Stratus® ftServer® 2600, 4500, and 6300 Systems:
Site Planning Guide
Notice

The information contained in this document is subject to change without notice.

UNLESS EXPRESSLY SET FORTH IN A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED REPRESENTATIVE OF STRATUS TECHNOLOGIES, STRATUS MAKES NO WARRANTY OR REPRESENTATION OF ANY KIND WITH RESPECT TO THE INFORMATION CONTAINED HEREIN, INCLUDING WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PURPOSE. Stratus Technologies assumes no responsibility or obligation of any kind for any errors contained herein or in connection with the furnishing, performance, or use of this document.

Software described in Stratus documents (a) is the property of Stratus Technologies Bermuda, Ltd. or the third party, (b) is furnished only under license, and (c) may be copied or used only as expressly permitted under the terms of the license.

Stratus documentation describes all supported features of the user interfaces and the application programming interfaces (API) developed by Stratus. Any undocumented features of these interfaces are intended solely for use by Stratus personnel and are subject to change without warning.

This document is protected by copyright. All rights are reserved. No part of this document may be copied, reproduced, or translated, either mechanically or electronically, without the prior written consent of Stratus Technologies. Stratus, the Stratus logo, ftServer, and the ftServer logo are registered trademarks of Stratus Technologies Bermuda, Ltd.

The Stratus Technologies logo, the Stratus 24 x 7 logo, ActiveService, ftScalable, and Active Upgrade are trademarks of Stratus Technologies Bermuda, Ltd.

The registered trademark Linux is used pursuant to a sublicense from the Linux Mark Institute, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis. FLEXlm is a registered trademark of Macrovision Corporation.

VMware, vSphere, ESX, and VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions.

All other trademarks are the property of their respective owners.

Manual Name: Stratus ftServer 2600, 4500, and 6300 Systems: Site Planning Guide

Part Number: R638
Revision Number: 02
ftServer System Software for the Linux Operating System: Release 7.0.4
ftServer System Software for VMware vSphere: Release 3.0.0
Publication Date: February 2010

Stratus Technologies, Inc.
111 Powdermill Road
Maynard, Massachusetts 01754-3409

© 2010 Stratus Technologies Bermuda, Ltd. All rights reserved.
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Site Planning for ftServer 2600, 4500, and 6300 Systems</td>
<td>1-1</td>
</tr>
<tr>
<td>Site Planning Overview</td>
<td>1-1</td>
</tr>
<tr>
<td>Site Planning for Fault-Tolerant Systems</td>
<td>1-3</td>
</tr>
<tr>
<td>Site Planning Checklist</td>
<td>1-3</td>
</tr>
<tr>
<td>System Documentation</td>
<td>1-7</td>
</tr>
<tr>
<td>Safety Notices</td>
<td>1-10</td>
</tr>
<tr>
<td>2. Electrical Power Planning</td>
<td>2-1</td>
</tr>
<tr>
<td>Redundant Power Sources</td>
<td>2-1</td>
</tr>
<tr>
<td>AC Power and HVAC Service Requirements</td>
<td>2-2</td>
</tr>
<tr>
<td>AC Power Outlet Requirements</td>
<td>2-4</td>
</tr>
<tr>
<td>Connecting a System Directly to Separate AC Sources</td>
<td>2-6</td>
</tr>
<tr>
<td>Selecting a UPS Unit for ftServer Systems</td>
<td>2-8</td>
</tr>
<tr>
<td>Communicating with a UPS over a Network</td>
<td>2-10</td>
</tr>
<tr>
<td>Connecting Power to Systems, PDUs, and a UPS</td>
<td>2-10</td>
</tr>
<tr>
<td>Connecting a System Directly to a UPS</td>
<td>2-12</td>
</tr>
<tr>
<td>Power Cord Summary</td>
<td>2-13</td>
</tr>
<tr>
<td>Power Cords for ftServer Systems and Peripheral Components</td>
<td>2-13</td>
</tr>
<tr>
<td>PDU Power Cords</td>
<td>2-14</td>
</tr>
<tr>
<td>Grounding Requirements</td>
<td>2-15</td>
</tr>
<tr>
<td>3. Space Planning</td>
<td>3-1</td>
</tr>
<tr>
<td>Room Requirements</td>
<td>3-1</td>
</tr>
<tr>
<td>Planning for Cables</td>
<td>3-3</td>
</tr>
<tr>
<td>4. Communications Line Planning</td>
<td>4-1</td>
</tr>
<tr>
<td>External SAS Connections</td>
<td>4-2</td>
</tr>
</tbody>
</table>
Contents

Fibre Channel Connections 4-2
Ethernet Cables 4-5
iSCSI Connections (VMware Systems) 4-7
Telephone Line Connections 4-8
 Telephone Line Connections in Australia and New Zealand 4-8
Site Planning for Systems in an ftGateway Group 4-9

5. Rack Configuration Planning 5-1
 Using PDUs 5-1
 Determining PDU Requirements 5-2
 Example of PDU Usage Calculation 5-4

6. Cabinet and Monitor Requirements 6-1
 Cabinet Requirements 6-1
 Monitor Requirements 6-5

Appendix A. System Specifications A-1
 System Specifications A-1
 PCI Adapter Specifications A-7
 AAP87600 PDU Specifications A-8

Appendix B. Electrical Circuit and Wiring Information B-1
 Fault Protection Requirements B-1
 Grounding Considerations B-1
 Circuit Wiring Diagrams B-2
 Electrical Power Connectors B-9

Appendix C. Standards Compliance C-1
 Electronic Interference, Immunity, Safety, and Noise Level Standards Compliance C-1
 Toxic and Hazardous Substances and Elements Disclosure C-4
 Guidelines for Airborne Contamination (Particulate and Gaseous) C-4

Index Index-1
Figures

Figure 2-1. System Connected Directly to AC Power 2-6
Figure 2-2. PDUs Connected Directly to AC Power 2-7
Figure 2-3. Power Cord Connections for Systems, PDUs, and a UPS 2-11
Figure 2-4. Rack-Mountable Systems: A-Side Power Connected Directly to a UPS 2-12
Figure 4-1. Fibre Channel Connections to an ftScalable Storage System Using Switches 4-4
Figure 4-2. Direct-Attach Fibre Channel Connections to an ftScalable Storage System 4-4
Figure 6-1. Rail Clearance 6-4
Figure A-1. ftServer 2600, 4500, or 6300 System: CPU-I/O Enclosures: Front View A-2
Figure A-2. ftServer 2600, 4500, or 6300 System: Rear View A-3
Figure A-3. AAP87600 PDU A-8
Figure B-1. Star Ground Example B-2
Figure B-2. PDU Power Input Labeling B-3
Figure B-3. ftServer Enclosure Power Input Labeling B-3
Figure B-4. Single-Phase 120V AC Circuit Connection B-4
Figure B-5. Single-Phase 240V AC Circuit Connection B-5
Figure B-6. Split-Phase 120/240 Volts AC Circuit Connection B-6
Figure B-7. Three-Phase 208V AC, Y-, or D-Source Circuit Connection, Phase-to-Phase B-7
Figure B-8. Three-Phase 380V AC, Y-, or D-Source Circuit Connection, Phase-to-Neutral B-8
Tables

Table 1-1. Ethernet PCIe Adapters 1-4
Table 1-2. ftServer 2600, 4500, and 6300 System Documentation 1-7
Table 1-3. Additional System Documentation for Windows Systems 1-8
Table 1-4. Additional System Documentation for Linux Systems 1-9
Table 1-5. Additional System Documentation for VMware Systems 1-9
Table 2-1. Worksheet: Determining A-Side Power Requirements 2-3
Table 2-2. Worksheet: Determining B-Side Power Requirements 2-3
Table 2-3. Worksheet: Determining External Power Requirements 2-4
Table 2-4. HVAC Requirements 2-4
Table 2-5. Worksheet: A-Side External Power Outlet Requirements: PDUs Used 2-4
Table 2-6. Worksheet: B-Side External Power Outlet Requirements: PDUs Used 2-5
Table 2-7. Worksheet: A-Side External Power Outlet Requirements: No PDUs 2-5
Table 2-8. Worksheet: B-Side External Power Outlet Requirements: No PDUs 2-5
Table 2-9. APC Symmetra Models for PDUs or for Multiple Systems 2-9
Table 2-10. APC UPS Models for a Single Rack-Mountable System 2-9
Table 2-11. Power Cords - ftServer Systems and Peripheral Components to AC Power 2-13
Table 2-12. Power Cords Between ftServer Systems or Storage Systems and a UPS 2-14
Table 2-13. Power Cords to Connect PDUs Directly to AC Power Mains 2-15
Table 2-14. AC Power Cords to Connect PDUs to a UPS 2-15
Table 2-15. System Power (Jumper) Cables to Connect ftServer Systems to PDUs 2-15
Table 4-1. Optical Fibre Channel Cables 4-3
Table 4-2. Customer-Supplied Ethernet Cables 4-6
Table 5-1. Current and Rack-Space Requirements 5-2
Table 5-2. Calculating A-Side PDU and Rack-Space Requirements 5-3
Table 5-3. Example: Current and Rack-Space Requirements (208 volts) 5-4
Table 5-4. Example: Calculating A-Side PDU and Rack-Space Requirements 5-4
Table A-1. Cabinet Dimensions A-4
Table A-2. ftServer 2600, 4500, and 6300 System: CPU-I/O Enclosure Specifications	A-5
Table A-3. PCI Adapter Specifications	A-7
Table A-4. AAP87600 PDU: Specifications	A-9
Table B-1. Connectors for AC Power Outlets	B-9
Table C-1. Compliance Standards for ftServer 2600, 4500, and 6300 Systems (Class A)	C-2
The Stratus ftServer 2600, 4500, and 6300 Systems: Site Planning Guide (R638) documents the site requirements and customer responsibilities related to preparing a site for the installation of ftServer 2600, 4500, and 6300 systems.

This document is intended for those responsible for preparing a site for the installation of an ftServer 2600, 4500, or 6300 system.

Revision Information

This document is a revision. It adds the following information:

- Support for ftServer System Software for VMware® vSphere™, Release 3.0.0 throughout
- A clarified warning
- New compliance information in Appendix C
- Minor corrections throughout

Notation Conventions

This document uses the notation conventions described in this section.

Warnings, Cautions, and Notes

Warnings, cautions, and notes provide special information and have the following meanings:

⚠️ WARNING

A warning indicates a situation where failure to take or avoid a specified action could cause bodily harm or loss of life.

⚠️ CAUTION

A caution indicates a situation where failure to take or avoid a specified action could damage a hardware device, program, system, or data.
NOTE
A note provides important information about the operation of an ftServer system.

Typographical Conventions
The following typographical conventions are used in this document:

- The bold font emphasizes words in text or, in Microsoft Windows procedures, indicates text that you type, the name of a screen object, or the name of a programming element. For example:

 Before handling or replacing system components, make sure that you are properly grounded by using a grounded wrist strap.

 In the System Properties dialog box, click the Hardware tab.

 Call the RegisterDeviceNotification function.

- The italic font introduces new terms and indicates programming and command-line arguments that the user supplies. For example:

 Many hardware components are customer-replaceable units (CRUs), which can be replaced on-site by system administrators with minimal training or tools.

 copy filename1 filename2

 Pass a pointer for the NotificationFilter parameter.

- The monospace font represents text that would appear on your display screen when working in a text-based console. The monospace bold font represents text you must type in examples that contain both user input and system output. The monospace italic font represents terms in command lines that are to be replaced by literal values. For example:

 To display the state of a CPU enclosure on a Linux or VMware ESX™ system, type a command in the following format:

 /opt/ft/bin/ftsmaint ls n

 If you type /opt/ft/bin/ftsmaint ls 0 at the prompt, the following output appears:

 H/W Path : 0
 Description : CPU Node Assembly

- The percent sign (%), dollar sign ($), and number sign (#) are default prompt signs that have a specific meaning at a Linux or VMware ESX command prompt.
Although a prompt is sometimes shown at the beginning of a command line as it would appear on the screen, you do not type it.

- `%` or `$` indicates you are logged in to a standard user account and are subject to certain access limitations. The prompt displayed on the screen depends on your shell environment (for example, csh (`%`)) or bash (`$`)).

- `#` indicates you are logged in to the system administrator account and have superuser access. Users of this account are referred to as root. The `#` prompt sign used in an example indicates the command can be issued only by root.

Getting Help

If you have a technical question about ftServer system hardware or software, try these online resources first:

- **Online documentation at the StrataDOC Web site.** Stratus provides complimentary access to StrataDOC, an online-documentation service that enables you to view, search, download, and print customer documentation. You can access StrataDOC at the following Web site:

 http://stratadoc.stratus.com

 A copy of StrataDOC on supported media for your system is included with this release. To order additional copies of the StrataDOC media or to obtain copies of printed manuals, do one of the following:

 - If you are in North America, call the Stratus Customer Assistance Center (CAC) at (800) 221-6588 or (800) 828-8513, 24 hours a day, 7 days a week.

 - If you are located outside North America, contact your nearest Stratus sales office, CAC office, or distributor; for CAC phone numbers outside the U.S., see http://www.stratus.com/support/cac/index.htm.

- **Online support from Stratus Customer Service.** You can find the latest technical information about an ftServer system through online product support at the Stratus Technical Support Web site:

 http://www.stratus.com/support/technics.htm

- **Online product support for Microsoft® products.** Your primary source for support is the computer manufacturer who provided your software, or an authorized Microsoft Support Provider. You can also find the latest technical information about Microsoft Windows® and other Microsoft products through online product support at the Microsoft Help and Support Web site:

 http://support.microsoft.com/
• **Online product support for Red Hat® Linux® products.** Your primary source for support is the manufacturer who provided your software, or Red Hat Global Support Services. You can also find the latest technical information about Red Hat Enterprise and Standard Linux through online product support at the Red Hat Support Web site:

 http://www.redhat.com/apps/support/

• **Online product support for VMware® vSphere™ products.** You can find the latest technical information about VMware vSphere through online product support at the VMware Support Web site:

 http://www.vmware.com/support/

If you are unable to resolve your questions with the help available at these online sites, and the ftServer system is covered by a service agreement, please contact the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative. For information about how to contact the CAC, see the following Web site:

 http://www.stratus.com/support/cac/

Commenting on the Documentation
To provide corrections and suggestions on the documentation, send your comments in one of the following ways:

- By clicking the **site feedback** link at the bottom of a Help topic. Information to identify the topic is supplied in the StrataDOC Web Site Feedback form.

- By email to Comments@stratus.com. If it is possible, please include specific information about the documentation on which you are commenting:

 - For a printed document or a document in PDF format, include the title and part number from the Notice page and the page numbers.

 - For online documentation, include the Help subject and topic title.

This information will assist Stratus Information Development in making any needed changes to the ftServer system documentation. Your assistance is most appreciated.

Regulatory Notice
This document contains all regulatory notices that apply to your ftServer 2600, 4500, or 6300 system.
Chapter 1
Site Planning for ftServer 2600, 4500, and 6300 Systems

For an overview of required information and tasks you need to perform to prepare a site for ftServer 2600, 4500, and 6300 systems, see:

- “Site Planning Overview” on page 1-1
- “Site Planning for Fault-Tolerant Systems” on page 1-3
- “Site Planning Checklist” on page 1-3
- “System Documentation” on page 1-7
- “Safety Notices” on page 1-10

Site Planning Overview

Site planning for fault-tolerant systems includes:

- Purchasing an appropriate cabinet and monitor
 If you do not purchase a monitor from Stratus, provide a monitor that meets the system’s requirements.

 NOTE
 A monitor, keyboard, and mouse are required to install ftServer System Software (ftSSS).

 If you do not purchase a cabinet from Stratus, provide a cabinet that meets the system’s requirements.

- Electrical power planning
 Provide electrical power sources that meet the requirements of the system and optional components, optionally including the purchase of a qualified uninterruptible power supply (UPS).
Site Planning Overview

- **Space planning**

 Provide adequate space for the system or cabinet and for a desk or table to accommodate components outside a cabinet. Also provide enough space for servicing the systems and components.

 Provide an environment that meets the system's requirements for ambient temperature and air quality.

- **Communications line planning**

 Provide sufficient network and analog telephone lines and plan the location of the system and external components to accommodate the lengths of the connecting cables.

- **Rack space planning**

 Ensure that the power distribution units (PDUs) supply sufficient power to the components you have purchased and that you have sufficient space available in an appropriate cabinet.

Use the “Site Planning Checklist” on page 1-3 to track your site preparation progress.

For information about obtaining documents related to your ftServer system, see “System Documentation” on page 1-7.

During the site planning and preparation processes, work closely with your facilities group or contractor to determine space, power, and environmental requirements. Enlist their help to provide a suitable location with sufficient alternating current (AC) power, heating, ventilation and air conditioning (HVAC) capabilities, and network and telephone connections.

If your system is covered by a service agreement and you need help with site planning, contact the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative. If you have a contract with the CAC or your authorized Stratus service representative to install the system, contact them after you have prepared the installation site and moved the system to the site. For more information about the CAC, see Getting Help in the Preface or the http://www.stratus.com/support/cac/ Web site.

See Appendix A, “System Specifications” for the specifications of the base ftServer systems and of PDUs. See the *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for specifications of other components.
Site Planning for Fault-Tolerant Systems

Consider the following specific fault-tolerant features of ftServer systems for site planning:

- Lockstep technology means that the systems contain redundant hardware. The systems contain two enclosures, each containing a full computing environment that consists of a CPU element and an I/O element.

 If a component in a CPU element malfunctions, the corresponding CPU element in the other enclosure, which is processing the same information in lockstep, continues processing without interruption. If a component in the I/O element malfunctions, the system fails operation over to the corresponding element in the other enclosure and continues to operate normally. The only consequences are that the system is less fault tolerant, and any I/O throughput distributed between the enclosures may be reduced. To restore full fault tolerance, an enclosure can be replaced without taking the system offline.

- ftServer systems can connect to the ActiveService Network (ASN).

 Connecting a system to the ASN allows the CAC or your authorized Stratus service representative to remotely diagnose, troubleshoot, and resolve problems online.

 To enable connectivity to the ASN, an ASN modem can be attached directly to the system. Two partnered Virtual Technician Modules (VTMs) manage the modem. The VTMs can also connect to the ASN through their Ethernet ports, if the network to which they are attached has Internet access. Systems without modems can connect to the ASN through an Internet connection.

 Systems that connect to the ASN using partnered VTMs provide the highest level of availability. VTMs provide ASN connectivity even when the operating system is not operational. VTMs also allow internal administrators to remotely service the system over a telephone line or IP network, regardless of the state of the operating system.

Site Planning Checklist

Referring to the information in this document, answer the following questions:

Planning for ASN Connectivity

☐ Will your system connect to the ASN? If so, will it connect over an ASN modem or the Internet?

☐ If your system will use the Internet to connect to the ASN, do you have an Internet connection available?

☐ If your system will use an ASN modem, do you have an external analog telephone line available for the ASN modem?
NOTE

A dedicated phone line provides the most reliable service. ASN calls routed through a PBX may be slow due to load on the PBX, or may not complete successfully due to disconnections. If you must use a PBX, do not route the telephone extension through a switchboard; instead, provide a direct-dial analog number.

☐ Do you have an additional telephone connection and telephone near the operator’s station for voice communications when calling for support?

Planning for Network Connectivity

☐ The system contains four embedded 10/100/1000 megabits-per-second (Mbps) Ethernet ports. You can add optional Ethernet PCI adapters to provide additional Ethernet bandwidth. Will your system additionally include any of the following PCI adapters? If so, in Table 1-1, indicate the total number of ports, and plan network connections for all Ethernet ports you will use.

Table 1-1. Ethernet PCIe Adapters

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Total Number of Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Dual-Port 10/100/1000 Base-T Ethernet PCI-Express Adapters (2)</td>
<td>4</td>
</tr>
<tr>
<td>U104 Dual-Port Fiber Gigabit Ethernet PCI-Express Adapter</td>
<td></td>
</tr>
<tr>
<td>U105 Dual-Port 10/100/1000 Base-T Ethernet PCI-Express Adapter</td>
<td></td>
</tr>
<tr>
<td>†U108 Single-Port Fiber 10-Gigabit Ethernet PCI-Express Adapter (Linux systems only)</td>
<td></td>
</tr>
</tbody>
</table>

† Contact your Stratus account team for information on availability of this product.

NOTE

The combined four ports of the two embedded physical adapters provide the basic requirements for VMware ESX software: one port of each adapter dedicated to the service console and the other port of each adapter dedicated to the virtual machines or VMkernel traffic.

Planning for External Storage Options

☐ Will your system connect to external Fibre Channel storage enclosures? If so, the system requires a pair of Fibre Channel HBAs, which are provided when you order
the storage enclosure. If you order the enclosure at the same time you order the system, the required Fibre Channel HBAs are installed at the factory. See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for descriptions of the storage enclosures provided by Stratus and the names of the PCI adapters required for supported storage enclosures.

NOTE

ftServer systems support ftScalable™ Storage systems, and EMC® CLARiiON® or Symmetrix® storage systems.

If you plan to connect an EMC storage system to an ftServer system running the Linux operating system, ensure that you have received approval for your configuration by submitting a request through EMC’s Request for Price Quote (RPQ) process to guarantee EMC support.

Will your system connect to external Fibre Channel storage enclosures in a storage area network (SAN) configuration? If so, do you have a minimum of two switches that can accommodate the cables from the pair of Fibre Channel HBAs in each ftServer system?

NOTE

Stratus has successfully tested the Brocade® 200E and 5100 Fibre Channel switches. Other model switches may also be compatible as long as they can be configured in the same manner as the Brocade 200E or 5100 switch.

Will your ftServer system running VMware ESX connect to external iSCSI storage enclosures? If so, ensure that your system has adequate Ethernet adapter bandwidth. Contact your account representative for information about iSCSI storage systems qualified for use with ftServer systems.

Planning for Optional Components

Will you supply your own monitor or will Stratus supply the monitor, keyboard, and mouse? Is the monitor rack-mountable or do you need to provide a table or desk?

Will you connect an SAS tape drive to your system?

NOTE

ftSSS for VMware vSphere does not support tape drives.

Planning AC Power

Will you provide power to both sides of the system through a pair of PDUs?
If your system is running the Windows operating system, will you protect the system power with a UPS?

What optional components will you use?

What are the AC power requirements of your system, including all optional components?

What are the lengths and types of the power cords that are provided for the PDUs or system, and optional components?

What type of AC receptacles do you need to provide?

Is the AC power service wired properly?

Planning Space for Your System

Will your system and its external components fit where you plan to place them?

What is the height of the cabinet you will use, and what is the total height of the systems and components that will be installed in the cabinet? Will the items fit into the cabinet? What components will be located outside the cabinet?

What are the lengths and types of the interface and communications cables that will connect to your system?

Have you created a sketch of how you plan to arrange the system at the installation site? Consider the available cable lengths, the placement of external devices, and the location of network and voice communication connections.

On the sketch, show the following:

- Location of the system and its external components
- Power cords, and telephone and interface cables
- Locations of AC power receptacles, phone jacks, Ethernet jacks, switches, and hubs

NOTE

Make sure that all cords and cables are long enough to reach between their respective components and connectors. Route all cables out of the way of foot traffic.

Working with Other Groups

Have you provided your facilities group and contractors with the sketch of how you plan to arrange the system and copies of the following?

- “AC Power and HVAC Service Requirements” on page 2-2
- “Redundant Power Sources” on page 2-1
- Tables 2-1, 2-2, and 2-3, worksheets for determining AC power requirements
System Documentation

Table 1-2 lists the hardware documents for ftServer 2600, 4500, and 6300 systems, and the tasks described in each document. Also see Table 1-3 (for Windows systems) or Table 1-4 (for Linux systems) or Table 1-5 (for VMware ESX systems).

Table 1-2. ftServer 2600, 4500, and 6300 System Documentation

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratus ActiveService Network Configuration Guide (R072)</td>
<td>Configure your system for support by the ASN</td>
</tr>
<tr>
<td>Stratus ftServer Systems: PCI Adapter Guide (R461)</td>
<td>Install, configure, replace, or troubleshoot PCI adapters</td>
</tr>
<tr>
<td></td>
<td>Change BIOS settings in the ftServer Setup program</td>
</tr>
<tr>
<td>Stratus ftServer Systems: Peripherals Site Planning Guide (R582)</td>
<td>Find information about optional equipment that you have ordered with your system that is needed to complete site preparation</td>
</tr>
<tr>
<td>Stratus ftServer 2600, 4500, and 6300 Systems: Operation and Maintenance Guide (R639)</td>
<td>Start up, shut down, and operate your system</td>
</tr>
<tr>
<td></td>
<td>Troubleshoot system hardware</td>
</tr>
<tr>
<td></td>
<td>Remove and replace CRUs, including PCI adapters</td>
</tr>
<tr>
<td>Stratus ftServer 2600, 4500, and 6300 Systems: Hardware Installation Guide (R640)</td>
<td>Install your system, including mounting the system in a cabinet</td>
</tr>
</tbody>
</table>

Have you reviewed and discussed the requirements with the facilities personnel and contractors to ensure that all site modifications are understood and implemented?

If you have any questions about the number and types of components, contact your Stratus account representative or distributor.
Table 1-3 lists additional documents for ftServer 2600, 4500, and 6300 systems that run ftSSS for the Windows operating system, and the tasks described in each document.

Table 1-3. Additional System Documentation for Windows Systems

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes: Stratus ftServer System Software for the Windows Operating System (R004W)</td>
<td>Learn the contents of the latest ftServer System Software release</td>
</tr>
<tr>
<td></td>
<td>Learn the latest information about the product</td>
</tr>
<tr>
<td></td>
<td>Learn about significant known problems and how to work around or avoid the problems</td>
</tr>
<tr>
<td>Stratus ftServer System Software: Installation and Configuration for Windows Systems (R002W)</td>
<td>Respond to Mini-Setup questions</td>
</tr>
<tr>
<td></td>
<td>Install or reinstall ftSSS and Windows Server software</td>
</tr>
<tr>
<td></td>
<td>Install the operating system on your new system</td>
</tr>
<tr>
<td></td>
<td>Upgrade software and BIOS, BMC, and VTM firmware</td>
</tr>
<tr>
<td></td>
<td>Configure ftSSS</td>
</tr>
<tr>
<td></td>
<td>Set up your system to communicate with a UPS</td>
</tr>
<tr>
<td></td>
<td>Configure VTMs</td>
</tr>
<tr>
<td>Stratus ftServer System Administrator's Guide for the Windows Operating System (R014W)</td>
<td>Use tools that are provided by the operating system software, ftServer System Software, and other vendors to manage and troubleshoot the system</td>
</tr>
<tr>
<td></td>
<td>Manage data-storage devices</td>
</tr>
<tr>
<td>Stratus ftServer Virtual Technician Module User's Guide (R642)</td>
<td>Use the VTM console to remotely control, monitor, and troubleshoot your system</td>
</tr>
</tbody>
</table>

Table 1-2. ftServer 2600, 4500, and 6300 System Documentation (Continued)
Table 1-4 lists additional documents for ftServer 2600, 4500, and 6300 systems that run ftSSS for the Linux operating system, and the tasks described in each document.

Table 1-4. Additional System Documentation for Linux Systems

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes: Stratus ftServer System Software for the Linux Operating System (R005L)</td>
<td>Learn the contents of the latest ftServer System Software release</td>
</tr>
<tr>
<td></td>
<td>Learn the latest information about the product</td>
</tr>
<tr>
<td></td>
<td>Learn about significant known problems and how to work around or avoid the problems</td>
</tr>
<tr>
<td>Stratus ftServer System Software: Installation for Linux Systems (R013L)</td>
<td>Install and update the Linux operating system, ftServer System Software, and BIOS and BMC firmware</td>
</tr>
<tr>
<td>Stratus ftServer System Administrator’s Guide for the Linux Operating System (R003L)</td>
<td>Use tools that are provided by the operating system software, ftServer System Software, and other vendors to manage and troubleshoot the system</td>
</tr>
<tr>
<td></td>
<td>Manage network connections and data storage devices</td>
</tr>
<tr>
<td></td>
<td>Install and configure the Simple Network Management Protocol</td>
</tr>
<tr>
<td>Stratus ftServer Virtual Technician Module User’s Guide (R642)</td>
<td>Use the VTM console to remotely control, monitor, and troubleshoot your system</td>
</tr>
</tbody>
</table>

Table 1-5 lists additional documents for ftServer 4500 and 6300 systems that run ftSSS for VMware vSphere, and the tasks described in each document.

Table 1-5. Additional System Documentation for VMware Systems

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes: Stratus ftServer System Software for VMware vSphere (R001E)</td>
<td>Learn the contents of the latest ftServer System Software release</td>
</tr>
<tr>
<td></td>
<td>Learn the latest information about the product</td>
</tr>
<tr>
<td></td>
<td>Learn about significant known problems and how to work around or avoid the problems</td>
</tr>
</tbody>
</table>
Table 1-5. Additional System Documentation for VMware Systems (Continued)

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratus ftServer System Administrator’s Guide for VMware vSphere (R002E)</td>
<td>Use tools that are provided by VMware vSphere, ftServer System Software, and other vendors to manage and troubleshoot the system</td>
</tr>
<tr>
<td></td>
<td>Manage data storage devices</td>
</tr>
<tr>
<td>Stratus ftServer Virtual Technician Module User’s Guide (R642)</td>
<td>Use the VTM console to remotely control, monitor, and troubleshoot your system</td>
</tr>
<tr>
<td>VMware iSCSI SAN Configuration Guide†</td>
<td>Learn how to set up and manage a system using VMware vSphere with external iSCSI storage systems</td>
</tr>
<tr>
<td>VMware Fibre Channel SAN Configuration Guide†</td>
<td>Learn how to set up and manage a system using VMware vSphere with Fibre Channel storage area networks (SANs)</td>
</tr>
</tbody>
</table>

Safety Notices

⚠️ **WARNING** ⚠️

Risk of explosion if battery is replaced by an incorrect type. Dispose of used batteries according to the instructions provided with the battery.

⚠️ **WARNING** ⚠️

The system uses two power cords to provide redundant sources of power. To fully remove power from a system, disconnect both power cords. To reduce the risk that electrical shock could injure a person or damage the system, exercise caution when working in the unit even when only one power cord is connected.

⚠️ **WARNING** ⚠️

To prevent a cabinet from tipping over and injuring a person or damaging the system, start installing systems from the bottom of the cabinet upward.
WARNING

If you replace the modem cable supplied by Stratus, use a cable with a gauge of at least 26 AWG to prevent fire.

WARNING

To avoid fire, electric shock, and equipment breakdown, prevent water or foreign objects from getting into the equipment. Do not let water or foreign objects, such as pins or paper clips, enter the equipment.

WARNING

To prevent fire or current leakage, do not plug the power cord into a nonconforming outlet. Use a power outlet with appropriate voltage and power type, as specified in this guide.

WARNING

Do not install the equipment where you may need an extension cord. Use of an extension cord that does not meet the power specifications introduces a risk of overheating that could lead to a fire.

WARNING

Disconnect the power cords from the server or power source before you install or relocate the equipment. All voltage is removed only when the power cords are disconnected.
WARNING

Do not install or store the equipment in an unsuitable place. Install or store the equipment in a place that meets the requirements specified in this guide. Avoid the following conditions to avoid the risk of fire:

- Dust
- High humidity, such as a place near a boiler
- Direct sunlight
- Instability, such as places not stabilized against earthquakes

WARNING

Do not use or store this product in a corrosive environment.

Avoid using or storing this product in an environment which may contain corrosive gases. Such gases include, but are not limited to, sulfur dioxide, hydrogen sulfide, nitrogen dioxide, chlorine, ammonia or ozone.

Avoid installing this product in a dusty environment or one that may contain corrosive materials such as sodium chloride or sulfur.

Avoid installing this product in an environment which may contain excessive metal flakes or conductive particles in the air.

Such environments may cause corrosion or short circuits within this product, resulting in not only damage to this product, but also fire.

If there are any concerns regarding the environment at the planned site of installation or storage, please contact your CAC or your authorized Stratus service representative.
WARNING

When installing a system or CRU, always connect the power cord first, before adding communications cables. The power cord contains the protective earth connection; it should be connected first and disconnected last, to maintain a grounded chassis.

Before attempting to remove a CRU from the system chassis, make sure to power off the CRU, disconnect communications cables, and then disconnect the power cord.

Never connect a power cord to a CRU when it is not located within the system chassis.

WARNING

Do not disassemble, repair, or alter the server, except as described in the *Stratus ftServer 2600, 4500, and 6300 Systems: Operation and Maintenance Guide* (R639). There is a risk of an electric shock or fire as well as equipment malfunction if you do not observe the instructions in the *Stratus ftServer 2600, 4500, and 6300 Systems: Operation and Maintenance Guide* (R639).

WARNING

Do not place any object on top of the server. The object may fall off and cause injuries, damage to hardware, or a fire.

WARNING

Do not leave the DVD tray ejected. Dust may enter the equipment and cause it to malfunction. The ejected tray may also become a cause of injuries.
安全注意事項

⚠️ **WARNING**

若錯誤更換電池類型，將產生爆炸風險。請按電池包裝說明，妥善丟棄已耗廢電池。

⚠️ **WARNING**

系統採用兩條電源線，以提供冗餘電源。欲徹底清除系統電源，先拔下兩條電源線。為降低觸電所導致的人體傷害或系統損害，請小心操作機體，即使系統僅插入一條電源線。

⚠️ **WARNING**

欲預防儲櫃翻倒，進而導致人體傷害或系統損害，請從儲櫃下方開始往上安裝系統。

⚠️ **WARNING**

若您更換由Stratus供應的數據機纜線，請使用至少有26 AVG壓力的纜線，避免發生火災。

⚠️ **WARNING**

避免火災、觸電、設備故障、液體或其他異物進入設備。不得讓液體或類似鐵釘或迴紋針等異物進入設備。

⚠️ **WARNING**

為避免火災或漏電，不得將電源線插入規格不符的插座中。請使用本指南指定之電壓及電源類別的插座。
WARNING

不得使用延長線安裝設備。使用與指定電源規格不符的延長線會產生設備過熱風險，進而可能導致火災。

WARNING

安裝或移動設備前，請從伺服器或電源拔下電源插頭。

只有在拔下電源線後，設備的所有電壓始會消除。

WARNING

不得在不適合場所安裝或存放設備。請按本指南指定且符合規格要求的場所安裝或存放設備。避免下列可能產生火災風險的地方：

- 灰塵較多
- 熱水器旁濕氣較重的地方
- 陽光直曬的地方
- 不平坦或易受地震影響的地方

WARNING

不得在腐蝕性環境中使用或存放產品。避免在含腐蝕性氣體的環境使用或存放本產品，其中包括但不限於：二氧化硫、氯化硫、氛、氯、氫或臭氧。

不得將本產品安裝在灰塵較多或含類似氯化鈉或硫磺等腐蝕性物質的地方。

不得將本產品安裝在空氣中含過量金屬碎片或傳導粒子的地方。

上述環境可能導致本產品腐蝕或短路，因而損壞產品，甚至引起火災。若對產品安裝或存放的場地環境規劃有任何疑問，請與CAC或授權Stratus服務代表聯絡。
WARNING

不得在伺服器已連接電源的狀態下連接界面電纜。安裝或移除任何內建裝置，或從伺服器拔下或連接任何界面電纜前，確認已關閉伺服器的電源，並從伺服器或電插座拔下電纜線。即使伺服器電源已切斷，在仍連接電源的狀態下，碰觸內建裝置、電纜或連接器也可能產生觸電、或因短路而引起火災。

WARNING

除 Stratus ftServer 2600、4500 和 6300 系統：操作和維修指南 (R639) 之說明外，不得以任何方式拆卸、修理或改裝伺服器。若未遵循 Stratus ftServer 2600、4500 和 6300 系統：操作和維修指南 (R639) 的說明指示，將可能產生觸電、火災以及設備故障的風險。

WARNING

不得在伺服器上放置任何物件。物件可能會掉落而導致人體傷害、硬體損壞或火災。

WARNING

DVD 光碟槽不得靜置於彈出位置。灰塵進入設備將導致功能異常。彈出的光盤也可能是導致設備損壞的來源。
For information about planning appropriate AC electrical power for your system and its peripheral components, see:

- “Redundant Power Sources” on page 2-1
- “AC Power and HVAC Service Requirements” on page 2-2
- “Selecting a UPS Unit for ftServer Systems” on page 2-8
- “Power Cord Summary” on page 2-13
- “Grounding Requirements” on page 2-15

Related Topic

- Chapter 5, “Rack Configuration Planning”

Redundant Power Sources

ftServer systems require at least two separate and independent AC power sources—an A-side power source and a B-side power source—that provide power to the system's power receptacles, labeled A and B, respectively. Either source must be capable of continuing to provide power if power to the other source is lost.

The A-side power source provides power to one side of each system and storage enclosure, as well as to components that do not require two sources of power, such as tape-drive enclosures and a monitor. If you use an uninterruptible power supply (UPS), the UPS is, in these standard, documented, configurations, the A-side power source.

The B-side power source provides power to the other side of each system and storage enclosure.

The wattage required from the A-side power source will always be equal to or greater than the wattage required from the B-side power source.
AC Power and HVAC Service Requirements

From the Stratus ftServer Systems: Peripherals Site Planning Guide (R582), obtain the nominal input line voltage (volts AC) and frequency (Hz) required for optional, AC-powered components. In general, provide 100–127 VAC or 200–240 VAC at 50 or 60 Hz for optional components. PDUs require 200–240 VAC at 50 or 60 Hz. Operating the system at the higher end of the voltage range, when possible, results in higher power system efficiency and consequently less generated heat and lower utility costs.

For detailed information about the plug types and lengths of the power cords provided with the system, see “Power Cord Summary” on page 2-13.

The power service must be properly wired and grounded according to local standards and regulations. See Appendix B, “Electrical Circuit and Wiring Information” for more information.

A branch circuit breaker with ground fault protection must allow a minimum of 3.5 milliamperes (mA) leakage current for each power cord.

Use the following worksheets to determine AC power requirements for the site.

- In Table 2-1, determine the power requirements at the A-side power source.
- In Table 2-2, determine the power requirements at the B-side power source.
- In Table 2-3, determine the power requirements for components outside of the cabinet. These components can share a power source with the A-side or B-side components.
- In Table 2-4, determine the related HVAC requirements.

To determine AC power requirements

Provide information in Tables 2-1, 2-2, and 2-3 as follows:

1. In the Quantity column, write the number of each type of component.
2. Multiply the entry in the Quantity column by the number in the Watts column, and enter the result in the Watts Subtotal column.
3. Add the values in the Watts Subtotal column, and enter the sum on the bottom line. This value indicates the maximum power requirement for each power source.
Table 2-1. Worksheet: Determining A-Side Power Requirements

<table>
<thead>
<tr>
<th>System Component</th>
<th>Quantity</th>
<th>Watts</th>
<th>Watts Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer systems</td>
<td>x</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Monitor unit†</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage enclosure‡</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre Channel switch‡</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User-supplied components</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL A-SIDE POWER REQUIREMENTS

† See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the wattage of optional components you purchase from Stratus.
‡ If you are using Fibre Channel switches to connect the systems to storage enclosures, include on this line the power requirements for a Fibre Channel switch. Two switches are required for fault-tolerant operation. Connect one switch to A-side power and the other switch to B-side power.

Table 2-2. Worksheet: Determining B-Side Power Requirements

<table>
<thead>
<tr>
<th>System Component</th>
<th>Quantity</th>
<th>Watts</th>
<th>Watts Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer systems</td>
<td>x</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Storage enclosure†</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre Channel switch‡</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User-supplied components</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL B-SIDE POWER REQUIREMENTS

† See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the wattage of optional components you purchase from Stratus.
‡ If you are using Fibre Channel switches to connect the systems to storage enclosures, include on this line the power requirements for a Fibre Channel switch. Two switches are required for fault-tolerant operation. Connect one switch to A-side power and the other switch to B-side power.
Table 2-3. Worksheet: Determining External Power Requirements

<table>
<thead>
<tr>
<th>System Component</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other peripheral components</td>
<td></td>
</tr>
<tr>
<td>TOTAL EXTERNAL POWER REQUIREMENTS</td>
<td></td>
</tr>
</tbody>
</table>

To determine HVAC requirements

1. Add together the values from the Total row of Tables 2-1, 2-2, and 2-3 and enter the value in the Total Watts column of Table 2-4.

2. Multiply the value in the Total Watts column by 3.41 and enter the number of BTUs in the BTUs/hr. Subtotal column.

Table 2-4. HVAC Requirements

<table>
<thead>
<tr>
<th>Total Watts (From Tables 2-1, 2-2, and 2-3)</th>
<th>Convert to BTUs</th>
<th>BTUs/hr. Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x 3.41 =</td>
</tr>
</tbody>
</table>

AC Power Outlet Requirements

If you do use a pair of PDUs in the cabinet, use Tables 2-5 and 2-6 to determine the total number of power outlets required outside the cabinet.

1. In the Quantity column, write the number of each type of component.

2. Multiply the value in the Quantity column by the value in the Outlets column, and enter the total in the Subtotal column.

3. Add the values in the Subtotal column and enter the sum next to TOTAL NUMBER OF A-SIDE POWER OUTLETS and TOTAL NUMBER OF B-SIDE POWER OUTLETS.

Table 2-5. Worksheet: A-Side External Power Outlet Requirements: PDUs Used

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDUs</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other external components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF A-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-6. Worksheet: B-Side External Power Outlet Requirements: PDUs Used

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDUs</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other external components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF B-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you do not use PDUs in the cabinet, use Tables 2-7 and 2-8 to determine the number of AC power outlets required outside the cabinet.

1. In the Quantity column, write the number of each type of component.
2. Multiply the value in the Quantity column by the value in the Outlets column, and enter the total in the Subtotal column.
3. Add the values in the Subtotal column and enter the sum next to TOTAL NUMBER OF A-SIDE POWER OUTLETS and TOTAL NUMBER OF B-SIDE POWER OUTLETS.

Table 2-7. Worksheet: A-Side External Power Outlet Requirements: No PDUs

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer systems</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Storage enclosures</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LCD monitor units or external monitors</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tape-drive enclosure</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other peripheral components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF A-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-8. Worksheet: B-Side External Power Outlet Requirements: No PDUs

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer systems</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Storage enclosures</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other peripheral components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF B-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connecting a System Directly to Separate AC Sources

If you do not connect your ftServer system or PDUs to a UPS, provide two AC power sources that are as electrically independent of each other as the installation site allows.

At a minimum, the two power sources must be powered by separate circuit breakers (maximum of 20A) to AC power and, if possible, be independent of each other beyond that level. The more electrical separation between the two power sources, the less likely they will both fail at the same time. Due to redundancy in ftServer systems, power to either side of the system keeps the system in operation, although the system is no longer fault-tolerant with regard to power.

Figure 2-1 shows how to connect rack-mounted ftServer 2600, 4500, and 6300 systems directly to two separate AC power sources. Figure 2-2 shows how to connect PDUs directly to two separate power sources.

Figure 2-1. System Connected Directly to AC Power

1 A-side power cord
2 B-side power cord
3 AC power outlets
4 Circuit breakers (maximum of 20A)
Figure 2-2. PDUs Connected Directly to AC Power

1. A-side PDU
2. B-side PDU
3. B-side jumper cables
4. A-side jumper cables
5. PDU power cords
6. AC power outlets
7. Circuit breakers (maximum of 20A)
Selecting a UPS Unit for ftServer Systems

Stratus does not sell or service UPS units. However, Stratus has qualified UPS models for use with ftServer 2600, 4500, and 6300 systems.

Use Table 2-1 to determine the number of watts the A-side of your system requires and use Table 2-9 and 2-10 to select a UPS model.

NOTE

Generally, system fault tolerance could be at risk if you use a UPS with systems that run ftSSS for VMware vSphere or ftSSS for the Linux operating system. These versions of ftSSS do not include the logic to decide whether the operating system should shut down in response to certain signals from the UPS, and the UPS may unnecessarily shut down the system.

If you have a situation that requires the use of a UPS (for example, if you do not have two separate power sources at the installation site), use the tables in this section to select an appropriate UPS, do not use UPS signaling, and contact the CAC or your authorized Stratus service representative for additional assistance.

NOTE

Site planning information for the UPS in this document is of a general nature only. Do not rely exclusively on the UPS information in this document. Contact APC at http://www.apcc.com for detailed UPS specifications, documentation, sizing, and ordering information.
Table 2-9. APC Symmetra Models for PDUs or for Multiple Systems

<table>
<thead>
<tr>
<th>Locale</th>
<th>APC Symmetra Model</th>
<th>UPS Input</th>
<th>UPS Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>SYH2K6RMT, SYH4K6RMT, SYH6K6RMT</td>
<td>208V</td>
<td>208V (L6-20R)</td>
</tr>
<tr>
<td></td>
<td>Requires AAP87600 PDU with B50171F power cord</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYH2K6RMT-P1, SYH4K6RMT-P1, SYH6K6RMT-P1</td>
<td>208V</td>
<td>120/208V (L6-20R, 5-15R)</td>
</tr>
<tr>
<td></td>
<td>SYA8K16RMP, SYA12P16RMP, SYA14K16RMP</td>
<td>208V</td>
<td>120/208V (L6-20R, L6-30R)</td>
</tr>
<tr>
<td></td>
<td>Requires APC SYPD7 and AAP87600 PDU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>SYH2K6RMJ, SYH4K6RMJ, SYH6K6RMJ</td>
<td>200V</td>
<td>200V (L6-20R)</td>
</tr>
<tr>
<td></td>
<td>Requires AAP87600 PDU with B50175F power cord</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYH2K6RMJ-P1, SYH4K6RMJ-P1, SYH6K6RMJ-P1</td>
<td>200V</td>
<td>100/200V (L6-20R, 5-15R)</td>
</tr>
<tr>
<td></td>
<td>SYA8K16RMJ, SYA2K16RMJ, SYA16K16RMJ</td>
<td>200V</td>
<td>100/200V (L6-20R, L6-30R)</td>
</tr>
<tr>
<td></td>
<td>Requires APC SYPD7 and AAP87600 PDU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of the world</td>
<td>SYH2K6RMI, SYH4K6RMI, SYH6K6RMI</td>
<td>230V</td>
<td>230V (C20, C19)</td>
</tr>
<tr>
<td></td>
<td>Requires AAP87600 PDU with B52700F power cord</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYA8K16RMP, SYA12P16RMP, SYA14K16RMP</td>
<td>230V</td>
<td>230V (C20, C19)</td>
</tr>
</tbody>
</table>

Table 2-10. APC UPS Models for a Single Rack-Mountable System

<table>
<thead>
<tr>
<th>Locale</th>
<th>Smart-UPS</th>
<th>UPS Input</th>
<th>AC Power Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>Model SUA1500RM2U</td>
<td>120V</td>
<td>120V (5-15R)</td>
</tr>
<tr>
<td>Japan</td>
<td>Model SUA1500RMJ2UB</td>
<td>100V</td>
<td>100V (5-15R)</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>Model SUA1500RMI2U</td>
<td>230V</td>
<td>230V (C14, C13)</td>
</tr>
</tbody>
</table>
Communicating with a UPS over a Network

Use the following additional tools to enable a UPS and an ftServer system that runs the Windows operating system to communicate over the network:

- APC Network Management Card EX (APC part number AP9617)
 An APC Network Management Card EX is a standard component of the Symmetra UPS, but you must purchase the network card for the APC Smart-UPS.

- APC PowerChute® Network Shutdown for the ftServer system
 When you install your ftServer system, download PowerChute Network Shutdown from APC, and install and configure the tool on the system, as described in the Stratus ftServer System Software: Installation and Configuration for Windows Systems (R002W). PowerChute Network Shutdown monitors the UPS for an imminent power loss, and initiates a shutdown of the system before power is lost.

Connecting Power to Systems, PDUs, and a UPS

When you plan for PDUs and a UPS, note the following:

- Only the top PDU is connected to the UPS.
- The bottom PDU is connected directly to an AC power main.
- The UPS can be connected to the same AC power main that the bottom PDU is connected to, or the UPS can be connected to another AC power main.

Figure 2-3 shows how to connect rack-mounted systems to PDUs and the PDUs to UPS units.
Figure 2-3. Power Cord Connections for Systems, PDUs, and a UPS

1 A-side PDU
2 B-side PDU
3 B-side system power cables (black)
4 A-side system power cables (gray)
5 PDU power cords
6 UPS
7 UPS power cord
8 AC power outlets
9 AC power (mains) distribution circuit breaker (maximum of 20A)
Connecting a System Directly to a UPS

You can connect the A-side power connectors of your system directly to a UPS, as shown in Figure 2-4.

Figure 2-4. Rack-Mountable Systems: A-Side Power Connected Directly to a UPS

1 A-side system power cord
2 B-side system power cord
3 UPS
4 UPS power cord
5 AC power outlets
6 Circuit breakers (maximum of 20A)
Power Cord Summary

Stratus supplies tested and approved AC power cords for the following components:

- ftServer systems and peripheral components
- PDUs

WARNING

Place all power cords out of the way of foot traffic.

Power cords described as Domestic are made with American Wire Gauge (AWG) cordage and are intended for use in North America. Refer to UL 62 and CSA C22.2, No. 49. All other power cords are made with International cordage and are intended for use in the specified countries, and other countries that use that standard.

Power Cords for ftServer Systems and Peripheral Components

Table 2-11 lists the available power cords that connect ftServer systems and peripheral components directly to an AC power source (not to a PDU or to a UPS).

Table 2-12 lists the available power cords that connect ftServer systems to qualified UPS models from APC.

Table 2-11. Power Cords - ftServer Systems and Peripheral Components to AC Power

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50101F</td>
<td>NEMA 5-15, UL/CSA approved</td>
<td>15A/127V</td>
<td>7 ft</td>
<td>North America (Domestic)</td>
</tr>
<tr>
<td>B50104F</td>
<td>NEMA 5-15, UL/CSA approved</td>
<td>15A/127V</td>
<td>15 ft</td>
<td>North America (Domestic)</td>
</tr>
<tr>
<td>B50112F</td>
<td>CEE 7 VII</td>
<td>16A/250V</td>
<td>4.5m</td>
<td>Europe (Continental)</td>
</tr>
<tr>
<td>B50116F</td>
<td>BS 1363/A,</td>
<td>13A/250V</td>
<td>4.5m</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>B50124F</td>
<td>AS/NZS 3112:1993</td>
<td>10A/250V</td>
<td>4.5m</td>
<td>Australia</td>
</tr>
<tr>
<td>B50140F</td>
<td>SEV 1011-S24507</td>
<td>10A/250V</td>
<td>4.5m</td>
<td>Switzerland</td>
</tr>
<tr>
<td>B50152F</td>
<td>SABS164-1:1992 ZA/3</td>
<td>13A/250V</td>
<td>4.5m</td>
<td>South Africa/India</td>
</tr>
<tr>
<td>B50153F</td>
<td>IEC 60309, TUV approved</td>
<td>16A/250V</td>
<td>4.5m</td>
<td>International, locking power cord</td>
</tr>
<tr>
<td>B50160F</td>
<td>NEMA 5-15, PSE approved</td>
<td>15A/127V</td>
<td>15 ft</td>
<td>Japan (100V applications)</td>
</tr>
</tbody>
</table>
Table 2-11. Power Cords - ftServer Systems and Peripheral Components to AC Power (Continued)

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50161F</td>
<td>NEMA L6-20</td>
<td>20A/250V</td>
<td>15 ft</td>
<td>North America locking power cord</td>
</tr>
<tr>
<td>B50162F</td>
<td>GB1002-1996, CCC approved</td>
<td>10A/250V</td>
<td>4.5m</td>
<td>China</td>
</tr>
<tr>
<td>B50173F</td>
<td>NEMA 5-15, BSMI approved</td>
<td>10A/125V</td>
<td>4.5m</td>
<td>Taiwan</td>
</tr>
<tr>
<td>B50174-P</td>
<td>L6-20P, PSE approved</td>
<td>15A/250V</td>
<td>15 ft</td>
<td>Japan locking power cord (200V applications)</td>
</tr>
</tbody>
</table>

Table 2-12. Power Cords Between ftServer Systems or Storage Systems and a UPS

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Types</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50104F-15</td>
<td>NEMA 5-15 to IEC 60320 C13</td>
<td>16A/120V</td>
<td>15 ft</td>
<td>North America</td>
</tr>
<tr>
<td>B50160F</td>
<td>NEMA 5-15 to IEC 60320 C13</td>
<td>15A/127V</td>
<td>15 ft</td>
<td>Japan</td>
</tr>
<tr>
<td>B50161F-45M</td>
<td>NEMA L6-20 to IEC 60320 C13</td>
<td>20A/250V</td>
<td>15 ft</td>
<td>North America locking power cord</td>
</tr>
<tr>
<td>B50301F-45M</td>
<td>IEC 60320 C14 to IEC 60320 C13</td>
<td>10A/250V</td>
<td>4.5m</td>
<td>International</td>
</tr>
<tr>
<td>B50174-P</td>
<td>L6-20P, PSE approved</td>
<td>15A/250V</td>
<td>15 ft</td>
<td>Japan locking power cord (200V applications)</td>
</tr>
</tbody>
</table>

PDU Power Cords

The PDU supplies power to ftServer systems. Table 2-13 lists the available power cords that connect PDUs directly to an AC power source.

Table 2-14 lists the available power cords that connect PDUs to a UPS.

Table 2-15 describes the gray and black power (jumper) cables that are provided to connect ftServer systems to PDUs.
Grounding Requirements

WARNING
Incorrect grounding can cause severe personal injury and extensive equipment damage.

The ftServer system obtains its protective earth (PE) ground through the power cord.

See “Grounding Considerations” on page B-1 for a more complete discussion of ftServer system grounding.

Table 2-13. Power Cords to Connect PDUs Directly to AC Power Mains

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50154F</td>
<td>IEC 60320 C19 to IEC 60309</td>
<td>20A/250V</td>
<td>15 ft</td>
<td>International</td>
</tr>
<tr>
<td>B50171F</td>
<td>IEC 60320 C19 to NEMA L6-20P</td>
<td>16A/250V</td>
<td>15 ft</td>
<td>North America</td>
</tr>
<tr>
<td>B50175F</td>
<td>IEC 60320 C19 to NEMA L6-20P, PSE approved</td>
<td>20A/250V</td>
<td>15 ft</td>
<td>Japan locking power cord</td>
</tr>
</tbody>
</table>

Table 2-14. AC Power Cords to Connect PDUs to a UPS

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50171F</td>
<td>IEC 60320 C19 to NEMA L6-20P</td>
<td>16A/250V</td>
<td>15 ft</td>
<td>North America</td>
</tr>
<tr>
<td>B52700F-45M</td>
<td>IEC 60320 C19 to IEC 60320-C20</td>
<td>20A/250V</td>
<td>4.5m</td>
<td>International</td>
</tr>
<tr>
<td>B50175F</td>
<td>IEC 60320 C19 to NEMA L6-20P, PSE approved</td>
<td>20A/250V</td>
<td>15 ft</td>
<td>Japan locking power cord</td>
</tr>
</tbody>
</table>

Table 2-15. System Power (Jumper) Cables to Connect ftServer Systems to PDUs

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type to System</th>
<th>Plug Type to PDU</th>
<th>Rating</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50502F</td>
<td>IEC 60320 C13</td>
<td>IEC 60320 C14</td>
<td>10A/250V</td>
<td>2.0m</td>
</tr>
<tr>
<td>B50503F</td>
<td>IEC 60320 C13</td>
<td>IEC 60320 C14</td>
<td>10A/250V</td>
<td>2.0m</td>
</tr>
</tbody>
</table>
For information about planning sufficient space for your ftServer system, see:

- “Room Requirements” on page 3-1
- “Planning for Cables” on page 3-3

Room Requirements

To ensure that the installation site provides a properly equipped, cooled, and sized environment, make sure that the site:

- Provides clearances for air circulation, opening cabinet doors, removing cabinet panels, and servicing the system from the front and rear.

 Locate the front and rear of the system at least 2.5 feet (ft) (0.76 meters (m)) away from walls and other obstructions.

- Maintains reasonable temperature and humidity levels and has a thermometer and humistat to monitor room temperature and humidity.

- Is as free of dust as possible, meeting, at a minimum, ISO 14644-1 class 8 standards for a clean-room environment.

 Dust buildup in the system can impede air circulation and heat transfer, causing components to become less reliable as the ambient temperature rises.

 Fans clogged by dust fail to expel hot air, causing circuit boards to overheat and fail.

 Dust on circuit boards raises the temperature, thus reducing the component's mean time between failure (MTBF).

 Dust circulating in the room increases the risk of fire within the room by providing potential combustible material within the environment.

 Dust contamination on tape devices causes mis-reads and -writes, leading to failure of attempts to back up and restore data.
Room Requirements

- Has sufficient floor space for external components.
- Provides a table or desktop for external devices such as a telephone, external monitor, keyboard, and mouse.

Each of these devices requires table or rack space.

CAUTION

You cannot place a peripheral component on top of a system cabinet.

- Allows the system and peripheral devices to be placed within the room so that power cords and communications cables will reach their respective power receptacles, telephone jacks, and other connection points.
- Provides communications cable connectors or patch panels as needed.
- Provides two electrically separate grounded AC wall outlets, within reach of the power cords from the system or PDUs, and, if used, UPS units. Detachable power cords are 12 ft. (3.65m). If the power cord must be hard-wired, consult an electrician to plan the length of the power cord.
- Provides grounded AC wall outlets for external components that do not connect to a PDU.
- Provides cutouts in the floor for routing cables, if the site has an elevated floor.
- Contains space for future expansion.

CAUTION

Do not place the system in an area of high electrostatic discharge. Static electricity may damage components. Do not locate components near transformers or other electromagnetic devices.

See Appendix A, “System Specifications” and Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the dimensions of system components.
Planning for Cables

To accommodate cables from your system, make sure to provide:

- One or two telephone lines:
 - One telephone line for use when calling for service
 - One telephone line for the ASN modem, if used

- Ethernet jacks, switches, or hubs, as needed

- Two electrically separate grounded AC wall outlets, or a UPS and a wall outlet, within reach of the power cords from the system or PDUs, and additional outlets for any components that do not connect to a PDU

- For optional components, AC wall outlets within reach of the power cords from the components, or use PDUs

Make sure that cables you plan to connect to the system are long enough to reach between the system and external components or connections. For information about specific cables and power cords, see the following:

- “Power Cord Summary” on page 2-13
- Chapter 4, “Communications Line Planning”
- “Monitor Requirements” on page 6-5
- *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for information about cable lengths for peripheral components
Chapter 4
Communications Line Planning

Make sure that you plan the locations of your ftServer system and its external components so that all communications and data cables will reach their connection points.

This chapter contains the following sections:

- “External SAS Connections” on page 4-2
- “Fibre Channel Connections” on page 4-2
- “Ethernet Cables” on page 4-5
- “iSCSI Connections (VMware Systems)” on page 4-7
- “Telephone Line Connections” on page 4-8
- “Site Planning for Systems in an ftGateway Group” on page 4-9

NOTES

1. Software upgrade services are available from Stratus Professional Services. For a list of available services, see http://www.stratus.com/services/ps/offerings.htm.

2. If you have a unique network requirement, contact Stratus Professional Services. For a list of available services, see http://www.stratus.com/services/ps/offerings.htm.

3. See the Stratus ftServer Systems: PCI Adapter Guide (R461) for more information about the adapters Stratus supplies for your ftServer system.
External SAS Connections

ftServer systems running the Linux or Windows operating system support U106 Eight-Port SAS PCI-Express Adapters for connection to tape drives. You must provide your own serial attached SCSI (SAS) tape drive(s) and SAS cable(s).

Fibre Channel Connections

ftServer systems support connections to ftScalable Storage systems and EMC CLARiiON and Symmetrix storage systems. Optical Fibre-Channel host bus adapters (HBAs) in the CPU-I/O enclosures provide connection points to these storage enclosures.

For ftServer systems running ftSSS for the Windows Operating System and ftSSS for the Linux Operating System, the following connection options are available:

- Directly attach the Fibre Channel cables between one or two ftServer systems and the RAID controller trays of an ftScalable Storage system
- For Windows systems only, connect the Fibre Channel cables from one or two ftServer systems directly to an EMC storage system
- Connect multiple ftServer systems to ftScalable Storage systems through a storage area network (SAN)
- Connect up to six ftServer systems to EMC storage systems through a SAN

For ftServer systems running ftSSS for VMware vSphere, the following connection options are available:

- Directly attach the Fibre Channel cables between a single ftServer system and the RAID controller trays of an ftScalable Storage system
- Connect multiple ftServer systems to ftScalable Storage systems through a storage area network (SAN)
- Connect up to six ftServer systems to EMC storage systems through a SAN

A pair of Fibre Channel HBAs is teamed for fault tolerance. The adapters are single-ported and each member of the pair is installed in a different CPU-I/O enclosure: one in the top enclosure and the other in the bottom enclosure. The Stratus ftServer Systems: Peripherals Site Planning Guide (R582) lists the optical Fibre Channel HBAs supported by each operating system.
Table 4-1 lists the available optical Fibre Channel cables.

<table>
<thead>
<tr>
<th>Length</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 ft (2m)</td>
<td>AW-B90000-020</td>
</tr>
<tr>
<td>32.8 ft (10m)</td>
<td>AW-B90000-100</td>
</tr>
<tr>
<td>98.4 ft (30m)</td>
<td>AW-B90000-300</td>
</tr>
</tbody>
</table>

For detailed instructions about making the Fibre Channel connections, see one of the following:

- The *ftScalable Storage: Getting Started Guide* (R601), where you can also see an illustration of multiple ftServer systems connected to an ftScalable Storage controller tray (that configuration is not shown here)
- The documentation for your EMC storage system

The following illustrations are provided to help you plan a site for ftServer systems and storage enclosures.

- **Figure 4-1** illustrates Fibre Channel connections from a single system to a switch, and from the switch to the ftScalable Storage controller tray. Connections to EMC storage systems through a SAN are similar.
- **Figure 4-2** illustrates Fibre Channel connections directly between an ftServer system and an ftScalable Storage controller tray. Direct connections to an EMC storage system are similar.
Figure 4-1. Fibre Channel Connections to an ftScalable Storage System Using Switches

Figure 4-2. Direct-Attach Fibre Channel Connections to an ftScalable Storage System
Ethernet Cables

In addition to the Ethernet cables listed in this section, you must also plan to provide network connection points. Consider providing a network connection with Internet access for each of the VTM's to allow you and, if authorized, the CAC or your authorized Stratus service representative to access the VTM's Web interface to operate the system and diagnose problems remotely. If available, this mode of accessing the VTM's is faster and more reliable than dialup through the ASN modem.

WARNING

Make sure network cables can be routed out of the way of foot traffic.

You will need Ethernet cables for the following connections:

- From two or four embedded Ethernet ports on the system and Ethernet ports on U104 or U105 or U108 PCIe adapters to network connection points

 NOTE

 Two Ethernet ports are typically paired and teamed in software for fault tolerance. Each member of the pair requires an Ethernet cable.

- From each ftScalable Storage RAID controller tray, if present, to a network connection point, for Web management and monitoring of ftScalable Storage systems

- From a management PC to a network connection point, for Web management of ftScalable Storage systems

 The same network must provide access to the RAID controllers on the ftScalable Storage RAID controller tray from the PC.

Table 4-2 describes the cables you must supply for network connectivity. Be sure to provide cables of sufficient length for the distance between the system and a wall jack or hub.

1 Contact your Stratus account team for information on availability of this product.
Table 4-2. Customer-Supplied Ethernet Cables

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Marketing ID/Cable Length</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTM Ethernet port</td>
<td>2</td>
<td>N/A. You must supply these cables.</td>
<td>24 AWG Unshielded Twisted Pair (UTP) EIA/TIA-Verified, Category-3 or Category-5 wire, with RJ-45 modular connectors terminated with pair-wiring adhering to the EIA/TIA 568-A or EIA/TIA 568-B standard.</td>
</tr>
<tr>
<td>System Ethernet port</td>
<td>2 or 4</td>
<td>The maximum allowable distance from these ports to a switch or a hub is 328 ft (100m).</td>
<td>For connections to an Ethernet hub or switch, provide a straight-through cable. For 100- or 1000-Mbps (fast Ethernet) operation, provide full-duplex, or Category-5 Ethernet cables.</td>
</tr>
<tr>
<td>U105 Dual-Port Copper 10/100/1000 Base-T Ethernet PCI-Express Adapter (gigabit copper adapter for servers)</td>
<td>1 for each port, typically teamed for fault tolerance</td>
<td>N/A. You must supply these cables. The maximum distance between the U105 PCIe adapter and a switch is 902 ft (275m).</td>
<td>Multimode, 62.5- or 50-micron, DUAL fiber cable with LC-type connectors to the PCIe adapter, and connectors on the other end that are compatible with your site network switch.</td>
</tr>
<tr>
<td>U104 Dual-Port Fiber Gigabit Ethernet PCI-Express Adapter (gigabit fiber-optic adapter for servers)</td>
<td>1 for each port, typically teamed for fault tolerance</td>
<td>N/A. You must supply these cables. The maximum distance between the U104 PCIe adapter and a switch is 902 ft (275m).</td>
<td>Multimode, 62.5- or 50-micron, DUAL fiber cable with LC-type connectors to the PCIe adapter, and connectors on the other end that are compatible with your site network switch.</td>
</tr>
<tr>
<td>U108 Single-Port Fiber 10-Gigabit Ethernet PCI-Express Adapter† (Linux systems only)</td>
<td>1, typically teamed for fault tolerance</td>
<td>N/A. You must supply this cable. The maximum distance between the U108 PCIe adapter and a switch is 282 ft (86 m) for 62.5-micron multimode fibre (MMF) and 1804 ft (550 m) for 50-micron MMF, depending on the grade of the cable</td>
<td>Multimode, 62.5- or 50-micron, 10GBase-SR DUAL fiber cable with LC-type connectors to the PCIe adapter, and connectors on the other end that are compatible with your site network switch.</td>
</tr>
</tbody>
</table>
Communications Line Planning 4-7

iSCSI Connections (VMware Systems)

ftServer systems running ftSSS for VMware vSphere that boot from internal SAS disks support the use of iSCSI external storage enclosures. These systems only support software iSCSI in conjunction with standard network adapters. Hardware iSCSI HBAs are not supported.

Stratus does not sell iSCSI storage systems. Contact your account representative for information about iSCSI storage systems qualified for use with ftServer systems. See the VMware documentation for information about how to configure and manage an iSCSI storage system.

NOTES

1. See the *Stratus ftServer Systems: PCI Adapter Guide* (R461) for information about supported Ethernet adapters and their Ethernet cable requirements.

2. Ensure that your ftServer system provides adequate bandwidth for your iSCSI storage requirements.

Table 4-2. Customer-Supplied Ethernet Cables (Continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Marketing ID/Cable Length</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftScalable Storage RAID controller tray†‡</td>
<td>3: two for each controller tray and one to a management PC</td>
<td>N/A. You must supply these cables.</td>
<td>24 AWG Unshielded Twisted Pair (UTP) EIA/TIA-Verified, Category-3 or Category-5 wire, with RJ-45 modular connectors terminated with pair-wiring adhering to the EIA/TIA 568-A or EIA/TIA 568-B standard. For connections to an Ethernet hub or switch, provide a straight-through cable. For 100-Mbps (fast Ethernet) operation, provide full-duplex, or Category-5 Ethernet cables.</td>
</tr>
</tbody>
</table>

† Contact your Stratus account team for information on availability of this product.
‡ ftScalable Storage systems are optional. If you connect an ftServer system running VMware ESX software to an iSCSI or EMC storage system, consider its Ethernet network requirements in your site planning.
Telephone Line Connections

The system requires up to two telephone cables, and related connection points:

- One telephone line for use when calling for service
- One analog telephone line to connect the ASN modem, if used, to a telephone connection point

A 7-ft (2.13m) telephone cable (minimum 26 AWG phone cord) is shipped with the modem assembly.\(^2\)

NOTE

A dedicated phone line provides the most reliable service for ASN connections. ASN calls routed through a PBX might be slow due to the load on the PBX, or might not complete successfully because the calls can become disconnected. If you must use a PBX, do not route the telephone extension through a switchboard; instead, provide a direct-dial analog number.

- Always use telephone cable that is 26 AWG or greater and is UL approved.

If no modem is installed, a second telephone line is not necessary. A modem is not necessary in the following situations:

- If your system will connect to a network with Internet access, you may choose to use the Internet to send alarms to the ASN and allow the CAC or your authorized Stratus service representative to connect to your system over the Internet for troubleshooting.
- If you implement ftGateway groups, only one system in the group requires a modem. See “Site Planning for Systems in an ftGateway Group” for more information.

Telephone Line Connections in Australia and New Zealand

The telephone used when calling for service shall comply with the following local regulatory requirements:

- Australia: The telephone shall have an A-tick label
- New Zealand: The telephone shall have a Telepermit

\(^2\) The telephone cable is not shipped with orders destined for the Republic of Korea.
If an ASN modem is installed, that model shall comply with the following local regulatory requirements:

- Australia: The modem shall have an A-tick label
- New Zealand: The modem shall have a Telepermit

NOTE

ftSSS for VMware vSphere does not support ftGateway groups.

Site Planning for Systems in an ftGateway Group

Multiple ftServer systems at a site can share a single telephone connection to the ASN by implementing an **ftGateway group**. Unless VTMs are installed in each system, the systems in the group must be connected to a single physical Ethernet subnetwork.

One system acts as a *gateway* for ASN connectivity. This gateway system (or **ftGateway master**) requires an analog telephone line that connects to the modem. Other systems in the ftGateway group, called **ftGateway slaves**, connect to the gateway system over the network. In this case, Ethernet connections are required for each system, but only two analog telephone lines for each ftGateway group are required.

NOTES

1. ftServer 2600, 4500, and 6300 systems running the Windows operating system can only be ftGateway slaves.
2. ftServer 2600, 4500, and 6300 ftGateway slave systems require an ftGateway master system running Windows ftSSS Release 5.3.
3. ftServer 2600, 4500, and 6300 systems running Linux Releases ftSSS 7.0.4 and later or any release of VMware ESX do not support ftGateway groups.
Members of an ftGateway group:

- Are limited to a maximum of 20 ftServer systems.
- Must connect to the same subnetwork through embedded system Ethernet ports, PCI Ethernet adapter ports, or VTM ports. An ftGateway group can consist of one of the following:
 - Slave systems that run the Windows operating system with no remote management adapter in a group with an ftGateway system that has VTMs
 - Slave systems that have VTMs in a group with an ftGateway system that has VTMs

NOTES

1. You cannot mix VTMs and ftServer Access Adapters in the same ftGateway group. (ftServer Access Adapters are system management adapters used in earlier models of ftServer systems.)

2. Make sure that only layer-1 and layer-2 devices separate the gateway and slave systems. During a connection, the gateway system assigns the slave system a temporary IP address from an IP address range reserved by Stratus and uses that address for all traffic.
For information about planning a rack configuration, see:

- “Using PDUs” on page 5-1
- “Determining PDU Requirements” on page 5-2
- “Example of PDU Usage Calculation” on page 5-4

Using PDUs

ftServer systems have two power receptacles. Correspondingly, two power distribution units (PDUs) provide power to the receptacles.

Use of PDUs is optional unless you have a support agreement with Stratus. If you do have a support agreement with Stratus, use pairs of PDUs to provide AC power to systems and components in a cabinet if six or more power cords would otherwise exit from the cabinet.

The A-side (top) PDU provides power to:

- The A-side of each system
- A rack-mounted LCD monitor unit
- A storage enclosure
- Any rack-mounted tape drives

The B-side (bottom) PDU provides power to the other side of each system and to the second side of a storage enclosure.

Because the A-side PDU always uses at least as many power cords and consumes at least as much power as the B-side PDU, plan the cabinet configuration so that the A-side PDU can support the configuration.
NOTES

1. Connect each PDU to a separate AC power source.
2. Install a maximum of two pairs of PDUs in a rack.

Use the information in “Determining PDU Requirements” on page 5-2 to plan the rack configuration for your ftServer system. “Example of PDU Usage Calculation” on page 5-4 shows how to use the information you gather for planning the rack configuration.

Determining PDU Requirements

Using the nominal voltage rating of the power receptacle at your site and the total wattage of the components that will draw power from the A-side PDU, complete the information in Tables 5-1 and 5-2. This information will help you determine the current that the ftServer systems and rack-mounted components will draw and whether you need a second pair of PDUs.

To complete Table 5-1

1. Obtain the voltage available at your location. Consult a facilities manager at your site to make sure you know the correct voltage.
2. For each type of component you plan to place in the rack, calculate the required current, as follows: Divide the wattage of the element, listed in the Watts column of Table 5-1, by the voltage available at your site. Multiply the result by 1.25 and enter the value in the Current column.

Table 5-1. Current and Rack-Space Requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Watts</th>
<th>(\div) Site Voltage(\dagger)</th>
<th>(\times 1.25 =)</th>
<th>Current (A)</th>
<th>Rack Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer system</td>
<td>700</td>
<td>(\div) x 1.25 =</td>
<td></td>
<td>4U</td>
<td></td>
</tr>
<tr>
<td>1U LCD monitor unit(\ddagger)</td>
<td></td>
<td>(\div) x 1.25 =</td>
<td></td>
<td>1U</td>
<td></td>
</tr>
<tr>
<td>Tape-drive enclosure(\S)</td>
<td></td>
<td>(\div) x 1.25 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk-storage enclosure(\S)</td>
<td></td>
<td>(\div) x 1.25 =</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\dagger \) PDU input voltage is 200-240 VAC.
\(\ddagger \) See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the wattage and rack requirements of your monitor and disk-storage solutions.
\(\S \) See your tape-drive documentation for the wattage and rack requirements of your tape drive.
To complete Table 5-2

1. In column 1, write the names of each system or component in the rack. If you have more than one system, use a row for each system.

2. In column 2, write the cumulative number of rack units (Us): Add the number of Us (see Table 5-1) for the component to the value in the space above and write the result.

3. In column 3, write the cumulative number of outlets required. For each component, add 1 to the value in the space above and write the result.

4. In column 4, write the cumulative current required. For each component, add the current for the component, which you entered in Table 5-1, to the value in the space above and write the result.

You need another pair of PDUs if the cumulative number of outlets exceeds 8 or if the cumulative current exceeds 15A. Use the information in column 2 to plan the size and number of racks required.

Table 5-2. Calculating A-Side PDU and Rack-Space Requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDU Pair</td>
<td>2U</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of PDU Usage Calculation

Table 5-3 shows how to use the information from Table 5-1 to calculate the required rack space and the current when the PDU is connected to a NEMA L6-20R receptacle in the United States, with a voltage of 208V.

Table 5-3. Example: Current and Rack-Space Requirements (208 volts)

<table>
<thead>
<tr>
<th>Component</th>
<th>Watts</th>
<th>Voltage</th>
<th>Current (A)</th>
<th>Rack Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer system</td>
<td>700</td>
<td>208</td>
<td>4.21</td>
<td>4U</td>
</tr>
<tr>
<td>1U LCD monitor unit</td>
<td>54</td>
<td>208</td>
<td>0.32</td>
<td>1U</td>
</tr>
<tr>
<td>Tape drive (typical)</td>
<td>80</td>
<td>208</td>
<td>0.48</td>
<td>2U</td>
</tr>
<tr>
<td>ftScalable Storage system</td>
<td>400</td>
<td>208</td>
<td>2.40</td>
<td>2U</td>
</tr>
</tbody>
</table>

Table 5-4 and the explanation that follows show how to use the information from Table 5-3 to determine when you need to buy an additional pair of PDUs or calculate the size and number of cabinets you need.

Table 5-4. Example: Calculating A-Side PDU and Rack-Space Requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDU pair</td>
<td>2</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>ftServer system</td>
<td>6</td>
<td>1</td>
<td>4.21</td>
</tr>
<tr>
<td>1U LCD monitor unit</td>
<td>7</td>
<td>2</td>
<td>4.53</td>
</tr>
<tr>
<td>Tape drive (typical)</td>
<td>9</td>
<td>3</td>
<td>5.01</td>
</tr>
<tr>
<td>ftScalable Storage system</td>
<td>11</td>
<td>4</td>
<td>7.41</td>
</tr>
<tr>
<td>ftServer system</td>
<td>15</td>
<td>5</td>
<td>11.62</td>
</tr>
<tr>
<td>PDU pair</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ftServer system</td>
<td>6</td>
<td>1</td>
<td>4.21</td>
</tr>
<tr>
<td>ftServer system</td>
<td>10</td>
<td>2</td>
<td>8.42</td>
</tr>
</tbody>
</table>
In the calculations in Table 5-4, components were added one by one, calculating:

- The total current demanded by the components
- The total space used in the rack
- The total number of outlets required

In this example, two PDUs can provide enough current for two ftServer 2600, 4500, or 6300 systems, the LCD monitor unit, one tape drive (typical), and one ftScalable Storage system. This set of components consumes 11.62 amperes; adding another ftServer system would increase the consumption to 15.83 amperes, which exceeds the 15 amperes limit for the PDUs. The configuration also utilizes 5 outlets in the A-side PDU and 15U of rack space.

To add any more components, you require another pair of PDUs.

For information about planning a rack configuration, see:

- “Using PDUs” on page 5-1
- “Determining PDU Requirements” on page 5-2
- “Example of PDU Usage Calculation” on page 5-4
Chapter 6
Cabinet and Monitor Requirements

For requirements related to providing your own cabinet and monitor, see:

- “Cabinet Requirements” on page 6-1
- “Monitor Requirements” on page 6-5

Cabinet Requirements

If you are providing your own cabinet for an ftServer system, make sure the cabinet contains a rack that is 19 inches (in.) wide and that meets the Electronic Industries Association (EIA) 310-D Section 1 standard.

In general, consider the following factors during your site planning for systems in cabinets:

- Elevated Operating Ambient Temperature—if installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (T_{ma}) specified by the manufacturer.

- Reduced Air Flow—Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.

- Mechanical Loading—Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.

- Circuit Overloading—Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

- Reliable Earthing—Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (for example, use of power strips).
Cabinet Requirements

Make sure that the cabinet meets the following requirements:

- The cabinet can support the weight of all the components you plan to install in it. Appendix A and the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) provides the weights of components supplied by Stratus.

- The cabinet contains two front and two rear vertical EIA rails, one in each corner of the cabinet, that have the universal square-hole pattern as defined in the EIA 310-D Section 1 specification.

- The front vertical rails extend at least 0.5 in. (1.27 centimeters (cm)) beyond the inside edge of the accessory leg, if present, to allow the mounting rails to be fitted. See Figure 6-1.

- The distance between the front vertical rails and the inside of the front door is at least 3.0 in. (7.62 cm).

- The distance between the rear of the system chassis and the inside of the rear door is at least 6.0 in. (15.24 cm).

- The distance between the front and rear vertical rails is between 24.5 in. and 30 in. (62.23 cm and 76.20 cm, respectively).

- The vertical mounting rails have a 0.345" or 0.375" square pattern, with a thickness between 0.063" - 0.105", to accept 10-32 cage nuts and mounting hardware.

- The vertical mounting rails are plated, or some other method is used to ensure continuity for grounding between installed equipment.

- Cable-management brackets are provided to support and constrain data and power cords so that the cables do not interfere with air flow out of the rear of the enclosures, and so that the connectors do not disconnect or break.

- To prevent stray voltages, all components are grounded together through the vertical mounting rails to the cabinet frame, and then to local building ground. To ensure signal quality, use a grounding cable for local building ground.

- There is a plan for maintaining cables and wires to the cabinet by either running them under the floor or placing them overhead in an overhead cable tray.

- Air flows through the cabinet from front to back.

- Air does not recirculate within the cabinet.

- Filler panels cover any unused rack space to prevent air recirculation.

- Blockers are installed between the vertical mounting rails and the side panels at the rear of the cabinet.

- Vents are evenly distributed on the front and rear doors and make up at least 69% of the surface area.
If your cabinet does not have vented front and rear doors, you can remove the doors from the cabinet while your ftServer system is operating.

- The final installation conforms to all emission, immunity, safety, and other applicable regulations.

Figure 6-1 shows the required rail clearance between the front vertical rails and the inside edge of an accessory leg.
Figure 6-1. Rail Clearance

1. Front vertical EIA rail
2. Accessory leg
3. Front of cabinet

0.5-inch (1.27-cm) minimum

0.5-inch minimum
Monitor Requirements

If you are using a monitor that is not supplied by Stratus, make sure that:

- The monitor accepts universal 100–240 volts AC (VAC), 50/60 Hertz (Hz) power.
- The VGA cable has a 15-pin D-sub connector.
- The power cord for the monitor is long enough to reach the power source.
- The plug type on the power cord is compatible with the external power source at the site.
Appendix A
System Specifications

For system specifications, see:

- “System Specifications” on page A-1
- “PCI Adapter Specifications” on page A-7
- “AAP87600 PDU Specifications” on page A-8

NOTES __

1. The system temperature and humidity requirements defined in Tables A-2 are the minimum requirements the site must provide.

2. The temperature and humidity requirements for optional components are provided in the Stratus ftServer Systems: Peripherals Site Planning Guide (R582).

System Specifications

The following figures show front and rear views of the systems.

- Figure A-1 shows the front of an ftServer 2600, 4500, or 6300 system, mounted in a rack with its bezel pulled forward.

- Figure A-2 shows the rear of a rack-mountable ftServer 2600, 4500, or 6300 system, specifying the locations of the connectors at the rear of the system.

Table A-1 lists the dimensions of the system cabinets supplied by Stratus. Table A-2 lists the specifications for each ftServer CPU-I/O enclosure, the front panel, and the backplane assembly. Table A-4 lists the specifications of the PDU. See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the specifications of other components.
Figure A-1. ftServer 2600, 4500, or 6300 System: CPU-I/O Enclosures: Front View

1. CPU-I/O 0
2. CPU-I/O 1
3. CPU ID button (magnifying glass icon)
4. System LEDs
5. NMI (dump) button
6. DVD drive
7. Front panel LEDs
8. USB port
9. Front panel
10. Power button
11. Internal disk drives (16) or disk drive blanks
12. Release levers (4)
Figure A-2. ftServer 2600, 4500, or 6300 System: Rear View

1. USB ports (3)
2. Modem and telephone port
3. PCI adapter slot 3 (PCIe or PCI-X, full-height). Not available on ftServer 2600 systems.
4. PCI adapter slot 4 (PCIe or PCI-X, full-height). Not available on ftServer 2600 systems.
5. PCI adapter slot 1 (PCIe, low profile)
6. PCI adapter slot 2 (PCIe, low profile)
7. Power receptacles (2)
8. Power supply LEDs (2)
9. Embedded 10/100/1000-Mbps Ethernet ports (4)
10. CPU-I/O enclosure blue identification LEDs (2)
11. VTM Ethernet ports (2)
12. System backplane
13. Serial (COM) ports (2)
14. VGA (monitor) port
Table A-1. Cabinet Dimensions

<table>
<thead>
<tr>
<th></th>
<th>24U Shipping Container</th>
<th>38U Shipping Container</th>
<th>24U Cabinet</th>
<th>38U Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (including pallet)</td>
<td>56 in. (1.42m)</td>
<td>80 in. (2.03m)</td>
<td>49.5 in. (1.26m)</td>
<td>74 in. (1.9m)</td>
</tr>
<tr>
<td>Width</td>
<td>41 in. (1.04m)</td>
<td>41 in. (1.04m)</td>
<td>27.6 in. (70 cm)</td>
<td>27.5 in. (70 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>53 in. (1.35m)</td>
<td>53 in. (1.35m)</td>
<td>in. (1.04m)</td>
<td>41 in. (1.04m)</td>
</tr>
<tr>
<td>Weight, empty</td>
<td>280 lb (127 kg)</td>
<td></td>
<td>350 lb (157.7 kg)</td>
<td>350 lb (157.7 kg)</td>
</tr>
<tr>
<td>Weight, empty with pallet and shipping container</td>
<td>436 lb (197.8 kg)</td>
<td></td>
<td>512 lb (232.2 kg)</td>
<td></td>
</tr>
<tr>
<td>Weight capacity (payload)</td>
<td>1500 lb (559.9 kg)</td>
<td></td>
<td></td>
<td>1500 lb (559.9 kg)</td>
</tr>
</tbody>
</table>
Table A-2. ftServer 2600, 4500, and 6300 System: CPU-I/O Enclosure Specifications

<table>
<thead>
<tr>
<th>Power</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td>700W for each enclosure (1400W total)</td>
</tr>
<tr>
<td>Nominal input voltage</td>
<td>100-127 or 200-240 volts; 50/60 Hz</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.98</td>
</tr>
<tr>
<td>VA</td>
<td>720 (240V x 3A)</td>
</tr>
<tr>
<td></td>
<td>700 (100V x 7A)</td>
</tr>
<tr>
<td>Protective earth ground current</td>
<td>3.5 mA maximum for each AC power cord</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>7.0 in. (17.78 cm; 4U)</td>
</tr>
<tr>
<td>Width</td>
<td>17.50 in. (44.45 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>29.27 in. (74.34 cm), with modem, excluding rail and bezel</td>
</tr>
<tr>
<td>Weight, including 12 DIMMS, 2 processors, and 8 disks per enclosure</td>
<td>Two enclosures: 84 lb (38.1 kg), fully loaded Rails and shelf unit: 13.8 lb (6.26 kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>41°F to 95°F (5°C to 35°C)</td>
</tr>
<tr>
<td></td>
<td>For every 800 ft (243.8 m) above 2000 ft (609.6 m), lower the maximum operating temperature by 1°C.</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-38°F to 140°F (-40°C to 60°C), vented</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>0 ft to 10,000 ft (0m to 3,048m)</td>
</tr>
<tr>
<td>Maximum rate of temperature change during operation</td>
<td>12°F per hour</td>
</tr>
<tr>
<td>Relative humidity during operation</td>
<td>10% to 80% (noncondensing)</td>
</tr>
<tr>
<td>Relative humidity during storage</td>
<td>5% to 95% (noncondensing)</td>
</tr>
<tr>
<td>Heat dissipation, each system (both enclosures)</td>
<td>4774 BTUs per hour</td>
</tr>
</tbody>
</table>
Table A-2. ftServer 2600, 4500, and 6300 System: CPU-I/O Enclosure Specifications (Continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air cleanliness</td>
<td>Meets ISO 14644-1 class 8 standards</td>
</tr>
<tr>
<td>Features</td>
<td></td>
</tr>
<tr>
<td>Processors</td>
<td>ftServer 2600: One Intel® Xeon® Quad-Core 2.0 GHz processor in each CPU-I/O enclosure</td>
</tr>
<tr>
<td></td>
<td>ftServer 4500: One or two Intel Xeon Quad-Core 2.0 GHz processors in each CPU-I/O enclosure</td>
</tr>
<tr>
<td></td>
<td>ftServer 6300: Two Intel Xeon Quad-Core 2.93 GHz processors in each CPU-I/O enclosure</td>
</tr>
<tr>
<td>Memory</td>
<td>12 physical, fully-buffered (FB) DDR3 inline memory module (DIMM) slots in each CPU-I/O enclosure. All 12 slots are usable in dual processor systems. Only 6 slots are usable in single processor systems.</td>
</tr>
<tr>
<td>Ports</td>
<td>Two 10/100/1000-Mbps Ethernet ports in each CPU-I/O enclosure</td>
</tr>
<tr>
<td></td>
<td>Two AC power connectors, one VGA port, two serial ports, and four USB ports† (three on the system backplane and one on the front panel)</td>
</tr>
<tr>
<td>PCIe slots (standard)</td>
<td>Two low-profile PCI-Express slots standard on each CPU-I/O enclosure</td>
</tr>
<tr>
<td></td>
<td>• See “PCI Adapter Specifications” for details</td>
</tr>
<tr>
<td>Additional PCI slots (optional for ftServer 4500 and 6300 systems)</td>
<td>Each CPU-I/O enclosure supports one optional riser:</td>
</tr>
<tr>
<td></td>
<td>• Optional PCIe riser supports two full-height-capable PCIe slots</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>• Optional PCI-X riser supports two full-height-capable PCI-X slots</td>
</tr>
<tr>
<td></td>
<td>See “PCI Adapter Specifications” for details</td>
</tr>
<tr>
<td>BMC</td>
<td>One advanced system management module (Baseboard Management Controller, or BMC) embedded in each CPU-I/O enclosure with one 10/100-Mbps Ethernet port dedicated to the BMC in each CPU-I/O enclosure. BMCs include embedded Virtual Technician Module (VTM) functionality.</td>
</tr>
<tr>
<td>Disk drives</td>
<td>Up to eight Serial Attached SCSI (SAS) disks per CPU-I/O enclosure</td>
</tr>
<tr>
<td>DVD+/-R drive†</td>
<td>In the front panel, one drive that reads from CDs and DVDs.</td>
</tr>
</tbody>
</table>

† ftServer Systems running VMware ESX support the DVD drive and other USB devices only during the initial software installation process and maintenance periods. For more information about explicitly enabling them after installation, see the Stratus ftServer System Administrator’s Guide for VMware vSphere (R002E).
PCI Adapter Specifications

Two PCIe slots are standard on each CPU-I/O enclosure motherboard. Optionally, on ftServer 4500 and 6300 systems, you can add either a PCIe riser or a PCI-X riser for two additional slots per enclosure. Table A-3 lists the power and length specifications for PCI adapters.

Table A-3. PCI Adapter Specifications

<table>
<thead>
<tr>
<th>Power</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI slot rating</td>
<td>10W maximum per PCI slot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-I/O enclosure</td>
<td>Two low-profile PCIe slots</td>
</tr>
<tr>
<td>mother board</td>
<td>6.6 in (167.75 mm) maximum adapter length</td>
</tr>
<tr>
<td>Optional PCIe or PCI-X</td>
<td>Two full-height-capable PCIe slots</td>
</tr>
<tr>
<td>riser (not available on</td>
<td>Top riser slot (PCI 3): 7.7 in. (195.94 mm) maximum adapter length</td>
</tr>
<tr>
<td>ftServer 2600 systems)</td>
<td>Lower riser slot (PCI 4): 6.6 in. (167.75 mm) maximum adapter length</td>
</tr>
</tbody>
</table>

Use only Stratus-approved PCI adapters in your Stratus system. Before approving an adapter, Stratus thoroughly tests it to make sure that it interacts properly with Stratus systems, including failover to a duplexed partner if an active adapter or CPU-I/O enclosure fails or is removed from service. Customers who have attempted to use inadequately tested PCI adapters in their systems have frequently experienced problems that proved difficult to isolate and diagnose and resulted in delayed projects.

Stratus provides ftReady third-party PCI adapter testing and driver hardening services. To find out more about these professional service offerings, please contact your local Stratus sales or service representative.

You should thoroughly test any new PCI adapter, including adapters sold or approved by Stratus, with your applications in a test environment before using it in a production environment.

All Stratus-approved PCI adapters are submitted for Electromagnetic Interference (EMI) and safety compliance. Other adapters will not have EMI and safety approvals for use in an ftServer system.
AAP87600 PDU Specifications

A power distribution unit (PDU) optionally supplies power to rack-mounted ftServer systems and optional rack-mountable components. Figure A-3 shows the AAP87600 PDU.

Figure A-3. AAP87600 PDU

1 Circuit breaker switch
2 AC input receptacle
3 AC outlet receptacles
Table A-4 lists the specifications for the AAP87600 PDUs.

Table A-4. AAP87600 PDU: Specifications

<table>
<thead>
<tr>
<th>Power</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td></td>
</tr>
<tr>
<td>Nominal input voltage; frequency</td>
<td>200–240 VAC; 50/60 Hz</td>
</tr>
</tbody>
</table>

Physical Dimensions

<table>
<thead>
<tr>
<th>Height</th>
<th>1.75 in. (4.45 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>19.1 in. (48.51 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>6.75 in. (17.15 cm)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Operating temperature during operation</th>
<th>41°F to 95°F (5°C to 35°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For every 800 ft (243.8m) above 2000 ft (609.6m), lower the maximum operating temperature (95°F (35°C)) by 1.8°F (1°C).</td>
</tr>
<tr>
<td>Maximum rate of temperature change during operation</td>
<td>12°C per hour or 0.2°C per minute</td>
</tr>
<tr>
<td>Relative humidity during operation</td>
<td>10% to 80% (noncondensing)</td>
</tr>
<tr>
<td>Storage temperature to 40,000 ft (12.2 km)</td>
<td>-38°F to 140°F (-40°C to 60°C)</td>
</tr>
<tr>
<td>Relative humidity during storage</td>
<td>5% to 95% (noncondensing)</td>
</tr>
</tbody>
</table>
For electrical circuit and wiring information that you need to provide to the contractor and/or facilities personnel responsible for wiring the power at the system installation site, see:

- “Fault Protection Requirements” on page B-1
- “Grounding Considerations” on page B-1
- “Circuit Wiring Diagrams” on page B-2
- “Electrical Power Connectors” on page B-9

Fault Protection Requirements

Each enclosure in ftServer systems contains internal fault/overload current protection. However, the system relies on the power distribution system at your site for protection against potential faults in the power cords and the wiring in the system base.

System and PDU power cords must not be connected to a branch circuit greater than 20A.

Grounding Considerations

The system obtains an earth reference ground through the power cords attached to the system. Similarly, each peripheral device connected to the system obtains ground through its power cord. You must ensure that a high-integrity safety-ground conductor is installed as part of the wiring system (in accordance with U.S. national electric code NFPA 70 or the equivalent). The international safety standard (EN60950) for electronic data processing (EDP) equipment also requires a ground conductor, but calls it a protective earth (PE) ground.

Depending upon local conditions, ground potentials may differ between the system base and any peripheral devices connected to the system base. All grounds in the system must return to the same reference point in the power distribution system, as close as possible to zero (0) volt potential relative to earth reference ground. Earth reference ground is typically a metal stake in the ground to which the ground conductors from one or more buildings are attached.
As shown in Figure B-1, a star ground is often used to obtain the same earth reference ground. Each earth reference ground, such as the system base ground, is returned separately to a common point where a zero-volt (0V) earth ground exists. The star ground ensures that all equipment is at the same potential and that no noise or safety problems associated with an unpredictable or uncharacterized grounding system will occur.

Figure B-1. Star Ground Example

1 To monitor
2 To ftServer system
3 Earth reference ground (0V)

Circuit Wiring Diagrams

The following circuit wiring diagrams show how the hot, ground, and/or neutral AC signals should be connected to the power input plugs of the system and optional components:

- Figure B-4 illustrates a single-phase 120V AC circuit connection.
- Figure B-5 illustrates a single-phase 240V AC circuit connection.
- Figure B-6 illustrates a split-phase 120/240V AC circuit connection.
- Figure B-7 illustrates a three-phase 208V AC, Y-, or Δ-source circuit connection, phase-to-phase.
- Figure B-8 illustrates a three-phase 380V AC, Y-, or Δ-source circuit connection, phase-to-neutral.

In the following diagrams, the power inputs for ftServer 2600, 4500, and 6300 systems are labeled X and Y, as shown in Figure B-2 and Figure B-3, to eliminate any ambiguities in the nomenclature. For single-phase applications, the X input is
connected to the L (Line) hot input, and the Y input is connected to the N (Neutral) input. However, for split-phase or three-phase applications, the X and Y inputs are connected to L1, L2, or L3 (separate lines). Therefore, for split-phase or three-phase applications, both X and Y can be electrically hot with respect to the system base (earth reference ground). Figure B-2 shows the physical locations of the X and Y inputs on the PDU, and Figure B-3 shows them on the system enclosure.

Figure B-2. PDU Power Input Labeling

![PDU power input A or B (Face View)](image)

Figure B-3. ftServer Enclosure Power Input Labeling

![ftServer Enclosure power input A or B (Face View)](image)
Figure B-4 shows a single-phase 120V AC circuit connection. Note that this application requires a single-pole circuit breaker.

Figure B-4. Single-Phase 120V AC Circuit Connection
Figure B-5 shows a single-phase 240V AC circuit connection. Note that this application requires a single-pole circuit breaker.

Figure B-5. Single-Phase 240V AC Circuit Connection

Single system: 20A maximum
PDU: 20A maximum

To power input A or B
Figure B-6 shows a split-phase 120/240V AC circuit connection. Note that this application requires a double-pole circuit breaker.

Figure B-6. Split-Phase 120/240 Volts AC Circuit Connection

Circuit A or B

L1

L2

N

G (PE)

240V
120V
120V

0V

Single system: 20A maximum

PDU: 20A maximum

Wall

Power Cord

X

Y

G (PE)

To power input A or B
Figure B-7 shows a three-phase 208V AC, Y-, or Δ-source circuit connection, which is a phase-to-phase source connection. Note that the X and Y inputs on the system can be connected from L1 and L2, L2 and L3, or L1 and L3. This application requires a double-pole circuit breaker.

Figure B-7. Three-Phase 208V AC, Y-, or Δ-Source Circuit Connection, Phase-to-Phase
Figure B-8 shows a three-phase 380V AC, Y-, or Δ-source circuit connection, which is a phase-to-neutral source connection. Note that the system’s X input can be connected to L1, L2, or L3. This application requires a single-pole circuit breaker.

Figure B-8. Three-Phase 380V AC, Y-, or D-Source Circuit Connection, Phase-to-Neutral
Table B-1 describes the connectors required by the AC power cords that Stratus supplies with ftServer systems and optional devices.

Table B-1. Connectors for AC Power Outlets

<table>
<thead>
<tr>
<th>Connector</th>
<th>Configuration</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA L6-20</td>
<td></td>
<td>20A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>NEMA 5-15</td>
<td></td>
<td>15A, 125 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>CEE (7) VII</td>
<td></td>
<td>20A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>IEC 60309 (formerly IEC 309)</td>
<td></td>
<td>16-20A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>SABS 164-1:1992</td>
<td></td>
<td>16A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
</tbody>
</table>
Table B-1. Connectors for AC Power Outlets *(Continued)*

<table>
<thead>
<tr>
<th>Connector</th>
<th>Configuration</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 1363/A</td>
<td></td>
<td>13A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>SEV 1011-S24507</td>
<td></td>
<td>10A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>SAA/3/15 AS/NZS 3112-1993</td>
<td></td>
<td>15A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>GB1002-1996</td>
<td></td>
<td>10A, 250 volts AC</td>
<td>2 pole, 3-wire</td>
</tr>
</tbody>
</table>
Appendix C
Standards Compliance

For compliance information, see the following:

- “Electronic Interference, Immunity, Safety, and Noise Level Standards Compliance” on page C-1
- “Toxic and Hazardous Substances and Elements Disclosure” on page C-4
- “Guidelines for Airborne Contamination (Particulate and Gaseous)” on page C-4

Electronic Interference, Immunity, Safety, and Noise Level Standards Compliance

All ftServer systems comply with the electromagnetic interference (EMI), immunity, safety, and noise regulations listed in Table C-1. All necessary agency labels are on the system.

NOTES

1. This system must be configured with the components listed and described in the product configuration specifications. Deviations from this list of components will void agency certification.

2. You must install all wiring, including power and communications cables, in compliance with local and national electrical code (in the United States, national electrical code NFPA 70). In addition, you must use shielded communications cables to remain in compliance with Federal Communications Commission (FCC) and other international Electromagnetic compatibility (EMC) regulations.

3. All EMC emissions compliance tests are performed at a third-party certified test laboratory.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio
frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense. WARNING: Changes or modification to the product could void the user's authority to operate the equipment.

Table C-1. Compliance Standards for ftServer 2600, 4500, and 6300 Systems (Class A)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-3-2: 2006</td>
<td>Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current <= 16 A per phase)</td>
<td>European Union</td>
</tr>
<tr>
<td>EN 61000-3-3: 1995, A2:2005</td>
<td>Electromagnetic compatibility (EMC) – Part 3-3: Limits – Limits of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems (equipment input current <= 16 A per phase)</td>
<td>European Union</td>
</tr>
<tr>
<td>EN 60950-1:2006</td>
<td>Safety of Information Technology Equipment</td>
<td>European Union</td>
</tr>
<tr>
<td>CB SCHEME IEC 60950-1:2005: 2nd Ed</td>
<td>Safety of Information Technology Equipment</td>
<td></td>
</tr>
</tbody>
</table>
Table C-1. Compliance Standards for ftServer 2600, 4500, and 6300 Systems (Class A) (Continued)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM-0190SCFI-1998</td>
<td>Data processing equipment safety</td>
<td>Mexico</td>
</tr>
<tr>
<td>CISPR 22 Class A</td>
<td>Certificate of Compliance with the Radio Regulations</td>
<td>South Africa</td>
</tr>
<tr>
<td>KCC No. 2008-39, Annex 4 of the 2008-7</td>
<td>Technical Requirements for EMI Safety for ITE</td>
<td>South Korea</td>
</tr>
<tr>
<td>VCCI V-3 (2006.04) Class</td>
<td>Voluntary Control Council for Interference by Information Technology Equipment</td>
<td>Japan</td>
</tr>
<tr>
<td>BSMI, CNS13438 (95) CNS14336 (94), Class A</td>
<td>Information technology equipment - Radio disturbance characteristics</td>
<td>Taiwan</td>
</tr>
</tbody>
</table>

VCCI Note

この装置は、クラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要請されることがあります。

BSMI Note

這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，使用者會被要求採取某些適當的對策
Energy Star Note
As defined by the EPA ENERGY STAR Program Requirements for Computer Servers, Tier 1 requirements, this server is defined as a “Fully Fault Tolerant Server.” Presently there are no defined requirements, and this category of servers is ineligible to receive an Energy Star rating. As such there are no sales restrictions for local or federal agencies.

Toxic and Hazardous Substances and Elements Disclosure
ftServer 2600, 4500, and 6300 systems are compliant with the European Union's Restriction of Hazardous Substances Directive (RoHS) based upon the exception for lead used in servers.

WARNING

The lithium battery contains perchlorate material. Special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate.

Guidelines for Airborne Contamination (Particulate and Gaseous)
Due to the mission-critical nature of Stratus servers, data centers housing the equipment should follow the guidelines of airborne contamination (particulate and gaseous) as outlined in the ASHRAE (TC) 9.9 documentation. Particulate matter to adhere to ISO 14644-1 Class 8. Gaseous contamination, such as sulfur or chlorine-bearing gases to adhere to ANSI/ISA-71.04-1985 Severity level G1.
A
AC power service requirements, 2-2
ActiveService Network (ASN). See ASN
APC UPS, 2-12
 Network Management Card EX, 2-10
 PowerChute Network Shutdown, 2-10
qualified models, 2-9
qualified Symmetra models, 2-9
AS/NZS 3112-1993 connector, B-10
A-side power source, 2-1
ASN, site planning, 1-3, 3-3, 4-8

B
BS connector
 1363/A, B-10
B-side power source, 2-1

C
cabinets
 configuration planning, 5-1, 5-5
 requirements, 6-1
 specifications, A-4
cables
 Ethernet network, 4-5
 Fibre Channel, 4-2, 4-3
 planning for, 3-3, 4-1
 telephone, 3-3
CAC, getting assistance, 1-2
CEE connector
 (7) VII, B-9
checklist for site planning, 1-2
circuit, electrical
 planning information, B-1
 wiring diagrams, B-2
communications cables
 planning for, 4-1
compliance, standards, C-1
connectors, electrical, B-9
 BS 1363/A, B-10

C
CEE (7) VII, B-9
GB1002-1996, B-10
IEC 60309, B-9
NEMA 5-15, B-9
NEMA L6-20, B-9
SAA/3/15 AS/NZS 3112-1993, B-10
SABS 164-1:1992, B-9
SEV 1011-S24507, B-10
CPP
 UPS, 2-12
current requirements, from PDU, 5-2
Customer Assistance Center. See CAC

dust contamination, 3-1

earth reference ground, B-1
electrical
 connectors, B-9
 grounding, B-1
 power planning, 2-1
 wiring, B-1
EMC storage systems, 1-5, 4-2
environmental requirements
 maximum rate of temperature change, A-5
 operating humidity, A-5
 storage humidity, A-5
Ethernet
 network cables, 4-5

f
fault-tolerant systems, site planning, 1-3
Fibre Channel
 cables, 4-3
 connections, 4-2
 switches electrical requirements, 2-3
Fibre Channel switches, 1-5
ftGateway, site planning information, 4-9
ftScalable Storage systems, 1-5
 Ethernet cables, 4-7
 Ethernet connections, 4-5
 Fibre Channel connections, 4-2
 management PC, 4-5
ftServer Access Adapters, 4-10

G
GB connector
 GB1002-1996, B-10
grounding the system, 2-15, 6-2, B-1

H
hubs, network, 3-3

I
IEC connector
 60309, B-9
iSCSI storage, 4-7
ISO 14644-1 class 8 standards, 3-1

J
jacks, Ethernet, 3-3

L
LCD monitor units
 power cords, 2-13

M
management PC
 for ftScalable Storage systems, 4-5, 4-7
monitors
 power cords, 2-13
 requirements, 6-5

N
NEMA connector
 5-15, B-9
 L6-20, B-9
network (Ethernet) cables, 4-5
network management card, UPS, 2-10

O
optical Fibre Channel connections, 4-2

P
PCle adapters
 U104, 4-5, 4-6
 U105, 4-5, 4-6
 U106, 4-2
 U108, 4-5, 4-6
PDUs
 configuration planning, 5-1
 power (jumper) cables, 2-15
 power cords, 2-14
 site planning, A-8
 specifications, A-9
 usage calculation
 sample, 5-4
 worksheets, 5-4
power (AC)
cords
 LCD monitor units, 2-13
 monitors, 2-13
 storage enclosures, 2-13
 systems, 2-13
 tape-drive enclosures, 2-13
 electrical requirements, 2-2
PDU connections, illustrated, 2-11
service requirements, 2-2, 2-4, 2-5
 A-side, 2-4, 2-5
 B-side, 2-4, 2-5
sources, 2-1
 direct, 2-6
 UPS, 2-10, 2-12
system connections, illustrated, 2-6
UPS connections, illustrated, 2-12
wall outlets, 2-4, 3-3
PowerChute Network Shutdown, 2-10
protective earth ground, B-1

R
racks
 configuration planning, 5-1, 5-5
 requirements, 6-1
 removing power, 1-10
 room requirements, 3-1

S
SAA/3/15 AS/NZS connector
 3112-1993, B-10
SABS connector
 164-1:1992, B-9
safety notices, 1-10
service requirements, AC-power, 2-2
SEV connector
 1011-S24507, B-10
single-phase circuit connections
 120 V AC, B-4
 240 V AC, B-5
site planning
 checklist, 1-2
 overview, 1-1
space planning, 3-1
 cables, 3-3
 future expansion, 3-2
 room requirements, 3-1
specifications
 AC power, 2-2
 cabinet, A-4
 CPU-I/O enclosure, A-5
 PDUs, A-9
 rack-mountable system, A-1
split-phase circuit connections
 120–240 V AC, B-6
standards compliance, C-1
star ground, B-2
Stratus Customer Assistance Center. See CAC
switches
 circuit breaker
 PDU, A-8
 Ethernet
 cable planning, 3-3, 4-6
 Fibre Channel, 1-5
 cable planning, 4-3
 site network, 3-3
system power cords, 2-13
system specifications
 rack-mounted systems, A-1
telephones
 for support calls, 1-4
three-phase circuit connections
 208 V AC, B-7
 380 V AC, B-8

U
U104 PCIe Ethernet adapters, 4-5, 4-6
U105 PCIe Ethernet adapters, 4-5, 4-6
U106 PCIe SAS adapters, 4-2
U108 PCIe Ethernet adapters, 4-5, 4-6
uninterruptible power supply (UPS). See UPS
 UPS, 2-12
 network communication hardware, 2-10
 network communication software, 2-10
 network management card, 2-10
 PDU connections, 2-10
 rack system connections, 2-12

V
Virtual Technician Modules. See VTMs
VTMs
 cables, 4-6
 in an ftGateway group, 4-10
 site planning, 1-3

W
wiring, electrical, B-1

tape-drive enclosures
 power cords, 2-13
 SCSI cables, 4-2
technical support. See CAC
telephone lines, 4-8
 for ASN modem assembly, 1-3, 4-8
 for support calls, 4-8