the field.

If Rule 1 does not apply, then the value specified in the initial field option
is displayed in the field.

No Predefined Form »
This subsection describes the rules that determine the field output value when the
accept statement does not reference a predefined form.

A-12 Appendix A: The accept Statement

-

Field Output Values

Initial Display. On the initial display of a form, the following rules determine
the field output value.

1. If the field description includes the initial field option, then the value
specified in that option is displayed in the field.

2. If Rule 1 does not apply, then the value specified in the update field option
is displayed in the field.

Redisplay. On the redisplay of a form, the following rules determine the field
output value.

1. If the field description includes the update field option, then the value specified
in that option is displayed in the field.

2. If Rule 1 does not apply, then the value specified in the initial field option
is displayed in the field.

VOS COBOL Forms Management System (R035) A-13

Appendix B:
The edit_form Command

This appendix describes the old-style Forms Editor and the command used to
invoke it, edit_form. The old-style Forms Editor defines forms that are compatible
with the old-style accept statement.

For information on updating old-style forms to be compatible with the new forms
software, see Appendix C, “Converting Old-Style Applications.”

Within the old Forms Editor, most of the editing and menu requests are the
same as for the new Forms Editor. However, there are some differences. The
Insert Literal request, L, is not available in the old Forms Editor. The
Add/modify field request, F, and the Set/modify form options request, S,
are substantially different in the old Forms Editor. These requests are described
later in this appendix.

VOS COBOL Forms Management System (R035)

B-1

The edit_form Command

The edit_form Command

Purpose
The edit_form command invokes the old-style Forms Editor.

CRT Form

B-2

(/’;nput‘path:

form_path:
~into:
~orefix:
~Library:
~edits
~backup:
~force_write:
~basic:
~cobol:
~fortran:
~pascal:
~pl:

-L2

no
Q}mduce*symtab: yes)

edit_form \

no
no
accept_field_definitions
yes

yes

no

no

no

no

no

no

Appendix B: The edit_form Command

The edit_form Command

Lineal Form

edit_form input_path
[form_path]

[—into]

[-prefix]

[—Library field_definitions_directory_name]
[—no_edit]

[-—no_backup]

[-force_write]

[-basi c]
[-coboL]

[-for‘tran]

[-pascaL]
1]
[-]

[-no_produce_symtab]

Arguments

» input_path Required

The path name of an input form definition file. If the file name you specify
does not have the suffix .form, the command adds that suffix. If the file does
not exist, the Forms Editor behaves as if the file exists but is empty.

p form_path

An option specifying the file to which the edited form definition is to be
written. If form_path does not have the suffix .form, the command adds that
suffix. If you do not specify a value for form_path, it defaults to a file in the
current directory with the same name as the file specified in the input_path
option. If the specified file does not exist when you write out the form, the
Forms Editor creates it.

The form being edited is given the simple name of the output form definition
file without the suffix .form. A form name should not exceed 15 characters;
otherwise, the names of some automatically generated include files might
exceed 32 characters and be truncated.

Note: Do not give a form the same name as the program that displays
it — both a form and its related program require uniquely named
object modules.

VOS COBOL Forms Management System (R0O35) B-3

The edit_form Command

» -into CYCLE

An option to create a field-values file for each programming language specified
by the language options. The Forms Editor names the field-values file (an
include file) form_name.incl.language and puts the file in the current directory.
You can override this argument with the PRODUCE_INTO option of the Forms
Editor S request.

» -prefix

An option to add a prefix to each field identifier name in any field-IDs file
that the Forms Editor generates. The default prefix is the name of the form
followed by an underline. You can override this argument with the PREFIX
option of the Forms Editor S request.

If you choose the -prefix option, the Forms Editor also adds the prefix to

each variable name in any VOS BASIC or VOS FORTRAN field-values file
that it generates. The field-values files for other languages are not affected
by this argument.

P -library field definitions_directory_name

An option to specify a directory for storing and retrieving field definition files.
The Forms Editor searches the directory for field definition files when you use
the R request and writes field definition files to the directory when you
use the E request. If you do not specify this option, the default value is
a subdirectory of your current directory named accept_field_definitions. If
the directory you specify, either directly or by default, does not exist when
you issue a E request, the Forms Editor creates the directory.

p -no_edit CYCLE

An option to create new language include files and a new object module
from an existing form definition file without editing the form. If you specify
the ~force_write option with this option, the Forms Editor also writes a new
form definition file. By choosing the -no_edit option, you can run the Forms
Editor in either a batch process or a started process. If you do not use the
-no_edit argument, the Forms Editor reads the form definition file, displays
a representation of the form, and lets you edit it.

» -no_backup

An option to specify that no backup file is created for the input_path file. If
you do not use the -no_backup option, and the input_path and form_path files
are in the same directory, then the Forms Editor renames the old file and
gives it the name of the input_path file (including its suffix . form), with the
suffix .backup added. The backup file is created each time you write out the
form with the W request; it replaces a previous backup file of the same
name, if one exists.

B-4 Appendix B: The edit_form Command

The edit_form Command

j p- -force_urite CYCL

An option to write a new form definition file (form_name.form) when you
invoke edit_form with the -no_edit option. If you do not use the ~force_write
option, -no_edit produces the object module and specified include files only.
Use -force_write with —no_edit to generate a .backup form file or to rename
your form without re-editing it.

Note: Do not use the command rename to rename a form; object and include
files must be renamed, and prefixes in include files need to be reassigned.

» -basic CYCLE

An option to create VOS BASIC versions of the field-IDs file and the

field-values file. If you do not use the -basic option, the Forms Editor does

not create VOS BASIC versions of the files. You can override this argument
) with the BASIC option of the Forms Editor S request.

p -cobol

An option to create VOS COBOL versions of the field-IDs file and the
field-values file. If you do not use the -cobol option, the Forms Editor does
not create VOS COBOL versions of the files. You can override this argument
with the coBoL option of the Forms Editor S request.

p -fortran CYCLE

An option to create VOS FORTRAN versions of the field-IDs file and the
field-values file. If you do not use the -fortran option, the Forms Editor
does not create VOS FORTRAN versions of the files. You can override this
argument with the FORTRAN option of the Forms Editor S request.

» -pascal GYCL

An option to create VOS Pascal versions of the field-IDs file and the
field-values file. If you do not use the -pascal option, the Forms Editor does
not create VOS Pascal versions of the files. You can override this argument
with the PASCAL option of the Forms Editor S request.

» -pl1

An option to create VOS PL/I versions of the field-IDs file and the field-values
file. If you do not use the -pl1 option, the Forms Editor does not create
VOS PL/I versions of the files. You can override this argument with the pL/1
option of the Forms Editor S request.

VOS COBOL Forms Management System (R035) B-5

The edit_form Command

» -c CYCLE

An option to create VOS C versions of the field-IDs file and the field-values
file. If you do not use the -c option, the Forms Editor does not create VOS
C versions of the files. You can override this argument with the ¢ option of
the Forms Editor S request.

» -no_produce_symtab CYCLE

An option to produce a form object module without a run-time symbol table.
Because the forms run-time symbol table is small, use the -no_produce_symtab
option only if there is a shortage of virtual memory.

Explanation

An edit_form command invokes the Forms Editor. After you issue the edit_form
command, your process is at edit request level. At edit request level, you can enter
text or you can make a number of edit requests. Most of these requests are the same
as the requests for the new Forms Editor, which are described in Chapter 4, “The
Forms Editor.” Those requests that are different are discussed in this appendix.

If you give the path name of an existing input form definition file when you issue the
edit_form command, the Forms Editor reads the file and displays a representation
of the defined form.

The Forms Editor trims trailing spaces from all the values you enter into the editor’s
request forms and from all lines you enter into the form you are constructing. It
also deletes all empty lines from the bottom of the form. When you write the
form definition file and the other files described previously, the files reflect these
deletions.

If you choose the -into option when you invoke the Forms Editor, but do not
specify any of the languages at that time, you can specify one or more languages
using the Forms Editor requests. If you do not specify any of the language options
in the command line or in the Forms Editor, the -into option is ignored.

If you choose the -into option, the -prefix option, or any of the language options
(-basic, =cobol, ~fortran, ~pascal, -pl1, or -¢) for a particular form, these options

are saved in the forms definition file, and you do not have to respecify them in the
F form or in future invocations of the Forms Editor on that form.

Access Requirements

You need read access to a form definition file to read it; you need write access to
a form definition file, include file, or object module to write it.

B-6 Appendix B: The edit_form Command

The Add/modify field Request

In the new Forms Editor, the form for the Add/modify field (MWD F) request
specifies initial values for field options, data-state switches, and display-type options,
as well as the data types of field-value variables. In the old Forms Editor, the

F form specifies initial values for field options and mode switches, and the
data types of field-value variables.

When you invoke the Add/modify field request in the old Forms Editor, the following
form appears on the screen.

/ ——Field Options—- \

FIELD TYPE input
INITIAL
PICTURE
VALIDATE
REQUIRED no EDITABLE vyes TRAP no
VALUE RESTRICTION none BASIC $=
JUSTIFICATION COBOL display
AUTO TAR no FORTRAN character*
IMMEDIATE RETURN no PASCAL char array
FIELD EDIT MODE overlay PL/1 char / pic
LENGTH ¢ char []
POSITION :__ r____ field-values sequence
ARRAY LAYOUT , ROW SPACING » COLUMN SPACING 1
HELP - T I -
INTENSITY: high underline not inverse
\ non blinking not blanked j

Unlike the F form in the new Forms Editor, the F form in the old
Forms Editor is not divided into field options and display-type options. However,
most of the fields in the form are the same for both Forms Editors, although the
arrangement of fields is different.

VOS COBOL Forms Management System (R035) B-7

The Add/modify field Request

B-8

The following are the only fields in the old F form of the old Forms Editor
that differ from fields in the form for the new Forms Editor.

FIELD TYPE
INITIAL
EDITABLE

TRAP
JUSTIFICATION
IMMEDIATE RETURN
FIELD EDIT MODE

These fields are discussed in this section. For information on the other fields in

the F form, see Chapter 4, “The Forms Editor.”

p FIELD TYPE jnput, input (initially disabled), output only

This field is the same as the FIELD TYPE field in the F form of the
new Forms Editor, except that the name of the second cycle value is
input (initially disabled) rather than output. If you designate a field as
input (initially disabled), the field is created as an output field, but you
can dynamically change it to an input field by setting the INPUT_DISABLED
mode switch to false.

For information on field modes, see Appendix A, “The accept Statement.”

p INITIAL

This field is the same as the INITIAL field in the F form of the new
Forms Editor, except that it cannot be used for output-only fields and behaves
differently for cycle fields. If you specify a value for the INITIAL field before
defining the cycle list for the field, the initial value becomes the first value in
the cycle list. If you specify a value for the INITIAL field after defining the
cycle list, then if the INITIAL value is in the cycle list, that value is moved to
the beginning of the list. If you specify an INITIAL value that is not in the
cycle list, that value is rejected.

p EDITABLE yes, no

This field has been replaced by the DISAPPEARING field in the F form
of the new Forms Editor. If you set EDITABLE to no, the NOT_EDITABLE mode
switch is initially true. This means that the output value disappears when the
user types a character in the first position of the field. If you set EDITABLE to
yes (the default), the No_EDITABLE mode switch is initially false. This means
that the output value does not disappear when the user types a character in
the first position of the field.

This feature is ignored by some device drivers.

For information on field modes, see Appendix A, “The accept Statement.”

Appendix B: The edit_form Command

D)

N
—

p TRAP

The Add/modify field Request

CYCLE) no, yes

This field has been replaced by the TRAP ON FIELD ENTRY field in the F
form of the new Forms Editor. If you set TRAP to yes for a field, the TRAP
mode bit for the field is initially true. This means that control returns to the
program as soon as the user positions the cursor to that field. If you set TRAP
to no (the default), the TRAP mode bit for the field is initially false.

This feature is ignored by some device drivers.

For information on field modes, see Appendix A, “The accept Statement.”

p JUSTIFICATION null, Lleft, right, center

This field appears the same as the JUSTIFICATION field in the new Forms
Editor. However, in the old Forms Editor, this field is highly device dependent.
This field might be supported only for alphanumeric fields with no field
picture. Some device drivers always right justify numeric fields and left justify
alphanumeric fields with field pictures.

See also the discussion of field justification in Appendix A, “The accept
Statement.” In particular, note that the meaning of center justification differs
for old-style applications.

» IMMEDIATE RETURN (CYCLE) no, yes

This field has been replaced by the TRAP ON FIELD EXIT field in the F
form of the new Forms Editor. If you set IMMEDIATE RETURN to yes, then the
IMMEDIATE_RETURN mode switch for the field is initially true. This means that
control returns to the application when the user moves the cursor out of the
field. If you set IMMEDIATE RETURN to no (the default), then the IMMEDIATE_RETURN
mode switch for the field is initially false.

This feature is ignored by some device drivers.

For information on field modes, see Appendix A, “The accept Statement.”

» FIELD EDIT MODE (CYCLE) overlay, insert

This field has been replaced by the FORCE INSERT MODE and FORCE OVERLAY MODE
fields in the new Forms Editor. If you set FIELD EDIT MODE to insert, the
NO_OVERLAY mode switch for the field is initially true. If you set FIELD EDIT MODE
to overlay (the default), the NO_OVERLAY mode switch for the field is initially
false.

This feature is ignored by some device drivers.

For information on field modes, see Appendix A, “The accept Statement.”

VOS COBOL Forms Management System (R035) B-9

The Set/modify form options Request

The Set/modify form options Request

B-10

In the old Forms Editor, when you issue the Set/modify form options request,
s, the following form appears on the screen.

(-- Form Options =~ for form_name
MASKKEYS no CURRENCY SYMBOL $
INITIAL DISPLAY clear decimal is period -
ALTERABLE BY ACCEPT yes BANK TELLER DECIMAL no
PRODUCE INTO yes
PREFIX
MESSAGE
BEEP no
BASIC no
COBOL no
FORTRAN no
PASCAL no
PL/T no
¢ no
BACKGROUND MODE
INTENSITY: low no underline not inverse
non blinking not blanked
REQ FIELD MODE TOGGLES
INTENSITY TOGGLE: same intensity same underlining toggle inverse

same blinking same blanking

J

The s form in the new Forms Editor contains all the fields that are in the
old version, plus some new ones. The only field in the old s form that is not
identical to a field in the new version is the BANK TELLER DECIMAL field.

In the new Forms Editor, you can choose whether to use the bank teller decimal
action for each field; the BANK TELLER DECIMAL field in the s form of the new
Forms Editor indicates only the default choice. In the old Forms Editor, you must
choose whether to use the bank teller decimal action for all fields with numeric
pictures or for none; the BANK TELLER DECIMAL field of the s form specifies the
choice for all numeric fields. For information on the bank teller decimal action, see
the description of the BANK_TELLER_DECIMAL display-type action switch in Chapter 7,
“Display Types.”

For information on other s fields, see Chapter 4, “The Forms Editor.”

Appendix B: The edit_form Command

The Insert literal Request

The Insert literal Request
The old Forms Editor does not support the Insert Literal request, L. You

. cannot insert characters from supplemental character sets into the background text
of old-style forms, unless the terminal provides a means of entering them directly.

VOS COBOL Forms Management System (R035) B-11

Appendix C:
Converting Old-Style Applications

This appendix describes how to update an old-style application to use the new
FMS features. Old-style applications can still be run, but converting to the new
features provides increased functionality and, in some cases, better performance.

Updating an application involves converting predefined forms with the new Forms
Editor and updating the application program to use screen statements instead of
the accept statement. After the program is compiled, the new application must be
bound with the new FMS run-time routines.

Converting Predefined Forms

Forms produced by the old Forms Editor are compatible only with the old FMS
run-time routines. Forms produced by the new Forms Editor are compatible only
with the new FMS run-time routines.

To convert an old-style form to a new-style form, edit it with the new Forms
Editor. The form definition file produced by the new Forms Editor is a new-style
file. All old-style form options and field options are automatically converted to the
corresponding new-style options. For information on these options, see Appendix B,
“The edit_form Command.”

You cannot edit a new-style form definition file with the old Forms Editor. However,
you can use a single old-style form definition file to create both old-style and
new-style form object modules. If you use the -no_edit option of the icss_edit_form
command, the Forms Editor creates a new-style form object module but does not
change the form definition file. Therefore, you can subsequently use the edit_form
command to create an old-style form object module from the same form definition.

VOS COBOL Forms Management System (R035) C-1

Updating the Application Program

Updating the Application Program

In general, you can replace an accept statement in a program with the combination
of an perform screen initialization statement and either an perform screen input
or perform screen output statement. If the program executes the accept statement
several times to redisplay the form, you can usually structure the program so

that the perform screen initialization statement is executed only once and the
perform screen input statement is executed repeatedly. For example, in the following
fragment from an old-style program, the loop displays and redisplays a form.

move O to code.
move O to redisplay_switch.

perform old-loop until code not equal O.

old-loop.
accept form (employee_info) into (employee_fields)
redisplay (redisplay_switch) status (code).

move 1 to redisplay_switch.
To update the program, you can rewrite this loop as follows:

perform screen initialization form (employee_info) formid (emp_info_id)
into (employee_fields) status (error_code)..

if error_code not equal O then
go to fatal—-error.

perform new-Lloop until error_code not equal 0.
new-Loop.

perform screen input formid (emp_info_id) update (employee_fields)
status (error_code).

fatal-error.

C-2 Appendix C: Converting Old-Style Applications

Updating the Application Program

)

The into and update Options

In the preceding example, note that the into option in the accept statement is
replaced by an into option in the perform screen initialization statement (to obtain
initial field values) and an update option in the perform screen input statement (to
set and receive field values on each display). If the accept statement uses the update
option instead, you should omit the into option in the perform screen initialization
statement, but still use the update option in the perform screen input statement.

The form and formid Options

The form form option is used in an accept statement to reference a predefined
form. To reference a predefined form with the screen statements, include the form
form option in the perform screen initialization statement only.

) If you also include a formid form option in the perform screen initialization
statement, a unique integer ID for the form is returned in that option. The
formid option is output-only in the perform screen initialization statement, but is
input-only in all other screen statements. In subsequent screen statements, you can
use the formid option with the value returned in the perform screen initialization
statement to reference the same form.

For further information on the form and formid options, see Chapter 5, “Form
> Options.”

VOS COBOL Forms Management System (R035) C3

Updating the Application Program

Obsolete Options

C-4

Certain accept statement options have become obsolete with the addition of new
options. Table C-1 lists the obsolete options and indicates which new option
replaces each.

Table C-1. Replacements for Old Form and Field Options

N

Old Option New Option
Form Options
clear f
modes displaytypes and datastates form options
redisplay i
Field Options
center CENTER_FIELD_DATA and NOTRIM_FIELD_DATA_SPACES
display-type action switches
cycle cycle display-type option
given FIELD_VALUE_GIVEN data-state switch
Lleft LEFT_JUSTIFY_FIELD_DATA display-type action switch
mode displaytype and datastate field options
picture picture display-type option
range range display-type option
redisplayfield i
required REQUIRED_FIELD data-state switch
right RIGHT_JUSTIFY_FIELD_DATA display-type option
validate validate display-type option

T The clear and redisplay form options, and the redisplayfield field option
have no direct equivalent in the new Forms Editor.

For information on form options, see Chapter 5, “Form Options.” For information on
field options, see Chapter 6, “Field Descriptions.” For information on display-type
options, see Chapter 7, “Display Types.”

The obsolete options are still supported for the old-style accept statement, but if
you are updating an application to use the screen statements, you should replace
the old options with the new options.

The new FMS run-time software has no equivalent for the clear, redisplay and
redisplayfield options. This does not mean that the functionality is not supported.
A window is always cleared before a form is displayed in it, unless you specify in
the Forms Editor or with the origin form option that the form is to scroll. With
the new run-time software, the Forms Processor determines whether a particular
form display is an initial display or a redisplay.

Appendix C: Converting Old-Style Applications

Updating the Application Program

Note that the old field modes have been replaced by both display types and data
states. Some of the old mode switches have been replaced by data-state switches,
while others have been replaced by display-type action or visual switches. Table C-2
lists the mode switches and indicates which new switch replaces each.

Table C-2. Replacements for Mode Switches

Mode Switch New Switch

BLANKED BLANKED_VISUAL display-type visual switch

BLINKING BLINKING_VISUAL display-type visual switch

INVERSE INVERSE_VISUAL display-type visual switch

UNDERLINED UNDERLINED_VISUAL display-type visual switch

LOW_INTENSITY LOW_INTENSITY_VISUAL display-type visual switch

HIGH_INTENSITY HIGH_INTENSITY_VISUAL display-type visual switch

INPUT_DISABLED INPUT_FIELD data-state switch

NO_OVERLAY FORCE_OVERLAY_MODE and FORCE_INSERT_MODE
display-type action switches

AUTO_TAB AUTO_TAB_TO_NEXT_FIELD display-type action switch

IMMEDIATE_RETURN TRAP_ON_FIELD_EXIT display-type action switch

NOT_EDITABLE DISAPPEARING_DEFAULT data-state switch

TRAP TRAP_ON_FIELD_ENTRY display-type action switch

The polarity of some switches has been reversed. For example, the INPUT_FIELD

data-state switch is the inverse of the DISABLE_INPUT mode switch. Note also that
the initial editing mode formerly set by the NO_OVERLAY mode switch is handled

somewhat differently by the display-type options. For more information, see the
descriptions of the specific switches in Chapter 8, “Data States,” and Chapter 7,
“Display Types.”

Dynamically Altering Forms

With the old FMS run-time software, usually one accept had to perform all the
operations on a particular form: not only initializing and displaying the form, but
also making various alterations to it. With the new FMS run-time software, you can
separate the different operations to make the program easier to read and maintain.
Usually, it is easier to use a perform screen update statement to alter a form
between displays (or between initialization and the first display), rather than adding
display-type clauses and field descriptions to the perform screen initialization,
perform screen input, and perform screen output statements.

VOS COBOL Forms Management System (R035) C-5

Updating the Application Program

For example, in the following fragment, a field description is used in the accept

statement to change one field of the form to low intensity on initial display. The
modes table is subsequently updated to change the field back to normal intensity
on redisplay.

move O to redisplay_switch.

perform old=-intensity until ((key_code equal CANCEL)
or (code not equal 0)).

old-intensity.

accept form (employee_info) update (employee_fields)
keyused (key_code) redisplay (redisplay_switch)
modes (modes_table) status (code),
field (PHONE_ID) mode (LOW_INTENSITY).

if redisplay_switch not equal 0 then
move 1 to redisplay_switch
move modes_info(PHONE_ID) — LOW_INTENSITY to modes_info(PHONE_ID).

C-6 Appendix C: Converting Old-Style Applications

Updating the Application Program

You can rewrite this program to use the screen statements and display types. After
initializing the form, you can use a perform screen update statement to create a
new display type that includes the low-intensity attribute. You can then assign this
display type to the phone field for the initial display of the form. After the initial
display, you can reassign the original display type to the phone field. The following
example implements these changes.

Zreplace LOW_INTENSITY_DT by 11
%replace LOW_INTENSITY_VISUAL by 16

01 display_types_table.
02 display_types_info comp-4
occurs EMPLOYEE_INFO_MAX_IDS times.
01 old_display_type_id comp—t4.

procedure division.
* Initialize the form.

perform screen initialization form (employee_info) formid (emp_info_id)
displaytypes (display_types_table) status (error_code).

if error_code not equal O then
go to fatal-error.

(Continued on next page)

VOS COBOL Forms Management System (R035) C-7

Updating the Application Program

(Continued)
* Define a display type with the low-intensity attribute.

perform screen update status (error_code),
displaytype (LOW_INTENSITY_DT) wvisual (LOW_INTENSITY_VISUAL).

if error_code not equal 0 then
go to fatal-error.

* Save the current display-type ID for the phone field. Assign
* the ID of the new display type to the phone field to make it
* Low intensity on initial display.

move display_types_info(PHONE_ID) to old_display_type_id.
move LOW_INTENSITY_DT to display_types_info(PHONE_ID).
perform reassign until ((key_code equal CANCEL)

or (error_code not equal).

reassign.

perform screen input formid (emp_info_id) update (employee_fields)
displaytypes (display_types_table) status (error_code).

#* Reassign the original display-type ID to the phone field.

move old_display_type_id to display_types_info(PHONE_ID).

C-8 Appendix C: Converting Old-Style Applications

Updating the Application Program

In the following fragment, the phone field is changed to output-only on initial
display and then changed back to an input field on redisplay.

%replace CANCEL by -1
%replace INPUT_DISABLED by 256

procedure division.
move 0 to redisplay_switch.

perform old-display until ((key_code equal CANCEL)
or (error_code not equal O)).

old-display.

accept form (employee_info) update (employee_fields) keyused (key_code)
redisplay (redisplay_switch) modes (modes_table) status (error_code),
field (PHONE_ID) mode (INPUT_DISABLED).

if error_code not equal 0 then
go to fatal-error.

if redisplay_switch not equal 0 then

move modes_info(PHONE_ID) - INPUT_DISABLED to modes_info(PHONE_ID)
move 1 to redisplay_switch.

VOS COBOL Forms Management System (R035) C9

Updating the Application Program

Because the INPUT_DISABLED mode switch has been replaced by the INPUT_FIELD
data-state switch, use the datastates form option to convert this example. The
converted code is as follows:

/#replace CANCEL by -1
%replace COPY_DATASTATE by 256
%replace INPUT_FIELD by 32

01 data_states_table.
02 data_states_info comp-4 occurs EMPLOYEE_INFO_MAX_IDS times.

procedure division.

perform screen initialization form (employee_info) formid (emp_info_id)
datastates (data_states_table) status (error_code).

if error_code not equal O then
go to fatal-error.

* Make the phone field output-only.
move data_states_info(PHONE_ID) = INPUT_FIELD to data_states_info(PHONE_ID).

perform new-disable until ((key_code equal CANCEL)
or (error_code not equal 0)).

new—~disable.

perform screen input formid (emp_info_id) update (employee_fields)
datastates (data_states_table) options (COPY_DATASTATES)
keyused (key_code) status (error_code).

* Make the phone field an input field.

move data_states_info(PHONE_ID) + INPUT_FIELD to data_states_info(PHONE_ID).

Note that the datastates form option is output-only in the perform screen input
statement unless you set the COPY_DATASTATES options form option switch to true.
For information on the options form option, see Chapter 5, “Form Options.”

C-10 Appendix C: Converting Old-Style Applications

P

. s
e’

. e

e

Updating the Application Program

Output-Only Forms

If the form is output-only, you can replace the accept statement with a
perform screen initialization statement and a perform screen output statement.

Multiple Forms

If the application might display more than one form in a particular window, you
must either execute a perform screen initialization statement every time a different
form is displayed (that is, every time an initial display of the form is required),

or initialize each form once, and cache the forms that are not being displayed.
Caching forms is faster than reinitializing. For information on caching forms, see
Chapter 12, “Form Caching.”

Binding the New Application

After you have compiled the revised program and created a new form object
module with the new Forms Editor, you are ready to bind the new application.
The run-time routines that support the new FMS functionality are located in the
directory (master_disk)>system>icss_fms_object_library. You must include this
directory in your object library search paths when you bind the application. For
example, the following command binds an application in your current directory:

bind program_name -search (master_disk)>system>icss_fms_object_Library
This command works if program_name is the name of the object module for your

program, and all form object modules that the program references are within your
normal object module search paths.

VOS COBOL Forms Management System (R035)

C-11

Appendix D:
Terminal Requirements

This appendix describes the features a terminal type must include to support FMS
applications and to support the Forms Editor.

Input Requests
This section lists the terminal-type input requests used by the Forms Editor and

by FMS applications.

The Forms Editor

Menu Edit Requests. To enable the Forms Editor request menu, you must define
a sequence for the menu input request. Alternately, you can choose not to use a

request menu and instead enable each of the menu requests as direct edit requests.

To do this, define sequences for each of the input requests listed in Table D-1.

VOS COBOL Forms Management System (R035)

D-1

Input Requests

Table D-1. Alternatives for Menu Input Requests

Input Request

Purpose

add/modify-field
define/modify-video-attributes
delete-field
en/disable~Line-number-mode
en/disable-overlay-mode
en/disable-request-menu-display
enter-field

global-replace
insert-window-field
insert-literal

quit

read-field

set-bell-column
set/modify-form-attributes
show-exact-form

update-fields

write

Alternative for MeND) F request
Alternative for V request
Alternative for (MENU) D request
Alternative for N request
Alternative for MENU) 0 request
Alternative for (MENU) A request
Alternative for (MENU) E request
Alternative for G request
Alternative for (MENU) I request
Alternative for L request
Alternative for (MENU) @ request
Alternative for R request
Alternative for Z request
Alternative for MENU) S request
Alternative for X request
Alternative for U request

Alternative for MENU) W request

Direct Edit Requests. To enable the direct edit requests listed in Chapter 4, “The
Forms Editor,” you must define sequences for the following input requests.

back-space enter redisplay

back-tab goto,beginning return

blanks,left goto,column right

blanks,right goto ,down save

cancel goto,end scroll ,down
change—-case,down goto,line scroll left
change—-case,up goto,mark scroll multiple-down
column goto,up scroll multiple-left
cycle help scroll multiple-right
cycle-back insert~default scroll multiple-up
del insert-saved scroll,right

delete interrupt scroll ,up
delete,blanks left up

delete,left line-feed word,change—-case ,down
delete,return mark word,change-case,left
delete, right menu word ,change—case ,up
delete, word next-screen word,left

discard previous-screen word,right

down

Appendix D: Terminal Requirements

)

~’

Input Requests

FMS Applications

This section lists the generic input requests that establish actions that a user can
execute from within an FMS form.

The following requests allow the user to edit a field value. These sequences can
also be used to edit a command line.

back-space goto,beginning word,change-case,left
del goto,end word,change-case ,up
delete,left left word,left
delete,right right word,right
delete,word word,change-case down

Table D-2. Forms-Related Generic Input Requests

Input Request

Purpose

back-tab
cancel
cancel-form
cycle
cycle-back
display-form
down
en/disable-overlay-mode
enter
erase—-field
function-key-0
function—key-k
help
insert-default
insert-saved
Lline-feed
redisplay
return

tab

up

Move cursor to previous field.
Cancel form.

Cancel form.

Display next cycle value.
Display previous cycle value.

Refresh all currently displayed forms.

Move cursor down to a new field.
Change edit mode of current field.
Submit the current form.

Set current field to its null value.
Submit the current form.

¥

Display help text for current field.
Set current field to its initial value.
Set current field to its initial value.
Set current field to its null value.
Redisplay the current field value.
Move cursor to next field.

Move cursor to next field.

Move cursor up to a new field.

In addition to these requests, the requests in Table D-2 have specific uses in FMS
forms.

T You can set the meaning of each of the generic function key sequences with
the maskkeys form option.

VOS COBOL Forms Management System (R035) D-3

Input Requests

At minimum, a terminal type to be used for FMS applications should define

sequences for the following input requests:

left

right

back-space Or del
return Or tab

enter

cancel or cancel-form

These requests allow the user to edit field values, move from field to field, and
submit or cancel the form. Note that in a cycle field, the right and left requests
have the same meaning as the cycle and cycle-back requests, respectively.

Output Requests

This section lists the terminal-type output requests used by the Forms Editor and

by FMS applications.

The Forms Editor

The Forms Editor requires that sequences be defined for the following output

requests:

beep
clear-to-end-of-Line
clear-to-end-of-screen
display-block
enter-graphics~mode
half-intensity-off
half-intensity-on
Leave~graphics~mode
position-cursor
set-attributes

Specific line-graphics code points can be defined instead of the enter-graphics-mode

and leave-graphics-mode sequences.

For the most efficient operation, the following output sequences should also be

defined:

delete-lines
goto-page
insert-lines
scroll-down
scroll-up
set~scrolling-region

D-4 Appendix D: Terminal Requirements

Output Requests

If the terminal does not support the set-scrolling-region request, you can define
the freeze-lines and unfreeze-lines requests instead.

FMS Applications

In order to run an FMS application, a terminal must define sequences for the
following output requests:

position-cursor
clear-screen (or clear-to-end-of-screen)

With only these requests defined, forms can be displayed, but many FMS features
are not available. For full FMS functionality and efficiency, the following requests
should also be defined:

beep

clear-to—end-of-Line
clear-to-end~of=screen
cursor=-off

cursor-on

delete-chars

end-25th-line
enter-insert-mode
insert-chars
leave=-insert-mode
reset-25th-line
set-attributes
set~cursor-blinking-block
set—~cursor-blinking~-underline
set-cursor-format
set-cursor-invisible
set~-cursor-steady-block
set-cursor-steady-underline
start-25th-line

Attribute Requests

To take full advantage of FMS attribute features, a terminal type must define
a sequence for each of the 64 terminal-type attribute requests. If the terminal
does not support a particular attribute, replace it with a suitable alternative. For
example, if a terminal does not support the high-intensity attribute, you might
replace that attribute with the normal-intensity attribute.

VOS COBOL Forms Management System (R035) D-5

Appendix E:
Form Storage Sizes

For asynchronous terminals, the total storage size limit for a form is four pages
(16,234 bytes) of memory. For other device types, the storage size limit is determined
by the available heap space.

Table E-1 shows how much storage space is required for various form components.

Table E-1. Storage Requirements of Form Components

Component Bytes Used

Form header 184 bytes

Each field 52 bytes

Each input field twice the field length in bytes
Each output field field length in bytes

Each background 52 bytes

text string

Each display type 26 bytes

Each picture length of picture in bytes
Each help string length of string in bytes
Each cycle value 4 bytes, plus the length of the value in bytes

In addition to the storage requirements listed in Table E-1, the user heap contains
some additional data structures for each form and additional arrays for each port
used. .

If you must reduce the storage size of a form, the most effective method is usually
to reduce the number of fields.

VOS COBOL Forms Management System (R035)

\\./

.

Appendix F:
Global Control Operations

This appendix discusses some global control operations that affect FMS forms.
These operations are performed by calls to the s$control subroutine.

Within a program, you can invoke s$control as follows:

01 port_id comp~4.
01 opcode comp—4.
01 control_info data_type.
01 error_code comp=4.

call 's$control' using port_id, opcode, control_info, error_code.

The first two arguments of s$control are input arguments, the third is an input-output
argument, and the last is an output argument. The actual type of control information
passed in the third argument depends on the opcode value given in the second
argument.

For complete information on s$control, see the VOS Communications Software:
Asynchronous Communications (R025).

Forms Input Mode

To use forms input mode through the terminal port, you can use the s$begin_forms_input

and s$end_forms_input subroutines as described in Chapter 14, “Subroutines.”
However, if you want to use forms input mode through another port, you must
call s$control with one of the following opcodes.

® SET_INFO_OPCODE (202)
® SET_MODES_OPCODE (207)

Every port has an associated terminal information data structure that includes a set
of 32 switches that determine the port modes. The SET_MODES_OPCODE allows you to
establish new values for these modes. The SET_INFO_OPCODE allows you to establish
new values for the modes and for other values within the terminal information
structure.

VOS COBOL Forms Management System (R035)

F-1

Forms Input Mode

The terminal information record is as follows:

01 termi
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

02
02
02
02
02

nal_info.
version

modes
line_length
screen_size
pause_Lines
prompt_chars
continue_chars
pause_chars
escape_char
line_state
obs_erase_char
flow_on_char
flow_off_char
cursor_format
flags

current_input_section

filler
terminal_type_name
tabs-table.

comp—4.

comp-5.

comp~4.

comp=4.

comp—4.

picture x(8) display-2.
picture x(8) display=-2.
picture x(20) display-2.
picture x display.
picture x display.
picture x display.
picture x display.
picture x display.
comp=~4.

comp—é4.

comp~4.

comp=4.

picture x(32) display-2.

03 tabs comp-4 occurs 26 times.

event_id

terminal_type_number

baud_rate
process_id
channel_name

comp-5.
comp—4.
comp—4.
comp=5.

picture x(32) display=-2.

You can define constants for the mode switches as follows:

%replace
Zreplace
Zreplace
%replace
%replace
%4replace
Z%replace
Z%replace
Zreplace
Z%replace
%replace
/%replace
%replace
%replace
%replace
Z%replace
%replace
%replace

F-2

0S_FUNCTION_KEY_INPUT
0S_BREAK_TABLE_RECORD
0S_INTERRUPT_KEY_ENABLED

0S_FORMS_INPUT

0S_COMPLETE_WRITE
0S_BULK_RAW_INPUT

0S_SMOOTH_SCROLL
0S_GENERIC_INPUT

0S_BLACK_ON_WHITE

0S_KEY_CLICK_ON

0S_DISPLAY_ENABLE

0S_BREAK_ENABLED
0S_EDITED_OUTPUT
0S_RAW_INPUT
0S_BREAK_CHAR
0S_DSL_FLOW

0S_USE_BREAK_TABLE

0S_OUTPUT_FLOW

Appendix F: Global Control Operations

2097152
1048576
524288
262144
131072
32768
16384
8192
4096
2048
512

256

128

64

32

16

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by 2

Forms Input Mode

Note that the 0S_FORMS_INPUT switch has the value 262144. If this switch is true, the
port is in forms input mode. If the switch is false, the port is not in forms input
mode.

If you use SET_INFO_OPCODE, you must pass the entire terminal information structure
in the third argument of s$control. The value of version must be 1. If you use
SET_MODES_OPCODE, the third argument to s$control must be a comp=5 value.

Typically, before calling s$control with either of these opcodes, an application calls
s$control with the GET_INFO_OPCODE (201). This call returns the current terminal
information structure for a port. The program can then alter this structure and use
it in a call to s$control with the SET_INFO_OPCODE; or the program can alter only the
modes and pass the new modes in a call to s$control with the SET_MODES_OPCODE as
in the following fragment.

%replace OS_FORMS_INPUT by 262144

01 opcode comp~4.
01 new_modes comp-5.

move GET_INFO_OPCODE to opcode.
call 's$control' using port_id, opcode, terminal_info, error_code.

if error_code not equal 0 then
go to fatal-error.

move modes of terminal_info to new_modes.

move SET_MODES_OPCODE to opcode.
call 's$control' using port_id, opcode, new_modes, error_code.

if error_code not equal 0
go to fatal-error.

For more information on the SET_INFO_OPCODE, SET_MODES_OPCODE, or GET_INFO_OPCODE,
see the VOS Communications Software: Asynchronous Communications (R025).

VOS COBOL Forms Management System (R035) F-3

Knocking Down Forms

Knocking Down Forms

F-4

An application can call s$control to knock down a form that is being displayed
by another process or another task. To knock down a form means to cause the
form to be submitted immediately, without user action. After the form is knocked
down, the port can be used to display another form or to perform other I/O.

When a form is knocked down, the current field values are stored into the field-value
variables without any validation. If a program or task that displays a form uses the
keyused option, the value -6 is returned in that option.

You can use either of two s$control opcodes to knock down a form.

® KNOCK_DOWN_FORM_OPCODE (240)
® KNOCK_DOWN_FORM_OK_OPCODE (264)

These opcodes are the same, except that if you use KNOCK_DOWN_FORM_OK_OPCODE
and there is no form to knock down, s$control returns a nonzero error code,
e$invalid_form_id (3794).

The code that displays a form and the code that knocks down that form must be

coordinated to properly handle this action. Usually, forms are knocked down only
by another task within the same application, rather than by another application.

Appendix F: Global Control Operations

—

e

Appendix G:

Stratus Character Code Set

Table G-1. Stratus Character Code Set

Hex Digits
1st —
2nd | 0

~N | o

©

mmjo |0 [m|>» |o

the Latin alphabet No. 1 character set.

2| 3 4| 5| 6| 7| 8 o | A|B|c|D]| E]|F

sPlo '@ | P |~ p Al D|ala

t 11 | Al a)jalaq Al R | ala

12 {B | R]|b r Al 6 a]loe

| 3 c s ¢ s Al O] aje

$ | 4 D T | d t Al 6| al e

% 5 E u e u A 0 a 4]

& 6 F v f v E!l O |la@i] 8

7 G w g w (o X ¢ +

(|8 | H | x|n|«x E|l o| & |@

) | o A y ElU| 6| u

. J z j z E U é Y]

+ | K [k { Ef 0| 8| a

vl < L \ I | U 1| @

- | = M 1 m } Y i y

> N J n ~ > T p

/ ? o | __ | o B i ¥
| Control characters that do not have a graphic representation in ISO 885/1 PDOcoS

The left side of the table is the ASCII character set. The right side of the table is

VOS COBOL Forms Management System (R035) G-1

S

Glossary

access

To read from or write to a file or device. See also access mode, access right,
and access type.

access mode

The method that the I/O system uses to access records for reading or writing.

The access modes are sequential, random, and indexed.

access right

A designation that determines the operations a user is permitted to perform

on a file or directory. Access rights to a file are null, execute, read, and write.

Access rights to a directory are null, status, and modify.

access type

A type of I/O operation performed on a file or device. Access types are
input, output, append, update, dirty read, and dirty notify.

action switches

In FMS, a series of 32 switches associated with a display type that define the
behavior of fields having that display type.

address

The location of an area of storage. An address is a four-byte value.

address space

See virtual address space.
alphanumeric field

In FMS, a field that can contain both alphabetic and numeric characters.
See also numeric field.

VOS COBOL Forms Management System (R035)

Glossary

American Standard Code for Information Interchange (ASCI)

A standard 7-bit character representation code that VOS stores in an 8-bit
byte.

argument

A character string that specifies how a command, request, subroutine, or
function is to be executed.

array

An ordered set of program objects all of the same type.

array element

An individual object in an array.

array field

In FMS, a field that consists of a set of simple fields having sequentially
numbered IDs.

ASCII

See American Standard Code for Information Interchange.

asynchronous communications

Data transmission where the time interval between the transmission of
characters can vary from one character to the next. The beginning and end
of each character transmitted is determined by means of start and stop bits
preceding and following each character.

attribute

In FMS, a characteristic of a field, especially the visual characteristics: high
intensity, low intensity, blinking, blanked, inverse video, and underlined.

background text

Text within a form, but not in a field. Background text includes titles and
labels that identify fields.

backup

H-2

In Emacs and in the VOS Word Processor, the online saving of an unaltered
original copy of a file while you are making and saving editorial changes to
that file. Using the -backup argument of the emacs command or of the edit
command causes VOS to create a backup copy of an existing file the first
time during a session that you write the contents of a buffer to that file.

Glossary

Glossary

bind

To combine a set of one or more independently compiled object modules
into a program module. Binding compacts the code and resolves symbolic
references to external programs and variables that are shared by object
modules in the set and in the object library. See also library.

binder

The program that combines a set of independently compiled object modules
into a program module. The binder is invoked with the bind command.

Boolean value

A bit string of length one indicating a truth value. The value '1'b means true,
and '0'b means false.

break

1. A signal (or to send a signal) that interrupts a program being executed and
places the process executing the program at break level.

2. To bring the communications line temporarily to a low-voltage condition in
order to request attention from the running program or the operating system.

buffer

For a terminal, a temporary data storage location in the terminal’s memory.
The buffer can be used to compensate for differences in transmission rates
or temporarily store characters until the computer can accept them.

built-in functions

Functions that are predefined within the VOS COBOL language.
byte
L. Eight bits of data. An unsigned byte variable can contain integer values in
the range 0 to 255; a signed byte variable can contain integer values in the
range -128 to 127.
2. The unit of storage consisting of eight contiguous bits.

cache

To store a form for later retrieval. For example, an FMS application can cache
the internal representation of an FMS form that is not currently displayed
on the screen.

VOS COBOL Forms Management System (R035) H-3

Glossary

character

1. A symbol, such as a letter of the alphabet or a numeral, or a control signal,
such as a carriage return or a backspace. Characters are represented in
electronic media by character codes.

2. A character code.

character code

1. A numeric value used to represent a character according to a specified
system. For example: The ASCII (character) code for A is 41 (hexadecimal). In
the Stratus Internal Character Coding System, the bit representation of a
character code can occupy one or two bytes, depending on the character set.

2. A particular system used to assign numeric values to characters. For example,
the American Standard Code for Information Interchange (ASCII).

character string

An ordered set of characters from one or more character sets. The length of
a character string depends on the size of each character (one or more bytes,
depending on the character set), the number of characters in the string,
and the use of single-shift and locking-shift characters within the string.
Character strings are evaluated from left to right.

command

A program invoked from command level, either interactively or as a statement
in a command macro.

command line

A set of one or more commands, separated by semicolons. Pressing one of
the following keys terminates a command line: ®RETURN), ENTEF), (DISPLAY FORM)
(and, on V101 terminals only, €G), €S), EM)).

compiler

A program that translates a source module (source code) into machine code.
The generated machine code is stored in an object module.

condition

An exceptional occurrence during the execution of a program. In VOS PL/I,
a program can be set up to detect a condition by using the on statement.
Execution of an on statement establishes an on-unit as a routine to be
executed when a specified condition occurs. The other VOS languages use
service subroutines, such as s$enable_condition, to work with conditions.

H-4 Glossary

N)

Glossary

condition handler

A routine, defined by a program, that is invoked in response to a condition
signaled during the execution of the program. In VOS PL/I, an on-unit.

constant

In a program, a value that cannot be changed.

continuous forms mode

See forms input mode.

conversion

The process of transforming a value from one data type to another.

current directory

The directory currently associated with your process. VOS uses your current
directory as the default directory when you do not specifically name the
directory containing an object that you want VOS to find. For example, if you
supply a relative path name in a command, VOS uses the current directory as
the reference point from which to locate the object in the directory hierarchy.

When you log in, your current directory is set to your home directory. You can
change the directory that is your current directory with the change_current_dir
command or the s$change_current_dir subroutine.

current form

The form in memory that was most recently displayed or initialized in a
specific window. Each window can have only one current form.

current word
In an editor, the word or portion of a word to which the cursor is currently
positioned; the text that is affected by certain word edit requests.

cursor

A marker on a screen showing where the next character should appear.

cycle field

In FMS, a field that has a specific list of possible values. The user cannot
type in a cycle field but can change the displayed value by using the
key and other keys.

VOS COBOL Forms Management System (R035) H-5

Glossary

cycle list

The list of possible values for a cycle field.

data state

In FMS, a series of 16 switches associated with a field that describe the
current state of the data in that field.

data type

The collective attributes of a value, variable, or object that determine the
operations that can be performed on that value and the scheme by which
the value is stored.

default

The value or attribute used when a necessary value or attribute is omitted.

default character set

In ICSS strings or in text files, the supplementary graphic character set that,
in the absence of single- or locking-shift characters, is represented by the
character codes in the range AO-FF (hexadecimal). The default character

set for a file can be set by the create_file, set_text_file, or emacs command.
Some of the ICSS built-in functions in VOS programming languages permit
specification of the default character set as an argument. If a default character
set is not specified, the default is usually assumed to be Latin alphabet No. 1.

default value

The value that VOS uses if a specific value is not supplied.

device

Any hardware component that can be referenced and used by the system
or users of the system and that is defined in the device configuration table.
Terminals, printers, tape drives, and communications lines are devices.

direct edit request

In an editor, a request issued by a user from the edit buffer, rather than
from a request menu. See also menu edit request.

display list

In FMS, a form stored in memory by a program. The display list is the version
of a form that a program can manipulate.

H-6 Glossary

RN

Glossary

display type

A specific set of field characteristics that can be applied to one or more fields
in one or more forms. A field’s display type describes the field’s appearance,
behavior, and certain restrictions on field values. Some display types are
predefined in the Forms Editor; others can be created dynamically.

edit buffer

The location in which material being edited is stored during an edit session.

edit request

A request issued by a user from within an editor. An edit request can be
either a direct edit request or a menu edit request.

editing session

In the VOS Word Processor, the uninterrupted period of time between when
you start using the text editing program and when you stop. There is no limit
to the duration of an editing session.

editor
A program used to create and modify certain types of files.
For text files, Stratus provides two screen editors (designed for video display
terminals) and one line editor (designed for printing terminals). The screen

editors are called by entering emacs or edit, and the Line Editor is called by
entering Line_edit.

For FMS forms, Stratus provides the Forms Editor.

error code

An arithmetic value (usually a two-byte integer) indicating what, if any, error
has occurred; usually, a VOS status code. An error code argument is often
included in subroutines. See also status code.

expression

A series of one or more operands and, usually, one or more operators that
yield a value. An identifier without an operator is an expression that yields a
value directly.

extents

The bounds specification of an array or the length specification of a string
value.

VOS COBOL Forms Management System (R035) H-7

Glossary

H-8

false

Unambiguously incorrect; the opposite of true; evaluating to a bit-string value
of '0'b. See also true.

field

An area of a screen form in which values can be entered or displayed.

field definition file

A file produced by the Forms Editor containing the definition of a field. The
field definition can be read from the file by the Forms Editor later in that
edit session or in a subsequent session.

field description

A clause in an accept or screen statement that defines or modifies a field in
a form.

field edit mode

In FMS, the mode that determines how new characters are added to a field.
The field edit mode can be either insert or overlay. See also insert mode and
overlay mode.

field ID

An integer that identifies a field in a form. Each field in a form has an ID
that is unique within that form.

field-IDs file

An include file produced by the Forms Editor containing definitions of
numeric constants for the field IDs of a form.

field modes

In old-style FMS, a series of 16 switches that describe characteristics of a
field. In new FMS, field modes have been replaced by display types and data
states.

field picture

A string of special characters that restricts the valid characters for each
position within the field. A field picture is the same length as the field it
describes. Each character in the field picture indicates which characters are
valid in the corresponding position within the field.

Glossary

e

Glossary

field-value variable

The program variable into which the Forms Processor returns the value of a
field.

field-values file

An include file produced by the Forms Editor containing declarations for
field-value variables.

file

A set of records or bytes stored on disk or tape as a unit. A disk file has
a path name that identifies it as a unique entity in the system’s directory
hierarchy. Attributes of a disk file, such as its size and when it was created,
are maintained in the directory containing the file.

filtering

The process of removing certain characters from a numeric value before
displaying that value or before storing that value.

form

See screen form.

form definition file

A file produced by the Forms Editor containing a description of a form that
can be read by the Forms Editor during a subsequent invocation. A form
definition file always has the suffix .form.

form ID

A two-byte integer that identifies a form within a program. A form ID is
generated by the Forms Processor when a form is initialized. No two active
forms within an application can have the same form ID.

form object module

A file produced by the Forms Editor containing a description of a form
that can be bound into a program module and referenced by an application
program.

Forms Editor

A program used to create and modify FMS screen forms that can later be
referenced by application programs. A form created with the Forms Editor
is called a predefined form.

VOS COBOL Forms Management System (R035) H-9

Glossary

forms input mode

A mode of asynchronous I/O in which all input to the application is entered
through FMS forms.

Forms Processor

The systems run-time software that manages FMS forms. An application
program invokes the Forms Processor by executing a screen or accept statement.

forms reference count

An internal integer value associated with a form. The Forms Processor uses
the forms reference count to determine when the form can be discarded.

full path name

For a file, directory, or link, a name that is composed of the name of the
system, the name of the disk, the names of the directories that contain the
object, and the name of the file, directory, or link.

For a device, a name that is composed of the name of the system and the
name of the device.

A full path name refers to only one object; an object has only one full path
name. (However, many links can refer to the same object.)

function key

One of the keys on the keyboard that generally produces a nonprinting
character or a sequence of nonprinting and printing characters. Examples
include the numbered function keys ({0, etc.), the arrow keys, and the
key.

generic function keys

A set of 32 generic sequences recognized by the VOS communications software
and assigned to a specific key or combination of keys within a terminal type
definition.

graphic character

A symbol, such as a letter of the alphabet, a numeral, or a punctuation mark,
as opposed to a control character. In the Stratus Internal Character Coding
System, graphic characters are represented by codes in the ranges 21-7E
and AO-FF (hexadecimal).

H-10 Glossary

Glossary

grouping character

A character used to divide the digits of a large number, usually into groups of 3.
For example, in the value 1,000,000, the commas act as grouping characters.

heap

A collection of randomly accessible storage associated with a process and
available for allocation. See also user heap.

help message

Explanatory text displayed to the user.

hexadecimal notation

Notation of numbers in base 16.

ICSS

See International Character Set Support.

incidental data

Data other than field values that is returned from a form to an application
program. Incidental data includes information such as the key used to submit
or cancel a form and the location of the cursor.

include file

A file that the compiler includes in the source module used by the compilation
process. The name of the include file must be specified in a language-specific
directive within the source module.

include library

A series of directories that VOS searches for include files.
initial display

A display of an FMS form in which the entire form, including all fields and
background text, is output to the screen. See also redisplay.

initial output value

The value displayed in a field of an FMS form on initial display.

VOS COBOL Forms Management System (R035) H-11

Glossary

input argument

In VOS COBOL, an argument that supplies a value to a called procedure,
but is itself never altered; input arguments can be passed either by-reference
or by-value.

input field

A field in an FMS form to which the user can position the cursor and then
usually type or cycle to a value. See also output field.

insert mode

A terminal mode in which characters written to the terminal are inserted at
the current location. Existing characters that follow are pushed to the right,
not overwritten. See also overlay mode.

intensity

The brightness with which characters are displayed on a terminal screen.

International Character Set Support (ICSS)

The ability of the operating system to represent text in languages other than
English.

inverse video

A terminal mode in which the characters on the screen are black and the
screen background is amber. Also called black-on-white.

I/0

Input and output.

justification

The positioning of a value within an FMS field. A value can be left-justified
(begin at the left edge of the field), right-justified (end at the right edge of
the field), or centered.

keystrokes file

A file that contains representations for keystrokes you make during an edit
session, in sequence.

left graphic character

H-12

A character located in the range of 21x to 7Ex in the Stratus internal character
coding system. Left graphic characters compose the ASCII character set.

Glossary

—’

Glossary

library

One or more directories in which VOS looks for objects of a particular type.
There are four kinds of libraries defined by VOS.

¢ Include libraries, in which the compilers search for include files

® Object libraries, in which the binder searches for object modules

e Command libraries, in which the command processor searches for
commands

® Message libraries, in which the operating system searches for message
files associated with individual .pm files

One of each of these libraries is available in the >system directory of each
module for all processes running on the module. In addition, you can define
your own libraries.

library paths

The set of directories associated with a particular library. Each process has
one set each of include library paths, object library paths, command library
paths, and message library paths,

locking-shift character

A user-transparent character in an array or string, indicating that the remaining
characters in the key or record are from a character set other than the default
character set.

masked key

A key (or combination of keys) that has been defined as an alternative
or key for an FMS form. Key combinations that are assigned to generic
function key requests in the terminal type table can be masked.

master form

A form that is displayed in the master window rather than in a window field
of another form. See also subform.

master window

A window that comprises the entire screen.

menu

In FMS, a form whose purpose is to present a selection of additional forms
that you can display.

VOS COBOL Forms Management System (R035) H-13

Glossary

H-14

menu edit request

In an editor, a request that is issued by first invoking a request menu and
then selecting a request from that menu. See also direct edit request.

mode switch

One of the switches that comprise the FMS field modes.

modify access

A type cof directory access that means a user has full access to the contents
of the directory, including the ability to create, delete, and rename objects.

module star name

A name that contains one or more asterisks or consists solely of an asterisk,
used to specify a set of modules in a system. An asterisk can be in any
position in the name, and each asterisk represents zero or more characters.
A module star name can be used alone or as part of a full module path
name; however, in a full module path name there can be no asterisks in the
system name. When a module star name consists solely of an asterisk, it
represents all modules in the current system. See also star name.

nested

Contained within another of its kind: a nested statement occurs within another
statement; a nested block occurs within another block.

null field value

The value displayed in a field when it is empty. If the field does not have a
picture, the null field value is a string of spaces. If the field has a picture, the
null field value might include self-insertion characters and other characters.

numeric field

In FMS, a field that can contain only numeric values. See also alphanumeric
field.

object library

A series of directories that VOS searches for object modules.

object module

A file produced by a compiler, containing the machine code version of one or
more procedures; it usually contains symbolic references to external variables
and programs. To execute the program, an object module must be processed
by the binder to produce a program module and then loaded by the loader.

Glossa;y

Glossary

opcode

In VOS, an operation code; a two-byte integer value passed to s$control.
Each opcode directs s$control to execute a different device control operation.

operand

A variable, constant, expression, or value upon which an operator or statement
works.

optional argument

An argument for which the operating system does not need a value to execute
the command.

output argument

A subroutine argument that can be altered by the called procedure. Output
arguments must be passed by-reference.

output field

In FMS, a field in which the application can display values that the user
cannot change. Some output fields are output-only fields which cannot be
changed to input fields. Other output fields can be dynamically changed to
input fields. The term output field sometimes refers only to the latter type.
See also input field and output-only field.

output-only field
In FMS, an output field that cannot be dynamically changed to an input field.

output-only form

In FMS, a form that does not contain any input fields and does not have
any keys masked. This term can also refer to any form displayed with the
output screen statement.

overlay mode

A terminal mode in which each character entered at the keyboard replaces
the character at the current cursor position. See also insert mode.

parameter

A value upon which a procedure operates. The actual value is supplied when
the procedure is called.

VOS COBOL Forms Management System (R035) H-15

Glossary

H-16

path name

A unique name that identifies a device or locates an object in the directory
hierarchy. See also full path name and relative path name,

picture

A string of picture characters used to describe pictured data; also, a field
picture.

picture characters

A set of characters used to describe pictured data or used in a field picture.

pictured data

Program objects in COBOL or PL/I that are described pictorially by a string
of picture characters.

port

A data structure, identified by a name or ID, that you attach to a file or device
for the purpose of accessing the file or device. When an executing program
refers to a file or device, VOS uses the port having the same name or ID.

A port is created when it is attached and destroyed when it is detached.

port ID
A two-byte integer used to identify a port.

predefined field
In FMS, a field defined with the Forms Editor within a predefined form.

predefined form
In FMS, a form defined with the Forms Editor.

printable characters

Those characters that can be printed by most standard printers and displayed
on most standard terminals; ASCII characters with rank greater than 31 and
less than 127.

privileged process

A process of a user who is logged in as privileged.

Glossary

Glossary

program

One or more procedures, from one or more source modules, that together
perform a task.

range field

In FMS, a field for which a range restriction has been specified. Range
restrictions can be specified with the Forms Editor or with the range form
option of a screen or accept statement.

read access

A type of file access that means a user can read the file or execute it if it is
executable, but cannot write it.

redisplay

In FMS, a display of a form in which only changed fields are written to the
screen. The rest of the form is assumed to be on the screen. See also initial
display.

relative path name

A name that identifies a device or an object in the directory hierarchy without
specifying its full path name.

request

In an editor, a keystroke or combination of keystrokes that cause a specific
action to be performed.

required argument

A command argument for which you must specify a value.

required field

In FMS, a field that must contain a non-null value when the form is submitted.

reverse video

A video attribute that reverses the color of the background and the characters
on the screen. For example, if the screen displays light characters on a dark
background, the reverse video attribute changes the display to dark characters
on a light background.

VOS COBOL Forms Management System (R035) H-17

Glossary

right graphic character

A character located in the range of AOx to FFx in the Stratus internal
character coding system. Right graphic characters compose the Latin alphabet
No. 1, katakana, kanji, and hangul character sets.

To execute a program.

run time

The time when a program module is invoked and executed.

scalar

A single, one-dimensional value or object; not an array or structure, though
possibly an array element or structure member.

scale

An attribute of arithmetic data: fixed-point or floating-point.

scaling factor

The number of digits in a fixed-point arithmetic value that appear to the right
of the radix point; the number of fractional digits.

screen

The display area of a video display terminal.

screen form

A form displayed on a video display screen.

scrolling

The movement of data across the screen.

shift character

See single-shift character and locking-shift character.

H-18 Glossary

Glossary

shift mode

1. A text file attribute indicating the types of shift characters in a file. See also
single-shift character and locking-shift character.

2. What form of shift characters are in use. The possible forms are none, single
shift only, locking shift only, or either single or locking shifts.

simple field
In FMS, a single non-array field.

single-shift character

A user-transparent character in a key or record, indicating that the next
character is from a character set other than the default.

source module

A text file (single source program) containing language statements, compile-time
statements, and comments that can be compiled to produce an object module.

special numeric characters

In FMS, characters that are valid in prefiltered strings, but are not valid in
filtered strings.

star name

A name that contains one or more asterisks or consists solely of an asterisk.
A star name can be used to specify a set of objects. Star names function in
the following manner.

e An asterisk can be in any position in a star name.

e In a path name, a star name can be in the final object name position
only.

e When the operating system matches non-star names to a star name,
each asterisk represents zero or more characters.

e No name can contain consecutive asterisks; there must always be an
intervening character.

Some names with asterisks function differently; see also module star name
and user star name.

VOS COBOL Forms Management System (R035) H-19

Glossary

statement

One of several programming constructs consisting of identifiers, operators,
and separators. A statement specifies an action or actions to be executed by
a program.

status access

A type of directory access that means a user can display information about the
directory, but cannot modify the directory by creating, deleting, or renaming
objects.

status code

A two-byte integer, with an associated name, indicating the success, failure,
or other status of an operation. A zero status code is generally associated
with success.

VOS has four types of status codes.

e Error codes, whose names begin with the prefix e$

e Message codes, whose names begin with the prefix m$
o Query codes, whose names begin with the prefix g$

e Response codes, whose names begin with the prefix r$

status line

See terminal status line and Stratus status line.

Stratus status line

A line displayed in the terminal’s bottom information line which provides
information about the process using the terminal rather than about the
terminal itself.

string

A character string or bit string. See also character string.

subform

In FMS, a form that is displayed in a window field within another form. See
also master form.

subroutine

A sequence of statements that can be invoked as a set at one or more points
in a program to execute a specific operation.

H-20 Glossary

e

Glossary

switch

A bit used to indicate a mode or state. A switch can be either true (on) or
false (off).

symbol table

The part of a program module that contains data used for debugging the
program. The symbol table allows the debugger to convert the names of
user-defined variables to locations of data or instructions. For object modules,
the symbol table is placed in the symtab region.

symtab region

The portion of an object module that contains the symbol table.

terminal

A device used for input and output. Most modern terminals have screens
and keyboards; however, printing terminals (with keyboards) also fall into
the class of terminal. If a terminal has its own hard-copy printer connected
to it, that printer is considered part of the terminal.

terminal status line

A line displayed in one of the terminal’s information lines that shows a
number of the terminal’s operating parameters.

terminal type

In VOS, a software, table-driven mapping facility that provides a certain degree
of terminal independence to the Stratus asynchronous terminal software.
Terminal types are typically defined for all different types of terminals that
will be using the system. At times, terminal types are defined solely for

the purpose of changing the input keystroke mappings. Terminal types are
defined for the duration of a bootload by privileged processes executing the
define_terminal_type command.

terminal type definition file

In VOS, a file that defines the relationship between generic input and output
requests and terminal-specific input and output sequences. The terminal
type definition file is the input that define_terminal_type uses to create the
terminal type tables for a terminal type.

transaction

A sequence of operations that are performed as a unit. Typically, a transaction
involves updating one or more pieces of data in a database.

VOS COBOL Forms Management System (R035) H-21

Glossary

H-22

trap

In FMS, an automatic form submission that occurs when the user positions
the cursor into or out of specific fields.

trap field

A field for which a trap occurs. For a trap on field exit or trap on field entry,
the trap field is the field on which the trap is set. For a vertical scroll trap,
the trap field is the field from which the cursor is moved to cause the trap.

true

Unambiguously correct or valid; evaluating to the bit-string value '1'b. See
also false.

truncate

To cut off; to remove excess digits without rounding.

uncommitted field

In FMS, a field which is defined as part of a form, but which does not have
a defined position within the form.

user heap

Portion of a user’s virtual address space in which VOS can allocate storage
for the user’s programs. The user heap is a free storage region located after
the executable image in the user’s region of virtual storage. It grows up
towards the user stack, which grows down from the highest virtual address.

user star name

A user name containing one or two asterisks that is used to specify a set of
users. When a user attempts to use a file or directory to which an access
control list applies, the operating system checks the user’s access by matching
user star names on the list to actual users and groups.

Either component of a user star name (the person name or the group name)
can be an asterisk, or both components can be asterisks. An asterisk as

the first component matches all person names; an asterisk as the second
component matches all group names. In arguments that accept user star
names, if only a person name (or only a single asterisk) is given, the operating
system appends .* to the name.

Glossary

Glossary

validation routine

In FMS, a procedure performed by an application program to validate the
input value for a specific field. A validation routine is invoked as part of the
validation suite for the field.

validation suite

In FMS, a series of checks and tests applied to an input field value when a
form is submitted.

variable

A data item whose value may be changed by the execution of the program.
In COBOL, a variable used in a numeric expression must be a numeric or a
numeric-edited elementary item.

virtual address space

A set of addresses to which a process can refer. VOS gives each user a
virtual address space of 4096 pages, of which the first 2048 pages belong to
the kernel. Excluding the addresses used by VOS, the size of a user’s virtual
address space is either two megabytes or eight megabytes.

Virtual Operating System (VOS)
A Stratus operating system.

visual switches
In FMS, a series of 32 switches associated with a display type that describe
the appearance of fields having that display type.

VOS-
See Virtual Operating System.

window

In FMS, an area of a terminal screen in which a form can be displayed.

window field

In FMS, a field that defines a window in which a subform can be displayed.

write access

A type of file access that means a user can execute, read, and write the file.

VOS COBOL Forms Management System (R035) H-23

Glossary

zero suppression

The masking of zeroes, especially of leading integral or insignificant trailing
fractional zeroes. Suppressed zeroes are usually replaced by space characters,
although asterisks are also used.

H-24 Glossary

Index

Special Characters

, 3-2,9-2,9-3

$, 4-46, 9-5

* 9.5 9-6

+ 9-5

-, 3-3, 9-2, 9-3, 9-5, 9-6
. 3-2,9-2,9-3

/, 3-3, 9-2, 9-3, 9-5, 9-6
%replace compile-time statement, 4-58
@D key, 4-13

© key, 4-13

& key, 4-13

@ key, 4-13

3270 terminals, 4-49, 5-14
9 picture character, 3-2, 3-3, 9-2, 9-3

A picture character, 3-3, 9-2

accept_field_definitions directory, 4-6, 4-22,

4-23
accept statement, 1-3, 16-2, A-1
converting to screen statements, C-2
display list, A-2
editing modes, A-6
field justification, A-9
field modes, A-5
initial display, A-2
initial output values, A-10
old-style, A-1, A-2
redisplay, A-2
Action attributes, 2-40, 7-11
auto-tab, 2-13, 4-39, 7-13
bank-teller decimal, 4-39, 4-46, 7-14
force insert mode, 4-41, 7-14
force overlay mode, 4-41, 7-14
indexed cycle list, 4-40, 7-9, 7-15

trap on field entry, 4-40, 7-14
trap on field exit, 4-40, 7-13
action display-type option, 7-5, 7-11
Active forms, 3-9, 3-10
Add/modify field request, 2-10, 4-22, 4-25
form, 2-10, 4-28
old-style, B-7
alloc_screen_displaytype function, 15-4
alloc_screen_field function, 15-4
key, 4-12
Alphanumeric fields, 3-3
Alphanumeric pictures, 3-3
ALTERABLE BY ACCEPT form option, 4-47
Application development, 2-1
Arrangement of fields, 2-3
array field option, 6-9
Array fields, 4-27, 4-30, 6-9
spacing between elements, 4-30, 6-9
ARRAY LAYOUT field option, 4-27, 4-30
Arrow keys, 2-15, 4-13
ASCII character set, 3-6
Asterisk (*), 9-5, 9-6
Attributes, 2-21
of background text, 2-23, 4-24, 4-50, 4-51
of fields, 1-3, 2-14, 2-15, 2-22, 4-38
of required fields, 2-22, 4-50
AUTO TAB display-type option, 2-13, 4-39
AUTO_TAB mode switch, A-5
AUTO_TAB_TO_NEXT_FIELD display-type switch, 7-13

B picture character, 3-3, 9-2, 9-3
request, 4-13
request, 4-13
BACKGROUND MODE form option, 2-23, 4-50
Background text, 1-1, 2-2, 2-9, 4-11
dynamically defined, 6-2
incidental data and, 2-5
supplemental characters, 4-23
video attributes, 2-23, 4-32, 4-50

VOS COBOL Forms Management System (R035) X-1

Index

BANK TELLER DECIMAL display-type option, 4-39
BANK_TELLER_DECIMAL display-type switch, 7-14
BANK TELLER DECIMAL form option, 4-46
BASIC field option, 4-33
BASIC form option, 4-51
BEEP form option, 4-48
beep form option, 5-2, 14-2
Bell. See also beep form option
setting column, 4-25
Binding, 1-4, 2-42, C-11
BLANKED mode switch, A-5
BLANKED_VISUAL display-type switch, 7-21
Blanking
background text, 2-23, 4-24, 4-50, 4-51
fields, 2-22, 4-38, 7-21
required fields, 2-22, 4-50
© request, 4-13
& request, 4-14
Blinking
background text, 2-23, 4-24, 4-50, 4-51
fields, 2-22, 4-38, 7-21
required fields, 2-22, 4-50
BLINKING mode switch, A-5
BLINKING_VISUAL display-type switch, 7-21
Buffer, 4-10
Built-in functions, 15-1
alloc_screen_displaytype, 15-4
atloc_screen_field, 15-4
display types, 15-2
fields, 15-3
find_screen_field, 15-5
first_changed_field, 15-5
first_screen_displaytype, 15-6
first_screen_field, 15-6
last_screen_displaytype, 15-7
last_screen_field, 15-7
next_changed_field, 15-8
next_screen_displaytype, 15-9
next_screen_field, 15-10
prev_screen_displaytype, 15-11
prev_screen_field, 15-12
screen_field_position, 15-13

¢ field option, 4-33
¢ form option, 4-51
Caching forms, 3-12, 12-1, 16-19

X-2 VOS COBOL Forms Management System (R035)

request, 2-21, 3-14, 4-14
Canceling a form, 1-2, 3-14
CENTER_FIELD_DATA display-type switch, 7-22
center field option, 6-10, A-9
(D request, 4-14
(@ request, 4-14
Changed fields, 8-7, 15-1
CHAR SET display-type option, 4-39
Character set IDs, 3-7
Character sets, 3-6, 4-32, 4-39, 6-22, 6-23, 7-15
charset display-type option, 3-7, 7-15
CHECK_3270_FORMS_MODEL options switch, 5-14
CHECK 3270 MODEL form option, 4-49
clear form option, 5-3, C-4
Clearing the screen, 4-46, 5-3
€OBOL field option, 4-33
COBOL form option, 4-51
request, 4-14, 4-27, 4-42
COLUMN SPACING field option, 4-30
Comma (,), 3-2, 9-2, 9-3
Communication errors, 10-2
Compiling, 2-42
after form modification, 2-24
Conditions
error, 10-1
Continuous forms mode. See Forms input mode
Control transfer, 2-4, 3-13
Conversion
case, 9-2
field values, 10-4
old forms, 4-2, C-1
old programs, C-2
COPY_DATASTATE options switch, 2-38, 5-4, 5-14,
8-5
copy statement, 2-27, 4-58
cr sign characters, 9-5
Currency symbol, 9-5, 9-6
CURRENCY SYMBOL form option, 4-46
Current form, 12-1
Current line, 4-10
Current word, 4-10
Cursor
movement keys, 4-13
wide, 4-49, 5-14
CURSOR FIELD form option, 4-50
Cursor location, 2-5
next, 5-13
obtaining, 5-7
setting, 4-50, 5-17

cycle_array display-type option, 7-11, 7-17
request, 2-15, 4-14
cycle display-type option, 7-7, 7-16
cycle field option, 6-11, A-10
Cycle fields, 1-3, 4-37, 7-7

defining, 2-15

optional, 2-16
Cycle list, 1-3, 7-7

altering, 2-16, 7-9

inquiring about, 7-11

specifying, 2-16, 4-37, 7-8
request, 2-15, 4-14

D]

Data-entry loop, 2-31 .
Data states, 1-3, 2-36, 5-3, 6-11, 8-1

altering, 2-36

changing, 8-5

default, 6-4

in Forms Editor, 8-2

reading, 8-4

switches, 8-1

table, 2-37
Data types, 2-11, 4-33, 4-34
datastate field option, 6-5, 6-6, 6-11, 8-2
datastates form option, 2-36, 5-3, 6-5, 8-2
db sign characters, 9-5
decimal_is_comma form option, 4-46, 9-4
decimal_is_period form option, 4-46, 9-4
Decimal point character, 4-46, 9-3, 9-4
Declarations

field-value variables, 2-26, 4-53
Defaults

attributes, 2-14, 2-15, 4-38

character set, 3-7, 4-32, 6-22

data states, 6-4

“data types, 4-34

disappearing, 4-32, 8-6

display types, 6-3

field modes, A-6

output values, 2-16

video attributes, 3-4
Define/modify video display modes request,

2-23, 4-24, 4-51

Defining a form

dynamically, 6-2

with Forms Editor, 2-8, 4-1

Index

request, 4-14

(© request, 4-15

& request, 4-15
request, 4-15
Delete field request, 4-21
DELETE) request, 4-15

request, 4-15
request, 4-15
Designing a form, 2-2, 4-2
Direct edit requests, 4-13, D-2

DISABLE_ENTIRE_FIELD data-state switch, 4-27, 8-6

DISABLE field option, 4-31
Disabling fields, 4-27, 4-31, 8-6
DISAPPEARING_DEFAULT data-state switch, 8-6
DISAPPEARING field option, 4-32
request, 4-15
Discarding forms, 3-12, 12-2, 16-8
Display list, 1-7, 3-10
accept statement, A-2
altering, 3-11, 16-6, 16-21
discarding, 3-12, 12-2, 16-8
displaying, 3-10, 16-12, 16-17
initializing, 2-27, 3-10, 16-9
inquiring about, 3-11, 16-15
saving, 3-12, 12-1, 16-19
Display-type classes, 7-3
Display-type descriptions, 2-40, 7-2
Display-type 1Ds, 2-40, 7-1
maximum, 5-11
table, 2-41, 5-5
Display-type options, 4-36, 7-2, 7-11
action, 7-5, 7-11
charset, 3-7, 7-15
cycle, 7-7, 7-16
cycle_array, 7-11, 7-17
picture, 7-18
range, 7-19
validate, 7-19
visual, 7-5, 7-20
Display types, 1-3, 2-39, 5-5, 6-13, 7-1
allocating, 7-2, 7-4, 15-4
altering, 7-3, 7-5
built-in functions, 15-2
changing, 2-39
default, 6-3
freeing, 7-3, 16-6
global, 7-4
inquiring about, 7-3

VOS COBOL Forms Management System (R035) X-3

Index

list, 15-1

predefined, 2-40, 7-1, 7-4

programmer-defined, 2-40, 7-4

reserved, 7-4

table, 2-41, 5-5

temporary, 7-5
displaytype field option, 6-6, 6-13
DISPLAYTYPE NAME display-type option, 4-37
displaytypes form option, 2-40, 5-5
Dollar sign (8), 4-46, 9-5

Edit buffer, 4-10
edit_form command, 1-5, 4-2, B-2
Edit mode, 4-12
changing, 4-12, 4-23
initial, 4-41, 7-14
Edit request level, 4-8
Edit requests, 4-12
Editors, 4-2
En/disable line number mode request, 4-23
En/disable overlay mode request, 4-12, 4-23
En/disable request menu display request, 4-21
Enter field request, 4-22, 4-55
request, 2-21, 2-30, 3-13, 4-16
Entering a form. See Submitting a form
Error codes, 5-18, 10-1
e$form_aborted (1453), 3-14
e$form_invalid_3270_action (3889), 5-14
e$form_invalid_3270_option (3888), 5-14
e$form_needs_input_field (3918), 3-16
e$invalid_form_id (3794), F-4
e$line_hangup (1365), 10-2
e$parity_error (2916), 10-2
e$timeout (1081), 3-15
error condition, 10-1
ERROR MESSAGE FIELD form option, 4-50
Errors
handling, 10-1
status form option, 5-18
validation, 10-4
Exact form, 2-20, 4-25

Field definition files, 4-22, 4-23, 4-54
Field definitions directory, 4-6, 4-22, 4-23
Field descriptions, 6-1

X-4 VOS COBOL Forms Management System (R035)

Field entry trap, 3-14, 7-14, 13-2
Field exit trap, 3-14, 7-13, 13-3
FIELD_HAS_CHANGED data-state switch, 8-7
Field-ID constants, 2-26, 4-54, 4-58
Field-ID names, 4-58
Field IDs, 3-1, 4-54
allocating, 6-4, 15-4
freeing, 6-7
list, 15-1
maximum, 5-11
Field-IDs file, 1-6, 2-9, 4-54, 4-58
prefixes, 2-19, 4-6, 4-44
using, 2-26, 4-58, 4-60
Field modes, 5-12, 6-16, A-5
initializing, A-6
modifying, A-6
FIELD NAME field option, 2-10, 4-30
FIELD NAME window field option, 4-42
Field options, 4-29, 4-58, 6-8
Field pictures, 6-18, 7-18, 9-1, 10-4
FIELD TYPE field option, 4-31
FIELD_VALUE_GIVEN data-state switch, 2-39, 8-7
Field-value variables, 1-2, 2-26
array field, 4-62, 6-10
declaring, 2-26, 4-53, 4-61
Field-values file, 1-6, 2-9, 4-53, 4-61
excluding fields, 4-32
sequence of entries, 4-33
using, 2-26, 4-61
field-values sequence field option, 4-33
Fields, 1-1, 3-1
allocating, 6-4, 15-4
alphanumeric, 3-3
altering, 4-24, 4-26, 6-6
array, 4-27, 4-30, 6-9
built-in functions, 15-3
character sets, 3-7, 4-32, 4-39, 6-22, 6-23, 7-15
creating, 2-10, 4-22, 4-25, 4-26, 6-2
cycle, 1-3, 2-15, 4-37, 7-7
data states, 1-3, 2-36, 5-3, 6-11, 8-1
data types, 2-11, 4-33
deleting, 1-7, 4-21, 6-7, 16-6
disabling, 4-27, 4-31, 8-6
display types, 1-3, 2-39, 5-5, 6-13, 7-1
inquiring about, 6-6
justification, 4-38
layout, 2-3
length, 2-11, 4-31, 6-16

naming, 2-10, 4-30, 6-18

null values, 1-2, 3-4

numeric, 3-2, 9-4

optional, 2-3

output values, 3-5

position, 2-11, 4-30, 4-42, 6-19

precision, 4-35, 9-3

predefined, 1-6

required, 2-3, 2-11, 2-39, 4-31, 8-9, 104

shift modes, 3-7, 4-32, 6-22, 6-23

simple, 4-26

uncommitted, 4-26, 4-27

validating, 4-37, 10-4

video attributes, 2-22, 4-38, 7-20

window, 4-22, 4-41, 6-25, 11-1
FILTER_FOR_CONVERSION data-state switch, 8-7
Filtering, 8-7, 9-1, 9-4, 10-4

input values, 9-7

output values, 9-6
find_screen_field function, 15-5
first_changed_field function, 15-5
first_screen_displaytype function, 15-6
first_screen_field function, 15-6
FMS. See Forms Management System (FMS)
FORCE INSERT MODE display-type option, 4-41
FORCE_INSERT_MODE display-type switch, 7-14
FORCE OVERLAY MODE display-type option, 4-41
FORCE_OVERLAY_MODE display-type switch, 7-14
Form definition file, 1-6, 4-5, 4-6, 4-53, 4-56
form form option, 5-5
Form header, E-1
Form IDs, 2-28, 5-6
Form layout, 2-3
Form name, 2-8, 2-18, 4-6, 4-44, 5-13
Form object module, 1-3, 1-6, 2-24, 2-42, 4-53
Form options, 2-18, 4-43, 4-58, 5-1
Form picture, 4-58
Form reference counts, 12-2
Form specifier, 2-28, 5-1
. form suffix, 4-5, 4-6, 4-53
formid form option, 2-28, 5-6
Forms, 1-1

activating, 3-10

caching, 3-12, 12-1, 16-19

canceling, 1-2, 3-14

converting to new-style, C-1

defining, 2-8, 4-1, 6-2

discarding, 3-12, 12-2, 16-8

Index

displaying, 2-28, 3-10, 16-12, 16-17
editing, 1-5, 4-1
initializing, 2-27, 3-10, 16-9
inquiring about, 3-11, 16-15
long, 2-17, 13-5
naming, 2-8, 2-18, 4-44, 5-13
old-style, B-1, C-1
output-only, 3-16
planning, 2-2
predefined, 1-6
renaming, 4-7
sizes, 2-3, E-1
submitting, 1-2, 3-13
Forms Editor, 1-3, 1-5, 2-8, 4-1
altering fields, 2-12, 4-22, 4-24, 4-26
background text, 4-11
batch process, 4-7
creating background text, 2-9
creating fields, 2-10, 4-22, 4-25, 4-26
data states, 8-2
direct edit requests, 4-13, D-2
display-type options, 4-36
field options, 4-29
form options, 4-43
invoking, 2-8, 4-4
menu edit requests, 4-21, D-1
new versus old, 4-2
old, B-1
quitting, 2-25, 4-23
retrieving field definitions, 4-23, 4-55
saving field definitions, 4-22, 4-55
writing the form, 2-24, 4-25
Forms input mode, 2-42, 13-10, 14-1, F-1
Forms Management System (FMS), 1-1
Forms Processor, 1-3, 1-8
FORTRAN field option, 4-33
FORTRAN form option, 4-51
FORTRAN strings, 4-8, 4-51
Function keys, 2-19, 4-45, 5-9
functionkey form option, 5-7, 13-2, 13-3

Generic function keys, 2-19, 4-45, 5-9
Generic input request codes, 5-7
Generic input requests, D-1
GET_INFO_OPCODE (201), F-3
getcursor form option, 5-7, 13-2, 13-3
given field option, 6-14, A-10

VOS COBOL Forms Management System (R035) X-5

Index

Given switch, 2-39, 8-7

Global control operations, F-1

Global display types, 7-4
allocating, 15-4
list, 15-1
programmer-defined, 7-4
reserved, 6-3, 7-4

Global replace request, 4-22

(D request, 4-16

(© request, 4-16

B request, 4-16

(@ request, 4-16

request, 4-16

@ request, 4-16

(@) request, 4-16

request, 4-16

G010 (RETURN) request, 4-17

request, 4-17

Grouping character, 9-3, 9-4, 9-6

[H]

Hangul character set, 3-6
Heap, 3-9
HELP field option, 2-11, 4-33
help field option, 6-6, 6-14
Help messages, 2-11, 2-21, 4-33, 6-14
request, 2-21, 4-17, 4-33
HIGH_INTENSITY mode switch, A-5
HIGH_INTENSITY_VISUAL display-type switch, 7-21
Highlighting, 4-26, 4-42, 4-51
canceling, 4-14
starting, 4-17
Hyphen (=), 3-3, 9-2, 9-3, 9-6

1]

ICSS. See International Character Set Support
(ICSS)

icss_edit_form command, 1-5, 2-8, 4-2, 4-4

jcss_fms_object_Library directory, 2-42, C-11

if statements, 2-30

Immediate return. See Traps, on field exit

IMMEDIATE_RETURN mode switch, A-5

IN FIELD-VALUES field option, 4-32

Incidental data, 2-5

.incl.cobol suffix, 4-53, 4-54

X-6 VOS COBOL Forms Management System (R035)

Include files, 1-6, 2-24
character sets, 3-7
field-IDs file, 1-6, 2-9, 4-54, 4-58
field-values file, 1-6, 2-9, 2-26, 4-53, 4-61
form data state, 2-36, 8-3
form display type, 2-40
form options, 2-38
Include library, 2-42
INDEX form option, 4-50
INDEXED CYCLE LIST display-type option, 4-40
INDEXED_CYCLE_LIST display-type switch, 7-9, 7-15
INITIAL DISPLAY form option, 4-46
Initial display versus redisplay, A-2
INITIAL field option, 4-33
initial field option, 6-6, 6-15
Initial output values, 3-5
accept statement, A-10
altering, 2-28
INPUT_DISABLED mode switch, A-5
INPUT_FIELD data-state switch, 3-3, 8-8
input field option, 6-6, 6-15
Input fields, 1-2, 2-3, 3-3, 4-31, 8-8
Input information, 2-5
Input time limit, 3-15, 4-48, 5-18
request, 4-17
Insert literal request, 4-11, 4-23
Insert mode, 4-12, 4-41, 7-14
request, 4-12
(NSERT SAVED) (DISCARD) request, 4-17
request, 4-17
Insert window field request, 4-22, 4-41
form, 4-42
Intensity
background text, 2-23, 4-24, 4-50, 4-51
fields, 2-22, 4-38
required fields, 2-22, 4-50
INTENSITY display-type option, 2-14, 4-38
International Character Set Support (ICSS), 3-6,
4-32, 4-39, 6-22, 6-23, 7-15
into form option, 2-28, 5-8
versus update form option, A-4
INVERSE mode switch, A-5
INVERSE_VISUAL display-type switch, 7-21
Inversion
background text, 2-23, 4-24, 4-50, 4-51
fields, 2-22, 4-38
required fields, 2-22, 4-50

D)

JUSTIFICATION display-type option, 4-38
Justification display-type switches, 7-22
Justification field options, 6-10, 6-15, 6-21, A-9

Kanji character set, 3-6
Katakana character set, 3-6
Keys
(ALPHALOCK), 4-12
(BACKSPACB), 4-13
BACKTB), 4-13
(CANCED, 2-21, 3-14, 4-14
ENTER), 2-21, 2-30, 3-13, 4-16
function, 2-19, 4-45, 5-9
{HELP), 2-21, 4-17, 4-33
7 4'18
(SHID, 4-12
SPACE BAR), 4-12
Keystrokes file, 4-54
keyused form option, 2-29, 5-8
KNOCK_DOWN_FORM_OK_OPCODE (264), 3-16, F-4
KNOCK_DOWN_FORM_OPCODE (240), 3-16, F-4

L picture character, 3-3, 9-2

Labels. See Background text

last_screen_displaytype functiqn, 15-7

last_screen_field function, 15-7

Latin alphabet No. 1 character set, 3-6

Layout of form, 2-3

left field option, 6-15, A-9

LEFT_JUSTIFY_FIELD_DATA display-type switch,
7-22

LENGTH field option, 2-11, 4-31

length field option, 6-6, 6-16

Library of field definitions, 4-6, 4-22, 4-23

request, 4-17

Line numbers, 4-23

Literal characters, 4-23

Long forms, 2-17, 13-5

Loops, 2-31

LOW_INTENSITY mode switch, A-5

LOW_INTENSITY_VISUAL display-type switch, 7-21

request, 2-23, 4-17
MASKKEYS form option, 2-19, 4-45
-maskkeys form option, 5-9
Master forms, 11-1

Master window, 11-1

max_displaytype_id form option, 5-11

max_field_id form option, 5-11
Menu
alternative to requests, D-2
disabling, 4-21
A request, 4-21
D request, 4-21
E request, 4-22, 4-55
Menu edit requests, 1-6, 4-21, D-1
F request, 2-10, 4-22, 4-25
form, 2-10, 4-28
old-style, B-7
G request, 4-22
I request, 4-22, 4-41
form, 4-42
L request, 4-11, 4-23
N request, 4-23
0 request, 4-12, 4-23
Q request, 2-25, 4-23
R request, 4-23, 4-55
request, 4-17, 4-21
S request, 2-18, 4-24, 4-43
form, 2-18, 4-43
old-style, B-10
U request, 4-24
V request, 2-23, 4-24, 4-51
form, 2-23, 4-51
W request, 2-24, 4-25
X request, 2-17, 2-20, 4-25
Z request, 4-25
MESSAGE form option, 4-50
message form option, 5-11
Minus sign (=), 9-5, 9-6
mode field option, 6-16, A-6
Modes. See Field modes
modes form option, 5-12, A-6
Modes table, A-6

name field option, 6-6, 6-18
name form option, 5-13

VOS COBOL Forms Management System (R035)

Index

X-7

Index

NEW_DATA_IN_FIELD data-state switch, 8-8

New Forms Editor, 4-2, 4-4

next_changed_field function, 15-8

next_screen_displaytype function, 15-9)

next_screen_field function, 15-10

nextcursor form option, 5-13, 13-2, 13-3

NO_COPY_UPDATE options switch, 5-14, 5-19, 6-24

NO_OVERLAY mode switch, A-5

Noneditable fields. See Defaults, disappearing

NOT_EDITABLE mode switch, A-5

NOTRIM_FIELD_DATA_SPACES display-type switch,
7-22

Null field values, 1-2, 3-4

Numeric fields, 3-2, 9-4

Numeric pictures, 9-3

[0]

.obj suffix, 2-24, 4-53
Object library, 2-42, C-11
Object module. See Form object module
Obsolete features, A-1
Old Forms Editor, 4-2
Optional fields, 2-3, 4-31
cycle, 2-16, 7-9
options form option, 2-38, 5-13
initial value, 2-38
origin form option, 5-16, 11-2
Output fields, 1-2, 2-2, 3-3, 4-31
Output information, 2-2
Output-only fields, 2-14, 3-4, 4-31, 6-2
Output-only forms, 3-16
Overlay mode, 4-12, 4-23, 4-41, 7-14

[P]

PASCAL field option, 4-33

PASCAL form option, 4-51

perform screen delete statement, 1-7, 3-11, 6-7,
7-3, 16-6

perform screen discard statement, 1-7, 3-12,
12-2, 16-8

perform screen initialization statement, 1-7,
2-27, 3-10, 16-9

without predefined form, 6-2

perform screen input statement, 1-7, 1-8, 2-28,
3-10, 16-12

perform screen inquire statement, 1-7, 2-38,
3-11, 6-6, 7-7, 7-11, 16-15

X-8 VOS COBOL Forms Management System (R035)

perform screen output statement, 1-7, 3-10,
16-17
perform screen save statement, 1-7, 3-12, 12-1,
16-19
perform screen update statement, 1-7, 3-11, 6-6,
16-21
Period (.), 3-2, 9-2, 9-3
Picture characters, 3-2, 3-3, 6-19, 7-18, 9-2
PICTURE display-type option, 2-11, 4-37, 9-3
picture display-type option, 7-18, 9-1, 9-3
picture field option, 6-18, A-10
Pictures, 7-18, 9-1, 10-4
alphanumeric, 3-3, 9-3
numeric, 3-2, 9-3
PL/1 field option, 2-11, 4-33
PL/1 form option, 2-19, 4-51
Planning the form, 2-2
Plus sign (+), 9-5
-pm suffix, 2-42
portid form option, 5-16
Ports, 5-16
POSITION field option, 2-11, 4-30
position field option, 6-6, 6-19, 11-2
POSITION window field option, 4-42
Precision of numeric fields, 4-35, 9-3
Predefined display types, 2-40, 7-1, 7-4
Predefined fields, 1-6
Predefined forms, 1-6
referencing, 2-28, 5-5
Prefix for form, 2-19, 4-6
PREFIX form option, 2-19, 4-44
prev_screen_displaytype function, 15-11
prev_screen_field function, 15-12
PRODUCE INTO form option, 2-19, 4-46
putcursor form option, 2-32, 5-17

9]

Quit request, 2-25, 4-23

R]

range display-type option, 7-19

range field option, 6-20, A-10

Range restrictions, 4-37, 7-19, 10-4
Read field request, 4-23, 4-55
Recompiling, 2-24

redisplay form option, 5-17, A-3, C-4
(REDISPLAY) (REDISPLAY) request, 4-18

~

request, 4-17

redisplayfield field option, 6-20, A-10, C-4

Reference counts, 12-2

Renaming a form, 4-7

replace compile-time statement. See %replace
compile-time statement

REQ FIELD MODE TOGGLES form option, 4-50

REQUIRED_FIELD data-state switch, 2-39, 8-9, 10-4

REQUIRED field option, 2-11, 4-31

. required field option, 6-21, A-10

Required fields, 2-3, 2-11, 2-39, 4-31, 8-9, 10-4
video attributes, 2-22, 4-50

Reserved display types. See Global display types

request, 4-18

right field option, 6-21, A-9

Right graphic set, 3-6, 4-32

RIGHT_JUSTIFY_FIELD_DATA display-type switch,

7-22
ROW SPACING field option, 4-30

8]

s$begin_forms_input subroutine, 14-3
s$control subroutine, 3-16, F-1
s$end_forms_input subroutine, 14-4
request, 4-18
screen_field_position function, 15-13
screen statements, 1-3, 1-6, 16-1
display-type descriptions, 7-2
field descriptions, 6-1
form options, 5-1
(D request, 4-18
(© request, 4-18
© request, 4-18
(® request, 4-18
GHFD (D request, 4-18
EHIFD) © request, 4-18
EHFD) & request, 4-19
(® request, 4-19
Scrolling
between forms, 13-5
on a screen, 4-46, 5-16
within a form, 13-6
Search paths
include library, 2-42
object library, 2-42, C-11
Self-insertion characters, 9-3
Set bell column request, 4-25
SET_INFO_OPCODE (202), F-1

Index

SET_MODES_OPCODE (207), F-1
Set/modify form options request, 2-18, 4-24,
4-43
form, 2-18, 4-43
old-style, B-10
©HF) (1) request, 4-19
EHIF) © request, 4-19
GHIFD & request, 4-19
©HIFD (@ request, 4-19
SHIFT, DCS = field option, 4-32
shift field option, 3-8, 6-22
key, 4-12
@HIF request, 4-19
Show exact form request, 2-17, 2-20, 4-25
Sign characters, 9-5, 9-6
Signaled conditions, 10-1
Simple fields, 4-26
Single-shift characters, 3-7
Sizes of forms, 2-3, E-1
Slant (/), 3-3, 9-2, 9-3, 9-5, 9-6
key, 4-12
Space characters, 2-4, 9-5, 9-6
Special numeric characters, 9-5
Special switches
action, 7-15
option, 5-15
visual, 7-22
Statements, 1-6, 16-1
accept, 16-2, A-1
perform screen delete, 1-7, 3-11, 6-7, 7-3,
16-6
perform screen discard, 1-7, 3-12, 12-2, 16-8
perform screen initialization, 1-7, 2-27,
3-10, 6-2, 16-9
perform screen input, 1-7, 1-8, 2-28, 3-10,
16-12
perform screen inquire, 1-7, 2-38, 3-11,
6-6, 7-7, 7-11, 16-15
perform screen output, 1-7, 3-10, 16-17
perform screen save, 1-7, 3-12, 12-1, 16-19
perform screen update, 1-7, 3-11, 6-6, 16-21
status form option, 2-28, 2-29, 5-18
STATUS) request, 4-19
Storage sizes, E-1
STRINGS form option, 4-51
SUB-FORM SIZE window field option, 4-43

VOS COBOL Forms Management System (R035) X-9

Index

Subforms, 11-1
defining, 11-1
displaying, 11-3
initializing, 11-2
sizes, 4-43, 11-2
Submitting a form, 1-2, 3-13
Subroutines, 14-1
s$begin_forms_input, 14-3
s$control, F-1
s$end_forms_input, 14-4
Supplemental character sets, 3-6, 4-11, 4-32,
6-22, 6-23, 7-15
Symbol table, 4-8

request, 4-19
Temporary display types, 7-5
terminal port, 5-16
Terminal types, D-1
attribute requests, D-5
input requests, D-1
output requests, D-4
Terminals
3270, 4-49, 5-14
function keys, 2-19, 4-45, 5-9
requirements, D-1
type table, D-2
V101, 2-3
V102, 2-3
Testing a form, 2-17, 2-20, 4-25
TIME OUT form option, 4-48
timeout form option, 3-15, 5-18
Toggling video attributes
background text, 2-23, 4-50
required fields, 2-22, 4-50
Trap field, 13-1
TRAP mode switch, A-5
TRAP ON FIELD ENTRY display-type option, 4-40
TRAP_ON_FIELD_ENTRY display-type switch, 3-14,
7-14, 13-2
TRAP ON FIELD EXIT display-type option, 4-40
TRAP_ON_FIELD_EXIT display-type switch, 3-14,
7-13, 13-3
Traps, 2-6, 3-14, 4-40, 4-49, 7-13, 7-14, 13-1
on field entry, 3-14, 4-40, 7-14, 13-2
on field exit, 3-14, 4-40, 7-13, 13-3
vertical scroll, 3-15, 4-49, 5-14, 13-5
TRIM BLANKS display-type option, 4-38

X-10 VOS COBOL Forms Management System (R035)

Type ahead. See Forms input mode

U picture character, 3-3, 9-2
Uncommitted fields, 4-26, 4-27
UNDERLINED mode switch, A-5
UNDERLINED_VISUAL display-type switch, 7-21
Underlining
background text, 2-23, 4-24, 4-50, 4-51
fields, 2-22, 4-38
required fields, 2-22, 4-50
unshift field option, 3-8, 6-23
UNSHIFT, RGS = field option, 4-32
update field option, 6-2, 6-4, 6-6, 6-24
Update fields request, 4-24
update form option, 2-29, 5-19, 6-4
versus into form option, A-4
Update switches, 7-5
action, 7-12
visual, 7-21
User actions, 1-2, 2-5, 3-13
User heap, 3-9

VALIDATE display-type option, 4-37
validate display-type option, 7-19, 10-5
VALIDATE_ERRORS_OFF options switch, 5-14, 13-3
validate field option, 6-24, A-10
VALIDATE form option, 4-48
VALIDATE_ONE_FIELD options switch, 5-15, 13-3
Validating field values, 10-4, 13-3
Validation routines, 7-19, 10-4, 10-5
Validation suite, 10-4
VALUE RESTRICTION display-type option, 2-15, 4-37
Variables. See Fiecld-value variables
Vertical scroll trap, 3-15, 4-49, 5-14, 13-5
VERTICAL SCROLL TRAP form option, 4-49
VERTICAL_SCROLL_TRAP options switch, 3-15,
5-14, 13-5
Video attributes, 2-21
of background text, 2-23, 4-24, 4-50, 4-51
of fields, 2-22, 3-4, 4-38, 7-20
of required fields, 2-22, 4-50
Visual attributes, 2-40, 7-20
blanking, 7-21
blinking, 7-21
intensity, 7-21

j

inversion, 7-21
justification, 7-22
underlined, 7-21
visual display-type option, 7-5, 7-20

WIDE CURSOR form option, 4-49
WIDE_CURSOR options switch, 5-14
window field option, 6-6, 6-25, 11-2
Windows, 2-3, 11-1

defining, 4-22, 4-41, 6-25, 11-1

master, 11-1

referencing, 5-16, 11-2

sizing, 11-2
© request, 4-20
& request, 4-20
(WORD) CHANGE CASH (1) request, 4-20
(WORD) (CHANGE CASE) (O request, 4-20
(WORD) (CHANGE CASE) (1) request, 4-20
Write request, 2-24, 4-25

X picture character, 3-3, 9-2

2]

Z picture character, 3-2, 9-2, 9-3
Zero suppression, 3-2, 9-2

VOS COBOL Forms Management System (R035)

Index

X-11

