
MQSeries Client
for Stratus VOS

Stratus Technologies, Inc.
R450-03A

MQSeries

ii MQSeries for Stratus VOS (R450)

Contents
Contents ...iii

About This Document .. ix

What you need to know.. ix

MQSeries Publications ... ix

Evaluating products .. ix

Planning.. ix

Administration .. x

Application programming ... x

Information about MQSeries on the Internet ... x

Summary of Changes .. xi

Changes for this edition include: .. xi

Overview...13

What is an MQI client ..13

Why use MQI clients ...14

Preparing for VOS Client Installation ..15

Support for MQI Clients...15

Client to server connection..15

Communications..17

Hardware and Software Requirements ...19

VOS Operating System Requirements..19

General Requirements ..19

Network Interface Requirements: ..19

Software and Programming Requirements ...19

 Contents iii

Compilers for MQSeries Client Applications on VOS19

Installing VOS MQSeries Version 5.2 Clients ...21

Steps to installing MQSeries Clients for VOS..21

Building Applications...23

Preparing VOS GNU C and C++ Clients ..23

C Entry Point main() Required ..23

Compiling and binding with VOS GNU C and C++..23

gcc and g++ Command-Line Arguments and Options.....................................24

Archives and Object Libraries ...25

Binding VOS C and GNU C/C++ Code Together...26

VOS Standard C Compared to GNU C ...29

Language Differences ...29

Calling VOS C from GNU C/C++ and Vice-Versa..30

Runtimes and System Calls...30

Frequently Asked Questions ...33

File Formats and gcc ...33

VOS Tasking and gcc ..33

Listing and Error files from gcc ..33

Bindfiles and gcc..34

Relocation Overflow When Binding..34

VOS Debug and GNU Code ..34

More Information..34

Compiling and Binding COBOL Clients...37

MQSeries Environment Variables ...39

MQSeries environment variables ..39

iv MQSeries for Stratus VOS (R450)

Detailed description of MQSeries environment variables and parameters40

Setting MQSERVER ..40

Setting MQCHLTAB and MQCHLLIB...41

Setting MQCCSID..42

Channel exits ..43

Channel exits ..43

Configuration...45

Before you define your MQI channels: ..45

Deciding which network transport type to use ...45

Defining a TCP/IP Connection ..46

On the server ..46

MQSeries Client Security..47

MQSeries Client Security..47

Access Control ..48

Establishing communications..50

What is a channel?..50

Message channel...50

MQI channel ..50

Connecting the MQSeries client and server - channel definitions51

Defining your channels ..52

On the Server ..53

Reference the clntconn definition using MQSERVER54

On the MQI client...54

Reference the clntconn definition using MQCHLTAB and MQCHLLIB............54

On the Client..54

 Contents v

Using the MQI...56

Limiting the maximum message length ...56

Choose client or server coded character set identifier (CCSID)56

Design considerations ...56

MQINQ considerations ..57

Syncpoint considerations ..57

Trigger monitor for the client environment...57

Building Applications for MQI clients...58

MQI client environment ...58

Channel Exits...59

MQI client and queue managers...60

Client connection to queue manager...60

Using MQSERVER ..60

Using the DEFINE CHANNEL command on the server60

Role of the client channel definition file..61

Queue manager name specified..62

Queue manager name prefixed with an asterisk (*)63

Queue manager name is blank or an asterisk (*)...64

Problem Determination ...66

MQI Client fails to connect ..66

Stopping MQI clients ...66

Error messages associated with MQI client activity ..67

MQCONN Returns 2058 Error Code: MQRC_Q_MGR_NAME_ERROR67

MQCONN Returns 2059 Error Code: MQRC_Q_MGR_NOT_AVAILABLE.67

IBM Verification Test Programs ..68

vi MQSeries for Stratus VOS (R450)

Setting Library Paths ...68

add_lib.cm ...68

Compiling and Running the Test Programs...69

set_var.cm ...70

c_compile.cm...70

do_c_get.cm ..70

do_c_put.cm ..70

big_c_put.cm ...71

cobol_compile.cm ..71

do_cobol_get.cm ...72

do_cobol_put.cm ...72

big_cobol_put.cm...72

Notices..74

Index ...76

 vii

viii MQSeries for Stratus VOS (R450)

About This Document
This book primarily contains information about the MQSeries client with
additional information about the server environment.

More information relating to MQSeries clients can be found in the
reference material in the other MQSeries books.

This book is intended for system administrators, for anyone who installs
and configures the product, and for application programmers who write
programs to make use of the Message Queue Interface (MQI).

What you need to know
You should have:

• Experience in installing and configuring the system you use for the
server: This can be AS/400, MQSeries for Compaq (DIGITAL), Open
VMS, OS/2 Warp, OS/390, Tandem NonStop Kernel (NSK), several
UNIX systems,VSE/ESA or Windows NT.

• Experience with any client platforms that you will be using, especially
VOS.

• Understanding of the purpose of the Message Queue Interface (MQI).

• Experience of MQSeries programs in general, or familiarity with the
content of the other MQSeries publications.

MQSeries Publications

Evaluating products

IBM WebSphere MQ: An Introduction to Messaging and Queuing, GC33-0805-01

Planning

 IBM WebSphere MQ Planning Guide, GC33-1349-08

 IBM WebSphere MQ Release Guide Version 5.2, GC34-5761-01

 About This Document ix

Administration
IBM WebSphere MQ System Administration SC33-1873-02

IBM WebSphere MQ Series Clients, GC33-1632-09

IBM WebSphere MQ Series Command Reference, SC33-1369-13

IBM WebSphere MQ Programmable System Management, SC33-1482-08

 IBM WebSphere MQ Messages, GC33-1876-02

Application programming

IBM WebSphere MQ Application Programming Guide, SC33-0807-12

IBM WebSphere MQ Application Programming Reference, SC33-1673-08

IBM WebSphere MQ Application Programming Reference Summary, SX33-6095-07

IBM WebSphere MQ Intercommunication, SC33-1872-05

IBM WebSphere MQ Queue Manager Clusters, SC34-5349-03

IBM WebSphere MQ Using C++, SC33-1877-05

Information about MQSeries on the Internet
http://www-306.ibm.com/software/integration/wmq/

http://www.stratus.com

Almost all of the referenced IBM manuals may be found and read or downloaded
at the IBM URL above.

x MQSeries for Stratus VOS (R450)

Summary of Changes

Original document produced January 1998.

This document has been written specifically for MQSeries Client on VOS.
It is based on MQSeries Client GC33-1632-09 Tenth Edition (2000).

Revision 01 – Updates for MQSeries for VOS V1.1. support.

Revision 02 – Updates for MQSeries for VOS V5.2 support.

Revision 03 – Adds information for VOS Release 15.0 and on compiling
and running IBM verification test programs.

Revision 03A – Adds a note about the requirement for a C main() entry
point in applications.

Changes for this edition include:
• VOS now supports the POSIX standard and MQSeries 5.2 was also

written to conform to that standard. This means that the upgrade to
5.2 requires that the customer must order and install the GNU Tools
product.

• If using TCP/IP as a transport protocol, the VOS Streams TCP/IP
product (S115) must be installed and configured. Neither the STCP
compatibility library nor the OS TCP product is supported by
MQSeries 5.2.

• VOS now has true environment variables, eliminating the emulation
that was used in VOS client 1.1

• VOS client 5.2 now supports the security, read and write exits.

• VOS client 5.2 supports the new MQI request MQCONNX that allows
runtime selection of the channel to be connected.

• Features supported by some MQSeries servers but not by the VOS
client are threads, DCE, Java, and Active Directories.

• In the manual, there are many references to the VOS GNU C (gcc)
compiler. If your VOS release does not include this compiler, you can
use the VOS vcc compiler. The vcc compiler is available in VOS
Release 15.0.

 Summary of Changes xi

Directory File Examples
bin dspmqtrc.pm, runmqtmc, etc.

inc Approximately 100 include files

lib libmqic.a, libmqicb.a, libmqmcs.a, libsnastubs.a, etc.

nls Contains messages

nls>c amq.cat

nls>C>LC_MESSAGES amq.cat

samp Collection of sample programs

errors Contains Log and error files

Directories installed under (master_disk)>system>mqseries2

xii MQSeries for Stratus VOS (R450)

Overview
What is an MQSeries client? What are the benefits of using MQSeries
clients? These questions are answered here.

What is an MQI client
An MQSeries client is a component of the MQSeries product that can be
installed on its own, on a separate machine from the Base product and
Server. You can run an MQSeries application on an MQSeries client and
it can interact, by means of a communications protocol, with one or more
MQSeries servers and can connect to their queue managers.

There are multiple platforms that can be used in one or both roles (the
combinations depend on which MQSeries server product you are using).
A list of the available server platforms should be considered when
planning projects.

MQSeries

Queue Manager

An application that you want to run in the MQSeries client environment
must first be linked with the relevant client library. When the application
issues an MQI call, the MQSeries client code directs the request to a
queue manager where it is processed and from where a reply is sent
back to the MQSeries client.

The link between the application and the MQSeries client code is
established dynamically at runtime, except in the case of DOS, when it is
a static link.

MQSeries
Application

MQI Client

Client machine Server machine

MQI Server

 Overview 13

Why use MQI clients
Using MQSeries clients is an efficient way of implementing MQSeries
messaging and queuing.

You can have an application that uses the MQI running on one machine
and the queue manager running on a different machine, either physical or
virtual. The benefits of doing this are:

• There is no need for a full MQSeries implementation on the client
machine.

• Hardware requirements on the client system are reduced.

• System administration requirements are reduced.

• An MQSeries application running on a client can connect to multiple
queue managers on different systems.

14 MQSeries for Stratus VOS (R450)

Preparing for VOS Client Installation
This topic details the VOS platform support for clients, explains the
communications protocols used, and shows how MQSeries clients fit into
your network.

Hardware and software requirements for the VOS client platform are
given here.

For other client platform hardware and software requirements, see the
MQSeries Clients document GC33-1632.

For your server platform hardware and software requirements, see the
WebSphere MQ v5.2 Quick Beginnings manual for your platform. These
manuals are very specific for their platform . VOS and other client
implementations do not have such individual manuals at this writing.

Support for MQI Clients
In general, any MQSeries server will support your MQI Client for VOS,
subject to coded character set (CCSID) and communications protocol
differences.

Note: Make sure that code conversion from the CCSID of your client is
supported by the server. See the Language support tables in the
MQSeries Application Programming Reference, SC33-1673

Stratus Platform OS CCSID

 Continuum VOS 819, 850

Stratus Platform CCSID Table

Client to server connection
An application running in the MQSeries client environment runs in
synchronous mode, as there must be an active connection between the
client and server machines.

An application issues an MQCONN or the new MQCONNX call to make a
connection. Clients and servers communicate through MQI channels.
When the call succeeds, the MQI channel remains connected until the
application issues a MQDISC call.

 Preparing for VOS Client Installation 15

MQSeries Client and Server Connection Examples

MQSeries Client 1

MQSeries Client 2

MQSeries Client 3

VOS

Win XP

HP-UX

MQSeries
Server

HP-UX

IBM
MQSeries

for MVS/ESA

Connectivity Example 1

MQSeries
Server

HP-UX

MQSeries Client
MQSeries

Server
HP-UX

VOS

Connectivity Example 2

16 MQSeries for Stratus VOS (R450)

Communications

MQSeries clients use MQI channels to communicate with the server. A
channel definition must be created at both the MQSeries client and server
ends of the connection.

An MQSeries application on an MQSeries client can use all the MQI calls
in the same way as when the queue manager is local. MQCONN or
MQCONNX associates the MQSeries application with the selected queue
manager, creating a connection handle. Other calls using that connection
handle are then processed by the connected queue manager. This
MQSeries client communication is synchronous, in contrast to the
communication between queue managers, which is connection and time
independent.

The transmission protocol is specified via the channel definition and does
not affect the application. The VOS client offers TCP/IP.

 Preparing for VOS Client Installation 17

18 MQSeries for Stratus VOS (R450)

Hardware and Software Requirements

VOS Operating System Requirements
MQSeries client for VOS is supported on VOS Release 14.7.0 or greater.

General Requirements

Each machine must be equipped with sufficient hardware, i.e. disk, RAM,
and network interface(s), and prerequisite software to meet the
application and MQSeries requirements.

Network Interface Requirements:

For TCP/IP connectivity:

Ethernet interface K460, K470, K480, or K104

Software and Programming Requirements

For TCP/IP connectivity:

TCP/IP is supplied as part of the operating system

Compilers for MQSeries Client Applications on VOS

The following compilers are supported:
• VOS cc compiler
• VOS gcc compiler
• VOS g++ compiler
• VOS vcc compiler
• VOS cobol compiler

 Hardware and Software Requirements 19

20 MQSeries for Stratus VOS (R450)

Installing VOS MQSeries Version 5.2 Clients

The MQSeries Client software for VOS is installed from media supplied
by Stratus Computer, Inc.

For the MQSeries Client software to operate properly, MQSeries must be
installed and operational on a companion server platform. The MQSeries
server software must be acquired separately from an authorized
supplier of IBM software.

Steps to installing MQSeries Clients for VOS

Before installing the client media, you should create an mqm user_id and
an mqm group name. These are default ids that are expected to exist by
both server and client

Use the installation instructions provided with the product tape to start the
installation process. The installation command install_new_release
copies the programs, objects, libraries, messages, samples, etc. into the
appropriate system directories. The product directories form a tree
whose base is referred to by the term MQROOT, which differs from
platform to platform.

MQROOT for VOS is (master_disk)>system>mqseries2.

An overview of the installed tree is outlined on page 8.

MQSeries2 uses an initialization file called "mqs.ini". The IBM manual
MQSeries Clients (GC33-1632-09) contains more information about the
fields in the mqs.ini file. Stratus supplies a simple mqs.ini file which is
installed into the directory >system>mqseries2>samp. There must be an
mqs.ini file in the directory >system>mqseries2. If there is no mqs.ini file,
attempts to connect to the server will result in an error code of 2195 being
returned on the connect. You can copy the sample mqs.ini from
>system>mqseries2>samp to >system>mqseries2. Additional editing of
the mqs.ini file may be needed for your specific installation. Refer to the
IBM manual for more information.

Among the installed client components will be sample application
program sources. You should build some applications and test them

Configure the communications channel to the server platform, and test by
putting messages on the remote queue and recovering them. Details of
how to do these tasks will follow.

 Installing VOS MQSeries Version 5.2 Clients 21

22 MQSeries for Stratus VOS (R450)

Building Applications

Preparing VOS GNU C and C++ Clients

GNU C and C++ were originally developed on Unix and have been ported to
many Unix and non-Unix platforms. Because the interface retains a Unix look-
and-feel it differs from other VOS compilers. Also, the VOS GNU C compiler is
not as forgiving as the VOS C compiler. VOS GNU C reports legitimate coding
errors in code that compiled without error using VOS Standard C. The following
material will give an overview of the ways to use these new compilers and how
they differ from the VOS Standard C compiler.

C Entry Point main() Required

Note that the starting point for your client application must be a C entry point
called main:

main();

If your application does not contain such an entry point, the POSIX environment
is not initialized correctly, and the client will not work correctly.

Compiling and binding with VOS GNU C and C++

Creating a C program using cc is a two step process: compiling with cc and
binding with bind. Creating a C program with gcc can also be two step process,
but a single command, gcc, does both. To compile, use the –c option with gcc:

 gcc –c filename.c

This produces an object file, filename.o. Notice that the .c extension is given
explicitly on the gcc command line. Unlike cc, the extension is required.

To bind a GNU C program, leave the –c option off:

 Building Applications 23

 gcc filename.o

This produces an executable program, filename.pm.

Compilation and binding can be done in a single gcc invocation:

 gcc filename.c

which creates filename.pm directly from filename.c.

g++ is the GNU C++ compiler program, and its functionality is very close to gcc.
The two main differences are:

• Given filename.c as input, gcc will assume it is a C source file,while
g++ will assume it is a C++ source file;

• g++ automatically includes additional runtime libraries when binding.

Aside from these differences, gcc and g++ are equivalent, and we will use
gcc in all cases, but the descriptions apply to g++ as well.

gcc and g++ Command-Line Arguments and Options
The general syntax of the gcc command line is:

 gcc argument [argument] . . .
Each argument may be a pathname or an option. The pathnames are
input files, and gcc distinguishes types of input files by the filename
extension :

 filename.c is a C (or C++) source file
 filename.C
 filename.cpp are C++ source files
 filename.cxx
 filename.s is an assembler source file

 anything else (including filename.o, filename.a and filename.obj)

 is con sidered an object file.

gcc has literally hundreds of command line options. Here are a few of the
more frequently-used ones:
 -ansi follow ANSI C standard strictly, disallowing extensions.

 -c preprocess, translate and assemble, but don’t bind.

 -Dmacro [=definition]

24 MQSeries for Stratus VOS (R450)

 define a preprocessor macro.

 -E preprocess, but don’t translate, assemble or bind.

-g generate high-level debugging information for
 use with gdb.

 --help display descriptions of command-line options.

 -Idirectory search directory for included files.

 -Ldirectory search directory for libname.a (see below).

 -lname search for file libname.a files (see below).

 -opathname specify output filename.

 -O[n] specify optimization level, where n is 0,1,2 or 3. By

default, gcc does no optimization. –O with no n is
equivalent to –O1. gcc –02 gives about the same level
of optimization as VOS cc –O.

 -S preprocess and translate, but don’t assemble or bind.

 -traditional follow pre-ANSI C standard.

 -Umacro undefine a preprocessor macro.

 -v display subprocess command lines as they are invoked.

 -Wl,argument,argument . . .

 Pass arguments directly to the binder subprocess.

 Archives and Object Libraries

Archives and object libraries are two different mechanisms for
implementing the same functionality: conditionally binding the object
modules a program requires. On VOS, the traditional way of
implementing this is object libraries. An object library is nothing more
than a directory containing .obj files. The add_entry_names command
creates links to map symbol names to object filenames. The binder
searches an object library to resolve external names after it has read all
other object files.
On Unix, this functionality is implemented with archive files. An archive is
created using the ar utility:

 ar cru libname.a name1.o name2.o

This creates an archive file named libname.a and puts two object files,
name1.o name2.o, on it. To list the contents of an archive, use ar again:

ar tv libname.a . . .

 Building Applications 25

To use the archive, just include it on the bind command line or bindfile:

 bind . . . libname.a . . .

The binder will search the archive only at the point it occurs in the
command line. This is different from object libraries, which are searched
after the binder has processed everything else in the command line. So if
an undefined symbol is first referenced after the archive that defines it,
the binder will not load it.

VOS gcc also supports a search mechanism commonly found on Unix
systems: these are the –l and –L options. Given a list of directories
defined with the –L option, gcc will search them for libname.a when –
lname argument is seen. So for example, given the following command
line:

 gcc foo.o –L . ./ . . –lmine

gcc will look for . ./libmine.a, and if it doesn’t find it, . . / . . /libmine.a to
bind in.

The two mechanisms, object libraries and archive files, are quite
separate. .obj files can only go into object libraries, and cannot be put in
archive files. Conversely, .o files can only be put in archive files and
cannot be put in object libraries.

Using this information for building a client pm, the command line would
look as follows:

gcc –o filename.pm filename.c –lmqic –lmqmcs –lsnastubs &+
 –Wl,-retain_all,-map -D_POSIX_C_SOURCE=200112L

Note that for gcc/vcc, all calls to MQxxx functions must be in object files
that are specified in the above command line or in the binder control file.

The following is an example using a binder control file:

!gcc -o &file_name& &obj_file_name& -lmqic –lmqmcs &+
 -lmqicb -lsnastubs -Wl,-control,&short_file&.bind &+
 -Wl,-retain_all -Wl,-map

Binding VOS C and GNU C/C++ Code Together
.o, .a and .obj files can be intermixed on the gcc command line and
bound together into a single program. So, for example:

 gcc –o prog.pm alpha.o beta.a gamma.obj

will bind alpha.o, beta.a and gamma.obj into a single program named
prog.pm.

26 MQSeries for Stratus VOS (R450)

Any program that includes any gcc-generated C object modules must be
bound using gcc. The following sequence of commands:

 cc cat.c

 gcc –c mouse.c

 bind cat.obj mouse.o

is invalid and may produce bind errors. Replacing bind with gcc in the
last command corrects this.

The main () function of any program that includes any g++-generated C++
code must be compiled with gcc or g++. Otherwise, some global
variables may not be correctly initialized.
function main() must be in a C routine, otherwise bind reports the
following error:

bind: Undefined entry point: main, first referenced by
s_start_c_program.

 Building Applications 27

28 MQSeries for Stratus VOS (R450)

VOS Standard C Compared to GNU C
Both VOS Standard C (cc) and GNU C (gcc) comply with the 1989 ANSI
C standard, but there are many parts of the language that the standard
leaves up to the particular implementation. Also each has made
numerous extensions to the language, extensions that the other does not
support. When writing or porting code for compilation with gcc, users
must be aware of these differences.

Language Differences
VOS Standard C and GNU C have the following implementation-specific
differences:

• By default, VOS C aligns structure members using the so-called
shortmap rules. GNU C aligns data using longmap rules. Setting the

-mapping_rules longmap

 option on cc causes it to use the same alignment rules as gcc.

• cc and gcc use different include file search rules. Setting the –u on cc
causes it to use search rules that are compatible with gcc.

• If a bit field is not explicitly declared as signed or unsigned, VOS C
makes it unsigned. GNU C makes it signed.

• GNU C does not recognize any of the #pragma options
(system_programming, longmap, etc.) that VOS C supports, and vice-
versa.

• The maximum length of global identifiers in VOS C is 32 characters.
In GNU C, it’s 32767 characters.

In addition, both VOS cc and GNU gcc have made extensions to the
language that are not supported by the other. Coders must be aware of
which compiler supports what extensions. Refer to Appendix B of The
VOS Standard C Reference Manual (R363) for a list of VOS Standard C
extensions. Except as listed below, none of these extensions is
supported by GNU C. The exceptions are:

• The GNU C preprocessor does not define the symbols
(__CHAR_IS_SIGNED__,__PROTOTYPES__,__VOS__ and the
processor type symbols (__HPPA__ et. al.).

• GNU C also allows the $ character in identifier names.

• GNU C has only limited support for the char_varying data type, while
GNU C++ supports almost all of VOS Standard C’s char_varying
functionality. char_varying is defined in a GNU header file,
<char_varying.h>, which is automatically included by <string.h>.

 VOS Standard C Compared to GNU C 29

• GNU C supports the $longmap storage alignment keyword, but not
$shortmap.

• GNU C also allows types other than int in bit-field declarations.

• GNU C also allows incomplete types.

• Any library function that can be called from VOS Standard C can also
be called from GNU C. VOS C built-in functions are not accessible
from GNU C. So, for example, strcpy_vstr_nstr may be called from
GNU C, but not $substr.

Users should also avoid using GNU extensions to the C Standard that
aren’t supported by VOS Standard C.

Calling VOS C from GNU C/C++ and Vice-Versa
No special provisions are needed for calls from VOS C to GNU C or vice-
versa. Functions may be declared and defined in either language and
called from the other.

In any C++, not just GNU C++, special provisions must be made to call
from C++ to C and vice-versa. To call a C function from C++, it must be
declared with C linkage:

 extern “C” char getenv (const char *);

 pwd = getenv (“CWD”);

Conversely, to make a function written in C++ callable from C, it must
also have C linkage:

 extern “C” char findit (char *searchstring)

 {

 }

As long as the rules for C linkage are followed, a GNU C++ function may
be called from VOS C and vice-versa.

Runtimes and System Calls

VOS C Runtimes
GNU C and C++ on VOS use the native VOS Standard C runtimes.
Therefore, any library functionality available in VOS C is also accessible
from GNU C and C++. This includes all the VOS C extensions to the C
standard. These include:

• The string manipulation functions for char_varying data—
strcpy_vstr_nstr(), etc.

30 MQSeries for Stratus VOS (R450)

• VOS-specific file options (file organization, locking mode, etc.) in file
I/O.

• %v (char_varying) conversion specifier in the formatted I/O.

GNU C and C++ on VOS use an alternate implementation of setjmp () and
longjmp () than VOS C uses by default. If your program will be doing a
longjmp () from GNU C to VOS C code or vice-versa, the VOS C code
needs to use this alternative implementation as well. This is done by
defining the _UX_SETJMP preprocessor symbol when compiling the VOS
code.

POSIX Runtimes
When compiling or binding GNU C or C++ programs, the VOS POSIX
runtime option should be used. When compiling, one of the POSIX
preprocessor symbols (_POSIX_C_SOURCE) should be defined with the
appropriate value. When binding, your object library paths should be set
to contain the following directories in the order given:

 (master_disk)>system>posix_object_library

 (master_disk)>system>c_object_library

 (master_disk)>system>object_library

If your application uses POSIX threads, define the _REENTRANT
preprocessor symbol and set your object library paths to

(master_disk)>system>posix_object_library>pthreads

 (master_disk)>system>posix_object_library

 (master_disk)>system>c_object_library

 (master_disk)>system>object_library

in the order shown.

If your application uses Berkeley Unix extensions to POSIX, define the
_BSD_SOURCE preprocessor symbol, set your include library paths to

 (master_disk)>system>include_library>bsd

 (master_disk)>system>include_library

in the order shown, and your object library paths to

 (master_disk)>system>posix_object_library>bsd

 (master_disk)>system>posix_object_library

 (master_disk)>system>c_object_library

 (master_disk)>system>object_library

in the order shown.

 VOS Standard C Compared to GNU C 31

If your application uses System V extensions to POSIX, define the
_SVID_SOURCE preprocessor symbol and set your include library paths to

 (master_disk)>system>include_library>sysv

 (master_disk)>system>include_library

in the order shown, and your object library paths to

 (master_disk)>system>posix_object_library>sysv

 (master_disk)>system>posix_object_library

 (master_disk)>system>c_object_library

 (master_disk)>system>object_library

in the order shown.

System Calls
On VOS, system calls are made like ordinary subroutine calls, so no
special considerations are needed when calling system subroutines from
GNU C code. For C++ code, system subroutines need to be declared
with C linkage.

Other GNU Tools
In addition to ar, gcc ang g++, the VOS GNU tools package comes with a
large number of other useful program development tools. Many of these
require extensive Unix experience to know how to use well, but here are a
few:

bash Unix-style command processor. Powerful but cryptic

command syntax.

c++filt

In order to support name overloading, g++ “mangles”
external function names. Some tools like gdb will
automatically “demangle” these names, but other tools
(such as the binder) don’t. If the binder reports a strange
undefined symbol name, say boomer__CPCc, pass it to
c++filt:

 c++filt boomer__CPCc

which will display the name and parameters of the function
that’s undefined:

 boomer (char const *) const

gdb Interactive debugger for GNU-generated code. Can also
debug code generated by the VOS compilers.

32 MQSeries for Stratus VOS (R450)

gmake Standard Unix build tool. Again, powerful but cryptic
command syntax.

nm, objdump and size

 Tools for displaying .o files. objdump – disassemble
displays the machine code in a .o file.

All of these options accept a --help option, which should give you enough
information to get you started.

These tools accept either VOS-style greater-than sign (>) and less-than
sign (<) pathname delimiters or the Unix-style slant (/) pathname
delimiter in pathnames. Also, they may be invoked from either the VOS
command prompt or from bash. Since the VOS pathname characters
greater-than sign (>), less-than sign (<) and the number sign (#) have
special meanings in bash, only Unix-style pathnames should be used
there.

Frequently Asked Questions

File Formats and gcc
Question: Can I use a gcc program to create non-Unix-like files, such an indexed
or sequential files?

Answer: Yes. Since VOS gcc uses the VOS Standard C runtimes, all its VOS-
specific extensions to the C runtime are available to gcc code. So, for example,
the “q” (sequential) mode option on the fopen () call can be used in gcc code.

VOS Tasking and gcc
Question: Can I use gcc to compile code for a VOS tasking program?

Answer: Unfortunately, no. The code that generates gcc generates will not
operate correctly in a tasking program. But you can use gcc to create a program
that uses POSIX threads.

Listing and Error files from gcc
Question: How can I get .error and/or .list files out of gcc?

Answer: gcc does not generate a separate .error file. Instead, it reports all
compilation errors to standard error, which is usually your terminal or batch
output file. Likewise, gcc does not generate .list files. But some of the
information that VOS cc puts in a list file is available from gcc. To see the source
with macros expanded, use the –E option. To see the generated assembly-
language code, use the –S option.

 VOS Standard C Compared to GNU C 33

Bindfiles and gcc
Question: Can I use bindfiles (filename.bind) with gcc? If so, how?

Answer: Yes, you can use bindfiles with gcc by having gcc pass them directly
through to the binder with the Wl option:

gcc –Wl,-control,filename.bind –o filename.pm

It’s always a good idea to explicitly set the output program filename using the –o
option, particularly when using bindfiles.

Relocation Overflow When Binding
Question: I get a lot of “relocation overflow” errors when I bind my GNU C
program. I also have some undefined symbol errors.

Answer: First, resolve the undefined symbol errors. The relocation overflow
errors will probably go away after that.

VOS Debug and GNU Code
Question: Can I use VOS debug to debug code generated by gcc?

Answer: Though it’s not impossible, it is rather difficult. The GNU compilers don’t
generate debugging information in the same format as the VOS compilers, so the
VOS debugger can’t read it. In VOS debug, GNU code can only be debugged in
machine mode--there are no symbols, no source files, no statement boundaries.

The reverse situation is much better—you can use gdb to debug code generated
by the VOS compilers. gdb can read the debugging information generated by the
VOS compilers, so you can use symbolic names, source files and statement
numbers there.

More Information
 For more complete documentation, refer to the following:

• Software Release Bulletin: VOS GNU C++ and GNU Tools Release
2.0.2 (R468), available online at http://stratadoc.stratus.com

• VOS GNU C++ User’s Guide (R453), available online at
http:stratadoc.stratus.com

• Using and Porting the GNU Compiler Collection (for gcc-2.95),
shipped with the product in HTML and PostScript form. Also available
at http://gcc.gnu.org

• The C Preprocessor (for GCC version 2), shipped with the product in
HTML and PostScript form. Also available at http://gcc.gnu.org

34 MQSeries for Stratus VOS (R450)

http://stratadoc.stratus.com/
http://gcc.gnu.org/
http://gcc.gnu.org/

• VOS Standard C Reference Manual (R363), available online at
http://stratadoc.stratus.com

• VOS POSIX.1 Reference Guide (R502), available online at
http://stratadoc.stratus.com

 VOS Standard C Compared to GNU C 35

http://stratadoc.stratus.com/

36 MQSeries for Stratus VOS (R450)

Compiling and Binding COBOL Clients
VOS COBOL complies with both Cobol 78 and Cobol 85 standards as well as
implementing several extensions to each. The programmer must produce
source files that will compile error-free in at least one of these compiler
versions. This compilation produces a .obj file. The product distribution
supplies an archive library, libmqicb.a containing other necessary COBOL
routines. It also needs a final reference to libmqmcs.a. For the VOS client
then, the final pm is built by the following command:

gcc –o filename.pm filename.obj
 –L(master_disk)>system>mqseries2>lib –lmqicb -lmqmcs

This would be different on other client platforms.

 Compiling and Binding COBOL Clients 37

38 MQSeries for Stratus VOS (R450)

MQSeries Environment Variables
This chapter describes the MQSeries environment variables required on
VOS that you will need to use with the MQI applications.

While all the environment variables listed below are used by some
implementations, not all are relevant to the MQSeries client
implementation on VOS.

Detailed descriptions are provided for only those environment variables
relevant to the current release of MQSeries for VOS. For a description of
the role of the remaining environment variables on other platforms see
MQSeries Clients GC33-1632.

For the 5.2 version of MQSeries for VOS, a variable is set by the
command:

 ‘export COMMAND=xxx’

when using the GNU shell, and by

 ‘set COMMAND=yyy’

when using the VOS command shell.

In earlier versions of MQSeries the environment variables were defined in
the user application probram as external shared variables, e.g.:

 dcl MQSERVER char(48) external shared;

 MQSERVER = 'CHANNEL1/TCP/134.111.199.164';

In MQSeries 5.2, VOS provides true environment variables set via the
VOS command line, e.g.:

 set MQSERVER=CHANNEL1/TCP/'134.111.199.164'

In order to set the environment variables from a user application program,
you need to use the posix setenv function.

MQSeries environment variables
The MQSeries environment variables on VOS are:

• MQSERVER

• MQCHLLIB

• MQCHLTAB

• MQCCSID

 MQSeries Environment Variables 39

• MQREMOTELU (VOS only)

• MQREMOTETP (VOS only)

The following MQSeries environment variables are not used by the VOS
5.2 client.

• MQSNOAUT (Server OAM only)

• MQSPATH (reserved for use by service personnel)

• MQDATA (DOS, Windows 3.1, and Windows NT only)

• MQNAME (NetBIOS only)

• MQ_USER_ID (used in VOS 1.1)

• MQ_PASSWORD (used in VOS 1.1)

• MQTRACE (DOS and Windows 3.1 only)

• NLSPATH (UNIX only)

• LANG (UNIX only)

Detailed description of MQSeries environment variables and parameters

Setting MQSERVER
The MQSERVER environment variable provides one method for creating
a client-connection channel. It specifies the location of the MQSeries
server and the communication method to be used. The ConnectionName
must be the fully- qualified network name. When it is used to define a
channel a maximum message length of 4 MB is used. If larger messages
are required, the client- connection channel must be defined on the server
using the DEFINE CHANNEL mechanism.
Set the value of MQSERVER as follows:

export MQSERVER =‘[connection]’

where connection represents:

[ChannelName]/[TransportType]/[ConnectionName]

where:

ChannelName must be a channel name as defined on the server.

TransportType must TCP.

ConnectionName is the name of the server machine as defined to the
communications protocol (TransportType).

40 MQSeries for Stratus VOS (R450)

For a TCP/IP connection:
’[ChannelName]/TCP/[host]([port])’

For example,

export MQSERVER=TCPCH1/TCP/mq.stratus.com(1414)’

 or

set MQSERVER=TCPCH1/TCP/mg.stratus.com(1414)’

Setting MQCHLTAB and MQCHLLIB
Set the MQCHLTAB and MQCHLLIB environment variables when using a
common channel definition file among many systems. MQCHLLIB holds
the path to the directory and file containing the client channel definition
table, which is created by the server. This file can be copied across to
the MQSeries client machine. Set the value of MQCHLTAB to the name
of the file. Alternatively MQSeries looks for a default file name of
amqclchl.tab. Copy the AMQCLCHL.TAB file created on the server to a
VOS directory accessible by your .pm programs. On the server, the
AMQCLCHL.TAB file is located in a known location ,depending on the
server platform type. Be sure to transfer the file in binary mode, not
character mode.

Set the value of MQCHLTAB as follows:

export MQCHLTAB=[file name]

 or

set MQCHLTAB=[file name]

where file name represents the AMQCLCHL.TAB file described above.

For example,

export MQCHLTAB=AMQCLCHL.TAB

 or

set MQCHLTAB=AMQCLCHL.TAB

Set the value of MQCHLLIB as follows:

export MQCHLLIB=[path]

 or

set MQCHLLIB=[path]

where path represents the path to where the AMQCLCHL.TAB file is
located.

For example,

 MQSeries Environment Variables 41

export MQCHLLIB=’system/mqseries2/usr/src

 or

set MQCHLLIB=>system>mqseries>usr>src

Setting MQ_USER_ID and MQ_PASSWORD
For the 5.2 version MQ_USER_ID and MQ_PASSWORD do not need to
be set up as environmental variables. The client supplies them
automatically.

Setting MQCCSID
The MQCCSID environment variable represents the coded character set
number used by the client and overides the machines configured CCSID.

Set the value of MQCCID as follows:

export MQCCSID=`[codepage]’

 or

set MQCCSID=`[codepage]’

where codepage represents a codepage identifier supported by the target
server machine.

For Example,

export MQCCSID=819

 or

set MQCCSID=819

42 MQSeries for Stratus VOS (R450)

Channel exits

Channel exit programs are available to the MQSeries client environment
on VOS. There are three exit types::
• Security exit
• Send exit
• Receive.exit

These exits are available at both the client and server end of the channel
unless you are using the MQSERVER environment variable.

The channel security exit can be used to verify that the partner at the other
end of the channel is genuine.

The send and receive exits may operate as a pair to perform tasks such as
data compression and decompression, data encryption and decryption.
You can specify a list of send and receive programs to be run in
succession.

The exact nature and action of these exit programs are the responsibility of
the programmer. The complete details of using these programs are
available in the MQSeries Intercommunication manual (SC33-1872).

To use an exit function on a channel, a field in the MQCD (Channel data
structure) must be set up with the entry name of the function. Most
platforms that support dynamic linking place all of their exit functions in a
dynamic link libraries so that the function loads and executes when
referenced at run-time.

VOS does not support dynamic linking, and so must statically link in all of
the exit functions its application might need. Thus VOS requires an entry
map of all the exit functions that might be called from the channel code.
To generate such a map, the invocation of gcc must include the –Wl,-
retain_all option to pass the request for the map through to the binder. It
may then look up the location of the function using the name in the
MQCD entry at run-time.

 Channel exits 43

44 MQSeries for Stratus VOS (R450)

Configuration

This chapter describes the configuration requirements to support an
MQSeries Client on VOS. It includes how to configure items on a VOS
system and what needs to be configured on the server system where the
queue manager resides.

In MQSeries the logical communication links are called MQI channels.
You set up channel definitions at each end of your link so that your
MQSeries application on the MQSeries client can communicate with the
queue manager on the server. There is a detailed description of how to
do this in the chapter on, "Establishing communications".

Before you define your MQI channels:
Define the connection at each end:

• Configure the connection.

• Record the values of the parameters that you will need for the
channel definitions later on.

• Enable the server to detect incoming network requests from your
MQSeries client. This involves starting a listener.

Deciding which network transport type to use
When you define your MQI channels, each channel definition must
specify a Transmission protocol (Transport Type) attribute. A server is
not restricted to one protocol, so different channel definitions can specify
different protocols.

For MQSeries clients, it may be useful to have alternate MQI channels
using different transmission protocols.

Your choice of transmission protocol also depends on your particular
combination of MQSeries client and server platforms. Check the
MQseries server documentation for details regarding support for a
particular network transport.

A client style connection supports only one type of channel definitions –
the clntconn and srvconn set.

 Configuration 45

Defining a TCP/IP Connection
The steps that you must take to establish a TCP/IP connection for
MQSeries are detailed below.

On the MQSeries client Initialize TCP/IP.

On the server There are three things to do:

1. Decide on a port number.

The default port connection is 1414. Port number 1414 is
assigned by the Internet Assigned Numbers Authority to
MQSeries.

2. Initialize STCP/IP, and record the network address of the
server machine.

3. Configure files (or run a command) to specify the port number
and to run a listener program (non-MVS/ESA). On MVS/ESA,
start a channel initiator and a listener.

On the server
1. Start a listener, or create a listening attachment (non-

MVS/ESA) by configuring the invocable TP RECV for the
executable named amqcrs6a.

Or Start a channel initiator and a listener (MVS/ESA).

46 MQSeries for Stratus VOS (R450)

MQSeries Client Security
You must consider MQSeries client security so that the client applications
do not have unrestricted access to resources on the server.

There are two aspects to security between a client application and its
queue manager server: authentication and access control.

MQSeries Client MQSeries Server

Transport Transport

MCA

MCA

Security Security

 Security Security

1. Channel security exits

The channel security exits for client to server communication can work in
the same way as for server to server communication. A protocol
independent pair of exits provide mutual authentication of both the client
and the server. A full description is given in the MQSeries
Intercommunication manual.

If no security exits are provided, see "Access Control" topic for details.

2. User ID and password passed to a channel security exit

In client to server communication, the channel security exits do not have
to operate as a pair. The exit on the MQSeries client side may be
omitted. In this case the user ID is placed in the channel descriptor

MQ_USER_ID

MQ_PASSWORD

Environment Variables:

1

2

3

 MQSeries Client Security 47

(MQCD) and the security exit can alter it, if required. For the VOS 5.2
client,the user ID that is passed to the server is the currently logged-on
user ID on the client.

The values of the user ID and , if available, the password can be used by
the server security exit to establish the identity of the MQSeries client..

If no security exits are provided, see "Access Control" topic for details.

On the VOS 5.2 client the MQ_USER_ID and MQ_PASSWORD
environment variables are not supported..

Access Control
Access control in MQSeries is based upon the user identifier associated
with the process making MQI calls. For MQSeries clients, the process
that issues the MQI calls is the server Message Channel Agent. The user
identifier used by the server MCA is that contained in the
MCAUserIdentifier field of the MQCD. The contents of MCAUserIdentifier
are determined by the following:

• Any values set by security exits

• The user_ID for VOS and unix clients

• MCAUSER (in server-connection channel definition)

• Default MCAUSER value (from SYSTEM.DEF.SVRCONN)

Depending upon the combination of settings of the above,
MCAUserIdentifier is set to the appropriate value. If security exits are
provided, MCAUserIdentifier may be set by the exit. Otherwise
MCAUserIdentifier is determined as shown in the following table:

MQI Client

MQ_USER_ID

Server channel

MCAUSER

Value Used

Note

Set or Not Set Set MCAUSER

Set Blanks MQ_USER_ID

Set or Not Set Not Set or
Blanks

TCP: User ID from
inted.conf entry

1,2

Notes:

1. If no MCAUSER parameter is set, MCAUSER is set to the user ID
associated with the incoming conversation.

48 MQSeries for Stratus VOS (R450)

 Establishing communications 49

 Establishing communications
This topic begins with a description of what channels are and how they
are defined in an MQSeries client and server environment.

Then it gives the steps you must follow to define your channels.

What is a channel?
A channel is a logical communication link. There are two different
categories of channel in MQSeries (with different channel types within
these categories):

Message channel
This connects two queue managers via message channel agents (MCAs),
and is unidirectional. Its purpose is to transfer messages from one queue
manager to another. A channel definition exists at the sending end of the
link and at the receiving end.

Message Channels:MQSeries
Queue Manager A

MQSeries
Queue Manager B

A to B
MCA MCA

B to A

 System A System B

MQI channel
This connects an MQSeries client to a queue manager on a server
machine, and is established when you issue an MQCONN or MQCONNX
call. It is for the transfer of MQI calls and responses only and it is bi-
directional. A channel definition exists for each end of the link but all
definitions reside on the Queue Manager Server. There are different
ways of creating and using the channel definitions (see "Connecting the
MQSeries client and server - channel definitions").

MQSeries
Application

MQSeries
Queue Manager MQI Channel:

MQI Client MQI Server Agent
channel name

Client Machine Server Machine

An MQI channel can be used to connect a client to a single queue
manager, or to a queue manager that is part of a queue-sharing group.

50 MQSeries for Stratus VOS (R450)

For more information on shared queues see the MQSeries for OS/390
Concepts and Planning Guide and the MQSeries Intercommunication
book.

Channel definitions, of both categories described above, must include a
channel type as well as a channel name. You can choose to use different
channel types according to the application you are designing, but the
same channel name must be used at both ends of each combination.

Message Channel Types

The various types of MQSeries message channel do not apply to the
MQI client and server environment. See the MQSeries Distributed
Queuing Guide for details.

MQI Channel Types

There are two types of MQI channel definitions. Together they define a
bi-directional MQI channel. All channel definitions are created and reside
on the queue manager server platform.

Client Connection: This type is used by the MQI client.

Server Connection: This type is used by the server running the queue
manager with which the MQSeries application, running in a MQI client
environment, will communicate.

Connecting the MQSeries client and server - channel definitions
MQSeries channel definitions must exist and environment variables that
reference the channel definitions must be set to establish
communications. Use either MQSERVER alone or the MQCHLLIB and
MQCHLTAB environment variables. See the MQSeries Environment
Variables section in this document for a more detailed explanation.

The connection between the MQSeries client and the queue manager on
the server is a bi-directional MQI channel that is established when you
issue an MQCONN call. To create any new channel you have to create
two channel definitions, one for each end of the connection, using the
same channel name and compatible channel types. In this case the
channel types are server connection (svrconn) and client connection.

 Establishing communications 51

There are two different ways of referencing MQSeries channel definitions
to enable the client machine MQSeries application access to the channel.

Both methods rely on clntconn and srvconn channel definitions having
been created on the MQSeries server. You create the both the client
connection channel and the server connection channel definitions on the
server machine,

1. Reference the clntconn channel definition on the client machine using
MQSERVER.

This is the easiest method, and it applies to any combination of MQSeries
client and server platforms. Use it when you are getting started on the
system, or to test your set up.

Use the environment variable MQSERVER on the MQSeries client
machine to define a simple client connection channel (see "Using
MQSeries environment variables").

2. Reference the clntconn channel definition on the client machine using
the MQCHLTAB file.

Use this method when you are setting up a number of channels and
MQSeries client machines at once.

Use the environment variables MQCHLLIB and MQCHLTAB on the
MQSeries client machine to access the MQSeries client channel definition
table (see "Using MQSeries environment variables").

Defining your channels
First start the queue manager on the server.

Second, define the channels on your server.

Third, go to the section that describes the method you are going to use:

• "Reference the clntconn definition using MQSERVER"

• "Reference the clntconn definition using MQCHLTAB and
MQCHLLIB"

For platforms other than VOS see the MQSeries Clients document GC33-
1632.

MQI Channel:

Client Machine Server Machine

MQSeries
Application

MQSeries
Queue Manager Client connection

MQI Client

Server connection

MQI Server Agent

52 MQSeries for Stratus VOS (R450)

On the Server
On the server machine use MQSeries commands (MQSC) to define
channels. For more details about the MQSC, refer to the MQSeries
Command Reference.

On the server machine, define a channel with your chosen name and a
channel type of server connection.

 For example:

DEFINE CHANNEL(TCPCH1) CHLTYPE(SVRCONN) TRPTYPE(TCP) +

MCAUSER(‘mqmusr’) DESCR('Server connection to Client') +

REPLACE

This channel definition is kept in the channel definition table associated
with the queue manager running on the server.

Also on the server machine, define a channel with the same name and a
channel type of client connection.

The connection name (CONNAME) must be stated. For TCP/IP this is
the network address of the server machine. It is a good idea to specify
the queue manager name (QMNAME) to which you want your MQSeries
application, running in the client environment, to connect. See "Running
applications on MQSeries clients".

 For example:

DEFINE CHANNEL(TCPCH1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

CONNAME(9.20.4.26) QMNAME(QM2) DESCR('Client connection) +

REPLACE

This channel definition is kept in the client channel definition table
associated with the queue manager running on the server. This file is
called AMQCLCHL.TAB and is in the directory:

 For OS/2 or Windows NT: \mqm\qmgrs\queuemanagername\@ipcc

 For UNIX systems: /mqmtop/qmgrs/QUEUEMANAGERNAME/@ipcc

Note that QUEUEMANAGERNAMEis case sensitive for UNIX systems.

For MVS/ESA systems it is kept with all other object definitions on
pageset zero.

 Establishing communications 53

Reference the clntconn definition using MQSERVER

On the MQI client
When you require a simple channel definition use the single environment
variable MQSERVER (see "Using MQSeries environment variables").

 A simple TCP/IP channel may be defined on VOS as follows:

export MQSERVER= ’[ChannelName]/TCP/[ip addr(port)]’

For example, on VOS:

export MQSERVER= ’TCPCH1/TCP/mqseries.stratus.com(1414)’

On the MQSeries client, all MQCONN requests then attempt to use the
channel you have defined.

Note: The MQSERVER environment variable takes priority over any
client channel definition pointed to by MQCHLLIB and MQCHLTAB.

Reference the clntconn definition using MQCHLTAB and MQCHLLIB

On the Client
On the MQSeries client machine, use the environment variables
MQCHLLIB and MQCHLTAB to enable the MQSeries application to
access the client channel definition table copied to the client machine
from the server (not a server on OS/400 or MVS/ESA, however).

MQCHLLIB Specifies the path to the directory containing the channel
definition file. If not specified, the default used is DefaultPrefix from the
mqs.ini file.

Note: You must copy the channel definition table to the location specified
in the MQCHLLIB environment variable. Remember to copy this file from
the server in binary mode, not character (ASCII) mode.

 MQCHLTAB Specifies the name of the file to use. If not specified, the
default client channel definition table name (AMQCLCHL.TAB) is used.

For example, to set the environment variables on a VOS system in a
BASH shell :

export MQCHLLIB= ‘/system/mqseries2/qmgrs/QUEUEMANAGERNAME/@ipc’

54 MQSeries for Stratus VOS (R450)

export MQCHLTAB=AMQCLCHL.TAB’

The MQCHLLIB and MQCHLTAB variables might be used to point to a
client channel definition table located on a file server accessible from
many MQSeries client machines.

Alternatively, copy the client channel definition table, AMQCLCHL.TAB (a
binary file) onto the client machine and again use MQCHLLIB and
MQCHLTAB to specify the location of client channel definition table.

If you use FTP to copy the file, remember to type bin to set binary
mode; do not use the default ascii mode.

Notes:

1. The MQSERVER environment variable overrides the client channel
definition pointed to by MQCHLLIB and MQCHLTAB.

 Establishing communications 55

Using the MQI
When you write your MQSeries application, you need to be aware of the
differences between running it in an MQSeries client environment and
running it in the full MQSeries queue manager environment.

For information on the MQI programming see:
MQSeries Application Programming Guide, SC33-0807

MQSeries Application Programming Reference, SC33-1673

Limiting the maximum message length
The MAXMSGL parameter in a channel definition can be used to limit the
maximum message length of a message allowed to be transmitted along
a client connection. If any attempt is made by an MQSeries application to
use the MQPUT call or the MQGET call with a message larger than this,
an error code is returned to the application.

The maximum message size that can be specified on any platform is 4
MB (4 194 304 bytes).

Choose client or server coded character set identifier (CCSID)
The data passed across the MQI from the application to the client stub
should be in the local CCSID (coded character set identifier), encoded for
the MQSeries client. If the connected queue manager requires the data
to be converted, this will be done by the client support code.

The client code will assume that the character data crossing the MQI in
the client is in the CCSID configured for that machine. If this CCSID is an
unsupported CCSID or is not the required CCSID, it can be overridden
with the MQCCSID environment variable, for example:

export MQCCSID=819

Note: This does not apply to application data in the message.

Design considerations
There are no particular design considerations peculiar to the VOS
environment.

56 MQSeries for Stratus VOS (R450)

MQINQ considerations
Some values queried using MQINQ will be modified by the client code.

CCSID is set to the client CCSID, not that of the queue manager.

MaxMsgLength is reduced if it is restricted by the channel definition.
This will be the lower of:

• The value defined in the queue definition, or
• The value defined in the channel definition.

Syncpoint considerations
Within MQSeries, one of the roles of the queue manager is syncpoint
coordination within an application. If the application has been linked to a
client stub, then it can issue MQCMIT and MQBACK, but there will be no
syncpoint coordination. Synchronization is limited to MQSeries server
resources only.

Trigger monitor for the client environment
MQSeries client application triggering is supported only in those
environments for which an MQSeries queue manager operates. There is
no trigger monitor that operates within the VOS environment thus
application triggering is not supported by MQSeries client applications
operating in a VOS environment.

Triggering is explained in detail in the MQSeries Application Programming
Guide.

 Using the MQI 57

Building Applications for MQI clients
You can write applications in C language or COBOL.

You must link it to the relevant client library file.

This topic lists points to consider when running an application in an
MQSeries client environment and describes how to compile and link your
application code with the MQSeries client code.

MQI client environment
You can run an MQSeries application in both a full MQSeries
environment and in an MQSeries client environment without changing
your code, providing:

• It does not need to connect to more than one queue manager
concurrently

• The queue manager name is not prefixed with an asterisk (*) on
an MQCONN call

Note: The libraries you use at link-edit time determine the environment
your application must run in.

When working in the MQSeries client environment, remember:
• Each application running in the MQSeries client environment has

its own connections to servers. It will have one connection to
every server it requires, a connection being established with each
MQCONN call the application issues.

• An application sends and gets messages synchronously.
• All data conversion is done by the server, but see also the topic

concerning "MQCCSID".
• Triggering in the MQSeries client environment is supported in

UNIX systems, OS/2, Windows 3.1, and Windows NT
environments only. The trigger monitor and the application to be
started must be on the same system.

• Messages sent by MQSeries applications running on MQSeries
clients contribute to triggering in exactly the same way as any
other messages, and they can be used to trigger programs on the
server.

58 MQSeries for Stratus VOS (R450)

Channel Exits
The channel exits available to the VOS MQSeries client environment are:

• Send exit
• Receive exit
• Security exit

These exits are available at both the client and server ends of the
channel.

Remember, exits are not available to your application if you are using the
MQSERVER environment variable. Exits are explained in the MQSeries
Distributed Queuing Guide.

The send and receive exit work together. There are several possible
ways in which you may choose to use them:

• Segmenting and reassembling a message
• Compressing and decompressing data in a message
• Encrypting and decrypting user data
• Journaling each message sent and received

You can use the security exit to ensure that the MQSeries client and
server machines are correctly identified, as well as to control access to
each machine.

 Building Applications for MQI clients 59

 MQI client and queue managers

This topic explains the various ways in which an application running in an
MQSeries client environment can connect to a queue manager. It covers
the relationship of the MQSERVER environment variable provided by
MQSeries, and the role of the client channel definition file created by
MQSeries.

Client connection to queue manager
When an application running in an MQSeries client environment issues
an MQCONN call, the client code identifies how it is to make the
connection:

1. If the MQSERVER environment variable is set, the channel it defines
will be used.

2. If the MQCHLLIB and MQCHLTAB environment variables are set, the
client channel definition table will be used.

Notes:
1. If the client code fails to find any of these, the MQCONN call will fail.

2. The channel name established from either the first segment of the
MQSERVER variable or from the client channel definition table must
match the SVRCONN channel name defined on the server for the
MQCONN call to succeed.

Using MQSERVER
If you use the MQSERVER environment variable to define the channel
between your MQSeries client machine and a server machine, this is the
only channel available to your application and no reference is made to the
client channel definition table. In this situation, the 'listening' program that
you have running on the server machine determines the queue manager
that your application will connect. It will be the same queue manager to
which the listener program is connected.

If the MQCONN request specifies a queue manager other than the one
the listener is connected to, the MQCONN request fails with return code
MQRC_Q_MGR_NAME_ERROR.

Using the DEFINE CHANNEL command on the server
If you use the MQSC DEFINE CHANNEL command, the details you
provide are placed in the client channel definition table. It is this file that
the client code accesses, in channel name sequence, to determine the
channel an application will use.

60 MQSeries for Stratus VOS (R450)

The contents of the Name parameter of the MQCONN call determines
what processing will be carried out at the server end.

Role of the client channel definition file
The client channel definition table is created when you define the first of
the connections between an MQSeries client and a server. See
"Connecting the MQSeries client and server - channel definitions" for
more information on what you have to define and how you do it.

Note: The same file may be used by more than one MQSeries client.
You change the name and location of this file using the MQCHLLIB and
MQCHLTAB MQSeries environment variables. See "Using MQSeries
environment variables” for details of these and all the other MQSeries
environment variables.

You may choose to define connections to more than one server machine
because:

• You need a backup system.
• You want to be able to move your queue managers without

changing any application code.
• You need to access multiple queue managers and this requires

the least resource.
In each of the following examples, the network is the same; there is a
connection defined to two servers from the same MQSeries client. There
are two queue managers running on each server machine, one named
SALES and the other named INVOICE.

Runmqlsr -m INVOICE
(listening program)

The definition for the channels in these examples are:

MQCONN(SALES)

MQCONN(SALES)
(call from MQI client)

alpha
Server 1
(9.20.4.26)

MQCONN(SALES)

Runmqlsr -m INVOICE
(listening program)

Note: Server1 and Server2
may or may not be on the
same machine

beta

(call from MQI client)

Server 2
(9.20.5.26)

 MQI client and queue managers 61

 DESCR('Server connection to MQSeries client')

 DEFINE CHANNEL(APLHA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

 QMNAME(SALES)

 DEFINE CHANNEL(BETA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +

DESCR('Server connection to MQSeries client')

 DEFINE CHANNEL(BETA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
 CONNAME(9.20.5.26) DESCR('MQSeries client connection to server 2') +

I
In each example the MQCONN call is different. Here is an explanation of
what would happen in general terms followed by what happens in the
specific example presented.

DEFINE CHANNEL(ALPHA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +

CONNAME(9.20.4.26) DESCR('MQSeries client connection to server 1') +

QMNAME(SALES)

Queue manager name specified
The application requires a connection to a specific queue manager, with
the name of SALES, as seen in the MQI call:

MQCONN (SALES)

In general terms, MQSeries will search the client channel definition table,
in channel name order, looking in the queue manager field, for a SALES
entry.

If a match is found:

1. The transmission protocol and the associated connection name are
extracted.

2. An attempt is made to start the channel to the machine (identified by
the connection name). If this is successful, the application will continue.
It requires:

• A listener to be running on the server
• The listener to be connected to the same queue manager as the

one to which the client wishes to connect.
3. If the attempt to start the channel fails and there is more than one
entry in the client channel definition table (in this example there are two
entries), the file is searched for a further match. If a match is found,
processing continues at step 1.

4. If no match is found, or the channel fails to start, the application is
unable to connect. An appropriate reason code and completion code are
returned in the MQCONN call. The application must take action based on
the reason and completion codes returned.

62 MQSeries for Stratus VOS (R450)

Following these rules, this is exactly what will happen in this instance:

1. The client channel definition table is scanned for the entry for the
channel name ALPHA.

2. The queue manager name in the definition is SALES, matching with
the application MQCONN call.

3. An attempt to start the channel is made - this is successful.

4. A check to see that a listener is running shows that there is one
running, but it is not connected to the SALES queue manager.

5. The client channel definition table is scanned again, this time for the
entry for the channel name BETA.

6. The queue manager name in the definition is SALES, matching with
the application MQCONN call.

7. An attempt to start the channel is made - this is successful.

8. A check to see that a listener is running, shows that there is one
running, and it is connected to the SALES queue manager. The MQI call
sent by the application in the MQSeries client environment has been
processed successfully by the server 2 machine and the application will
continue its processing.

Queue manager name prefixed with an asterisk (*)
In this example the application is not concerned about to which queue
manager it connects; the application issues:

 MQCONN (*SALES)

MQSeries will search the client channel definition table, in channel name
order, looking in the queue manager field, for a SALES entry.

If a match is found:

1. The transmission protocol and the associated connection name are
extracted.

2. An attempt is made to start the channel to the machine (identified by
the connection name). If this is successful, the application will continue.
It requires:

• A listener to be running on the server

3. If the attempt to start the channel fails and there is more than one
entry in the client channel definition table (in this example there are two
entries), the file is searched for a further match. If a match is found,
processing continues at step 1.

 MQI client and queue managers 63

4. If no match is found, or there are no more entries in the client channel
definition table and the channel has failed to start, the application is
unable to connect. An appropriate reason code and completion code are
returned in the MQCONN call. The application must take action based on
the reason and completion codes returned.

Following these rules, this is exactly what will happen in this instance:

1. The client channel definition table is scanned for the entry for the
channel name ALPHA.

2. The queue manager name in the definition is SALES, matching with
the application MQCONN call.

3. An attempt to start the channel is made - this is successful.

4. A check to see that a listener is running, shows that there is one
running. It is not connected to the SALES queue manager, but because
the MQI call parameter has an asterisk (*) in front of it, no check is made.
The application will be connected to the INVOICE queue manager and
will continue processing.

Queue manager name is blank or an asterisk (*)
In this example the application is not concerned about to which queue
manager it connects. This is treated in the same way as the previous
example.

Note: If this application was running in an environment other than an
MQSeries client, and the name is blank, it would be attempting to connect
to the default queue manager. This is not the case when it is run from a
client environment, as there is no concept of a default queue manager.
The application issues:

 MQCONN ("")

 MQCONN (*)

MQSeries will search the client channel definition table, in channel name
order, looking in the queue manager field, for a blank entry.

If a match is found:

1. The transmission protocol and the associated connection name are
extracted.

2. An attempt is made to start the channel to the machine identified by
the connection name. If this is successful, the application will continue. It
requires:

• A listener to be running on the server

3. If the attempt to start the channel fails and there is more than one
entry in the client channel definition table (in this example there are two

64 MQSeries for Stratus VOS (R450)

entries), the file is searched for a further match. If a match is found,
processing continues at step 1.

4. If no match is found, or there are no more entries in the client channel
definition table and the channel has failed to start, the application is
unable to continue processing and needs to output a suitable message.

Following these rules, this is exactly what will happen in this instance:

1. The client channel definition table is scanned for the entry for the
channel name ALPHA.

2. The queue manager name in the definition is SALES. This does not
match the MQCONN call parameter, which requires the queue manager
name to be blank.

3. Again the client channel definition table is scanned. The next entry is
for the channel name BETA.

4. The queue manager name in the definition is SALES. Once again,
this does not match the MQCONN call parameter, which requires the
queue manager name to be blank.

5. There are no further entries in the client channel definition table, the
application cannot continue and will be returned error number 2059 -
Queue Manager unavailable.

 MQI client and queue managers 65

Problem Determination
Here the return codes, error logs, and error messages are discussed.
Some common problems when running applications in the MQSeries
client environment are examined.

An application running in the MQSeries client environment receives
MQRC_* reason codes in the same way as MQSeries server
applications. However, there are additional reason codes for error
conditions associated with MQSeries clients. For example:

• Remote machine not responding
• Communications line error
• Invalid machine address

The most common time for errors to occur is when an application issues
an MQCONN and receives the response
MQRC_Q_MQR_NOT_AVAILABLE. Look in the client error log
AMQERR01.LOG for a message indicating the cause of the failure.
There may also be errors logged at the server, depending on the nature
of the failure. Also, check that the application on the MQSeries client is
linked with the correct library file.

MQI Client fails to connect
When the MQSeries client issues an MQCONN call to a server, socket
and port information (TCP/IP) is exchanged between the MQSeries client
and the server. For any exchange of information to take place, there
must be a program on the server machine whose role is to 'listen' on the
communications line for any activity. If there is no program doing this, or
there is one but it has problems of its own, the MQCONN fails and the
MQSeries application is returned the relevant reason code.

If the connection is successful, MQSeries protocol messages are then
exchanged and further checking takes place. It is not until all these
checks are successful that the MQCONN call will succeed.

During the MQSeries protocol checking phase, some aspects are
negotiated while others cause the connection to fail.

For full details of the MQRC_* reason codes see the MQSeries
Application Programming Reference.

Stopping MQI clients
Even though an MQSeries client has stopped it is still possible for the
process at the server to be holding its queues open. The queues will be
closed when the communications layer detects that the partner has gone.

66 MQSeries for Stratus VOS (R450)

Error messages associated with MQI client activity
When an error occurs with an MQSeries client system, error messages
are put into the error files associated with the server, if possible. If the
error cannot be placed there, the MQSeries client code attempts to place
the error message in an error log in the root directory of the MQSeries
client machine.

MQCONN Returns 2058 Error Code: MQRC_Q_MGR_NAME_ERROR
If you are using the MQCHLIB and MQCHLTAB approach to client
channel definitions, you may have performed the file transfer (FTP) in
ASCII mode. Make sure you transfer the MQCHLTAB file in binary mode.

MQCONN Returns 2059 Error Code: MQRC_Q_MGR_NOT_AVAILABLE
Check the connection name definitions. If using TCP/IP, can you ping
the connection name specified?

Check the channel definitions on the server side. Make sure the clntconn
definition includes a valid queue manager name.

 Problem Determination 67

IBM Verification Test Programs
This section provides sample command macros for setting up and
running IBM verification tests.

Setting Library Paths
The following command macro sets the library paths required to compile
and run the tests.

add_lib.cm

&echo command_lines
&
& Set up library paths to find gcc and MQSeries 5.2
& components.
&
add_library_path object &+
 (master_disk)>system>object_library &+
 -after '(current_dir)'
add_library_path object &+
 (master_disk)>system>c_object_library &+
 -after '(current_dir)'
&
add_library_path object &+
 (master_disk)>system>posix_object_library &+
-after '(current_dir)'
add_library_path object &+
 (master_disk)>system>posix_object_library>bsd &+
 -after '(current_dir)'
&
add_library_path object &+
 (master_disk)>system>stcp>object_library>sbsd &+
 -after '(current_dir)'
add_library_path object &+
 (master_disk)>system>stcp>object_library>socket &+
 -after '(current_dir)'
add_library_path object &+
 (master_disk)>system>stcp>object_library>net &+
 -after '(current_dir)'
add_library_path object &+
 (master_disk)>system>stcp>object_library>common &+
 -after '(current_dir)'
add_library_path object &+
 (master_disk)>system>stcp>object_library -after
'(current_dir)'
&
add_library_path command &+
 (master_disk)>system>gnu_library>bin &+
 -after '(current_dir)'
&
add_library_path command &+
 (master_disk)>system>mqseries2>bin -after '(current_dir)'
add_library_path object &+
 (master_disk)>system>mqseries2>lib -after '(current_dir)'

68 MQSeries for Stratus VOS (R450)

add_library_path include &+
 (master_disk)>system>mqseries2>inc -after '(current_dir)'
&
list_library_path

After you have run add_lib.cm, the output of the list_library_paths
command should appear as follows:
include library directories:
 (current_dir)
 %es#m30>system>mqseries2>inc
 %es#m30>system>include_library
 %es#m30>system>stcp>include_library

object library directories:
 (current_dir)
 %es#m30>system>mqseries2>lib
 %es#m30>system>stcp>object_library
 %es#m30>system>stcp>object_library>common
 %es#m30>system>stcp>object_library>net
 %es#m30>system>stcp>object_library>socket
 %es#m30>system>stcp>object_library>sbsd
 %es#m30>system>posix_object_library>bsd
 %es#m30>system>posix_object_library
 %es#m30>system>c_object_library
 %es#m30>system>object_library

command library directories:
 (current_dir)
 %es#m30>system>mqseries2>bin
 %es#m30>system>gnu_library>bin
 %es#m30>system>command_library
 %es#m30>system>tools_library
 %es#m30>system>applications_library
 %es#m30>system>stcp>command_library

message library directories:
 (referencing_dir)>(language_name)
 (referencing_dir)
 %es#m30>system>message_library>(language_name)
 %es#m30>system>message_library>us_english

Compiling and Running the Test Programs
You can use the sample command macros in this section to compile and
run two test programs, amqsget0 and amqsput0, from Chapter 6 of the
manual IBM MQSeries Clients (GC33-1632-09), “Verifying the
Installation.” See that manual for more details and instructions on running
the progams.

 IBM Verification Test Programs 69

set_var.cm
This command macro sets up the MQSeries environment variables

as described on page 39.

&echo command_lines
&
set MQCCSID=819
&
set MQSERVER=CHANNEL1/TCP/'134.111.199.164'
&

 c_compile.cm
This command macro compiles a C program. You can use it to compile
amqsget0 and amqsput0.

&begin_parameters
 target program:string, required
 debug switch(-debug)
&end_parameters
&echo command_lines
&
&if &debug&
&then vcc -g -o &target&.pm &target&.c -lmqic -lmqmcs &+
 -lmqicb -lsnastubs -Wl,-retain_all,-map &+
 -D_POSIX_C_SOURCE=200112L

&else vcc -o &target&.pm &target&.c -lmqic -lmqmcs &+
 -lmqicb -lsnastubs -Wl,-retain_all,-map &+
 -D_POSIX_C_SOURCE=200112L

do_c_get.cm

display_line Displays data previously entered with &+
 do_c_put.cm.
&echo command_lines
amqsget0 QUEUE1 queue.manager.1

do_c_put.cm

display_line Type some lines of data followed by a &+
 blank line.
&echo command_lines
amqsput0 QUEUE1 queue.manager.1

70 MQSeries for Stratus VOS (R450)

big_c_put.cm
This command macro sends data to the server queue.

&echo command_lines input_lines
&attach_input
amqsput0 QUEUE1 queue.manager.1
Test Line 0001 With some data
Test Line 0002 With some data
Test Line 0003 With some data
Test Line 0006 With some data
Test Line 0007 With some data
Test Line 0008 With some data
Test Line 0009 With some data
Test Line 0010 With some data
Test Line 0011 With some data
Test Line 0012 With some data
Test Line 0013 With some data
Test Line 0014 With some data
Test Line 0015 With some data
Test Line 0016 With some data
Test Line 0017 With some data
Test Line 0018 With some data
Test Line 0019 With some data
Test Line 0020 With some data
Test Line 0021 With some data
Test Line 0022 With some data
Test Line 0023 With some data
Test Line 0024 With some data
Test Line 0025 With some data
Test Line 0026 With some data
Test Line 0027 With some data
Test Line 0028 With some data
Test Line 0029 With some data

(The line after Test Line 0029 With some data must be blank.)

 cobol_compile.cm

This command macro compiles a COBOL program. You can use it to
compile amqsget0 and amqsput0.

&begin_parameters
 target program:string, required
&end_parameters
&echo command_lines
&
cobol &target&
&
vcc -o &target&.pm &target&.obj &+
 -L(master_disk)>system>mqseries2>lib -lmqicb -lmqmcs &+
 -lsnastubs -Wl,-retain_all,-map
&

 IBM Verification Test Programs 71

do_cobol_get.cm

display_line Displays data from previously entered &+
 with do_cobol_put.cm.
&echo command_lines input_lines
&attach_input
&
& amq0get0 QUEUE1 queue.manager.1
amq0get0
QUEUE1

do_cobol_put.cm

display_line Type some lines of data followed by a &+
 blank line.
&echo command_lines input_lines
&attach_input
& amq0put0 QUEUE1 queue.manager.1
amq0put0
QUEUE1

big_cobol_put.cm
This command macro sends data to the server queue.

&echo command_lines input_lines
&attach_input
& amq0put0 QUEUE1 queue.manager.1
amq0put0
QUEUE1
Test Line 0001 With some data
Test Line 0002 With some data
Test Line 0003 With some data
Test Line 0006 With some data
Test Line 0007 With some data
Test Line 0008 With some data
Test Line 0009 With some data
Test Line 0010 With some data
Test Line 0011 With some data
Test Line 0012 With some data
Test Line 0013 With some data
Test Line 0014 With some data
Test Line 0015 With some data
Test Line 0016 With some data
Test Line 0017 With some data
Test Line 0018 With some data
Test Line 0019 With some data
Test Line 0020 With some data
Test Line 0021 With some data
Test Line 0022 With some data
Test Line 0023 With some data
Test Line 0024 With some data
Test Line 0025 With some data

72 MQSeries for Stratus VOS (R450)

Test Line 0026 With some data
Test Line 0027 With some data
Test Line 0028 With some data
Test Line 0029 With some data

(The line after Test Line 0029 With some data must be blank.)

 IBM Verification Test Programs 73

Notices
The following paragraph does not apply to any country where such
provisions are inconsistent with local law:

STRATUS TECHNOLOGIES, INC. and INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDE THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore this
statement may not apply to you.

References in this publication to IBM products, programs, or services do
not imply that IBM intends to make these available in all countries in
which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program,
or service may be used. Any functionally equivalent product, program, or
service that does not infringe any of IBM's intellectual property rights may
be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged,
should contact Laboratory Counsel, Mail Point 151, IBM United Kingdom
Laboratories, Hursley Park, Winchester, Hampshire SO21 2JN, England.
Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in
writing, to: The IBM Director of Licensing, IBM Corporation, 500
Columbus Avenue, Thornwood, New York 10594, U.S.A.

The Customer is responsible for obtaining and complying with
licensing requirements for any MQSeries server product which the
MQSeries Client for VOS is connected to, including having to obtain
an MQSeries Server Extended Authorization from IBM or a
Distributor authorized by IBM.

74 MQSeries for Stratus VOS (R450)

 Index 75

Index
Access Control, 48
AMQCLCHL.TAB, 41, 54
Archives, 25
authentication, 47
C language, 59
CCSID, 15, 57
CCSID Table, 15
channel definition, 17
channel definition table, 61
channel definitions, 45, 52, 53
channel exits, 60
Channel exits, 43
Channel Exits, 60
Channel security exits, 47
channels, 51
Client Connection, 52
client environment, 59
Client Security, 47
clntconn, 55
COBOL, 59
COBOL Clients, 37
coded character set identifier, 57
common problems, 67
compile, 59
Configuration, 45
CONNAME, 54
connect to a queue manager, 61
data conversion, 59
default port connection, 46
environment variables, 39
Environment Variables, 39
error logs, 67
error messages, 67
exits, 47
FTP, 56
GNU Tools, xi
install_new_release, 21
installing, 21
invocable TP, 46
LANG, 40
libraries, 59
link, 59
listener, 46
Machine Requirements, 19
maximum message length, 57
maximum message size, 57
MAXMSGL, 57
MaxMsgLength, 58
MCAUSER, 48
MCAUserIdentifier, 48
Message channel, 51
Message Channel Types, 52

MQ_USER_ID, 40, 42, 48
MQBACK, 58
MQCCSID, 39
MQCD, 43, 48
MQCHLLIB, 39, 41, 52, 55, 61
MQCHLTAB, 41, 52, 55, 61
MQCMIT, 58
MQCONN, 15, 17, 52, 55, 59, 61, 62, 63, 64, 67
MQCONN (""), 65
MQCONN (*), 65
MQCONNX, xi, 17
MQDATA, 40
MQDISC, 15
MQGET, 57
MQI channel, 51
MQI Channel Types, 52
MQI programming, 57
MQINQ, 58
mqm group, 21
mqm user_id, 21
MQNAME, 40
MQPUT, 57
MQRC_* reason codes, 67
MQRC_Q_MGR_NAME_ERROR, 61, 68
MQRC_Q_MGR_NOT_AVAILABLE, 68
MQRC_Q_MQR_NOT_AVAILABLE, 67
MQREMOTELU, 40, 46
MQREMOTETP, 40, 46
MQROOT, 21
mqs.ini file, 55
MQSC, 54
MQSC DEFINE CHANNEL, 61
MQSERVER, 39, 43, 52, 55, 60, 61
MQSNOAUT, 40
MQSPATH, 40
MQTRACE, 40
name is blank or an asterisk, 65
name prefixed with an asterisk, 64
NLSPATH, 40
Object Libraries, 25
password, 47
platforms, 13
platforms other than VOS, 53
POSIX Runtimes, 31
POSIX standard, xi
Preparing VOS GNU C and C++ Clients, 23
protocols, 15
QMNAME, 54
QUEUEMANAGERNAME, 54
Receive exit, 43, 60
return codes, 67
Security exit, 43, 60

76 MQSeries for Stratus VOS (R450)

Send exit, 43, 60
Server Connection, 52
Setting MQCCSID, 42
Setting MQSERVER, 40
software requirements, 15
SVRCONN, 61
synchronous mode, 15
syncpoint, 58

TCP/IP, xi, 17, 19, 45
trigger monitor, 58
triggering, 58
Triggering, 59
User ID, 47
VOS C Runtimes, 30
VOS Client Installation, 15
VOS: hardware and software requirements, 19

 Index 77

	Contents
	About This Document
	What you need to know
	MQSeries Publications
	Evaluating products
	Planning
	Administration
	Application programming

	Information about MQSeries on the Internet

	Summary of Changes
	Changes for this edition include:

	Overview
	What is an MQI client
	Why use MQI clients

	Preparing for VOS Client Installation
	Support for MQI Clients
	Client to server connection
	Communications

	Hardware and Software Requirements
	VOS Operating System Requirements
	General Requirements
	Network Interface Requirements:
	Software and Programming Requirements
	Compilers for MQSeries Client Applications on VOS

	Installing VOS MQSeries Version 5.2 Clients
	Steps to installing MQSeries Clients for VOS

	Building Applications
	Preparing VOS GNU C and C++ Clients
	C Entry Point main() Required
	Compiling and binding with VOS GNU C and C++
	gcc and g++ Command-Line Arguments and Options
	Archives and Object Libraries
	Archives and object libraries are two different mechanisms f
	Binding VOS C and GNU C/C++ Code Together

	VOS Standard C Compared to GNU C
	Language Differences
	Calling VOS C from GNU C/C++ and Vice-Versa
	Runtimes and System Calls
	VOS C Runtimes
	POSIX Runtimes
	System Calls
	Other GNU Tools

	Frequently Asked Questions
	File Formats and gcc
	VOS Tasking and gcc
	Listing and Error files from gcc
	Bindfiles and gcc
	Relocation Overflow When Binding
	VOS Debug and GNU Code
	More Information

	Compiling and Binding COBOL Clients
	MQSeries Environment Variables
	MQSeries environment variables
	Detailed description of MQSeries environment variables and p
	Setting MQSERVER
	Setting MQCHLTAB and MQCHLLIB
	Setting MQ_USER_ID and MQ_PASSWORD

	Setting MQCCSID

	Channel exits
	Configuration
	Before you define your MQI channels:
	Deciding which network transport type to use
	Defining a TCP/IP Connection
	On the server

	MQSeries Client Security
	Access Control

	Establishing communications
	What is a channel?
	Message channel
	MQI channel

	Connecting the MQSeries client and server - channel definiti
	Defining your channels
	On the Server

	Reference the clntconn definition using MQSERVER
	On the MQI client

	Reference the clntconn definition using MQCHLTAB and MQCHLLI
	On the Client

	Using the MQI
	Limiting the maximum message length
	Choose client or server coded character set identifier (CCSI
	Design considerations
	MQINQ considerations
	Syncpoint considerations
	Trigger monitor for the client environment

	Building Applications for MQI clients
	MQI client environment
	Channel Exits

	MQI client and queue managers
	Client connection to queue manager
	Using MQSERVER
	Using the DEFINE CHANNEL command on the server
	Role of the client channel definition file
	Queue manager name specified
	Queue manager name prefixed with an asterisk (*)
	Queue manager name is blank or an asterisk (*)

	Problem Determination
	MQI Client fails to connect
	Stopping MQI clients
	Error messages associated with MQI client activity
	MQCONN Returns 2058 Error Code: MQRC_Q_MGR_NAME_ERROR
	MQCONN Returns 2059 Error Code: MQRC_Q_MGR_NOT_AVAILABLE

	IBM Verification Test Programs
	Setting Library Paths
	add_lib.cm

	Compiling and Running the Test Programs
	set_var.cm
	c_compile.cm
	do_c_get.cm
	do_c_put.cm
	big_c_put.cm
	cobol_compile.cm
	do_cobol_get.cm
	do_cobol_put.cm
	big_cobol_put.cm

	Notices
	Index

