
Part Number: R8052-17

January 2005

SINAP/SS7 Programmer’s Guide

Stratus Technologies
R8052-17

SINAP/SS7 Programmer’s Guide

Notice

The information contained in this document is subject to change without notice.

UNLESS EXPRESSLY SET FORTH IN A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED
REPRESENTATIVE OF STRATUS TECHNOLOGIES, STRATUS MAKES NO WARRANTY OR REPRESENTATION
OF ANY KIND WITH RESPECT TO THE INFORMATION CONTAINED HEREIN, INCLUDING WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PURPOSE. Stratus Technologies assumes no responsibility or obligation
of any kind for any errors contained herein or in connection with the furnishing, performance, or use of this document.

Software described in Stratus documents (a) is the property of Stratus Technologies Bermuda, Ltd. or the third party,
(b) is furnished only under license, and (c) may be copied or used only as expressly permitted under the terms of the
license.

Stratus documentation describes all supported features of the user interfaces and the application programming
interfaces (API) developed by Stratus. Any undocumented features of these interfaces are intended solely for use by
Stratus personnel and are subject to change without warning.

This document is protected by copyright. All rights are reserved. No part of this document may be copied, reproduced,
or translated, either mechanically or electronically, without the prior written consent of Stratus Technologies.

Stratus, the Stratus logo, ftServer, Continuum, Continuous Processing, StrataLINK, StrataNET, DNCP, SINAP, and FTX
are registered trademarks of Stratus Technologies Bermuda, Ltd.

The Stratus Technologies logo, the ftServer logo, Stratus 24 x 7 with design, The World’s Most Reliable Servers, The
World’s Most Reliable Server Technologies, ftGateway, ftMemory, ftMessaging, ftStorage, Selectable Availability, XA/R,
SQL/2000, The Availability Company, RSN, and MultiStack are trademarks of Stratus Technologies Bermuda, Ltd.

Hewlett-Packard, HP, and HP-UX are registered trademarks of Hewlett-Packard Company. Sun, Solaris, Netra, and
SunFire are trademarks or registered trademarks of Sun Microsystems, Inc. SPARC is a registered trademark of SPARC
International, Inc. UNIX is a registered trademark of X/Open Company, Ltd., in the U.S.A. and other countries. The
registered trademark Linux(R) is used pursuant to a sublicense from the Linux Mark Institute, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis. All other trademarks are the property of their respective
owners.

Manual Name: SINAP/SS7 Prigrammer’s Guide

Part Number: R8052
Revision Number: 17
Updated for SINAP/SS7 Release Number: 14.2
Publication Date: January 2005

Stratus Technologies, Inc.
111 Powdermill Road
Maynard, Massachusetts 01754-3409

© 2005 Stratus Technologies Bermuda, Ltd. All rights reserved.

Contents

Preface xxi

1. Introduction 1-1
What is SINAP/SS7? 1-1

2. Application Programming Interface (API) 2-1
API Overview 2-1
CASL Function Types 2-3

SINAP/SS7 Management Functions 2-3
SS7 Functions 2-3
ISUP Services Functions 2-4
IPC Functions 2-4
Connection-oriented Services Functions 2-5
Load Control Functions 2-5
BITE Functions 2-5
Miscellaneous Functions 2-5

CASL Structure Types 2-6
I_Block – IPC Unit of Exchange 2-6
M_Block – SS7 MSU-Level Unit of Exchange 2-7
T_Block – SS7 TCAP-Level Unit of Exchange 2-7
TCAP Application-Context Structures 2-8
Connection-Oriented Structures 2-8

SINAP/SS7 Include Files 2-9
SS7 Primitives 2-18

MTP Primitives 2-18
SCCP Primitives 2-19
Connection-Control Primitives 2-20

Primitives Used in IPC Messages 2-20
Data Primitives Used in Data MSUs 2-22

TCAP Primitives 2-23
Dialogue-Handling Primitives (CCITT/TTC/NTT/China) 2-24
Transaction-Handling Primitives (ANSI) 2-25
Component-Handling Primitives 2-26

ISUP Services Primitives 2-27
 Contents v

Contents
SS7 Message Processing 2-28
SINAP/SS7 Interaction with the SS7 Network 2-28
Issuing Calls to Read from the Queue 2-28

Blocking-Mode Timing Problem 2-29
Implementation of the ca_get_tc_ref() Function 2-29

Interprocess Communications (IPC) 2-29

3. Application Design and Development 3-1
General Design Considerations 3-2

Multi-Threading Considerations (pthreads) 3-3
Porting 32-Bit SINAP Applications to 64-Bit (HP-UX and Solaris only) 3-4

Compiling 64-Bit Applications with 64-bit HP-UX OS 3-5
Compiling 64-Bit Applications with 64-bit Solaris OS 3-6
Guidelines 3-6
References 3-7

SINAP/SS7 Libraries 3-8
Client Application Models 3-9
Control and Data Processes 3-10
Single-Source SINAP/SS7 Code 3-11
UNIX Signal Remapping 3-12
Tuning the Outgoing Batch Buffer Size 3-13
Supporting Large Numbers of Transactions 3-13
TCAP EINTR Considerations 3-14

Considerations for Different Types of Applications 3-14
Include Files Required for Different Types of Applications 3-14
Network Variant Differences 3-15

Configuration Requirements and Limitations 3-18
Structure Differences 3-26
Differences in CASL Functions Supported 3-27
Primitives Supported 3-28

Developing Application Processing 3-28
Registering with SINAP/SS7 3-29
Going Into Service 3-29
Handling SS7 Messages 3-31
Sending MML Commands 3-31
Monitoring and Intercepting SS7 Messages 3-32
Auto-Starting BITE Monitor Processes 3-32
Debugging Processing Logic 3-33
Reporting Events 3-33
Health-Check Operations 3-33
Going Out of Service 3-33
Withdrawing From the SS7 Network 3-34

Activating/Deactivating a SINAP/SS7 Application 3-34
Activating a SINAP/SS7 Client Application 3-34
vi SINAP/SS7 Programmer’s Guide R8052-17

Terminating a SINAP/SS7 Client Application 3-35
TCAP Client Applications 3-36

Communication Between TCAP Applications 3-38
Application Protocol Data Units (APDUs) 3-39
Maintaining Information about Transactions 3-40
TCAP Data Structure (t_block_t) 3-41
Allocating t_block_t Structures 3-41

TCAP Application Include Files 3-42
TCAP Application Registration 3-42

TCAP Registration Parameters 3-43
Handling Incoming SS7 Messages 3-45

Processing Incoming Messages (CCITT/China/TTC/NTT) 3-45
Processing Incoming Messages (ANSI) 3-46

Sending Outgoing SS7 Messages 3-46
Sending Outgoing Messages (CCITT/China/TTC/NTT) 3-47
Sending Outgoing Messages (ANSI) 3-48

1993 TCAP Standards Overview 3-49
Implementing 1993 TCAP Standards 3-49

Application-Context Names 3-50
Processing the Dialogue Portion of an MSU 3-50

Implementing 1993 TCAP Standards in Your Application 3-51
Application-Programming Considerations 3-52
Interaction Between Nodes 3-53
Initiating an Application-Context Dialogue 3-53

SCCP Client Applications 3-57
SCCP Application Include Files 3-58
SCCP Application Registration 3-58

SCCP Registration Parameters 3-59
SCCP Application Message Processing 3-60

User Part (MTP) Client Applications 3-61
User Part (MTP) Application Include Files 3-62
User Part (MTP) Application Registration 3-63

User Part (MTP) Registration Parameters 3-63
User Part (MTP) Application Message Processing 3-64
MTP Routing Based on SLS and DPC 3-65

ISUP Services Applications 3-66
Considerations for Implementing SINAP/SS7 Features 3-66

Routing Capabilities 3-68
Global Title Addressing (GTA) 3-68
Global Title Translation (GTT) 3-68
Fictitious Originating Point Code (ANSI only) 3-76
Alternative Destination Point Code (ANSI, CCITT, and China only) 3-77

Enhanced Message Distribution 3-78
Processing Overview 3-79
The Message Distribution Information Structure 3-80
 Contents vii

Contents
Implementing Enhanced Message Distribution 3-81
Retrieving Message Distribution Information 3-88
Changing Message Distribution Information 3-88
Deleting Message Distribution Information 3-89

SCCP Third Party Address 3-89
Custom Application Distribution 3-90

Generic CAD Registration 3-90
CS-1 INAP-Specific CAD Registration 3-90
Generic CAD Message Processing 3-91
CS-1 INAP Message Processing 3-92
SCCP Management Considerations for CAD 3-94

Configuring Multiple Link Congestion Levels 3-94
Variant Differences 3-95
Congestion States 3-95
Implementing Multiple Link Congestion Functionality 3-96
Multiple Congestion States Without the Congestion Priority 3-99
Notifying the Application of Congestion 3-100
Link Congestion Thresholds 3-100

Priority, Sequence Control, and Quality of Service 3-101
MTP User Flow Control 3-104

Implementing MTP User Flow Control 3-104
Generating a UPU Message 3-105
Handling Incoming UPU Messages 3-106

XUDT and XUDTS Messages (CCITT and China) 3-108
XUDT MSU Segment Sizes 3-110
Validating the XUDT Message Segment Size 3-110
Programming Considerations for XUDT/XUDTS Messages 3-111

Processing SCCP Subsystem Tests in XUDT Messages 3-116
Handling SNM Messages with Nonzero SLCs 3-117
The MTP Restart Process 3-117

MTP Restart Processing Overview 3-118
Enabling MTP Restart Functionality 3-119

MTP Time-Controlled Changeover 3-124
Overview of MTP TCCO Processing 3-125

MTP Time-Controlled Diversion 3-126
Implementing TCD Feature for ANSI Network Variant 3-127

Implementing the MTP Management Inhibit Feature (ANSI) 3-127
Signaling Link Selection (SLS) Message Distribution 3-128

Implementing SLS Message Distribution 3-128
Displaying SLS Assignments 3-129
Enabling Random SLS Generation 3-131
Setting SLS Bits in the MTP Routing Label 3-131

Connection-Oriented Services (CCITT, ANSI, China) 3-132
Processing Overview 3-133
Connection-Oriented Messages and Primitives 3-137
viii SINAP/SS7 Programmer’s Guide R8052-17

Defining Connection-Oriented Structures 3-141
Activating Connection-Oriented Services 3-141
Implementing Connection-Oriented Services in an Application 3-142

Load Control 3-165
Performing Load Control Processing 3-166
Implementing Load Control Functionality 3-167

Enabling Loopback Detection (CCITT) 3-172
Enabling Transfer-Restricted Message Handling 3-173
RSR/RSP in Response to TFR/TFP (ANSI) 3-174

Error Handling 3-175
Error-Handling Considerations 3-175
Dialogue and Transaction Errors 3-177
Component-Handling Errors 3-178
Triggering Events and Trouble Treatment 3-183

Adding an Event or Changing Its Treatment 3-183
Setting Up the Trouble Treatment Table 3-184

4. Application Testing, Debugging, and Troubleshooting 4-1
Listing Active SINAP/SS7 Processes 4-2
Evaluating Alarms and Events 4-3

Alarm Notification and Severity 4-4
Alarms and Software Notebook Events 4-4

Software Notebook Events and Messages 4-5
MTP Alarms 4-5
Nondata Primitives 4-5

System Log File 4-5
User-Supplied Error Messages and Events 4-5

The BITE Subsystem 4-6
The BITE Monitor Facility 4-6
Scenario Execution 4-7

The Scenario-Execution Application (se_send) 4-7
Using the Database Builder to Create Test MSUs 4-8
Procedures for Running a Scenario Execution 4-10

The BITE Log-Analysis Program 4-11
Log-Analysis Commands Reference 4-13

DISPLAY 4-16
FIND 4-19
SELECT 4-20
SUMMARY 4-21
QUIT 4-22

BITE Commands Reference 4-23
DISPLAY-SCEN 4-24
START-DBG 4-25
START-MON 4-26
 Contents ix

Contents
START-SCEN 4-29
STOP-MON 4-30
STOP-SCEN 4-31

Measurement Collection Commands 4-32
Report Measurement Considerations 4-33
Saving the Report to a File and Printing It 4-34
DUMP-TABLE 4-35
REPORT-MALL 4-36
REPORT-MMTP 4-38
REPORT-MSCCP 4-39
REPORT-MTCAP 4-40
RETRIEVE-NOM 4-41
RETRIEVE-SMR 4-44
START-MEASURE 4-45
START-MWRITE 4-46
STOP-MEASURE 4-47
STOP-MWRITE 4-48

5. Sample Applications 5-1
Compiling the Sample Applications 5-2

Solaris Operating Systems 5-2
HP-UX Operating Systems 5-2
Stratus ft Linux Systems 5-2
Sample Applications 5-2

Sample TCAP Application 5-4
tcsend.c 5-4
tcrecv.c 5-5
tcap_2.c 5-5
Sample TCAP Applications for the TTC Variant 5-5

The Quality of Service Main Menu Screen (TTC) 5-5
The tcrecv.c Sample Program (TTC) 5-8
The tcsend.c Sample Program (TTC) 5-10

Sample SCCP Applications 5-11
Sample MTP Applications 5-12

6. CASL Function Calls 6-1
Function Call Return Values 6-2
The arch.h Include File 6-2
Common Services Functions 6-4

ca_flush_msu() 6-5
ca_get_opc() 6-7
ca_register() 6-8
x SINAP/SS7 Programmer’s Guide R8052-17

The register_req_t Structure 6-8
ca_terminate() 6-24

The terminate_t Structure 6-24
The IPC Key Structure (ipc_key_t) 6-25

ca_withdraw() 6-28
MTP and SCCP Functions 6-30

ca_get_msu() 6-31
The Main M_Block Structure (m_block_t) 6-32
The CASL Control Structure (ca_ctrl_t) 6-34
The Timestamp Structure (timestamp_t) 6-36
The stamp_t Structure 6-36
The BITE Control Structure (bi_ctrl_t) 6-37
The TCAP Control Structure (tcap_ctrl_t) 6-37
The SCCP Control Structure (sccp_ctrl_t) 6-38
The MTP Control Structure (mtp_ctrl_t) 6-40
The MTP User Data Structure (mtp_ud_t) 6-41
The user_link_t Structure 6-42
The user_l2_t Structure 6-42
The user_tcoc_t Structure 6-43
The user_chg_t Structure 6-43
The user_cong_t Structure 6-44
The user_trsh_t Structure 6-44
The MSU Data Structure (msu_t) 6-45
The Signaling Network Management Structure (snm_user_t) 6-48
The Signaling Link Test Structure (slt_user_t) 6-49
The SCCP User Data Structure (sccp_user_t) 6-50
The sccp_xuser_t Structure 6-51
The l3_event_t Structure 6-52
The iblk_t Structure 6-53

ca_get_msu_noxudt() 6-55
ca_lookup_gt() 6-57
ca_put_msu() 6-61

The Main M_Block Structure (m_block_t) 6-63
The l3_event_t Structure 6-65
The CASL Control Structure (ca_ctrl_t) 6-66
The Timestamp Structure (timestamp_t) 6-68
The stamp_t Structure 6-69
The BITE Control Structure (bi_ctrl_t) 6-69
The TCAP Control Structure (tcap_ctrl_t) 6-70
The SCCP Control Structure (sccp_ctrl_t) 6-71
The TCAP Alternative DPC Structure (tcap_alt_t) 6-73
The MTP Control Structure (mtp_ctrl_t) 6-74
The MTP User Data Structure (mtp_ud_t) 6-75
The user_link_t Structure 6-75
The user_l2_t Structure 6-76
The user_tcoc_t Structure 6-76
 Contents xi

Contents
The user_chg_t Structure 6-77
The user_cong_t Structure 6-77
The user_trsh_t Structure 6-78
The MSU Data Structure (msu_t) 6-78
The Signaling Network Management Structure (snm_user_t) 6-81
The Signaling Link Test Structure (slt_user_t) 6-81
The SCCP User Data Structure (sccp_user_t) 6-83
The sccp_xuser_t Structure 6-84
The iblk_t Structure 6-85

Connection-Oriented Functions 6-87
ca_get_sc() 6-88
ca_put_sc() 6-90
Connection-Oriented Structures 6-91

The sccp_ipc_t Structure 6-91
The sccp_prim_t Structure 6-95
The sccp_cldclg_t Structure 6-96
The sccp_dt1_t Structure 6-98
The sccp_dt2_t Structure 6-98
The sccp_expdata_t Structure 6-100

TCAP Functions 6-101
ca_alloc_tc() 6-102
ca_dealloc_tc() 6-104
ca_dist_cmd() 6-106

The dist_cmd_t Structure 6-107
ca_cust_dist_cmd() 6-110

The cust_dist_cmd_t Structure 6-110
The dist_cmd_t Structure 6-111
The cust_dist_id_t Structure 6-113
The cs1_inap_v01_tbl_t Structure 6-113

ca_enc_cs1_corrid() 6-116
ca_dec_cs1_corrid() 6-118
ca_get_dial_id() 6-121
ca_get_tc() 6-124

The T_Block Structure (t_block_t) 6-125
The Component-Handling Primitive Structure (tc_chp_t) 6-128
Dialogue-Handling Primitive Structure (tc_dhp_t) 6-131
The tc_association_t Structure 6-134
The acn_t Structure 6-137
The tc_user_data_t Structure 6-138
The Transaction-Handling Primitive Structure (tc_thp_t) 6-139

ca_get_tc_ref() 6-146
ca_get_trans_id() 6-151
ca_process_tc() 6-153

The proc_tc_t Structure 6-154
The entry_t Structure 6-154

ca_put_tc() 6-156
The T_Block Structure (t_block_t) 6-157
xii SINAP/SS7 Programmer’s Guide R8052-17

The Component-Handling Primitive Structure (tc_chp_t) 6-160
Dialogue-Handling Primitive Structure (tc_dhp_t) 6-164
The tc_association_t Structure 6-167
The acn_t Structure 6-170
The tc_user_data_t Structure 6-170
The Transaction-Handling Primitive Structure (tc_thp_t) 6-172

ca_rel_dial_id() 6-179
ca_rel_trans_id() 6-181

IPC Functions 6-183
ca_ascii_u32() 6-184

IPC Key Structure (ipc_key_t) 6-185
ca_cancel_def() 6-187
ca_check_key() 6-188

IPC Key Structure (ipc_key_t) 6-188
ca_get_key() 6-190

IPC Key Structure (ipc_key_t) 6-191
ca_get_msg() 6-194

Main I_Block Structure (i_block_t) 6-194
CASL Control Structure (ca_ctrl_t) 6-197
IPC Transaction ID Structure (ipc_trans_t) 6-199
Timestamp Structure (timestamp_t) 6-200
The stamp_t Structure 6-200
Node ID Structure (node_id_t) 6-201
IPC Key Structure (ipc_key_t) 6-201
IPC Data Structure (ipc_data_t) 6-202

ca_put_cmd() 6-205
IPC Key Structure (ipc_key_t) 6-206

ca_put_msg() 6-208
Main I_Block Structure (i_block_t) 6-210
CASL Control Structure (ca_ctrl_t) 6-212
IPC Transaction ID Structure (ipc_trans_t) 6-214
Timestamp Structure (timestamp_t) 6-215
The stamp_t Structure 6-215
The node_id_t Structure 6-216
IPC Key Structure (ipc_key_t) 6-216
IPC Data Structure (ipc_data_t) 6-217

ca_put_msg_def() 6-220
Main I_Block Structure (i_block_t) 6-222
CASL Control Structure (ca_ctrl_t) 6-224
IPC Transaction ID Structure (ipc_trans_t) 6-226
Timestamp Structure (timestamp_t) 6-227
The stamp_t Structure 6-227
The node_id_t Structure 6-228
IPC Key Structure (ipc_key_t) 6-228
IPC Data Structure (ipc_data_t) 6-229

ca_put_reply() 6-232
 Contents xiii

Contents
IPC Key Structure (ipc_key_t) 6-233
ca_restart_timer() 6-235
ca_swap_keys() 6-237

Main I_Block Structure (i_block_t) 6-237
CASL Control Structure (ca_ctrl_t) 6-239
IPC Transaction ID Structure (ipc_trans_t) 6-241
Timestamp Structure (timestamp_t) 6-242
The stamp_t Structure 6-242
The node_id_t Structure 6-243
IPC Key Structure (ipc_key_t) 6-243
IPC Data Structure (ipc_data_t) 6-244

ca_u32_ascii() 6-247
IPC Key Structure (ipc_key_t) 6-248

Load Control Functions 6-250
Implementing Load Control in an Application 6-251
Using Load Control Keywords 6-252
ca_disable_locon() 6-253
ca_enable_locon() 6-257
ca_exit_locon() 6-260
ca_inquire_locon() 6-263
ca_invoke_locon() 6-268
ca_setup_locon() 6-270

BITE Functions 6-276
ca_dbg_display() 6-277
ca_dbg_dump() 6-279
ca_disable_intc() 6-281
ca_disable_mon() 6-283
ca_enable_intc() 6-285
ca_enable_mon() 6-287

Miscellaneous Functions 6-289
ca_health_chk_req() 6-290

IPC Key Structure (ipc_key_t) 6-291
ca_health_chk_resp() 6-293

Main I_Block Structure (i_block_t) 6-293
CASL Control Structure (ca_ctrl_t) 6-295
IPC Transaction ID Structure (ipc_trans_t) 6-297
Timestamp Structure (timestamp_t) 6-297
The stamp_t Structure 6-298
The node_id_t Structure 6-298
IPC Key Structure (ipc_key_t) 6-299
IPC Data Structure (ipc_data_t) 6-300

ca_pack() 6-302
ca_put_event() 6-303

IPC Key Structure (ipc_key_t) 6-304
ca_unpack() 6-307
xiv SINAP/SS7 Programmer’s Guide R8052-17

Appendix A. SINAP/SS7 MML
Command Summary A-1

Appendix B. SINAP/SS7 Environment Variables B-1
Defining SINAP/SS7 Environment Variables B-1

Enabling Environment Variables B-1
Disabling Environment Variables B-2

The SINAP Environment File B-2
sinap_env_var.sh (for Bourne Shell) B-2

Appendix C. CASL Error Messages C-1
UNIX and SS7 Driver Errors C-2
Node Management Errors C-13
CASL Errors C-15
TCAP Errors C-33
SCCP Errors C-46
MTP Errors C-51
Built-In Test Environment (BITE) Errors C-52
Application Errors C-52

Index Index-1
 Contents xv

Contents
xvi SINAP/SS7 Programmer’s Guide R8052-17

Figures

Figure 2-1. SS7 Protocol Layer Interaction 2-2
Figure 3-1. Example of mutex usage 3-3
Figure 3-2. Typical TCAP Client Application 3-37
Figure 3-3. Sample tc_objmk() Function Call 3-55
Figure 3-4. Typical User Part Client Application 3-62
Figure 3-5. Address Indicator Formats 3-70
Figure 3-6. Requesting a Connection ID 3-145
Figure 3-7. Obtaining the Connection ID 3-146
Figure 3-8. Sending a Connection Request 3-148
Figure 3-9. Retrieving a Response to a Connection Request 3-150
Figure 3-10. Responding to a Connection Request 3-152
Figure 3-11. The send_n_connect_res Program Module 3-154
Figure 3-12. Sending a Data MSU 3-156
Figure 3-13. Retrieving an Incoming Data MSU 3-159
Figure 3-14. Retrieving an Incoming Data-Form-1 Message 3-160
Figure 3-15. Retrieving an Incoming Data-Form-2 Message 3-162
Figure 3-16. Releasing the Connection 3-164
Figure 3-17. Sample Output with Restricted Message Handling 3-174
Figure 3-18. Sample treat.tab File 3-188
Figure 4-1. Sample Alarm Format 4-4
Figure 4-2. The Database Builder Menu 4-9
Figure 5-1. Quality of Service Main Menu Screen 5-6
Figure 5-2. The TTC Quality of Service Main Menu Screen 5-7
Figure 5-3. Prompts for the tcrecv.c Sample Program 5-8
Figure 5-4. Output from the tcrecv.c Sample Program 5-9
Figure 5-5. Prompts for the tcsend.c Sample Program 5-10
Figure 5-6. Output from the tcsend.c Sample Program 5-11
Figure 6-1. Data Types 6-3
 Figures xvii

Figures
xviii SINAP/SS7 Programmer’s Guide R8052-17

Tables

Table 2-1. SINAP/SS7 Include Files 2-9
Table 2-2. MTP Primitives 2-18
Table 2-3. SCCP Primitives 2-19
Table 2-4. Outgoing Connection-Control Primitives 2-21
Table 2-5. Incoming Connection-Control Primitives 2-21
Table 2-6. Outgoing Connection-Oriented Data Primitives 2-22
Table 2-7. Incoming Connection-Oriented Data Primitives 2-23
Table 2-8. Transaction Capabilities Primitives (CCITT/TTC/NTT/China) 2-24
Table 2-9. Transaction-Handling Primitives (ANSI) 2-25
Table 2-10. Component Handling Primitives 2-26
Table 3-1. Data Type Size for ILP32 and LP64 3-5
Table 3-2. UNIX-to-SINAP/SS7 Signal Remapping 3-12
Table 3-3. Configuration Requirements and Limitations 3-18
Table 3-4. Register_req_t Structure Fields and Values 3-43
Table 3-5. Primitive Fields 3-44
Table 3-6. TCAP Primitives 3-44
Table 3-7. register_req_t Structure Parameters and Values 3-59
Table 3-8. Primitive Types 3-60
Table 3-9. Primitives Available to SCCP Applications 3-60
Table 3-10. register_req_t Structure Parameters and Values for MTP 3-63
Table 3-11. Primitive Types Received for MTP Application 3-64
Table 3-12. Primitives Available to MTP Applications 3-64
Table 3-13. Global Title Address Components 3-71
Table 3-14. GTI Values and Global Title Formats 3-72
Table 3-15. CREATE-GTT Arguments 3-72
Table 3-16. dist_cmd_t Structure Fields 3-80
Table 3-17. SS7 Input Boundary Settings for Enhanced Message Distribution 3-83
Table 3-18. Environment Variables for CCITT and China Link Congestion 3-97
Table 3-19. Congestion Thresholds 3-101
Table 3-20. Priority Parameters’ Structure and Field 3-102
Table 3-21. Sequence Control Structures and Fields 3-103
Table 3-22. Protocol Class and Return option Values 3-103
Table 3-23. Return Option and Protocol Class Parameters Structure and Field 3-103
Table 3-24. Unavailability-Cause Values for UPU Messages 3-106
Table 3-25. Status Field Bits 3-107
Table 3-26. XUDT Message Format 3-115
Table 3-27. CA_REG Global Variable Fields 3-133
Table 3-28. SCCP Connection-Oriented Timers 3-136
Table 3-29. Outgoing Connection-Control Primitives 3-138
 Tables xix

Tables
Table 3-30. Incoming Connection-Control Primitives 3-139
Table 3-31. Outgoing Connection-Oriented Data Primitives 3-140
Table 3-32. Incoming Connection-Oriented Data Primitives 3-140
Table 3-33. Environment Variables for LRNs 3-142
Table 3-34. Dialogue/Transaction Primitives 3-177
Table 3-35. Component-Handling Primitives 3-179
Table 3-36. Trouble Treatment Table (treat.tab) Fields 3-185
Table 4-1. SINAP/SS7 Process Labels 4-2
Table 4-2. Relational Operators 4-13
Table 4-3. Keywords for Searching Log File Records 4-14
Table 4-4. Setting Measurement Intervals 4-32
Table 6-1. Map of Encoding CorrelationID to Generic Digits Parameter Format 6-116
Table 6-2. Map of Decoding CorrelationID to Generic Digits Parameter Format 6-119
Table A-1. MML Command Summary A-1
xx SINAP/SS7 Programmer’s Guide R8052-17

Preface

The Purpose of This Manual
The SINAP/SS7 Programmer’s Guide documents the application programming interface (API)
of the Stratus Intelligent Network Applications Platform (SINAP) SS7 product. It is intended
for programmers developing applications to run on the SINAP/SS7 system. This manual
assumes that readers are familiar with the Signaling System Number 7 (SS7) protocol and have
C programming experience.

Audience
This manual is intended for programmers who write applications designed to run in an SS7
network. Before using this manual, you should be familiar with the SS7 protocol. You might
also find a working knowledge of Integrated Services Digital Network (ISDN) User Part useful.

Revision Information
This manual has been revised with miscellaneous corrections to existing text for the SINAP/SS7
14.2 release, and the enhancement of Partial GTT support for ANSI, China, and TTC variants.
In addition, documentation bugs were fixed.

Manual Organization
This manual contains six chapters and four appendixes.

• Chapter 1, “Introduction,”describes the SINAP/SS7 product and defines the terminology
used in this guide.

• Chapter 2, “Application Programming Interface (API),”provides an overview of the
SINAP/SS7 API and also describes each of its components: CASL functions, structures,
include files, and primitives.

• Chapter 3, “Application Design and Development,”describes the process of developing
SINAP/SS7 applications.

• Chapter 4, “Application Testing, Debugging, and Troubleshooting,”describes how to test
and debug SINAP/SS7 applications.

• Chapter 5, “Sample Applications,” briefly describes the sample applications provided with
the SINAP/SS7 software.

• Chapter 6, “CASL Function Calls,”provides reference information about each of the
functions in the CASL library.
Preface xxi

• Appendix A, “SINAP/SS7 MML Command Summary,” provides a summary of the
SINAP/SS7 Man-Machine Language (MML) commands, which are used for defining and
managing a SINAP/SS7 configuration.

• Appendix B, “SINAP/SS7 Environment Variables,” lists and describes the environment
variables for the SINAP/SS7 system and how to define them.

• Appendix C, “CASL Error Messages,” lists and describes the various types of error
messages that might be returned by CASL functions.

Notation Conventions
This manual uses the following notation conventions.

• Monospace represents text that would appear on your display screen (such as commands,
functions, code fragments, and names of files and directories). For example:

The alternative format for change-remssn is change-remssn.

• Monospace italic represents terms to be replaced by literal values. In the following
example, the user must replace the monospace-italic term with a literal value. For example:

The nmtr program has the following syntax (where filename is the name of the file
to be converted).

• Monospace bold represents user input in examples and figures that contain both user
input and system output (which appears in monospace). For example:

• Italics introduces or defines new terms. For example:

The Terminal Handler accepts commands in Man-Machine Language (MML).

• Boldface emphasizes words in text. For example:

You must create a link set before you provision its member links.

• When you need to press a key on the keyboard to perform an action, the keys are indicated
in SMALL CAPS, for example:

Press CTRL-P to go to the next page or RETURN to exit the screen.

Issue the following MML command to create the FOPC to be used in place of the
MTP routing label’s OPC (where network-cluster-member defines the
OPC).

CREATE-FOPC:FOPC=<network-cluster-member>;
xxii SINAP/SS7 Programmer’s Guide R8052-17

N O T E
There is an implied pressing of RETURN at the end of each
command and menu response that you enter.

• The dollar sign ($) and the number sign (#) are standard default prompt signs that have a
specific meaning at the UNIX prompt. Although a prompt is sometimes shown at the
beginning of a command line as it would appear on the screen, you do not type it.

• $ indicates you are logged into a user account and are subject to certain access
limitations.

• # indicates you are logged into the system administrator account and have superuser
access. Users of this account are referred to as root.The # prompt sign used in an
example indicates the command can only be issued by root.

• When the full path name of a command appears in an example (for example, /etc/fsck),
you must enter the command exactly as it appears.

Format for Commands and Functions
This manual uses the following format conventions for documenting commands and functions.

N O T E
The command and function descriptions do not necessarily
include each of the following sections.

NAME
The name of the command or function, along with a brief description of what it does.

SYNOPSIS
The syntax of the command or function. The following chart explains the notations used in
the synopsis.

The Notations Used in the Synopsis

Notation Meaning

< > Angled brackets enclose terms in a command line that you
must replace with literal values pertinent to your own service.
In the following example, you must type in the following
command line and replace the generic “service“ with the
name of your service:

mv slpi_<service>
slpi_<service>.old
Preface xxiii

N O T E
Dots, brackets, and braces are not literal characters; you should
not type them. Any list or set of arguments can contain more
than two elements. Brackets and braces are sometimes nested.

DESCRIPTION
A detailed description of the command or function. In command descriptions, this section
also contains descriptions of the command’s arguments. In function descriptions, this
section also contains descriptions of the function’s input or output parameters. An input
parameter defines data that the application programmer must provide to the function (for
example, the name of an application). An output parameter defines data that the function
provides or returns (for example, a pointer to a particular data structure).

EXAMPLES
Examples of usage.

[] Square brackets enclose command argument choices that
are optional. For example:

cflow [-r] [-ix] [-i_] [-d num]
files

| The vertical bar separates mutually exclusive arguments
from which you choose one. For example:

command [arg1 | arg2]

You can use either arg1 or arg2 when you issue the
command.

... Ellipsis indicates that you can have many arguments on a
single command line. For example,

command [arg1, arg2, arg3,...]

$ In sample commands, the dollar sign is sometimes used for
the shell command prompt. Your system prompt might differ.
Although a prompt is sometimes shown at the beginning of a
command line as it would appear on your screen, you do not
type it.

Notation Meaning
xxiv SINAP/SS7 Programmer’s Guide R8052-17

FILES
A list of the files that must be included in any program that uses this function.

NOTES
Hints about how to use the command or function.

RETURN VALUES
 Values returned by the command or function.

SEE ALSO
A list of related information.

Related Manuals
Refer to the following Stratus manuals for related documentation:

• The SINAP Products Glossary (R8010) contains definitions for terms and acronyms used
across the line of SINAP/SS7 products.

• The SINAP/SS7 User’s Guide (R8051) provides instructions for configuring and managing
a SINAP/SS7 installation.

• The SINAP/SS7 ISDN User Part (ISUP) Guide (R8053) provides instructions for
configuring ISUP applications on the SINAP/SS7 system.

• The SINAP/SS7 Technical Overview (R8055) contains an overview of the SINAP/SS7
product.

• The SINAP/SS7 Installation Guide (R8060) provides instructions for installing the
SINAP/SS7 software on a UNIX system.

• The SINAP/SNMP MIB Guide (R8065) for detailed information on SNMP application
installation, configuration, and operation.

• The appropriate hardware and operating system manuals supplied with your configuration.

A Note on the Contents of Stratus Manuals
Stratus manuals document subroutines and commands of the user interface. Any other
commands and subroutines contained in the operating system are intended solely for use by
Stratus personnel and are subject to change without warning.

Accessing Documentation
SINAP product documentation is provided on CD-ROM. You can request a documentation
CD-ROM in either of the following ways:

• Call the CAC (see “Commenting on the Documentation”).

• If your system is connected to the Remote Service Network (RSN), add a call using the Site
Call System (SCS). See the scsac(1) man page for more information.
Preface xxv

Contacting the CAC
When requesting a documentation CD-ROM, please specify the product and platform
documentation you desire, as there are several documentation CD-ROMs available.

Commenting on the Documentation

To provide corrections and suggestions for improving this documentation, send email to
Comments@stratus.com. If it is possible, please include the title and part number from the
Notice page and the page numbers.

This information will assist Stratus Publications in making any needed changes to the
documentation. Your assistance is most appreciated.

Contacting the CAC
If you need assistance, contact your local systems engineer, or telephone the Stratus Customer
Assistance Center (CAC) that services your area. If you cannot reach the center that services
your area, contact the CAC in the United States.

The table below lists the CAC telephone numbers, all of which are available 24 x 7. For the most
current list of CAC telephone numbers, see the following Web site:
http://www.stratus.com/support/cac.

Worldwide CAC Telephone Numbers (Page 1 of 2)

Customer Assistance
Center (CAC) Telephone Numbers

North America, Central
America, and South
America

800-221-6588 (toll-free within USA or Canada)

800-828-8513 (toll-free within USA or Canada)

+1-978-461-7200 (Maynard, MA; for local and international direct)

+1-602-852-3200 (Phoenix, AZ; for local and international direct)

Australia 1800-025-046 (toll-free within Australia)

Belgium* +32 2-512-63-70 (Dutch language)

+32 2-512-77-06 (French language)

France +33 (0) 1-41-20-37-08

Germany +49 (0) 6196-472518

Hong Kong 800-900-938 (toll-free within Hong Kong)

Italy +39 02-467440-216

Japan 0120-725530
xxvi SINAP/SS7 Programmer’s Guide R8052-17

Contacting the CAC
*For the countries of Belgium, Denmark, Luxembourg, The Netherlands, Norway, and Sweden,
you can also use the following toll-free number to call after hours: 00800-000-99999. Your call
will be directed to Phoenix Support Coordination.

N O T E S
1. The plus sign (+) indicates that an international access code

is required. The access code for international calls varies
from country to country; in the United States, it is 011.

2. When you call from within the same country as the CAC
office, be sure to include any necessary long distance or
STD call prefix. If you use an international telephone
number within the same country, you must replace the
country code with the necessary prefix. For example,
within the United States, callers dial 1-800-221-6588.

3. The telephone numbers in the preceding list are for CACs
operated by Stratus. If you receive service from a
distributor of Stratus products, contact your distributor for
instructions about obtaining assistance.

Mexico +52 55-5553-4792

The Netherlands* +31 (0) 346-582-112

New Zealand 0800-443-051 (toll-free within New Zealand)

People’s Republic of
China

+86 139-010-39512 (Beijing)

+86 21-63877700 (Shanghai)

Singapore 1800-2727482 (toll-free within Singapore)

South Africa +27 11-2675-709

Spain +34 91-383-4294

United Kingdom +44 (0) 1784-246056

Worldwide CAC Telephone Numbers (Page 2 of 2)

Customer Assistance
Center (CAC) Telephone Numbers
Preface xxvii

Contacting the CAC
xxviii SINAP/SS7 Programmer’s Guide R8052-17

Chapter 1
Introduction1-

The SINAP/SS7 Programmer’s Guide (R8052) documents the application programming
interface (API) of the Stratus Intelligent Network Applications Platform (SINAP)/MultiStack
product. It is intended for programmers who develop applications to run on the SINAP/SS7
system. This guide describes the features of the SINAP/SS7 system and the associated
programming considerations. It describes the process of developing Message Transfer Part
(MTP), Signaling Connection Control Part (SCCP), Transaction Capabilities Application Part
(TCAP), and Integrated Services Digital Network (ISDN) User Part (ISUP) applications for the
SINAP/SS7 system. Detailed descriptions are provided for functions in the Common
Application Services Layer (CASL) library, structures, include files, and primitives.

What is SINAP/SS7?
The SINAP/SS7 product is a network-services development and implementation platform. The
SINAP/SS7 software provides the Signaling System Number 7 (SS7) communications protocol,
along with tools to aid in the development, testing, and implementation of applications that
provide network services in an SS7 network. SINAP/SS7 comes in two sizes. The SINAP
(unistack) product supports a single SS7 node, while the MultiStack product provides the ability
to run up to four SINAP nodes on a single Stratus system, where each node is a single instance
of SINAP and is configured as a separate point code in the same network or in different
networks.

The SINAP/SS7 system functions as an end point, such as a service control point (SCP), node
within the Advanced Intelligent Network (AIN). The SINAP/SS7 system can also function as
an adjunct processor (AP) or service node (SN). The SINAP/SS7 system is designed to support
multiple enhanced service applications, such as 800 number translation, simultaneously while
providing optimal performance for individual applications.

The SINAP/SS7 system implements the SS7 protocol to provide communications between
applications and network elements, such as remote SCPs or signaling transfer points (STPs).
Client applications residing on the SINAP/SS7 system initiate queries to the SS7 network and
respond to queries from other network elements. Typically, these queries are in the form of
TCAP messages. However, applications can also be configured to interface to the SS7 network
at the MTP or the SCCP layers. In addition, the SINAP/SS7 system provides capabilities
designed to simplify a customer’s development, testing, implementation, and troubleshooting
of new applications.
Introduction 1-1

What is SINAP/SS7?
N O T E S
1. Throughout this document, the SINAP/SS7 system refers to

either the SINAP or MultiStack product, whichever is
running on your system. SINAP node and SINAP stack
refer to a single instance of the SINAP product running on
your system. With the MultiStack product you can have
multiple SINAP stacks on your system; with SINAP, you
can have only one SINAP stack. SINAP variant or network
variant refers to the type of SS7 protocol (ANSI, CCITT,
TTC, NTT, or China) configured to run on a particular
SINAP node.

2. Although the name of the International Telegraph and
Telephone Consultative Committee (CCITT) was changed
to the International Telecommunications Union (ITU) and
its standards are now referred to as ITU-T
recommendations, the SINAP and MultiStack products
continue to refer to this protocol version as CCITT.

3. This document uses the generic term UNIX to refer to all
supported varieties of UNIX, such as the HP-UX operating
system. Differences between the varieties are noted in the
text.

The SINAP/SS7 Technical Overview (R8055) contains a detailed description of the SINAP/SS7
product, its subsystems, and its features. It is highly recommended that you read the technical
overview and have a firm understanding of the functionality before you use the SINAP/SS7
product and this manual.
1-2 SINAP/SS7 Programmer’s Guide R8052-17

Chapter 2
Application Programming

Interface (API)2-

This chapter presents information about the SINAP/SS7 API. It contains the following sections.

• “API Overview” introduces the SINAP/SS7 application programming interface (API).

• “CASL Function Types” provides an overview of the types of functions in the Common
Application Services Layer (CASL) library.

• “CASL Structure Types” describes the structures that the SINAP/SS7 system uses to store
and pass information.

• “SINAP/SS7 Include Files” describes the include files containing SINAP/SS7 definitions.

• “SS7 Primitives” describes the types of primitives used by applications that run in an SS7
network.

• “SS7 Message Processing” provides background information about how the SINAP/SS7
system interacts with the network to process SS7 messages.

• “Interprocess Communications (IPC)” describes the SINAP/SS7 IPC mechanism, which
provides a way for SINAP/SS7 client applications and SINAP/SS7 subsystems to
communicate.

API Overview

The API provides access to the SINAP/SS7 platform, which in turn provides access to the SS7
suite of protocols running on the Stratus UNIX system. You use the API to develop applications
that run in an SS7 network by writing C-language code that includes calls to appropriate CASL
functions. These applications run on the SINAP/SS7 platform and use the services it provides.
Such applications are considered clients of the SINAP/SS7 system, or client applications.

Through the CASL, the SINAP/SS7 platform provides access to the Message Transfer Part
(MTP), Signaling Connection Control Part (SCCP), Transaction Capabilities Application Part
(TCAP), and Integrated Services Digital Network User Part (ISUP) layers of the SS7 protocol.
A client application uses the services of a particular SS7 protocol layer and is therefore
considered a user part or user of that layer. For example, an application that interfaces with the
SINAP/SS7 system at the MTP layer is considered an MTP user or MTP user part, just as an
application that interfaces at the TCAP layer is considered a TCAP user or TC user.
Application Programming Interface (API) 2-1

API Overview
N O T E
Throughout this manual, references to an application indicate
the boundary at which the application interfaces with the
SINAP/SS7 system. For example, the term MTP application
refers to an application that interfaces with the SINAP/SS7
system at the MTP layer, TCAP application refers to an
application that interfaces with the SINAP/SS7 system at the
TCAP boundary, and so on.

Each SS7 protocol layer provides a particular set of services. In addition, each layer uses the
services of the layers below it. Figure 2-1 shows how the layers of the SS7 protocol relate to one
another. For example, an SCCP application uses the services of the SCCP layer, which in turn
uses the services of the MTP layer. A TCAP application uses the services of the TCAP layer,
which then uses the services of the SCCP layer, which in turn uses the services of the MTP layer.
An ISUP application can use the services of the SCCP and MTP layers.

Figure 2-1. SS7 Protocol Layer Interaction

As a programmer, you need be concerned only with the API of the layer at which your
application interfaces with the SINAP/SS7 system. If you are developing a TCAP application,
you need concern yourself only with the TCAP API. The SINAP/SS7 system automatically
performs the necessary processing for the TCAP to access the services of the lower layers
(SCCP and MTP). For example, you would code a TCAP application to call the CASL function
ca_put_tc() to send a TCAP component to a remote user that might or might not be
implemented as a TCAP user. The SINAP/SS7 system then automatically packages the TCAP
component in a message signaling unit (MSU) and calls the function ca_put_msu() to send
the MSU to the SS7 network for delivery to the remote user. You need not code the application
to call ca_put_msu().

TCAP

SCCP

MTP Level 3
Level 2
Level 1

TCAP Applications

SCCP Applications

MTP Applications

ISUP

ISUP Applications
2-2 SINAP/SS7 Programmer’s Guide R8052-17

CASL Function Types
N O T E
Unless otherwise specified, header files can be found in the
$SINAP_HOME/Include directory.

CASL Function Types
The CASL library provides the following types of functions, each of which is described in detail
in Chapter 6, ‘‘CASL Function Calls.”

• SINAP/SS7 Management Functions

• SS7 Functions

• ISUP Services Functions

• Inter Process Communications (IPC) Functions

• Connection-oriented Services Functions

• Load Control Functions

• BITE Functions

• Miscellaneous Functions

SINAP/SS7 Management Functions
SINAP/SS7 management functions are used to perform various types of management functions
for the client application.

SS7 Functions
SS7 functions are used to communicate with the SS7 network. MTP and SCCP applications use
these functions to pass MSUs to and from the SS7 network. TCAP applications use SS7

Registration and
Termination

ca_register(), ca_terminate(),
ca_withdraw()

Command and Reply ca_put_cmd(), ca_put_reply()

Event Reporting ca_put_event()

Health Check ca_health_chk_req(), ca_health_chk_resp()
Application Programming Interface (API) 2-3

CASL Function Types
functions to respond to subscriber or network management requirements by generating and
transferring messages to the MTP, and processing queries from the SS7 network.

ISUP Services Functions
ISUP services functions are used to develop applications that use ISUP services to send and
receive ISUP messages. For detailed information on these functions, see the SINAP/SS7 ISDN
User Part (ISUP) Guide (R8053).

IPC Functions
IPC functions are used for internal communication between SINAP/SS7 client applications and
SINAP/SS7 subsystems.

SS7 Message Handling
(MTP and SCCP)

ca_get_msu(), ca_put_msu(), ca_flush_msu(),
ca_get_opc(), ca_get_msu_noxudt(),
ca_lookup_gt()

Component Handling ca_get_tc(), ca_get_tc_ref(), ca_put_tc(),
ca_alloc_tc(), ca_dealloc_tc(),
ca_process_tc(), ca_dist_cmd(),
ca_cust_dist_cmd()

Dialogue/Transaction
Processing

ca_get_dial_id(), ca_rel_dial_id(),
ca_get_trans_id(), ca_rel_trans_id()

IPC Key Processing ca_get_key(), ca_check_key(),
ca_swap_keys(), ca_ascii_u32(),
ca_u32_ascii()

MML Command
Handling

ca_put_cmd()

IPC Message Handling ca_get_msg(), ca_put_msg(),
ca_put_reply()

Deferred IPC Message
Handling

ca_put_msg_def(), ca_restart_timer(),
ca_cancel_def()
2-4 SINAP/SS7 Programmer’s Guide R8052-17

CASL Function Types
Connection-oriented Services Functions
Connection-oriented services functions are used in applications that use connection-oriented
services to establish and maintain connections with other applications to exchange data.

Load Control Functions
Load Control functions are used for implementing the load control facility in an application.
Load control helps maintain an application’s throughput in spite of severe network congestion.

BITE Functions
BITE functions are used for monitoring and debugging client applications.

Miscellaneous Functions
The CASL library also contains other miscellaneous functions for character string conversions
and alarms.

Connection-
Oriented
Processing

ca_get_sc(), ca_put_sc()

Load Control
Management

ca_setup_locon(), ca_inquire_locon()

Load Control
Processing

ca_enable_locon(), ca_disable_locon(),
ca_invoke_locon(), ca_exit_locon()

Monitor ca_enable_mon(), ca_disable_mon()

Intercept ca_enable_intc(), ca_disable_intc()

Debug ca_dbg_dump(), ca_dbg_display()

Character String
Conversions

ca_pack(), ca_unpack()
Application Programming Interface (API) 2-5

CASL Structure Types
CASL Structure Types
The SINAP/SS7 system uses the following types of data structures to manage interaction and
data exchange between a client application and the CASL.

• The I_Block structure is used for IPC activities

• The M_Block structure is used to transport MSUs through the SS7 network

• The T_Block structure is used to transport TCAP components to the TCAP layer

• The connection-oriented structures are used for connection-oriented services

• The ISUP services structures are used to pass ISUP messages

For information on ISUP services structures, see the SINAP/SS7 ISDN User Part (ISUP) Guide
(R8053).

The remainder of this section briefly describes each of these structures. Each structure is
described more fully in Chapter 6 in the description of the CASL function with which the
structure is used. Unless stated, header files are defined in the directory
$SINAP_HOME/Include.

I_Block – IPC Unit of Exchange
The I_Block structure contains information used for IPC functions. An IPC message is
composed of the following parts:

• A CASL control part

• A transaction part

• A timestamp part

• A node part

• An originator key part

• A destination key part

• A message body part

The i_block_t structure is defined in the include file
$SINAP_HOME/Include/iblock.h.

You must allocate memory space for I_Block structures to be used in either the
ca_put_msg or the ca_get_msg function. The SINAP/SS7 system does not provide the
ability to allocate i_block_t structures—you must allocate them through a variable
declaration or malloc call.
2-6 SINAP/SS7 Programmer’s Guide R8052-17

CASL Structure Types
M_Block – SS7 MSU-Level Unit of Exchange
An m_block_t structure contains a single MSU and is used in the SINAP/SS7 system and
throughout the SS7 I/O subsystem to communicate MTP- and SCCP-level protocol packets to
client applications. The M_Block structure is defined in the mblock.h include file.

It consists of the following elements:

• A CASL control part

• A timestamp part

• A priority part

• A Built-In Test Environment (BITE) control part

• A TCAP control part

• An SCCP control part

• An MTP control part

• An MSU data part

You must allocate memory space for an M_Block structure before it can be used in the
ca_put_msu function. In addition, since the SINAP/SS7 system dynamically allocates the
M_block structure pointed to by the ca_get_msu function, the M_Block structure might
not exist after the next call to ca_get_msu. If you require the MSU to exist after succeeding
ca_get_msu calls, you must explicitly allocate space for it and copy it yourself.

T_Block – SS7 TCAP-Level Unit of Exchange
A T_Block structure is used by a TCAP application to exchange data with the CASL. It
contains all information necessary to initiate and maintain communication with another TCAP
user. The T_Block structure, which is defined in the include file
$SINAP_HOME/Include/tblock.h, contains the following types of information.

• Component-handling information

• Dialogue-handling information (CCITT/TTC/NTT/China)

• Transaction-handling information (ANSI)

• Addressing information (for both the local and remote TCAP users)

• Data and control information

• Priority and sequence control

• Error and problem codes

Although TCAP applications do not use the M_Block data structure directly, the SINAP/SS7
system packages T_Block information into an MSU, which is sent to the SS7 network for
delivery to the remote user.
Application Programming Interface (API) 2-7

CASL Structure Types
N O T E
The T_Block structure is part of a dynamically allocated
memory pool and must be allocated. The SINAP/SS7 system
provides the ca_alloc_tc function that you must call to
assign and use a T_Block structure from the allocated pool.
The tc_count field of the register_req_t structure
defines the number of T_Block structures to allocate for a
TCAP application.

TCAP Application-Context Structures
An application that implements the 1993 TCAP standards uses the following structures to
transmit information for an application-context dialogue:

• tc_association_t—Contains the data comprising the dialogue portion of the MSU.
The dialogue portion defines the application-context name and optional user information to
be used for the application-context dialogue. It also contains the acn_t and
tc_user_data_t structures. It is defined in the tblock.h include file.

• acn_t—Contains the application-context name to be used for the application-context
dialogue.

• tc_user_data_t—Contains optional user information for the application-context
dialogue.

With the exception of a few fields initialized by TCAP, the fields in these structures are
initialized by the TC user, which is the application initiating an application-context dialogue or
sending an MSU that is part of a dialogue. When your application is the TC user, it must
initialize the fields in the application-context structures. When your application is processing an
incoming MSU that initiates or is part of an application-context dialogue, the other application
is the TC user and, as such, will have initialized the fields in the application-context structures.

Connection-Oriented Structures
The following CASL structures are used for connection-oriented services:

• sccp_ipc_t—Passes interprocess communications (IPC) messages between the local
application and the SCCP-SCOC process. This structure contains several structures, each
of which passes a particular type of message. The SCCP_ipc_t and all structures within
it are defined in the SCOC_prims.h include file.

• sccp_prim_t—An internal structure that conveys information about large messages,
such as the message size and buffer location. It is defined in the mblock.h include file.

• sccp_cldclg_t—Contains information about the SCCP called or calling party address
for a connection-oriented message. It is defined in the mblock.h include file.
2-8 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 Include Files
• sccp_dt1_t—Transports a data-form-1 message. It is defined in the sccphdrs.h
include file.

• sccp_dt2_t—Transports a data-form-2 message. It is defined in the sccphdrs.h
include file.

• sccp_expdata_t—Transports a message containing expedited data. It is defined in the
sccphdrs.h include file.

When sending an IPC message to the SCCP-SCOC process or a data MSU to another
application, your application must initialize the appropriate structures. When your application
is processing an incoming MSU or IPC message, the structures will have been initialized by the
other application, the SCCP-SCOC process, or the SINAP/SS7 system.

When an ISUP services application processes an incoming ISUP message, the structure fields
are initialized according to the ISUP message from the remote application. For information on
ISUP Services, see the SINAP/SS7 ISDN User Part (ISUP) Guide (R8053).

SINAP/SS7 Include Files
The following table describes the SINAP/SS7 include files that are located in the directory
$SINAP_HOME/Include. For information on ISUP Services include files, see the
SINAP/SS7 ISDN User Part (ISUP) Guide (R8053).

Table 2-1. SINAP/SS7 Include Files (Page 1 of 10)

Include File Description

ansi_variant.h Contains a definition of the global variable L_ANSI, which is
required for applications that run on the ANSI network
variant of the SINAP/SS7 system. Contains no other include
files.

arch.h Defines the architectural characteristics of the Stratus UNIX
system(s). A copy of this file must exist on each of the
environments on which the SINAP/SS7 system runs.
Contains no other include files.

bidb.h The #define SIO_LABEL_LEN_N8 was called to
accommodate China network variant requirements.

bitemon.h Contains definitions of the BITE monitor IDs used by the
CASL for monitoring IPC messages. Contains no other
include files.

blkhdr.h Contains a definition for the title CASL control structure.
Should be used only in M_Block and I_Block data
structures. Contains no other include files.
Application Programming Interface (API) 2-9

SINAP/SS7 Include Files
ca_error.h Contains a list of all CASL error messages. Contains the
include file <variant.h>. For the China network variant,
a #define CA_ERR_GETSC_NG indicates an invalid
message type for CA_GET_SC (COF).

ca_glob.h Contains pointers to all global tables located in shared
memory. This includes the global variable
CHINA_APPL_VER=”CHINA” to implement the China
network variable. For this file to be included, an application
must also include the following files:
• <sys/time.h>
• sinap.h
• sysdefs.h
• register.h
• ipctbl.h
• network.h
• sccp.h
• irt3.h
• ort3.h
• mtp.h
• bitemon.h
• measure.h
• locon.h.

References the include files:
• <sys/types.h>
• <locon.h>
• <register.h>
• <variant.h>.

cadbg.h Contains the definitions of the structures, global variables,
and masks for displaying debug and trace information.
Contains no other include files.

Table 2-1. SINAP/SS7 Include Files (Page 2 of 10)

Include File Description
2-10 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 Include Files
casl.h This file contains the definition for CASL_FLAG.
No other include file should contain this definition. This file
contains the following definitions for the XUDT feature:
• CA_XUDT_HASH_SEED - The XUDT reassembly hash

seed, defined to be 128.
• ca_xudt_free - The XUDT reassembly buffer free list

structure contains pointers to the first and last entries in
the list.

• ca_xudt_hash_table - The hash table array.
• ca_xudt_reassemble - The XUDT reassembly buffer

structure that stores the message and pertinent
information about the message being reassembled, such
as the local reference number (LRN), originating point
code (OPC), and originating subsystem number (SSN).

References no other include files.

caslinc.h The master CASL include file that contains these frequently
used include files:
<sys/types.h> <sys/time.h>
<errno.h> <sys/stream.h>
<sys/stropts.h> <signal.h>
<malloc.h> <unistd.h>
<string.h> <stdlib.h>
<stdio.h> <arch.h>
<sysdefs.h> <sinap.h>
<blkhdr.h> <timestamp.h>
<iblock.h> <register.h>
<ipctbl.h> <ca_error.h>
<network.h> <event3.h>
<sccp.h> <irt3.h>
<ort3.h> <mtp.h>
<mblock.h> <bitemon.h>
<measure.h> <terminate.h>
<s7signal.h> <event.h>
<tblock.h> <treatment.h>
<sysshm.h> <command.h>
<sinapintf.h> <locon.h>
<cadbg.h> <ca_glob.h>
<scmg-prims.h>.

ccitt_variant.h Contains a definition of the global variable L_CCITT, which
is required for applications that run on the CCITT network
variant of the SINAP/SS7 system. Contains no other include
files.

Table 2-1. SINAP/SS7 Include Files (Page 3 of 10)

Include File Description
Application Programming Interface (API) 2-11

SINAP/SS7 Include Files
china_variant.h Contains definition of the global variable, L_China, which is
required for applications that run on the China network
variant of the SINAP/SS7 system. Contains no other include
files.

client.h Contains definitions of node management’s
client-management structures:
• process_term_t
• health_check_t
• register_resp_t
• terminate_resp_t

Contains no other include files.

command.h Contains definitions of the message types relevant to the
command management interface of the SINAP/SS7 Node
Management (for example, I_MTP_CHANGE,
I_MTP_CHANGE_ACK, and so on). Contains no other
include files.

cust_dist.h Defines the ID values used to identify custom application
distribution (CAD) functions and structure definitions for
custom registration request and inquiries. Contains no other
include files.

dl_chan_user.h Contains definitions and structures used for allocating and
deallocating channels for ISDN usage. Contains no other
include files.

dr_incl.h Contains definitions used by the SS7 device driver. Contains
the include file <register.h>.

dr_minor.h This file, which is used by the UNIX SS7 device driver,
contains minor device number definitions. Contains no other
include files.

eqpi_appl.h Contains the definitions of EQPI (extended QPI provider
interface) data structures and macro definitions required by
ISDN-BRI applications. Contains no other include files.

event.h Contains the data structure for the EVENT message, which
contains information about a situation being reported to the
SINAP/SS7 trouble management by a registered application
process. Contains no other include files.

event3.h Defines the structure of the data section of M_EVENT
M_Block messages from UCOMM Level 2 and Level 3
management to MTP management. Contains no other
include files.

Table 2-1. SINAP/SS7 Include Files (Page 4 of 10)

Include File Description
2-12 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 Include Files
fts_dev.h HP-UX operating system source file not delivered with the
normal release containing definitions and device drivers
required to utilize FTS. (FTS determines I/O board level
events such as breaking or restoration to service.)

fts_info.h HP-UX operating system source file not delivered with the
normal release containing definitions required to utilize FTS.
(FTS determines I/O board level events such as breaking or
restoration to service.)

iblock.h Contains I_Block definitions and structure formats. (The
I_Block is used to transport IPC messages.) For this file
to be included, an application must also include the following
files:
• sysdefs.h
• sinap.h
• timestamp.h
• <sys/time.h>.

Contains the include file: <blkhdr.h>.

ipctbl.h This file, the IPC process table, contains information about
each SINAP/SS7 application process. As an application
process registers with the SINAP/SS7 system, its
registration parameters are written to the IPC process table.
Contains no other include files.

irt3.h (Inbound routing tables for MTP Level-3) The table is used
by driver-resident MTP functions to find the link set and link
number for the message coming from the input/output (I/O)
adapter. Contains no other include files.

locon.h Contains load control definitions (user and internal).
Contains no other include files.

Table 2-1. SINAP/SS7 Include Files (Page 5 of 10)

Include File Description
Application Programming Interface (API) 2-13

SINAP/SS7 Include Files
mblock.h Contains definitions of M_Block message types and
structure format. (The M_Block is used to pass MSUs
between the driver and the user subsystems.) For this file to
be included, an application must also include the following
files:
• sysdefs.h
• sinap.h
• iblock.h
• timestamp.h
• <sys/time.h>.

Contains the include file <variant.h>.

Contains the TTC variant’s version of some generic
structures, including:
• ttc_msu_t
• ttc_sccp_user_t
• ttc_snm_user_t

For the China network variant, a #ifdef sets
MAX_MTP_THRESHOLD to CCITT_MAX_MTP_THRESHOLD
instead of to the ANSI_MAX_MTP_THRESHOLD.

measure.h Contains definitions of measurement-related data structures.
Contains no other include files.

measure3.h Defines the structure of the data section of the
MTP_MEASUREMENT_RESPONSE I_BLOCK message
from MTP management to node management and
M_MEASUREMENT_REQUEST M_Block messages from
the I/O adapter’s Level 2 and Level 3 management to MTP
management. Contains no other include files.

mml.h Contains MML-related definitions and structures. Contains
no other include files.

mtp.h Contains segment definitions for MTP routing tables.
Contains no other include files.

mtpevents.h Defines the format and structure for all categories of MTP
Level 3 events. Contains no other include files.

mtptypes.h Contains definitions used by the MTP code for
communication between I/O adapters and MTP
management. Includes definition for constants and data
structures used in original MTP code in terms of SINAP/SS7
definitions. Contains no other include files.

Table 2-1. SINAP/SS7 Include Files (Page 6 of 10)

Include File Description
2-14 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 Include Files
network.h Network tables contain values for the configuration data.
Node Management initializes and updates the tables.
Contains the include file <variant.h>.

For the China network variant, a #ifdef sets
MAX_MTP_THRESHOLD to CCITT_MAX_MTP_THRESHOLD
instead of to the ANSI_MAX_MTP_THRESHOLD.

nmcmdata.h Contains definitions for the private data structures of the
Node Management command management (nmcm)
process. Contains no other include files.

nmcmglob.h Contains definitions for the global variables used for the
nmcm process. Include this file after the <nmcmdata.h>
file. Contains no other include files.

ort3.h Contains the outbound routing tables for MTP Level 3.
Contains no other include files.

prims3.h Defines the structure of MTP indication primitives
(i_block_t messages). Contains no other include files.

proc_tc.h Contains the definition for the structure used by the CASL
ca_process_tc() function. This structure contains the
address of each function called for each state and event.
Contains no other include files.

register.h Defines SINAP/SS7 application-registration data. Contains
the include file cust_dist.h.

s7signal.h Contains definitions of the SINAP/SS7 signals used for
Stratus UNIX systems. Contains the include file
<signal.h>.

sccp-intrn.h Internal SCCP header file. Include this file after the
<scmg-prims.h> file. Contains the include file
<variant.h>.

sccp.h Contains definitions and structure formats for the SCCP
shared-memory segment. Contains no other include files.

sccphdrs.h Contains the general SCCP header and the headers for
SCCP connection requests. Contains no other include files.

Table 2-1. SINAP/SS7 Include Files (Page 7 of 10)

Include File Description
Application Programming Interface (API) 2-15

SINAP/SS7 Include Files
scmg-prims.h Contains definitions and structure formats for the SCCP
management IPC primitives: N-STATE, N-PCSTATE, and
N-COORD.

For the China network variant, #ifdef L_China specifies
the use of CCITT_SCMG_PC_MAX instead of
ANSI_SCMG_PC_MAX.

Contains the structure, sccp_xudt_err_t, which includes
a definition for an T_SCCP_XUDT_ERR_IPC message.

Include this file after the command.h file. Contains the
include file <variant.h>.

sinap.h Contains all SINAP/SS7 system application and process
definitions. Contains the include file <variant.h>.

For the China network variant, a #ifdef L_China sets the
MAX_ROUTE_PER_RS to CCITT_MAX_ROUTE_PER_RS to
use the CCITT variant version.

sinap_variant.h Contains a reference to the appropriate network variant
include file:
• ccitt_variant.h
• ttc_variant.h
• ntt_variant.h
• china_variant.h
• ansi_variant.h

References the variant of the SINAP/SS7 system you are
running.

sinapintf.h Contains definitions of all global variables used by the
SINAP/SS7 system and its client applications. This file
contains conditional code such as CASL_FLAG, which is
defined internally in the casl.c file. For this file to be
included, an application must also include the following files:
• sinap.h
• sysdefs.h
• register.h.

Contains no other include files.

Table 2-1. SINAP/SS7 Include Files (Page 8 of 10)

Include File Description
2-16 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 Include Files
sysdefs.h Contains the data-type definitions for the type of hardware
on which SINAP/SS7 is running. This file contains the
definitions for portable software. Architecture characteristics
must be defined externally by means of the arch.h include
file. This header file should be included in an application first.
Contains the include file “arch.h” or <arch.h>.

sysshm.h Contains definitions for system-shared memory variables for
all processes. Contains the system option definitions for the
MTP restart, time-controlled changeover (TCCO), and
time-controlled diversion (TCD) features. Contains no other
include files.

tblock.h Contains the definition of the T_Block structure, which is
used to pass data between a TCAP application and the
CASL. Contains the include file <variant.h>.

tcap.h Contains definitions for TCAP tables and the data structures
used by the Component Sublayer (CSL) and the Transaction
Sublayer (TSL). Contains the include file <variant.h>.

tccom.h Contains definitions for XUDT messages.

tcglob.h Contains definitions for TCAP globals and data structures.
This file also declares the global pointer for various queues
and arrays. Contains no other include files.

terminate.h Contains definitions for the structure elements used by the
CASL function ca_terminate(). This structure is copied
into the I_Block data header. Contains no other include
files.

timestamp.h Contains definitions and structure formats for the timestamp
included in I_Block and M_Block structures. Contains
no other include files.

treatment.h Contains the definitions of labels used for specifying values
in the SINAP/SS7 trouble treatment table. Defines the
treatment_t and treat_t data structures, which are
used by trouble management to determine event treatment.
Contains no other include files.

ttc_variant.h Contains a definition of the global variable, L_TTC, which is
required for applications that run on the TTC network variant
of the SINAP/SS7 system. Contains no other include files.

Table 2-1. SINAP/SS7 Include Files (Page 9 of 10)

Include File Description
Application Programming Interface (API) 2-17

SS7 Primitives
SS7 Primitives
This section describes the various primitives used by the SINAP/SS7 system in IPC messages
to communicate with the SS7 network. It contains sections on the primitives used by MTP,
SCCP, and TCAP. For information on how these and other primitives are used for error
handling, see ‘‘Error Handling’’ in Chapter 3.

MTP Primitives
Table 2-2 lists the MTP primitives that inform the SS7 user part about the accessibility of the
remote signaling points. These primitives are passed in IPC messages and are defined in the
$SINAP_HOME/Include/iblock.h file. The structures associated with the primitives are
defined in the include file $SINAP_HOME/Include/prim3.h.

variant.h Contains all SINAP/SS7 variant definitions:
• V_CCITT
• V_ANSI
• V_TTC
• V_NTT
• V_China

Also contains the macro, IS_China. Contains the include
file “sinap_variant.h”

Table 2-2. MTP Primitives

Primitive Description

I_MTP_PAUSE Informs the user part that the remote signaling point is not
accessible and that the user part should stop traffic towards
the destination.

I_MTP_RESUME Informs the user part that the remote signaling point became
accessible and that the user part can start traffic towards the
destination.

I_MTP_STATUS This primitive informs the user part about the congestion
status of the remote signaling point. The user part handles
the congestion information. This primitive contains several
unavailability-cause parameter values for user part
unavailable (UPU) messages that indicate why a UPU
message was generated.

Table 2-1. SINAP/SS7 Include Files (Page 10 of 10)

Include File Description
2-18 SINAP/SS7 Programmer’s Guide R8052-17

SS7 Primitives
SCCP Primitives
Table 2-3 describes the SCCP primitives, which are defined in an mblock.h or iblock.h
include file in the $SINAP_HOME/Include directory. The structures and values associated
with the IPC primitives are defined in the file $SINAP_HOME/Include/scmg-prims.h.

Table 2-3. SCCP Primitives (Page 1 of 2)

Primitive Description

I_N_STATE_REQ This primitive is passed in an i_block_t structure and is
sent by the user to instruct the SINAP/SS7 system to send
state information regarding availability to the remote stack.

The following state values are passed:
• SCMG_UIS - This is a user-in-service (UIS) message that

an application issues each time it comes online.
• SCMG_UOS - This is a user out-of-service (UOS) message

that an application issues when it goes offline.

These messages contain unavailability cause parameter
values indicating why the UPU message was generated.

I_N_STATE_INDIC This primitive is passed in an i_block_t structure and is
sent by the user to the SINAP stack when the SINAP/SS7
system receives state information from the remote stack.

The state values are passed in the following messages:
• SCMG_UIS - This is a user-in-service (UIS) message that

an application issues each time it comes online.
• SCMG_UOS - This is a user out of service (OUS) message

that an application issues when it goes offline.

These messages contain unavailability cause parameter
values indicating why the UPU message was generated.

I_N_PCSTATE_INDIC This primitive is passed in an i_block_t structure and
indicates whether the signaling point is accessible,
inaccessible, or congested. The primitive is generated when
SCCP management receives an MTP_PAUSE, MTP_RESUME,
or MTP_STATUS message from MTP management.

Point code state values generated are:
• SCMG_ACCESSIBLE
• SCMG_INACCESSIBLE
• SCMG_CONGESTED
Application Programming Interface (API) 2-19

SS7 Primitives
Connection-Control Primitives
The following primitives are related to connection-oriented control. The primitives are divided
into two types: those used in IPC messages and those used in data MSUs. For more information,
see ‘‘Connection-Oriented Control Primitives Used in IPC Messages’’ in Chapter 3.

Primitives Used in IPC Messages
The following connection-oriented control primitives are used in IPC messages passed between
the local application and the SCCP-SCOC process. These primitives define the IPC message
type.

Table 2-4 describes the connection-control primitives that you can include in the IPC messages
that the local application sends to SCCP-SCOC, and the sccp_ipc_t structure in which the
IPC message is defined. When sending one of these IPC messages to SCCP-SCOC, your
application must set the IPC message’s
sccp_ipc_t.i_block_t.ipc_trans_t.msg_type field to one of the values listed in

I_N_COORD_<TYPE> This primitive is passed in an i_block_t structure. A
replicated subsystem uses a type of I_N_COORD primitive
whenever it wants to withdraw from the network. The
primitive exists in one of the following four forms:

• I_N_COORD_REQ - As a request when the originating user
requests permission to go out of service

• I_N_COORD_INDIC - As an indication when the request
to go out of service is delivered to the originator’s replicate

• I_N_COORD_RESP - As a response when the originator’s
replicate indicates it has sufficient resources to let the
originator go out of service

• I_N_COORD_CONF - As a confirmation when the originator
is informed it can go out of service.

SC_N_UNITDATA This primitive is passed in an m_block_t structure. The
TCAP and SCCP exchange data by means of the
SC_N_UNITDATA primitive, which is invisible to the TCAP
application.

• For incoming messages, the TCAP decodes SCCP
SC_N_UNITDATA indications and maps them to TCAP
primitives, which are sent to TCAP dialogue- or
transaction-handling procedures.

• For outgoing messages, the TCAP decodes TCAP
primitives and maps them to SCCP SC_N_UNITDATA
indications which are sent to the SCCP.

Table 2-3. SCCP Primitives (Page 2 of 2)

Primitive Description
2-20 SINAP/SS7 Programmer’s Guide R8052-17

SS7 Primitives
the column labeled “Primitive.” In addition, your application must initialize the sccp_ipc_t
structure listed in the corresponding column labeled “Structure.”

Table 2-5 describes the connection-control primitives that can be included in the IPC messages
that the local application receives from SCCP-SCOC, along with the sccp_ipc_t structure
in which the IPC message is defined. For incoming IPC messages, your application should
examine the value of the i_block_t.ipc_trans_t.msg_type field to determine
whether the message is a connection-oriented message. If the field’s value matches one of the
values in the column labeled “Primitive,” the message is a connection-oriented message. The
application should then read the message by examining the sccp_ipc_t structure listed in the
corresponding column labeled “Structure.”

Table 2-4. Outgoing Connection-Control Primitives

Primitive Structure Purpose

I_N_CONNECT_REQ scoc_con_req_t Request to establish a
connection with a remote
application

I_N_CONNECT_RES scoc_con_res_t Response to accept a remote
application’s request to establish
a connection

I_N_RESET_REQ scoc_res_req_t Request to initiate a reset
procedure to reinitialize
sequence numbers for the
connection (class-3 services
only)

I_N_RESET_RES scoc_res_res_t Response to accept a remote
application’s request to initiate a
reset procedure to reinitialize
sequence numbers for the
connection (class-3 services
only)

I_N_DISCONNECT_REQ scoc_dis_req_t Request to disconnect (release)
the connection

I_SCOC_GET_CONNID scoc_get_connid_t Request to obtain a connection
ID for a connection

Table 2-5. Incoming Connection-Control Primitives

Primitive Structure Purpose

I_N_CONNECT_CON scoc_con_con_t Remote response accepting a
local application’s connection
request
Application Programming Interface (API) 2-21

SS7 Primitives
Data Primitives Used in Data MSUs
The connection-oriented control data primitives are used in the data MSUs passed between local
and remote applications. The primitives define the type of data in the MSU. For more
information about any of these primitives, see the ITU-T Recommendations Q.712.

Include the connection-oriented data primitives, listed in Table 2-6, in the data MSUs the local
application sends to the remote application. Your application must set the
mblock_t.ud_ccitt_msu_t.mtp_ud.ccitt_sccp_user_t.msg_type field to
one of the values in the column labeled “Primitive” to define the MSU’s data type. In addition,
your application must initialize the sccp_ipc_t structure listed in the corresponding column
labeled “Structure.”

I_N_CONNECT_IND scoc_con_ind_t Remote request to establish a
connection

I_N_RESET_CON scoc_res_con_t Remote response to accept a
local application’s request to
initiate a reset procedure to
reinitialize sequence numbers for
the connection (class-3 services
only)

I_N_RESET_IND scoc_res_ind_t Remote request to initiate a reset
procedure to reinitialize
sequence numbers for the
connection (class-3 services
only)

I_N_DISCONNECT_IND scoc_dis_ind_t Remote request to disconnect
(release) the connection; can be
a response to a connection
request

I_SCOC_CID_RESULT scoc_cid_result_t SCCP-SCOC response to
request for connection ID

Table 2-6. Outgoing Connection-Oriented Data Primitives

Primitive Structure Purpose

SC_DATA_FORM1 sccp_dt1_t Sends a data-form-1 message

SC_DATA_FORM2 sccp_dt2_t Sends a data-form-2 message

Table 2-5. Incoming Connection-Control Primitives

Primitive Structure Purpose
2-22 SINAP/SS7 Programmer’s Guide R8052-17

SS7 Primitives
Table 2-7 describes the connection-oriented data primitives that can be included in the data
MSUs received by the local application. Your application should examine the value of the
m_block_t.ud.ccitt_msu_t.mtp_ud.ccitt_sccp_user_t.msg_type field.
If the field’s value matches one of the values in the column labeled “Primitive,” the MSU
contains data for a connection-oriented message. The application should then read the data by
examining the sccp_ipc_t structure listed in the corresponding column labeled “Structure.”

TCAP Primitives
TCAP primitives are divided into the following two classes:

• Transaction Capabilities (TC) primitives are related to transaction handling. Their purpose
is to request or indicate facilities of the layer or sublayer underlying them in relation to
message transmission or transaction handling.

SC_EXPEDITED_DATA sccp_expdata_t Sends expedited data, which is a
data-form-2 message that
bypasses the flow-control
settings defined for the
connection

Table 2-7. Incoming Connection-Oriented Data Primitives

Primitive Structure Purpose

SC_DATA_FORM1 sccp_dt1_t Contains a data-form-1 message

SC_DATA_FORM2 sccp_dt2_t Contains a data-form-2 message

SC_EXPEDITED_DATA sccp_expdata_t Contains expedited data, which
is a data-form-2 message that
bypasses the flow-control
settings defined for the
connection

SC_RESET_REQUEST sccp_resetreq_t Remote request to initiate a reset
procedure to re-initialize
sequence numbers

SC_RELEASED sccp_rlsd_t Remote request to release the
connection and associated
resources

Table 2-6. Outgoing Connection-Oriented Data Primitives

Primitive Structure Purpose
Application Programming Interface (API) 2-23

SS7 Primitives
N O T E
The CCITT, TTC, NTT, and China variants of the SINAP/SS7
system use dialogue-handling primitives instead of
transaction-handling primitives. Their functions are basically
the same.

• Component-handling primitives handle operations and replies; they do not require facilities
from the underlying layer or sublayer.

In addition to these types of primitives, the TCAP and SCCP use the SC_N_UNITDATA
primitive to exchange data. See the preceding section “SCCP Primitives,” for more information
about this primitive.

Dialogue-Handling Primitives (CCITT/TTC/NTT/China)
The transaction capabilities (TC) primitives, shown in Table 2-8, are related to dialogue
handling. Their purpose is to request or indicate facilities of the layer or sublayer underlying
them in relation to message transmission or dialogue handling.

Table 2-8. Transaction Capabilities Primitives (CCITT/TTC/NTT/China)

Primitive Description

TC_UNI Requests or indicates an unstructured dialogue.

TC_BEGIN Begins a dialogue, indicating the beginning of a multicomponent
transaction between two TC users.

TC_CONTINUE Continues a dialogue and indicates that the TCAP components
are packaged in the MSU and sent on the SS7 network.

TC_END Ends a dialogue and indicates that the collected TCAP
components are packaged in the MSU and sent on the SS7
network.

TC_U_ABORT Allows a TC user to terminate a dialogue abruptly, without
transmitting any components. All related information is
discarded.

TC_P_ABORT Informs the TC user that one of the protocol sublayers upon
which the receiving TC user resides will terminate a specified
dialogue.

TC_NOTICE Informs the TC user if the service requested cannot be
provided.

TC_REQUESTX This primitive ensures components are carried in an XUDT
message if the application is registered at the SS7 input
boundary TCAPX.
2-24 SINAP/SS7 Programmer’s Guide R8052-17

SS7 Primitives
Transaction-Handling Primitives (ANSI)
Table 2-9 describes the transaction-handling primitives for the ANSI network variant of the
SINAP/SS7 system.

Table 2-9. Transaction-Handling Primitives (ANSI) (Page 1 of 2)

Primitive Description

TC_UNI Sends information to another TCAP-based client application;
no reply is expected.

TC_QRY_W_PERM
(query with permission)

Initiates a TCAP transaction between two TCAP-based
client applications. The use of this primitive enables the
destination node to end the TCAP transaction. When a
single TCAP message consists of multiple TCAP
components, the use of this primitive tells the TSL to
assemble the message. The TSL assembles the message
by concatenating all of the TCAP components into a single
MSU, which is then delivered to SCCP.

TC_QRY_WO_PERM
(query without
permission)

Initiates a TCAP transaction between two TCAP-based
client applications. The use of this primitive prohibits the
destination node from ending the TCAP transaction. When a
single TCAP message consists of multiple TCAP
components, the use of this primitive tells the TSL to
assemble the message. The TSL assembles the message
by concatenating all of the TCAP components into a single
MSU, which is then delivered to SCCP.

TC_CONV_W_PERM
(conversation with
permission)

Continues a TCAP transaction. The use of this primitive
enables the destination node to end the transaction. When a
single TCAP message consists of multiple TCAP
components, the use of this primitive tells the TSL to
assemble the message. The TSL assembles the message
by concatenating all of the TCAP components into a single
MSU, which is then delivered to SCCP.

TC_CONV_WO_PERM
(conversation without
permission)

Continues a TCAP transaction. The use of this primitive
prohibits the destination node from ending the transaction.
When a single TCAP message consists of multiple TCAP
components, the use of this primitive tells the TSL to
assemble the message. The TSL assembles the message
by concatenating all of the TCAP components into a single
MSU, which is then delivered to SCCP.

TC_RESPONSE Ends a TCAP transaction after transmitting any pending
TCAP components. This primitive also releases the
transaction ID (if it belongs to the TCAP).
Application Programming Interface (API) 2-25

SS7 Primitives
Component-Handling Primitives
Table 2-10 describes the component handling primitives for all network variants of the
SINAP/SS7 system. The primitives that apply to only one or more variants are designated with
the network variant to which they apply.

TC_NO_RESPONSE Causes the local TCAP-based client application to terminate
the transaction without transmitting pending TCAP
components, and release the transaction ID if it belongs to
the TCAP. (The use of this primitive is agreed upon by both
TCAP-based client applications before the transition is
started.)

TC_U_ABORT Allows a TCAP-based client application to terminate a
transaction abruptly, without transmitting any components.
All related information is discarded.

TC_P_ABORT Informs the TCAP-based client application that the
transaction is being terminated by one of the protocol
sublayers upon which the receiving client application
resides.

TC_NOTICE Informs the TCAP-based client application if the requested
service cannot be provided.

Table 2-10. Component Handling Primitives (Page 1 of 2)

Primitive Description

TC_INVOKE
(CCITT/TTCNTT//China)

This primitive enables one TCAP user to request services
from another TCAP user. In the ANSI variant of the
SINAP/SS7 system, the primitives TC_INVOKE_L and
TC_INVOKE_NL are used in place of TC_INVOKE.

TC_INVOKE_L
(invoke last) (ANSI)

This primitive lets one TCAP-based client application
request that another perform an operation. The TCAP-based
client application must specify information that the
component handler needs to process the operation (such as
TC user ID, invoke ID, correlation ID, class of operation,
transaction ID, and a timer value). If no correlation ID is
specified (always coded as Last), it indicates that there are
no further responding components.

TC_INVOKE_NL
(invoke not last) (ANSI)

This primitive is similar to TC_INVOKE_L except that further
responding components are expected.

Table 2-9. Transaction-Handling Primitives (ANSI) (Page 2 of 2)

Primitive Description
2-26 SINAP/SS7 Programmer’s Guide R8052-17

SS7 Primitives
ISUP Services Primitives
For information related to ISUP Services primitives, see the SINAP/SS7 ISDN User Part (ISUP)
Guide (R8053).

TC_RESULT_L This primitive returns only the result, or last part of the
segmented result, of a successfully executed operation. This
primitive provides the general mechanism for responding to
TC_INVOKE (CCITT/TTC/NTT/China) or TC_INVOKE_L
(ANSI).

TC_RESULT_NL This primitive returns the nonfinal (not last) part of the
segmented result of a successfully executed operation. This
primitive is useful for providing segmented responses when
the result is too large for a single component. It also provides
the general mechanism for responding to TC_INVOKE
(CCITT/TTC/NTT/China) or TC_INVOKE_NL (ANSI).

TC_U_ERROR This primitive is issued by a destination TCAP-based client
application to indicate that, although the message is valid, it
cannot execute the requested operation (for example,
because the SINAP/SS7 node database is unavailable). This
primitive contains the component that could not be executed,
along with an error code.

TC_U_REJECT
(user reject)

This primitive indicates that the TCAP-based client
application rejected a component because it was improperly
formed. This primitive contains a problem code that indicates
the reason the component was rejected.

TC_L_REJECT
(local reject)

This primitive is issued by the local CSL to indicate that it
received a TC_INVOKE (CCITT/TTC/NTT/China),
TC_INVOKE_L (ANSI), or TC_INVOKE_NL (ANSI) primitive
whose content or structure was invalid or illegal.

TC_R_REJECT
(remote reject)

This primitive is issued by the remote CSL to indicate that it
received a TC_INVOKE (CCITT/TTC/NTT/China),
TC_INVOKE_L (ANSI), or TC_INVOKE_NL (ANSI) primitive
whose content or structure was invalid or illegal.

TC_L_CANCEL
(local cancel)

This primitive is issued by the CSL to inform the
TCAP-based client application that a timer associated with a
requested operation (component) has timed out.

TC_U_CANCEL (user
cancel)

This primitive is issued by a TCAP-based client application
to indicate that it wishes to cancel previously-requested
operations (components).

Table 2-10. Component Handling Primitives (Page 2 of 2)

Primitive Description
Application Programming Interface (API) 2-27

SS7 Message Processing
SS7 Message Processing
This section provides background information about how SS7 messages are processed. It
describes how the SINAP/SS7 system interacts with the SS7 network to process incoming and
outgoing SS7 messages. It also provides information about how a SINAP/SS7 client application
reads from the queue and describes a potential timing problem that arises when the SINAP/SS7
system is used in a multiprocessor environment, such as the one provided by UNIX.

SINAP/SS7 Interaction with the SS7 Network
This section provides background information describing the interaction between the
SINAP/SS7 system and the SS7 network. As you develop SINAP/SS7 applications, you should
consider the following:

• The SINAP/SS7 system uses input and output batch buffers, respectively, as holding
queues for inbound and outbound M_Blocks. Inbound MSUs from the SS7 network are
held on the input batch buffer until the application reads them. The maximum number of
M_Blocks that the input queue can hold for an application is defined by the
max_msu_input_que field of the register_req_t structure. If the application
does not issue a read before the queue becomes full, the SINAP/SS7 system discards any
additional M_Blocks that arrive. (An application reads from the queue by issuing a call
to the ca_get_msu() function (MTP or SCCP) or the ca_get_tc() function
(TCAP).)

If an application calls ca_get_msu() or ca_get_tc() and there are no incoming
MSUs on the input queue, the SINAP/SS7 system retrieves a batch of incoming MSUs
from the SS7 SVR4 Streams driver. (A batch is equal to the number of M_Blocks defined
by the register_req_t structure’s batch_count field.)

• Outbound MSUs are stored in an output batch buffer until the buffer becomes full or until
the application calls the ca_flush_msu() function. Then, the SINAP/SS7 system sends
all pending outbound MSUs to the SS7 SVR4 Streams driver for transmission to the SS7
network. The maximum number of M_Blocks that the output queue can hold for an
application is defined by the register_req_t structure’s max_msu_output_que
field.

Issuing Calls to Read from the Queue
When an application wants to read from the queue, it issues a call to the appropriate CASL
function. For example, an MTP application issues a call to the ca_get_msu() function and
a TCAP application issues a call to the ca_get_tc() function.

The ca_get_msu() and ca_get_tc() functions can be called in blocking or nonblocking
mode. When called in blocking mode, normal application processing is suspended until the
function actually reads from the queue. (If there is nothing on the queue, the function call must
wait for something to arrive.) When called in nonblocking mode, the function returns an error if
2-28 SINAP/SS7 Programmer’s Guide R8052-17

Interprocess Communications (IPC)
there is nothing on the queue; normal application processing is not suspended as it is when the
function is called in blocking mode.

The function’s fwait parameter indicates whether to execute the function call in blocking or
nonblocking mode. An fwait value of 1 causes the function call to execute blocking mode;
an fwait value of 0 causes the function call to execute in nonblocking mode. The fwait
parameter is passed by value, which means the calling process makes a copy of the parameter’s
value at the time of the call. Changing the parameter’s value at a later time does not affect the
original copy of the parameter value and thus cannot affect the behavior of the called function.

Blocking-Mode Timing Problem
In the UNIX multiprocessor environment, there is a certain amount of time (called a timing
window) between when the ca_get_tc() function is called and when it actually reads the
queue. When ca_get_tc() is called in blocking mode, a potential timing problem arises
when a signal is generated during this timing window. This is because the application process
suspends execution of the blocking-mode read in order to execute an interrupt-handler function
to process the signal. After processing the signal, the application process resumes execution of
the blocking mode read. However, because the fwait parameter is passed by value and not by
reference, there is no way for the interrupt-handler function (or another application process) to
change the value of fwait from blocking to nonblocking mode before resuming the
blocking-mode read. Consequently, the application process is stuck in the blocking-mode read
until something actually arrives on the queue.

Implementation of the ca_get_tc_ref() Function
The CASL function ca_get_tc_ref() provides a workaround to this blocking-mode
timing problem. The ca_get_tc_ref() function is almost identical to the ca_get_tc()
function; however, in place of the fwait parameter (which is passed by value),
ca_get_tc_ref() uses the parameter *prefwait.

The *prefwait parameter points to the global variable REFWAIT, whose value is a Boolean
indicator that specifies whether the function call is to execute in blocking or nonblocking mode:
1 specifies blocking mode and 0 specifies nonblocking mode. (REFWAIT is defined in the
include file sinapintf.h.) Since *prefwait is only a pointer to the global variable
REFWAIT, the interrupt-handler function (or another application process) can dynamically
change the value of REFWAIT from blocking to nonblocking mode. For more information about
the ca_get_tc_ref() function, see its description in Chapter 6.

Interprocess Communications (IPC)
The CASL provides interprocess communications by using UNIX message queuing.
Interprocess communications can occur between two SINAP/SS7 client applications, between
a client application and a SINAP/SS7 subsystem, or between two SINAP/SS7 subsystems.
There are two basic functions for IPC: ca_get_msg() and ca_put_msg(). Both functions
assume that the originator and destination are registered with SINAP/SS7 Node Management
and that dedicated IPC queues are assigned to them.
Application Programming Interface (API) 2-29

Interprocess Communications (IPC)
When a client application registers with the SINAP/SS7 system, an IPC message queue is
created. When the application is terminated, this queue is deallocated. Messages sent to a client
application by means of the IPC facility are placed on this queue, where they remain until the
application retrieves them by calling the CASL function ca_get_msg(). The CASL
functions use the message queue with subsystems like Node Management for transparent IPC
communication. The client application can use the message queue for its own IPC purposes.

Applications can send messages using the CASL function ca_put_msg(). The CASL then
determines whether the application is authorized to send a message to the specified destination.
If so, the message is copied to the destination queue using UNIX facilities. If the message
cannot be sent, the CASL returns an error.

An application process can send a message that is delayed a specified amount of time before it
is delivered to the destination IPC message queue. This mechanism is useful for time-out
handling, for scheduling functions over a given time period (every n seconds or minutes), or for
providing a delay between message sending and delivery. To initiate deferred message sending,
use the ca_put_msg_def() function. To cancel one or more messages awaiting timer
expiration, use the ca_cancel_def() function. To let the client application reset a timer (or
set the timer to a new value) for all messages with a particular timer identifier, use the
ca_restart_timer() function.

All IPC messages are stored in an I_Block structure. To send an IPC message, information
about the originator and destination must be provided. This information is contained in the IPC
key (the ipc_key_t structure). The IPC key contains the node ID, module ID, the application
and process names, and the instance of an application or SINAP/SS7 subsystem, which are
obtained from the application’s registration parameters. Use the ca_get_key() function to
obtain the IPC_key for a particular destination.

Other functions for handling IPC keys include:

• ca_check_key()

• ca_swap_keys()

• ca_ascii_u32()

• ca_u32_ascii()
2-30 SINAP/SS7 Programmer’s Guide R8052-17

Chapter 3
Application Design and

Development3-

A client application is a C/C++ language program that includes calls to functions in the
Common Application Services Layer (CASL) and can also include calls to the Integrated
Services Digital Network User Part (ISUP) Services Support Library (ISSL). The CASL library
contains C language functions that provide communications capabilities at the MTP, SCCP, and
TCAP layers of the SS7 protocol. The CASL also provides services that the SINAP/SS7
management processes and client applications can use. It is the boundary between a client
application and the SINAP/SS7 software. Both SINAP/SS7 management and client application
processes logically reside on top of the CASL. The ISSL is a library of C language functions
that provides communications capability at the ISUP layer of the SS7 protocol.

The CASL and ISSL libraries provide access to the MTP, SCCP, TCAP, and ISUP layers of the
SS7 protocol. A client application uses the services of one of these layers and is considered a
user part or user of that layer. For example, an application that interfaces with the SINAP/SS7
system at the MTP layer is considered an MTP user, just as an application that interfaces at the
TCAP layer is considered a TCAP user part.

N O T E
The SINAP/SS7 system does not implement the Telephone
User Part (TUP), but TUP can be implemented as part of an
MTP user part application.

This chapter includes the following sections:

• “General Design Considerations” describes considerations of which you should be aware
as you develop a SINAP/SS7 client application.

• “Considerations for Different Types of Applications” describes the major differences
among the SINAP/SS7 network variant applications.

• “Developing Application Processing” provides background information that you might
find useful as you develop your application’s logic.

• “Activating/Deactivating a SINAP/SS7 Application” provides instructions for activating
and deactivating client applications.

• “TCAP Client Applications” describes how to develop a TCAP client application.
Application Design and Development 3-1

General Design Considerations
• “SCCP Client Applications” describes how to develop an SCCP client application.

• “User Part (MTP) Client Applications” describes how to develop a user-part application,
which interfaces to the MTP layer of the SS7 protocol.

• “Considerations for Implementing SINAP/SS7 Features” describes SINAP/SS7 features
and provides instructions for implementing them in an application.

• “Error Handling” describes how to develop error-handling logic for your application.

General Design Considerations
As you develop applications to run on the SINAP/SS7 system, consider the following:

• The SINAP/SS7 system provides archive libraries and shared object libraries. The shared
object libraries are also called dynamic linked libraries (DLL). You can link to either
without modifying an application’s programming interface.

• To use the services of the SINAP/SS7 platform, a client application must first register with
the SINAP/SS7 system. At registration, the application defines its operating characteristics
(for example, whether it will accept input at the MTP, SCCP, or TCAP layer and the type
of primitives it will receive). By registering with the SINAP/SS7 system, an application
also makes itself known to SINAP/SS7 node management. Thereafter, the SINAP/SS7
system has the information it needs to offer its services to that client application.

• The maximum number of SINAP/SS7 registered processes that can run concurrently is 256,
including 29 SINAP/SS7 processes. Therefore, the SINAP/SS7 system can support a
maximum of 227 application processes (including application instances) running
concurrently. This value is defined by the variable, MAX_APPL_OPC, which is defined in
the SINAP/SS7 register.h include file.

• The maximum number of applications that can be registered with the SINAP/SS7 system
at any one time is 32. This value is defined by the variable, MAX_APPL_SSN, which is
defined in the SINAP/SS7 register.h include file.

• UNIX does not notify SINAP/SS7 applications that an incoming message signaling unit
(MSU) has arrived. It is the application’s responsibility to call the CASL function
ca_get_msu() or ca_get_tc() to determine whether an incoming MSU has arrived.
(This is because the SINAP/SS7 system does not support a POLL or SELECT function.)

• Once an application has finished using SINAP/SS7 services, it must deregister by calling
the CASL withdraw/terminate functions.

• If applications are configured to handle a large number of transactions, additional memory
and heap space may be required (system tuning).

The remainder of this section discusses additional considerations of which you should be aware.
3-2 SINAP/SS7 Programmer’s Guide R8052-17

General Design Considerations
Multi-Threading Considerations (pthreads)
Generally all the SINAP functions mentioned in this document are not MT-SAFE. Generally
the paradigm for developing SINAP applications should be as shown in this document for
effective message handling, SINAP value added options (such as load control), and optimal
performance. However, it is possible to use SINAP in a multi-threaded (pthreads) application
in a perhaps sub-optimal manner after some careful considerations. Essentially, data to and from
SINAP should be serialized to avoid MT-Safety problems. This may result in a loss of
performance, since the powerful architectural functions of SINAP, such as load control, and the
ability to have multiple SINAP application instances handling the data simultaneously across
multiple processors, cannot be fully utilized.

You can use various techniques when you develop multi-threaded applications that utilize the
CASL library SINAP function calls:

• Execute all SINAP function calls from the main thread only.

• Serialize all data flows to and from SINAP by using an intermediate queue mechanism.

• Wrap all SINAP calls with a common mutex.

• A combination of the above.

Note that, due to specifics of the SINAP implementation, the ca_register() function
should only be called once and from the main thread only.

Figure 3-1. Example of mutex usage

pthread_mutex_t g_mutex;

...

pthread_mutex_lock(&g_mutex);

index = ca_alloc_tc();

pthread_mutex_unlock(&g_mutex);

...

pthread_mutex_lock(&g_mutex);

ca_put_tc(index);

pthread_mutex_unlock(&g_mutex);

Follow these recommendations in order to guarantee the fidelity of data provided to the
application from SINAP, the fidelity of the data output by SINAP, or that SINAP will continue
to operate correctly.
Application Design and Development 3-3

General Design Considerations
A multitreaded version of the tcsend sample program is provided in the Samples/ccitt
directory. The name of the source file is tcsend_mt.c . The tcsend_mt program can be
compiled by running 'make tcsend_mt' in that directory. The sample tcsend_mt.c
program utilizes the pthread_create() and pthread_join() POSIX thread library
functions to create multiple threads and wait for threads’ termination. The send_route()
and send_tcap() program functions are executed within individual thread’s context and call
SINAP CASL library functions such as ca_alloc_tc(), ca_put_tc(), and
ca_dealloc_tc(). It can be seen in the tcsend_mt.c source file that calls to the
ca_alloc_tc(), ca_put_tc() and ca_dealloc_tc() SINAP CASL library
functions are protected with the pthread_mutex_lock() and
pthread_mutex_unlock() function calls. The multithreading technique demonstrated in
the tcsend_mt.c sample program can be utilized by application developers.

Porting 32-Bit SINAP Applications to 64-Bit (HP-UX and Solaris only)
Most applications can remain in 32-bit mode on 64-bit systems. However, some
applications, which manipulate very large data sets, are constrained by the 4GB address
space limit in 32-bit mode. These applications can take advantage of the larger address
space and larger physical memory of 64-bit systems. An enhanced 64-bit version of the
SINAP/SS7 software supports 64-bit addressing and data files larger than 4GB in size. Existing
32-bit SINAP applications can be ported to the 64-bit mode to utilize these enhanced features.
The SINAP/SS7 software for HP-UX or Solaris OS is designed in accordance with the 32-bit
data model (ILP32) and the 64-bit data model (LP64). Some fundamental changes occur when
moving from the ILP32 data model to the LP64 data model:

• longs and ints are no longer the same size

• pointers and ints are no longer the same size

• pointers and longs are 64 bits and are 64-bit aligned

• Predefined types size_t and ptrdiff_t are 64-bit integral types

These differences can potentially impact porting in the following areas:

• data truncation

• pointers

• data type promotion

• data alignment and data sharing

• constants

• bit shifts and bit masks

• bit fields

• enumerated types
3-4 SINAP/SS7 Programmer’s Guide R8052-17

General Design Considerations
The ANSI/ISO C standard specifies that C must support four signed and four unsigned integer
data types: char, short, int, and long. There are few requirements imposed by the ANSI
standard on the sizes of these data types. However, according to the standard, int and short
should be at least 16 bits and long should be at least as long as int, but not smaller than 32
bits.

The 32-bit data model is called ILP32 because ints, longs, and pointers are 32 bits.

The 64-bit data model is called LP64 because longs and pointers are 64 bits. In this model,
ints remain 32 bits.

The following table lists the basic C data types and their corresponding sizes in bits for both the
ILP32 and LP64 data models:

Compiling 64-Bit Applications with 64-bit HP-UX OS
Stratus recommends that 64-bit SINAP application programs be compiled on the following
platform:

• Continuum Series 400 systems with the PA-8500 or PA-8600 processor

• 64-bit HP-UX operating system (11.00.03)

• HP C/ANSI C Developer's Bundle for HP-UX 11.00 (B3901BA B.11.01.20)

To generate 64-bit object code for PA2.0 architecture, use +DD64 HP C compiler option, which
causes the macros __LP64__ and _PA_RISC2_0 to be #defined. This is the same as

Table 3-1. Data Type Size for ILP32 and LP64

C Data Type ILP32 Size
(Bits)

LP64 Size
(Bits)

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

float 32 32

double 64 64

long double 128 128

enum 32 32
Application Design and Development 3-5

General Design Considerations
+DA2.0W, but is the recommended option to use when compiling in 64-bit mode on the PA
RISC2.0 architecture. In addition, the +M2 option can be added to provide compilation warnings
for possible problems connected with migration to the 64-bit mode. See Chapter 5, ‘‘Sample
Applications,” for examples of compiling SINAP applications under 64-bit HP-UX OS.

N O T E
The /usr/lib/pa20_64 is the default repository of the
64-bit archive and shared libraries (where /usr/lib is the
default repository in 32-bit systems).

Compiling 64-Bit Applications with 64-bit Solaris OS
Stratus recommends that 64-bit SINAP application programs be compiled on the following
platform:

• Sun Netra 20/T41 or SunFire V480 system

• 64-bit Solaris 8 operating system (Feb. 2002 version or later release)

• Sun Workshop Forte 6 C Compiler

To generate 64-bit object code for SPARC-V8 ISA, use xarch=v9 compiler option, which
predefines the __sparcv9 macro and searches for v9 versions of lint libraries. In addition, the
xtarget=ultra2 specifies the target system (ultra2) for instruction set and optimization.
See “Chapter 5, ‘‘Sample Applications,” for examples of compiling SINAP applications under
64-bit Solaris OS.

N O T E
The /usr/lib/64 is the default repository of the 64-bit
archive and shared libraries (where /usr/lib is the default
repository in 32-bit systems).

Guidelines
As you develop applications to run on the 64-bit SINAP/SS7 system, consider the following
guidelines.

Data Truncation
• Avoid Assigning longs to ints

• Avoid Storing Pointers in ints

• Avoid Truncating Function Return Values

• Use Appropriate Print Specifiers

1 Note that Sun Microsystems refers to this model as either “Netra 20 Server” or “Netra
T4”, but it is referred as “Netra 20/T4” in SINAP documentation to avoid the confusion.
3-6 SINAP/SS7 Programmer’s Guide R8052-17

General Design Considerations
Data Type Promotion
• Avoid Arithmetic between Signed and Unsigned Numbers

Pointers
• Avoid Pointer Arithmetic between longs and ints

• Avoid Casting Pointers to ints or ints to Pointers

• Avoid Storing Pointers in ints

• Avoid Truncating Function Return Values

Structures
• Avoid Using Unnamed and Unqualified Bit Fields

• Avoid Passing Invalid Structure References

Hardcoded Constants
• Avoid Using Literals and Masks that Assume 32 bits

• Avoid Hardcoding Size of Data Types

• Avoid Hardcoding Bit Shift Values

• Avoid Hardcoding Constants with malloc(), memory(3), string(3)

Tuning Your 64-bit Application
• Avoid performing mixed 32-bit and 64-bit operations, such as adding a 32-bit data type to

a 64-bit type. This operation requires the 32-bit type to be sign-extended to clear the upper
32 bits of the register.

• Avoid 64-bit long division whenever possible.

• Eliminate sign extension during array references. Change unsigned int, int, and
signed int, variables used as array indexes to long variables.

For additional information, see the references listed at next section.

References
For additional information see the following:

• HP-UX 64-bit Porting and Transition Guide (HP document # 5966-9887, June 1998)

• HP-UX 64-bit Porting Concept (http://devresource.hp.com/STK/64concepts.html)

• HP-UX 64-bit compiler and linker changes (http://devresource.hp.com/STK/64arch.html)

• C User’s Guide (Sun WorkShop 6) (Sun Microsystems document # 806-3567, May 2000)

• Data Size Neutrality and 64-bit Support
(http://www.UNIX-systems.org/whitepapers/64bit.html)
Application Design and Development 3-7

General Design Considerations
SINAP/SS7 Libraries
The SINAP/SS7 system offers both a shared object library, or dynamic linked libraries (DLLs),
and an archive library. All SINAP/SS7 processes and sample programs use the SINAP DLL.
The SINAP DLL allows you to update the following standard libraries using a patch release
without performing a compile and link edit:

• Common Application Services Layer (CASL) Library

• ISUP Services Library (ISSL)

LibCASL libraries contain CASL functions and structures that simplify the development of
service applications to be deployed in the SS7 network. libissl libraries contain ISUP
services functions and data structures required to develop ISUP applications.

N O T E
$SINAP_HOME represents the path of the currently installed
and configured SINAP node, and $SINAP_MASTER
represents the path to the master copy of all currently installed
SINAP executables, libraries, and related files.

You can use either library. No application modifications are required to use the SINAP DLL.
Select the library you want to use when you compile an application. For example, use a

Library Type Library Name Location

DLL

libCASL.sl
libissl.sl

$SINAP_MASTER/Library and
$SINAP_HOME/Library

The common locations for shared object
libraries are /usr/lib in 32-bit
systems, /usr/lib/pa20_64 in
64-bit HP-UX system, and
/user/lib/64 in 64-bit Solaris
system. A link is automatically installed
during installation of the SINAP/SS7
software to /usr/lib DLLs.

Archive

libCASL.a
libissl.a

$SINAP_MASTER/Library and
$SINAP_HOME/Library

($SINAP_HOME root directory for your
system installation)
3-8 SINAP/SS7 Programmer’s Guide R8052-17

General Design Considerations
command similar to the following to compile and link edit an application program with the
SINAP DLL (libCASL.so) under HP-UX and Solaris:

@cc -I. -I$SINAP_HOME/Include -o [program name] [object name
list] -lCASL

Under the Stratus ft Linux operating system, the command is as follows:

@cc -I. -I$SINAP_HOME/Include -o [program name][object name
list] -lCASL -lLiS

This command assumes the shared object libCASL.so is located in /usr/lib.

N O T E
UNIX provides tools that are helpful when you are debugging
an application. For the HP-UX operating system, you can use
the following command to help debug an application:

For HP-UX operating systems, you can use the chatr command to view shared
libraries.

For more information, see the man pages on your UNIX system.

To compile and link edit a SINAP/SS7 application using the archive library, use a command
similar to the following to compile and link the program with the archive CASL library
(libCASL.a) under HP-UX and Solaris:

@cc -I. -I$SINAP_HOME/Include -L /usr/ccs/lib -L /usr/lib -o
[program name] [object name list]
$SINAP_HOME/Library/libCASL.a

Under the Stratus ft Linux operating system, the command is as follows:

@cc -I. -I$SINAP_HOME/Include -L /usr/ccs/lib -L /usr/lib -o
[program name][object name list]
$SINAP_HOME/Library/libCASL.a -lLiS

The first release of the SINAP DLL will be part of a complete release version of the SINAP/SS7
system. Subsequent releases can be either complete releases or patch releases, which contain
updates to the libraries. To install the complete SINAP/SS7 DLL release, you must compile and
link edit the application. To install a patch release to update the libraries, you can simply stop
and restart the user application and/or the SINAP node.

Client Application Models
Though no client application is provided with the SINAP/SS7 software, a client application is
important to the design of the SINAP/SS7 system. The SINAP/SS7 system assumes that a client
Application Design and Development 3-9

General Design Considerations
application will behave as a queued-event finite state machine (FSM). An FSM is a program
structure that behaves in a predictable manner, regardless of input. The predictability is
achieved by processing an incoming event (or message) in exactly the same manner (within the
application’s current state) each time the application receives it. Memory of previous activity is
achieved by switching the application between a finite set of states.

N O T E
While the SINAP/SS7 system provides no true client
application, it does contain test applications for the purpose of
validating the client application interface and function support.
For example, the TCAP test application consists of two C
programs called tcsend.c and tcrecv.c. The TCAP and
other test applications are located in the directory
$SINAP_HOME/Samples/<network variant>. For
example, the test application for the CCITT network variant is
located in the directory $SINAP_HOME/Samples/ccitt.
For more information, see the sample applications in Chapter 5.

Control and Data Processes
A SINAP/SS7 client application can consist of one or more processes, each considered a client
application process. An application can consist of a single process which performs both control
and data processing or, it can consist of multiple processes, one of which performs control
processing, and one or more that perform data processing.

N O T E
Unless otherwise noted, the term, application, is used
throughout this chapter to refer to the application or application
process that is executing a particular task (for example, calling
a particular CASL function).

The manner in which an application process registers determines whether it is considered a
control process, a data process, or both a control and data process.

• A control process is typically responsible for handling the application’s management
functions (for example, SS7 network management, interprocess communications (IPC),
and the initialization and termination of data processes). An application can have only one
control process.

• A data process is typically responsible for handling SS7 traffic, for example, reading
inbound MSUs from the queue and responding with outbound MSUs. An application can
have up to 16 separate data processes. Each data process is considered an instance of that
application, or an application instance. When the process registers, the SINAP/SS7 system
assigns it a unique instance ID.
3-10 SINAP/SS7 Programmer’s Guide R8052-17

General Design Considerations
For an application that consists of two or more processes, only one of the processes can send
and receive SCCP management messages. This process is considered the application’s control
process. An application’s control process must be registered to receive control primitives. The
remaining processes (those that send and receive SS7 data) must be registered to receive data
primitives only.

In the simplest case, a client application consists of a single process that receives and sends
management messages. Such an application must be registered to receive both control and data
primitives.

Single-Source SINAP/SS7 Code
All SINAP/SS7 network variants (ANSI, CCITT, TTC, NTT, and China) use the same source
code. You specify which variant of the SINAP/SS7 system you want to run on your system
when you install the SINAP/SS7 software. (See the SINAP/SS7 Installation Guide (R8060) for
instructions.)

Previous to this single source code approach, there were separate versions for CCITT, ANSI,
and Hybrid. If you have pre-Release 5.0 applications, you need not modify them to run with the
consolidated source-code variant of the SINAP/SS7 system. To run existing applications, you
need only recompile and rebind the applications with the new SINAP/SS7 libraries. However,
due to differences between the older ANSI, CCITT, and Hybrid versions of the SINAP/SS7
system, you must run existing applications with the same variant of the SINAP/SS7 system for
which the application was developed. For example, ANSI applications must be run on an ANSI
installation, and CCITT applications must be run on a CCITT installation.

The SINAP/SS7 system uses several global variables to make the source-code consolidation
invisible to you, the developer. For example, the tblock.h include file contains definitions
for both types of dialogue- and transaction-handling structures: tc_dhp_t (used by
CCITT/TTC/NTT/China applications) and tc_thp_t (used by ANSI applications). During
installation, you specify which SINAP/SS7 network variant you want to run. The SINAP/SS7
system writes this information to the environment variable, SINAP_VARIANT, which serves
as a pointer to the structures associated with that variant. Therefore, on a CCITT installation,
the SINAP/SS7 system expects applications to use the tc_dhp_t structure, and on an ANSI
installation, the SINAP/SS7 system expects applications to use the tc_thp_t structure.

N O T E
When you develop an application for a particular network
variant of the SINAP/SS7 system, you must adhere to the
programming and SS7 standards applicable to that variant. For
example, if you are developing a CCITT application, you must
use international 14-bit point-code addresses rather than the
24-bit point-code addresses used by ANSI applications.
Application Design and Development 3-11

General Design Considerations
By default, an application is compiled and bound with the variant of the SINAP/SS7 system that
is currently running on your system. You can, however, override the default and compile and
bind your application with another variant of the SINAP/SS7 system by making sure your
application includes a reference to that variant’s variant.h include file. For example, if you
want to recompile a CCITT application and your system is currently running the ANSI variant
of the SINAP/SS7 system, include a reference to the ccitt_variant.h include file in the
CCITT application. Then, when you issue the command to recompile, the application is
compiled with the CCITT variant of the SINAP/SS7 system and not ANSI.

UNIX Signal Remapping
The SINAP/SS7 system reassigns certain UNIX signals to different values. These new
assignments do not interfere with normal client application process activities. Table 3-2 lists the
UNIX signal and its reassignment. This information is contained in the s7signal.h include
file. You must include s7signal.h in your application if it will use the SINAP/SS7
interprocess communications (IPC) signaling mechanism. In addition, the client application
process must handle the SIG_S7_IPC, SIG_S7_PF_BEGIN, and
SIG_S7_PF_RIDETHRU signals if it is registered for IPC signals or power-fail signals.

The include file $SINAP_HOME/Include/s7signal.h lists the UNIX-to-SINAP/SS7
signals and also references the UNIX file signal.h.

Table 3-2. UNIX-to-SINAP/SS7 Signal Remapping (Page 1 of 2)

UNIX Signal SINAP/SS7 Remapping Description

SIGTTIN SIG_S7_IPC Used for client processes requesting a
signal when they receive an IPC
message.

SIGPOLL SIG_S7_REROUTE Informs SINAP/SS7 processes that MTP
management has updated the routing
tables. The SINAP/SS7 system uses this
signal internally.

SIGALRM SIG_S7_HIRES Used as a clock tick from SS7 driver for
CASL deferred message delivery. The
SINAP/SS7 system uses this signal
internally.

SIGTTOU SIG_S7_PF_BEGIN Indicates that a power-failure event has
started. The client process has 5 seconds
before execution stops.
3-12 SINAP/SS7 Programmer’s Guide R8052-17

General Design Considerations
Because there can be only one occurrence of a signal outstanding, multiple IPC messages in the
client application process’ IPC message queue can result in fewer signals than messages. When
the client application process receives the SIG_S7_IPC signal, it should read all messages
from its queue. Because of their infrequency, SIG_S7_PF_BEGIN and
SIG_S7_PF_RIDETHRU signals are not affected by multiple signals.

Tuning the Outgoing Batch Buffer Size
The SINAP/SS7 system provides the ability to improve performance by allowing you to change
the size of the output batch buffer (CA_REG.batch_count). A batch buffer size of 1 causes
the SINAP/SS7 internals to serialize all MSU transfers and is, therefore, very slow. By
increasing the batch buffer size, overall MSU throughput can be increased. However, increasing
the batch buffer excessively might result in congestion occurring (depending on the number of
links). To provide the highest MSU throughput possible and prevent premature congestion, tune
the value of CA_REG.batch_count with sufficient margin to allow the highest MSU
throughput when links become inactive. Since the number of links depends on your
configuration, Stratus provides no default recommendation for the value of
CA_REG.batch_count.

Supporting Large Numbers of Transactions
The SINAP/SS7 system is capable of processing up to 300,000 transactions. However, in order
to process large numbers of transactions, the size of the operating system’s heap memory should
be increased to 500 MB.

For example: to tune the operating system for approximately 500 MB of heap memory, the
tunable parameters of the system should be set as follows:

SIGXCPU SIG_S7_PF_RIDETHRU Indicates that power has been recovered
before normal execution stopped. The
client process can use this event to
resume normal functioning. However,
external peripherals (such as disks) might
not yet have restarted upon receipt of this
signal.

Tunable Parameter Suggested Value

HVMMLIM 24000000

SWMMLIM 24000000

SDATLIM 24000000

Table 3-2. UNIX-to-SINAP/SS7 Signal Remapping (Page 2 of 2)

UNIX Signal SINAP/SS7 Remapping Description
Application Design and Development 3-13

Considerations for Different Types of Applications
For additional information on setting tunable parameters see, “Tunable Parameter
Reconfiguration” in the HP-UX Operating System: Administration Tasks (B2355-90079).

TCAP EINTR Considerations
When you include a call to the sleep() function in a TCAP application, if the sleep interval
is greater than one second, make sure to protect the sleep() function against an interrupted
system call (EINTR) after the call to the SINAP ca_register() function.

To protect the function against an interrupted system call, use the method shown in the
samples/ccitt/tcsend.c file. The method is implemented in the delay_counter
function in that file. In other words, a sleep(1) function should be surrounded by a definite
loop that loops for the number of seconds required by the sleep() call.

When writing a TCAP application that requires input from the keyboard after the call to the
SINAP ca_register() function , instead of using the (void) scanf() function, use
the READ_MENU_ITEM helper macro, defined in ca_glob.h. See this macro definition for
example processing.

Generally any blocking calls done after ca_register() function should be protected as
necessary against EINTR. See the discussion of implementing the sleep() and scanf()
functions above.

At startup and before calling the ca_register()function, the application should gather any
static information, information that does not change while SINAP processing is in progress.
This practice will avoid the need for scanf() later on.

Considerations for Different Types of Applications
This section describes the things you must consider as you develop applications that interface
with the SINAP/SS7 system at each of the different SS7 protocol levels (MTP, SCCP, TCAP,
and ISUP). It presents a list of the include files required by different types of SINAP/SS7
applications and describes the differences between the ANSI, CCITT, TTC, NTT, and China
variants of the SINAP/SS7 system.

Include Files Required for Different Types of Applications
The following is a list of the include files that different types of applications must reference. For
an application to reference an include file, it must contain an #include statement for that file.
For example, the statement #include <tblock.h> references the SINAP/SS7 tblock.h
include file. (For a description of the SINAP/SS7 include files, see the section, “SINAP/SS7
Include Files” in Chapter 2.)

HDATLIM 24000000

Tunable Parameter Suggested Value
3-14 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
The include file caslinc.h references many of the include files required by different types
of SINAP/SS7 applications (for example, caslinc.h references ca_error.h, arch.h,
sinap.h, register.h, iblock.h, mblock.h, tblock.h, and sinapintf.h).
Therefore, the following list mentions those include files that are not referenced by
caslinc.h.

• An application that is registered to receive control primitives should reference the include
file prims3.h, which is not referenced by caslinc.h. This applies to applications that
register to receive only control primitives and applications that register to receive both
control and data primitives.

• An SCCP application that handles SS7 traffic (that is, accepts inbound MSUs and/or
processes responses in outbound MSUs) must reference the include files sccphdrs.h
and sccp-intrn.h, which are not referenced by caslinc.h.

• In addition to caslinc.h, an application that interfaces with the SINAP/SS7 system at
the TCAP boundary must reference the include files tcap.h and scmg-prims.h,
which are required so the application can use SCCP primitives.

• An ISUP services feature application must reference issl.h, which incorporates all the
include files necessary for the application to use the ISSL. For more information, see the
SINAP/SS7 ISDN User Part (ISUP) Guide (R8053).

• In addition to the include files required by all SINAP/SS7 applications, an application that
implements load control must reference the include file, locon.h, which is already
referenced in caslinc.h.

• Application processes that send and receive IPC messages (such as an application’s control
process) must reference the include files blkhdr.h, timestamp.h,iblock.h, and
ipctbl.h, each of which is referenced in caslinc.h.

• To implement BITE monitoring, an application process must reference the IPC-related
include files listed in the preceding paragraph and also the include files bitemon.h and
measure.h, which are referenced in caslinc.h.

• To log events to the trouble treatment table, an application process must reference the
include files event.h, event3.h, and treatment.h, in addition to the IPC-related
include files listed above. (All of these files are referenced in the caslinc.h include file.)

Network Variant Differences
This section describes the differences among the network variants in the SINAP/SS7 system.
You should consider these differences as you design and develop applications to run on the
SINAP/SS7 system. The section, “Considerations for Implementing SINAP/SS7 Features,”
later in this chapter, presents additional considerations. Throughout the manual, additional
differences are noted where applicable. Some basic differences between the network variants
are described in the following list:

• The network variants of the SINAP/SS7 system use different formats for specifying point
codes (for example, for an SCCP called or calling-party address).
Application Design and Development 3-15

Considerations for Different Types of Applications
• In CCITT, point codes are defined using 14-bit binary code in the range of 0 through
16383, for example, 5674.

• In TTC and NTT, point codes are defined as 16-bit binary codes in the range of 1
through 65536, for example, 10005.

Due to the differences in point code lengths, the MTP routing label used for TTC and
NTT MSUs is 36 bits, 4 bits longer that the MTP routing label for CCITT MSUs.

• In ANSI, point codes are defined using 24-bit binary codes divided into three fields of
8-bit components separated by hyphens and arranged in the format
network-cluster-member (where network is the ID of the network to which
the node belongs, cluster is the ID of the cluster to which the node belongs, and
member is the ID of the node).

– For network, specify a decimal value in the range of 1 through 254.
– For cluster, specify a decimal value in the range of 1 through 255.
– For member, specify a decimal value in the range of 1 through 255.

An example of a point code for the ANSI network variant is 42-135-6.

• In China, the point codes are defined in almost the same way as ANSI variant point
codes. They also use a 24-bit binary code, divided into three fields of 8-bit components
separated by hyphens in the format network-cluster-member (where
network is the main signaling area, cluster is the sub-signaling area, and
member is the signaling point code). The values for each component are different than
those for the ANSI point codes. The valid range you can specify for the network,
cluster, and member components is 0 through 255, with one restriction. The
SINAP/SS7 system reserves the point code 0-0-0 for internal system use. All other
point code combinations within the 0 through 255 range are valid.

A sample China point code is 1-22-111.

This manual refers to China point codes in terms of the ANSI equivalents, network,
cluster, member.

• When you use the TTC and NTT network variants, you can specify whether the application
or the CASL is responsible for sending user-in-service (UIS) and user-out-of-service
(UOS) messages to SCMG. This is done by specifying the environment variable
TTC_WITH_NSTATE. For more information, see Activating/Deactivating a SINAP/SS7
Application later in this chapter.

• In the CCITT network variant, the SINAP/SS7 system supports the ITU-T 1993 SCCP
management (SCMG) procedures. (SCMG messaging is handled by UDT only, therefore,
XUDT messages are discarded.) However, an environment variable
(CCITT_XUDT_SCMG) can be set to enable the SINAP/SS7 system to respond with a
subsystem allowed (SSA) message when a subsystem test (SST) message is sent via
XUDT.
3-16 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
• The MTP, SCCP, TCAP, and ISUP timers have different identities, default values, and
ranges of values depending on the variant of the SINAP/SS7 system you are using.

• Signaling point codes in the NTT network variant, like TTC point codes, are defined as
16-bit binary codes. All point codes must be within the number range 1-65536 (for
example, 1005).

In the NTT network variant, the 16-bit point codes are divided into three components
separated by hyphens and arranged in the format M-S-U (similar to the ANSI point code
format):

—M = Main number area - A 5-bit code (a decimal value in the range 0-31 that
identifies the main number area to which the node belongs.

—S = Subnumber area - A 4-bit code (a decimal value in the range 0-15) that
identifies the subnumber area to which the node belongs

—U = Unit number - A 7-bit code (a decimal value in the range 0-127) that defines the
node ID.

Incoming TFP, TFR, and TFA messages can specify the following three types of
destinations:

—Mxx

—M-Sx

—M-S-U

The x character represents a wildcard that can be used to specify wide-ranging destinations
such as subnumber area. These wide-ranging destinations points can specify multiple
destination points (up to 13) as affected destinations if the value specified in the message’s
Coding field is 0000 or 0001. When the Coding field value is 0010 - 1111, the node
receiving the TFP, TFR or TFA message processes the unique point code that matches the
M-S-U code specified in the message.

If the receiving node finds no matching Mxx, M-Sx, or M-S-U codes configured, the
node issues an error message.

For outbound route set test (RST) messages sent in response to TFP, TFR, or TFA
messages, the message’s Coding field contains the value 0010 which defines a specific
point code.
Application Design and Development 3-17

Considerations for Different Types of Applications
Configuration Requirements and Limitations
Table 3-3 lists the requirements and limitations for the basic SINAP/SS7 configuration
parameters and the features that are or are not supported by the different network variants.

Table 3-3. Configuration Requirements and Limitations (Page 1 of 9)

Item Limitation or Support

Maximum number of signaling links 128 per SINAP module. The total for all
nodes must not exceed 128.

Note: You can only configure 128 links on the
Continuum Series 400 systems equipped with
PA-8500 or PA-8600 processors.

Maximum IOA cards per Continuum
Series 400 & Series 400-CO systems with
PA-8000 processor:

PA-8500 and PA-8600 processors:

U403 = 8 cards (4 Links per card)
U420 = 4 cards (8 Links per card)

U403 = 8 cards (4 Links per card)
U420 = 8 cards (8 Links per card)
U916 = 8 cards (32 Links per card)

Maximum IOA cards per Netra 1400
Series systems

U915 = 2 cards (32 Links per card)

Maximum IOA cards per Netra 20/T4
system

U915 = 3 cards (32 Links per card)

Maximum IOA cards per ftServer T30
Series system

U918 = 4 cards (32 Links per card)

Maximum IOA cards per ftServer T50
Series system

U918 = 10 cards (32 Links per card)

Link operating speeds supported:
CCITT/ANSI/China

TTC/NTT

4.8, 9.6, 19.2, 38.4, 56, 64 kbit/s
If you are creating an ARTIC synchronous link,
you must specify a link speed of 0 if you
connect to a modem or other device that
provides external clocking.

Supports baud rates of 4800, 48,000, or
64,000.

Maximum number of link sets 16 per node (a module with 4 nodes can have
a maximum of 64)

Maximum number of links per link sets 16
3-18 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
Maximum number of routes per route set:
CCITT/TTC/NTT/China
ANSI

8
4

Maximum number of route sets 2048 per node (a module with 4 nodes can
have a maximum of 8192)

Maximum number of load-shared routes 2

Load sharing for route sets supported:
CCITT
TTC
NTT
ANSI
China

Yes
Yes
Yes
No
Yes

Maximum number of destination point
codes (DPCs)

2048 per node (a module with 4 nodes can
have a maximum of 8192)

Maximum number of DPCs reachable by
one link set

2048 per node (a module with 4 nodes can
have a maximum of 8192)

Maximum number of concerned point
codes (CPCs)

64 per local SSN (Up to 512 can be
accommodated with a special patch. Contact
the CAC for more information.)
Note: The TTC and NTT network variants
support CPCs only if the environment variable
TTC_WITH_NSTATE is defined.

Maximum number of duplicate concerned
point codes (DUCPCs):
CCITT/ANSI/China
TTC/NTT

1 per local SSN
Not supported

Distributed logical point codes (DLPCs)
supported:
CCITT/ANSI/China Yes, if DLPC is configured on the SINAP node

(via /etc/config_sinap script)

Maximum number of logical point codes
(LPCs) allowed for registered processes
CCITT/ANSI/China 16 per node in addition to own signaling point

code (only if DLPC feature is configured on the
node via /etc/config_sinap script)

Table 3-3. Configuration Requirements and Limitations (Page 2 of 9)

Item Limitation or Support
Application Design and Development 3-19

Considerations for Different Types of Applications
Application failure detection with
notification to backup DLPC application
supported:
CCITT/ANSI/China Yes (only if DLPC feature is configured on the

node via /etc/config_sinap script)

Maximum number of applications
registered with SINAP

32 per node (a module with 4 nodes can have
a maximum of 128)

Maximum number of processes registered
with the SINAP node that can run
concurrently

255 per node

Instances per application 16 instances per application

drda_daemon processes 1 per node (a module with 4 nodes can have a
maximum of 4)

Maximum number of links per combined
link set (CLS)
ANSI
CCITT/TTC/NTT/China

32 links (2 link sets) per CLS
Not supported

Combined link sets supported:
CCITT
TTC
NTT
ANSI

China

No
No
No
Yes - 4 per node (a module with 4 nodes can

have a maximum of 16)
No

Signaling Connection Control Part (SCCP)
message modes supported:

CCITT
TTC
NTT
ANSI
China

Note: Connectionless: Class 0 (unsequenced)
and Class 1 (sequenced),
Connection-oriented: Class 2 and Class 3

Class 0, 1, 2, 3
Class 0, 1
Class 0, 1
Class 0, 1
Class 0, 1, 2, 3

XUDT and XUDTS message handling
supported:
CCITT
TTC
NTT
ANSI
China

Yes
No
No
No
Yes

Table 3-3. Configuration Requirements and Limitations (Page 3 of 9)

Item Limitation or Support
3-20 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
SCCP addresses supported for
destination point code (DPC) and
originating point code (OPC):
CCITT
TTC
NTT
ANSI
China

14-bit point code format
16-bit point code format
16-bit point code format
24-bit point code format
24-bit point code format

Global title translation (GTT) supported:
CCITT
TTC
NTT
ANSI
China

Yes
Yes
Yes
Yes
Yes

Partial GTT supported:
CCITT/TTC/ NTT / ANSI / China Yes, if the environment variable

PARTIAL_GTT is defined.

SCCP backup routing for GTT only
supported:
CCITT

TTC
NTT
ANSI
China

Yes, if the environment variable
GTT_WITH_BACKUP_DPC_SSN=1 is defined.

No
No
No
No

Global title (GT) addressing supported:
CCITT
TTC
NTT
ANSI
China

Yes
Yes
Yes
Yes
Yes

Connection-oriented features (COF)
supported:
CCITT
TTC
NTT
ANSI
China

Yes
No
No
No
Yes

Table 3-3. Configuration Requirements and Limitations (Page 4 of 9)

Item Limitation or Support
Application Design and Development 3-21

Considerations for Different Types of Applications
Number of link-congestion levels
supported:
CCITT and China

ANSI, TTC, and NTT

Three optional congestion levels:
• International one congestion onset and

one congestion abatement

• National multiple states with congestion
priority option

• National multiple congestion states
without congestion priority

(Default is international one congestion onset
and one congestion abatement if no
environment variable is set to define link
congestion levels)

National multiple congestion states with
congestion priority automatically implemented

ISUP service features supported:
CCITT, NTT, China, and ANSI

TTC

Yes, if ISUP_FEATURE environment variable
is defined (see the SINAP/SS7 ISDN User Part
(ISUP) Guide (R8053)
No

MTP signaling point restart supported:
CCITT and China

TTC
NTT

ANSI

Yes, if MTP_WHITE_BOOK_RESTART
environment variable is defined. Default is
CCITT 1988 network processing.

No
No

Yes, if MTP_ANSI92_RESTART environment
variable is defined. Default is ANSI 1990
network processing with no restart processing.

MTP user part unavailable (UPU)
messages and user flow control (UFC)
supported:
CCITT
TTC
NTT
ANSI
China

Yes
No
No
Yes
Yes

Table 3-3. Configuration Requirements and Limitations (Page 5 of 9)

Item Limitation or Support
3-22 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
Fictitious originating point code (FOPC)
supported:
CCITT
TTC
NTT
ANSI
China

No
No
No
Yes
No

Signaling network messages (SNM) with
non-zero SLCs supported:
CCITT/China

TTC
NTT

ANSI

Yes (MTP_WHITE_BOOK_SLC environment
variable must be defined)

No
No

Yes (no need to set an environment variable)

MTP time-controlled changeover (TCCO)
supported:
CCITT/China

TTC/NTT

ANSI

Yes, CCITT 1988 TCCO is the default. To
implement CCITT 1993 TCCO processing,
define the environment variable
MTP_WHITE_BOOK_TCCO.

Yes (automatically implemented)

Yes, ANSI 1990 TCCO is the default.
(Implemented automatically if MTP restart is
enabled; otherwise, you must set the
environment variable MTP_ANSI92_TCCO)

Time-controlled diversion (TCD)
supported:
CCITT/TTC/NTT/China

ANSI

Yes (Implemented automatically; no
environment variable must be set)

Yes (Implemented automatically if MTP restart
is enabled; otherwise, you must set the
environment variable MTP_ANSI92_TCD)

Table 3-3. Configuration Requirements and Limitations (Page 6 of 9)

Item Limitation or Support
Application Design and Development 3-23

Considerations for Different Types of Applications
Remote processor outage control (POC)
supported:
CCITT
TTC
NTT
ANSI
China

Yes
No
No
Yes
Yes

Local processor outage control (POC)
supported:
CCITT
TTC
NTT
ANSI
China

No
No
No
No
No

Preventive cyclic retransmission (PCR)
supported:
CCITT
TTC
NTT
ANSI
China

No
No
No
No
No

International network indicator supported:
CCITT
TTC
NTT
ANSI
China

Yes
Yes
Yes
No
Yes

Loopback detection supported:
CCITT

TTC
NTT
ANSI
China

Yes, if the environment variable
LOOPBACK_DISPLAY is set.

No
No
No
No

Table 3-3. Configuration Requirements and Limitations (Page 7 of 9)

Item Limitation or Support
3-24 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
Transfer-restricted message handling
supported:
CCITT

TTC
NTT

ANSI

China

Yes, if the environment variable
MTP_WHITE_BOOK_TFR is defined.

No
No

Yes, implemented automatically (according to
1992 ANSI Standards); no environment
variable needs to be set. To configure the node
according to the1988 ANSI standards, set the
environment variable MTP_ANSI88_RSR_RST.
See the section, “RSR/RSP in Response to
TFR/TFP,” later in this chapter for more
information.

No

Even distribution of messages by routing
solely on SLS and DPC supported:
CCITT and China

TTC, NTT, and ANSI

Yes, if the MTP_SLS4_LOAD_SHARE
environment variable is defined before starting
or restarting the SINAP/SS7 system.

No

Selection of 5-bit or 8-bit Signaling Link
Selection (SLS) processing schemes for
all incoming and outgoing traffic
supported:
CCITT/TTC/NTT/China

ANSI

No

Yes (Specified using the CHANGE_SLSTYPE
command; default is 5-bit processing)

Custom Application Distribution (CAD)
supported:
CCITT
TTC
NTT
ANSI
China

Yes
No
No
Yes
No

Table 3-3. Configuration Requirements and Limitations (Page 8 of 9)

Item Limitation or Support
Application Design and Development 3-25

Considerations for Different Types of Applications
Structure Differences
Several CASL structures have variant-specific versions. For example, the structure msu_t has
several variant-specific versions: ccitt_msu_t, ansi_msu_t, and ttc_msu_t. The
China variant uses the ansi_msu_t structure and the NTT variant uses the ttc_msu_t
structure. When you develop an application, you can code the application so it uses the generic
version of a CASL structure (for example, msu_t) or a particular variant-specific version (for
example, ttc_msu_t). The global variable SINAP_VARIANT, which defines the network
variant executed on the SINAP node, links the generic versions of CASL structures to their
corresponding variant-specific versions, thus making the source code consolidation invisible to
programmers.

Maximum number of ServiceKey values
per application (CAD):
ANSI/CCITT
TTC/NTT/China

64
No

Maximum number of ServiceKeys
supported for a specific SSN/OPC criteria
(CAD):
ANSI/CCITT
TTC/NTT/China

256
No

Maximum number of fallback applications
supported for a specific SSN/OPC criteria
(CAD):
ANSI/CCITT
TTC/NTT/China

1 (Value specified for ServiceKey must be 0)
No

Maximum number of SSNs per application
(Enhanced Distribution and CAD):
ANSI/CCITT
TTC/NTT/China

32
No

Maximum number of OPCs per
application (Enhanced Distribution and
CAD):
ANSI/CCITT
TTC/NTT/China

128
No

Table 3-3. Configuration Requirements and Limitations (Page 9 of 9)

Item Limitation or Support
3-26 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Different Types of Applications
TTC-specific versions of existing CASL structures are described in the following chart. TTC
structures are defined in the include file $SINAP_HOME/Include/mblock.h.

In the CCITT/TTC/NTT/China variants of the SINAP/SS7 system, the tc_dhp_t structure is
used to communicate dialogue-handling information.

In the ANSI variant of the SINAP/SS7 system, the tc_thp_t structure is used to
communicate transaction-handling information.

The format of the dest_addr and orig_addr fields in the tc_dhp_t structure and the
tc_thp_t structure differ. The dest_addr field defines the SCCP called party address, or
destination point code (DPC), of a TCAP component and the orig_addr field defines the
SCCP calling-party address, or originating point code (OPC), of the component.

Code the dest_addr and orig_addr fields according to the recommendations for the type
of application you are developing.

• For CCITT, TTC, NTT, and China applications, refer to ITU-T (CCITT) Recommendation
Q.713.

• For ANSI applications, refer to ANSI Recommendation T1.112.3, SCCP Formats and
Codes.

Differences in CASL Functions Supported
There are minor differences in the CASL functions supported by the CCITT, ANSI, TTC, NTT,
and China network variants that run on the SINAP/SS7 system. The following list describes the
differences:

• In the CCITT/TTC/NTT/China variants of the SINAP/SS7 system, communication
between two TCAP applications is considered a dialogue. To initiate a dialogue, an
application must call the function, ca_get_dial_id(), to retrieve a unique ID to
assign to the dialogue. The function ca_rel_dial_id() releases it.

• In the ANSI variant of the SINAP/SS7 system, communication between two TCAP
applications is considered a transaction. To initiate a transaction, an application must call
the function, ca_get_trans_id(), to retrieve a unique ID to assign to the transaction.
The function ca_rel_trans_id() releases it.

Generic Structure TTC Structure

msu_t ttc_msu_t

sccp_user_t ttc_sccp_user_t

snm_user_t ttc_snm_user_t
Application Design and Development 3-27

Developing Application Processing
Primitives Supported
The following list presents the differences between the primitives supported in the different
variants of the SINAP/SS7 system.

• In the CCITT, TTC, NTT, and China network variants of the SINAP/SS7 system, the TCAP
primitive TC_BEGIN is used to initiate a dialogue.

In the ANSI network variant of the SINAP/SS7 system, the TCAP primitives
TC_QRY_W_PERM and TC_QRY_WO_PERM are used in place of TC_BEGIN.

• In the CCITT, TTC, NTT, and China network variants of the SINAP/SS7 system, the TCAP
primitive TC_CONTINUE is used to continue a dialogue.

In the ANSI network variant of the SINAP/SS7 system, the TCAP primitives
TC_CONV_W_PERM and TC_CONV_WO_PERM are used in place of TC_CONTINUE.

• In the CCITT, TTC, NTT, and China network variants of the SINAP/SS7 system, the TCAP
primitive TC_END primitive is used to end a dialogue.

In the ANSI network variant of the SINAP/SS7 system, the TCAP primitives
TC_RESPONSE and TC_NO_RESPONSE are used in place of TC_END.

• In the CCITT, TTC, NTT, and China network variants of the SINAP/SS7 system, the TCAP
primitive TC_INVOKE is used to request services from another TCAP user.

In the ANSI network variant of the SINAP/SS7 system, the TCAP primitives
TC_INVOKE_L and TC_INVOKE_NL are used in place of TC_INVOKE.

Developing Application Processing
A typical SINAP/SS7 client application is designed to interface with other applications in the
SS7 network. To use the services of the SINAP/SS7 platform, a client application process must
first register with the SINAP/SS7 system. At registration, the application process defines its
operating characteristics and makes itself known to node management, the SS7 network, other
processes within the application, and other applications. Once the application process is
registered, the SINAP/SS7 system has the information it needs to offer its services to that client
application.

One of the operating characteristics that an application process specifies at registration is a
unique ID by which the SINAP/SS7 system can reference the application process. TCAP and
SCCP applications use a specified subsystem number (SSN). MTP user-part applications (such
as TUP) use a service information octet (SIO).

The remainder of this section describes the tasks a SINAP/SS7 client application performs to
communicate with another application:

• Register with the SINAP/SS7 system.

• Go into service in the SS7 network.
3-28 SINAP/SS7 Programmer’s Guide R8052-17

Developing Application Processing
• Handle SS7 messages.

• Go out of service.

• Withdraw from the SS7 network.

In addition, the application can also perform the following tasks:

• Send MML commands to another process.

• Monitor and intercept SS7 messages for debugging purposes.

• Auto-start BITE monitor processes.

• Debug processing logic.

• Report events to the trouble management process.

• Perform health-check operations.

In addition, the section, Activating/Deactivating a SINAP/SS7 Application provides
instructions for activating and deactivating SINAP/SS7 client applications.

Registering with SINAP/SS7
To use the services of the SINAP/SS7 platform, a client application must first register.
Registering with the SINAP/SS7 system makes the application known to node management, the
SS7 network, other processes within the application, and other applications. When an
application registers, the SINAP/SS7 system allocates space for that application in shared
virtual memory, attaches shared memory tables to the application, and opens the SS7 device.

N O T E
If a client application is composed of a number of processes,
each process must register separately with the SINAP/SS7
system.

To register with the SINAP/SS7 system, an application process initializes the
register_req_t (CA_REG) structure to define its operating characteristics. The application
then calls the ca_register() function and passes it the register_req_t
(CA_REG)structure. For instructions on how to register your client application with the
SINAP/SS7 system, see the appropriate section later in this chapter that provides instructions
for developing a particular type of application.

Going Into Service
Once registered with the SINAP/SS7 system, the application can set signal handlers to handle
the SINAP signals, such as SIG_S7_PF_BEGIN and SIG_S7_PF_RIDETHROUGH. Then
the application must inform SCCP management that it is ready to begin processing. For the
CCITT, ANSI, and China network variants, the application sends an N_STATE
Application Design and Development 3-29

Developing Application Processing
User-In-Service (UIS) primitive to SCCP management via IPC. If the application
consists of several processes, the application’s control process (the process that receives and
sends SCCP management messages) is responsible for sending the N_STATE
User-In-Service primitive to SCCP management (SCMG). For information about the
N_STATE primitive and its formats, see the $SINAP_HOME/Include/scmg-prims.h
include file.

N O T E
If a concerned point code (CPC) was configured for the
application, the SINAP/SS7 system notifies that CPC that the
application’s status has changed and the application is now
available. The CPC can then start sending MSUs to the
application. (See the SINAP/SS7 User’s Guide (R8051) for
information about CPCs.)

For the TTC and NTT network variants, after an application registers, the application must send
a UIS message to SCMG to indicate that it is ready to begin processing. In addition, before
withdrawing from the SS7 network and terminating completely, an application must send a
user-out-of-service (UOS) message to SCMG to indicate that it wants to stop processing.

For TCAP and SCCP applications, you can define the environment variable
TTC_WITH_NSTATE to specify who is responsible for sending the UIS and UOS messages
(N_STATE_REQ SCMG_UIS and N_STATE_REQ SCMG_UOS, respectively) to SCMG.

• If you do not define the TTC_WITH_NSTATE environment variable, the CASL
automatically sends UIS and UOS messages on behalf of the application.

N O T E
According to the TTC JT-Q recommendations, this is the
preferred method of handling UIS/UOS messages.

A UIS message is sent to SCMG when the application calls the ca_register()
function to register; a UOS message will be sent to SCMG when the application calls the
ca_withdraw() function to withdraw from the SS7 network. If TTC_WITH_NSTATE
is not defined, SCMG ignores UIS and UOS messages sent by the application.

• If you define the TTC_WITH_NSTATE environment variable, the application is
responsible for sending UIS and UOS messages to SCMG. For an example of how to code
your application to send these messages, see the functions
send_nstate_uis_to_sccp() and send_nstate_uos_to_sccp() in the
TCAP sample program tcsend.c or in the SCCP sample program scsend.c. (Both
sample programs are located in the $SINAP_HOME/Samples/ttc directory.)
3-30 SINAP/SS7 Programmer’s Guide R8052-17

Developing Application Processing
N O T E
You must define the TTC_WITH_NSTATE environment
variable at a UNIX prompt before you start the SINAP/SS7
system. You need not assign a value to the variable; the
SINAP/SS7 system simply verifies that the variable exists. For
instructions on how to define environment variables, see
Appendix B.

Handling SS7 Messages
The CASL provides a number of functions for handling messages at each of the different SS7
protocol layers. The following list presents the message-handling functions available for
different types of applications. Detailed instructions for how an application handles SS7
messages are provided later in this chapter.

For SCCP and MTP applications, the CASL provides the following functions:
ca_get_msu() retrieves an incoming MSU, which contains an SS7 message.

• ca_put_msu() sends an outgoing MSU to the SS7 network.

• ca_flush_msu() sends the MSUs in the outgoing buffer to the SS7 network, regardless
of whether the buffer is full. This function is also available to TCAP applications.

For TCAP applications, the CASL provides the following functions:

• ca_get_tc() retrieves an incoming TCAP component from another TCAP client
application.

• ca_put_tc() sends an outgoing TCAP component to another TCAP client application.

• ca_process_tc() controls the processing of TCAP components.

TCAP applications also use the following CASL functions to manage the T_Blocks that
contain the TCAP components included in TCAP SS7 messages: ca_alloc_tc(),
ca_dealloc_tc(), ca_get_trans_id(), and ca_rel_trans_id().

Sending MML Commands
The CASL provides two functions for sending and responding to MML commands:
ca_put_cmd() and ca_put_reply().

A client application process sends commands and receives replies using IPC messages. To send
a command to any registered SINAP/SS7 process, the client application process uses the
ca_put_cmd() function. The ca_put_cmd() function formats an IPC message and sends
the message to its destination, based on information in the IPC key. The receiving process
responds using the ca_put_reply() function. This function formats a response and
forwards it to the originating process.
Application Design and Development 3-31

Developing Application Processing
Monitoring and Intercepting SS7 Messages
The ca_enable_mon() and ca_disable_mon() functions allow a client application
process to enable or disable input and output buffer monitoring from one or more of its
processes. Though the Terminal Handler provides monitoring capabilities during registration,
these functions allow monitoring based on events that can be conditionally coded or
dynamically activated.

The intercept functions, ca_enable_intc() and ca_disable_intc(), allow an
application to enable or disable the intercept mode. An application uses the intercept mode to
run network simulation, with the Built-In Test Environment (BITE) subsystem performing the
actual simulation.

• The ca_enable_intc() function tells the BITE subsystem to place the SS7
communication path to the calling client application process in intercept mode, and starts a
scenario execution program under the control of BITE to simulate network activity. The
scenario execution results are logged. You can enable this feature by issuing the MML
START-MON command or by having the application register with specific flags set in its
registration parameter structure. For instructions, see the section, Auto-Starting BITE
Monitor Processes later in this chapter.

• The ca_disable_intc() function tells BITE to discontinue scenario execution
operations and to return the process to normal network communications activity.

Auto-Starting BITE Monitor Processes
If you want the SINAP/SS7 system to automatically initiate a BITE monitor process when your
application starts, code the application so it registers with the SINAP/SS7 system with the
following values assigned to these register_req_t (CA_REG) structure fields.

• If fmon_ss7 is set to the value 1, the SINAP/SS7 system initiates a BITE monitor process
to monitor all of the application’s SS7 processes.

• If fmon_ipc is set to the value 1, the SINAP/SS7 system initiates a BITE monitor process
to monitor all of the application’s IPC activities.

• Initialize (CA_REG) mon_filename to the name of the file to which you want the BITE
monitor messages logged.

You are responsible for disabling BITE monitor processes. You can do this by issuing the MML
commands, DISPLAY-MON (to determine the ID of the monitor process), followed by
STOP-MON. Or, you can have the application call the function ca_disable_mon().

N O T E
You can issue the MML STOP-MON command while the
application is running or after it terminates. However, if the
application’s registration parameters are set to automatically
initiate a BITE monitor process when the application is
3-32 SINAP/SS7 Programmer’s Guide R8052-17

Developing Application Processing
activated, you must reset the application’s fmon_ss7 and
fmon_ipc registration parameters to 0 before restarting the
application. Otherwise, when the application is restarted, the
SINAP/SS7 system will automatically initiate a new monitor
process.

Debugging Processing Logic
The ca_dbg_display() and ca_dbg_dump() functions provide debugging capabilities.
The ca_dbg_display() function traces various points of a message flow;
ca_dbg_dump() displays specific memory segments.

Reporting Events
The ca_put_event() function provides the SINAP/SS7 system with an event-reporting
capability. A client application process can use ca_put_event() to report status or alarms
to the trouble management process in the node management subsystem.

Health-Check Operations
The CASL provides the following two health-check functions for determining the status of a
client application process:

• ca_health_chk_req() sends health-check messages.

• ca_health_chk_resp() responds to health-check messages.

If a client application process is registered for health checks, node management sends the
process a health-check message at fixed time intervals. This time interval is defined by the
SINAP/SS7 environment variable, SINAP_HEALTH_INTERVAL (seconds). To pass the
health check, the client application process must reply within the time period defined by the
SINAP/SS7 environment variable, SINAP_HEALTH_TIMEOUT (seconds). If the client
application process does not respond to two sequential health-check messages, the node
management subsystem declares the process failed. It then performs any failure processing that
the application specified at registration.

Going Out of Service
For an application to go out of service, the application’s control must send an N_STATE
User-Out-of-Service primitive to SCCP management (via IPC). When SCCP
management receives this message, it sets the state of the application to UNAVAILABLE.
Thereafter, when the SINAP/SS7 system receives an incoming SS7 MSU destined for the
application, the MSU is discarded or returned to the sender (Return-On-Error). MSUs that
the SINAP/SS7 system had already received are forwarded to the client application. If the
application has outbound MSUs waiting on the queue, the SINAP/SS7 system routes these
MSUs to their destinations.
Application Design and Development 3-33

Activating/Deactivating a SINAP/SS7 Application
N O T E S
1. If a CPC was configured for the application, the

SINAP/SS7 system notifies that CPC that the application’s
status has changed and the application is no longer
available. The CPC uses this information to determine
whether to continue sending MSUs to the application. See
the SINAP/SS7 User’s Guide (R8051) for information
about concerned point codes.

2. If the application is associated with a duplicate concerned
point code (DUCPC), the application must notify that
DUCPC that it intends to go out-of-service. The DUCPC
can then activate its copy of the application to take over
processing so that service is not disrupted while this
application is out-of-service. See the SINAP/SS7 User’s
Guide (R8051) for information about duplicate concerned
point codes.

Withdrawing From the SS7 Network
An application can call the ca_withdraw() function to gracefully terminate processing.
This function causes the SINAP/SS7 system to remove the application from inbound load
distribution. This allows the application to continue processing existing messages, but prevents
new messages from being routed to the application.

After calling the ca_withdraw() function, an application is still registered with the
SINAP/SS7 system. To completely halt processing and remove its association with the
SINAP/SS7 system (to de-register), the application should call ca_terminate().

Activating/Deactivating a SINAP/SS7 Application
The procedures in this section provide information about how to activate and deactivate
SINAP/SS7 client applications. The section, Developing Application Processing described the
procedures a client application must perform. This section describes the procedures you or your
system administrator must perform outside the client application.

Activating a SINAP/SS7 Client Application
Once the SINAP/SS7 system has successfully started, you can use any one of the following
methods to start a SINAP/SS7 client application:

• The startup script $SINAP_HOME/Bin/startappl allows client applications to start
automatically when you start the SINAP/SS7 system, that is, when the SINAP/SS7 system
is ready to accept user registration parameters and send the UIS message. This script is
executed only after all SINAP/SS7’s processes have been started and are running. If you
3-34 SINAP/SS7 Programmer’s Guide R8052-17

Activating/Deactivating a SINAP/SS7 Application
use this script, make sure you modify it to include your installation’s startup command(s).

• Include the client startup procedure in the UNIX initialization file (/etc/inittab) to
respawn or start the client application process. With this method, the application process
must call ca_register() until it is accepted (that is, until the function executes without
returning an error).

When its registration is accepted, the client application process must send the UIS message,
using ca_put_msg(), until the message is accepted. When the SINAP/SS7 system
accepts the registration and the UIS message, the client application process can
communicate with the SINAP/SS7 system, accepting and sending network traffic.

• You can start the client application process using a script, or from the command line, after
starting the SINAP/SS7 system. Whether you start the application process using a script or
from the command line, you must follow the same rules as those for starting the application
process through /etc/inittab.

Terminating a SINAP/SS7 Client Application
A client process can be terminated by means of the CASL interface, the UNIX operating system,
or the failure of health-check operations.

• To terminate processing itself, an application process can call the CASL function
ca_terminate(). An application’s parent process can also call this function on behalf
of its child processes. The ca_terminate() function contains a pointer to the
termination data packet, which contains the parameters necessary for termination. The
include file $SINAP_HOME/Include/terminate.h defines the format and content
of the termination data packet.

Optionally, you can use the ca_withdraw() function to have an application process
terminate automatically once it completes its transaction. However, you must still call the
ca_terminate() function to terminate the process.

• A process can terminate because of normal events, such as shutdown, or abnormal events,
such as process corruption. The UNIX operating system can also terminate a client process
for reasons such as a memory-protection violation or an operator-issued kill signal. To
ensure that such situations are detected, the client application should use a parent process
to spawn all operational processes. Then, the parent process will be notified when any
operational processes are terminated by UNIX.

N O T E
This is the technique used by the SINAP/SS7 management
processes.

• An application process can also be terminated due to the failure of a health-check operation
(see the section Health-Check Operations earlier in this chapter).
Application Design and Development 3-35

TCAP Client Applications
TCAP Client Applications
A TCAP client application is a client application that interfaces with the SS7 network at the
TCAP layer. Communication between two TCAP client applications typically involves one
TCAP application requesting services from another (for example, a database look-up or a
subscriber verification). TCAP client applications are the most common form of client
applications. They consist of multiple transaction servers and management processes. It is
assumed that the transaction servers are clones (re-entrantly-executed copies of a transaction
server process).

Figure 3-2 shows a single management process controlling operational functions for the entire
application and several cloned query/response processes. The management process interfaces
to the SINAP/SS7 system at the SCCP protocol layer boundary and the cloned query/response
server processes interface to the SINAP/SS7 system at the TCAP protocol layer boundary.
3-36 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
Figure 3-2. Typical TCAP Client Application

In a typical TCAP client application, the management process exchanges SCCP control
primitives to manage its endpoints and its mate (if one exists). The cloned query/response
processes are identical copies of one another. The number of these processes is determined by
the application’s design, performance requirements, and operational characteristics. For
example, an application that can respond to a query or an incoming SS7 signaling event entirely
from main memory-based resources uses a relatively small number of clone processes.
Conversely, an application that performs extensive disk input/output (I/O) to respond to an
incoming event uses many cloned query/response server processes to reduce the average

T C A P C lie n t A p p lic a t io n

Q u e r y
R e s p o n s e
P r o c e s s e s

A p p lic a t io n
M a n a g e m e n t

P r o c e s s

T C A P P r im it iv e H a n d lin g

S C C P P r im it iv e H a n d lin g

N o d e
M a n a g e m e n t

S C C P
M a n a g e m e n t

M T P
M a n a g e m e n t

T C A P
C o m p o n e n t

O p t io n a l A p p lic a t io n s

C o m m u n ic a t io n
R e g is te r /T e rm in a te

A la rm /E v e n t

C o m m a n d /R e p ly

R e g is te r /T e rm in a te

A la rm /E v e n t

S C C P C o n tro l P r im it iv e s :
N - C O R D , N _ S T A T E

M T P C o n tro l
P r im it iv e s :
M T P - P A U S E

S y s te m O p e ra to r

X X X X X X X X X X X X X
X X X X X X X X X X X X X

A p p lic a t io n
M a n a g e m e n t
M e n u s /s e n d _ c m

In d iv id u a l M S U

B a tc h o f M S U s
(M T P - T R A N S F E R)

C o m m o n
A p p lic a t io n

S e r v ic e s
L a y e r (C A S L)

S S 7 I/O S u b s y s te m

. . . S S 7 L in k s
K e y :

In te rp ro c e s s C o m m u n ic a t io n s (IP C)

S S 7 C o m m u n ic a t io n s

. . . M u lt ip le L in k s

M T P - R E S U M E
M T P - S T A T U S
Application Design and Development 3-37

TCAP Client Applications
queuing delay for processing resources. The SINAP/SS7 system can support both types of
applications by using a load distribution function that disperses incoming traffic across the
cloned query/response server processes according to an application-selected algorithm.

The SINAP/SS7 system supports both the 1988 and 1993 editions of ITU-T (CCITT)
Recommendations for TCAP (hereafter referred to as 1988 or 1993 TCAP standards). The 1988
TCAP standards are documented in the 1988 editions of the ITU-T Recommendations Q.771
through Q.775. The 1993 TCAP standards are documented in the 1993 editions of ITU-T
Recommendations Q.771 through Q.775. You can develop TCAP applications that adhere to
either set of standards. Existing TCAP applications that adhere to the 1988 standards will run
without modification.

A node that implements the 1993 standards cannot interact with a node that implements the
1988 TCAP standards. However, many networks contain both kinds of nodes. This section
describes how to implement both standards. Descriptions apply to both TCAP standards unless
a specific standard is indicated. The section, Implementing 1993 TCAP Standards describes in
detail how to implement those standards.

The 1988 TCAP standards are supported on all network variants. For the ANSI variant, TCAP
supports the T1.114 Recommendations. The 1993 TCAP standards are only supported by the
CCITT, China, NTT, and TTC network variants.

Communication Between TCAP Applications
When a local TCAP application wants to request services from another, the application initiates
communication with the other application (the remote application). An association (a logical
connection) is established between the applications using application protocol data units
(APDUs) and application service elements (ASEs), described in this section.

Once communication is initiated, the applications can communicate until one or the other ends
the session. Communication between two TCAP applications consists of all messages required
to complete the requested operation: the local application’s query or request and the remote
application’s response. A single communication might consist of multiple queries and
responses.

N O T E
While designing your application, you should consider the
types of applications with which your application will interface
and the manner in which information will be communicated. As
a developer, it is your responsibility to code your application so
that it processes TCAP components in the appropriate manner.

The SINAP/SS7 system allows multiple TCAP applications to communicate simultaneously.
To facilitate multiple communication sessions between one or more pairs of TCAP applications,
the SINAP/SS7 system must identify each communication session. It does this by means of a
3-38 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
unique ID that is assigned for the duration of the communication session. This ID enables the
TCAP to track multiple concurrent communication sessions between different TCAP
applications.

• In the CCITT, China, NTT, and TTC variants of the SINAP/SS7 system, communication
between two TCAP applications is called a dialogue. Each dialogue is identified by a
unique dialogue ID. Based on ITU-T (CCITT) Recommendation Q.773, local dialogue IDs
are exchanged between TCAP applications in the dialogue-handling portion of messages.

• In the ANSI variant of the SINAP/SS7 system, communication between two TCAP
applications is called a transaction. Each transaction is identified by a unique transaction
ID. Based on ANSI Recommendation T1.114.3, local transaction IDs are exchanged
between TCAP applications in the transaction-handling portion of messages.

N O T E
To facilitate communication between the transaction sublayer
(TSL) and the component sublayer (CSL), TCAP assigns its
own unique ID to each dialogue/transaction; however, this ID is
invisible to the TCAP application.

The methods for obtaining dialogue and transaction IDs differ. Each is described separately
later in this chapter. The method for obtaining a dialogue ID is described in the section, Sending
Outgoing Messages (CCITT/China/TTC/NTT) and the method for obtaining a transaction ID is
described in the section, Sending Outgoing Messages (ANSI) later in this chapter.”

Application Protocol Data Units (APDUs)
The association is established and supported by Application Protocol Data Units (APDUs) An
ADPU is used to transmit information between two communicating applications. The 1988 and
the 1993 TCAP standards use different types of APDUs.

• The 1988 standards use the following Remote Operations Service Element (ROSE)
ADPUs:

• ROIV (Invoke)

• RORS (Result)

• RORJ (Reject)

• ROER (Error)

• In addition, the 1993 standards use the following association control service element
(ACSE) APDUs:

• AARQ (association request)

• AARE (association response)

• ABRT (association abort)

• AUDT (unidirectional association request, which is the same as AARQ)
Application Design and Development 3-39

TCAP Client Applications
For detailed information about the ACSE ADPUs, see Section 4.2.3 of the 1993 edition of the
ITU-T Recommendations Q.773.

An ASE identifies the particular communication protocol (such as TCP/IP, CMISE/CMIP, and
ROSE) or the specific variant of a particular message protocol. Each ASE has a specification
that defines its functionality and the message set it uses. An ASE is identified by an object
identifier (OID) that defines the location of its specification. To be valid, an OID must be
registered with the standards organization under which the ASE is defined. For example, an
ASE defined by ITU-T (CCITT) standards must have an OID that is part of the ITU-T standards
registration tree.

Sometimes two parties sign a joint implementation agreement (JOI), in which they agree to
develop applications adhering to a particular predefined pattern for communication (a private
ASE). In this case, the ASE’s OID need not be registered with a standards organization, but both
communication applications must adhere to the rules defined by that ASE.

An OID can take the form of an indirect reference or a direct reference to an ASE. The following
two examples show both formats of a sample OID.

• Indirect reference:

dialogue-as-id OBJECT IDENTIFIER
::={ccitt recommendation q 773 as(1)

dialogue-as(1) version(1) }

• Direct reference:

dialogue-as-id OBJECT IDENTIFIER
::={ 0 17 134 5 1 1 1 }

In the direct reference, each number represents the corresponding element in the indirect
reference. In the examples above, 0 represents ccitt, 17 represents recommendation,
134 represents q, and so on.

Maintaining Information about Transactions
The TCAP maintains information in the following two tables in order to manage multiple
dialogue/transactions and to keep track of multiple TCAP components in a single
dialogue/transaction.

• The dialogue/transaction ID table contains information about each active
dialogue/transaction. When an application retrieves an ID for a dialogue/transaction, the
SINAP/SS7 system provides the application with an entry from this table. Thereafter, the
TCAP maintains information about the dialogue/transaction in that table entry.

An association between each of the TCAP components in a single dialogue/transaction is
formed by linking each component to the same entry in the dialogue/transaction ID table.
3-40 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
• The Invoke State Machine (ISM) table contains information about the state of each active
operation invoked by a TCAP application. Each invocation of a particular operation is
identified by an invoke ID, thus enabling several instances of a single operation to run
concurrently. When TCAP forms a component from the T_Blocks that make up a single
dialogue/transaction, the next available entry from the ISM table is linked to the transaction
ID table entry for that dialogue/transaction.

TCAP Data Structure (t_block_t)
TCAP uses the t_block_t structure to communicate with the SINAP/SS7 system and with
other TCAP applications. It contains all information required to initiate and maintain
communication with the CASL and with the other TCAP application. For example, it contains
the following types of information.

• Component-handling information for all network variants (tc_chp_t structure)

• Dialogue-handling information for CCITT, China, NTT, and TTC (tc_dhp_t structure)

• Transaction-handling information for ANSI (tc_thp_t structure)

• Addressing information (local process and remote process)

• Data and control information

• Error and problem codes

The 1993 TCAP standard supports a new field, ahp, in the tc_dhp_t structure to
accommodate application-context information for the MSU. For more information, see the
sections describing the 1993 TCAP standard.

Throughout this manual, the term t_block_t refers to all structures that collectively provide
information about a TCAP component: t_block_t, tc_chp_t, and tc_dhp_t (CCITT,
China, NTT, and TTC), or tc_thp_t (ANSI). Each structure is described in detail in “The
T_Block Structure (t_block_t)” in Chapter 6 in the descriptions of the ca_get_tc() and
ca_put_tc() functions.

Allocating t_block_t Structures
At registration, a TCAP application specifies the number of t_block_t structures that the
SINAP/SS7 system should allocate for its use in the register_req_t structure’s
tc_count field. Based on the value of tc_count, the SINAP/SS7 system creates an array
of t_block_t structures in the application's data space. This array is a joint work area for the
client process and the TCAP functions within CASL. As the SINAP/SS7 system receives and
decodes the MSUs, individual TCAP components are placed in the t_block_t structure. An
index into the t_block_t array is returned in response to each primitive request from the
client application. The client application can modify the specified t_block_t array entry and
pass it back, or deallocate the entry to make it available again. All t_block_t structures are
relative to the global pointer PTB, which is defined in the ca_glob.h include file. The client
application can use the index to access the appropriate t_block_t structures by means of
pointer arithmetic.
Application Design and Development 3-41

TCAP Client Applications
The client application process can also allocate one or more t_block_t structures entries for
its own use. If the TCAP functions get these entries for output, the client application assumes
that TCAP will deallocate them. If the client application keeps these entries, it must return them
to the available pool when done

TCAP Application Include Files
When you develop a TCAP application, make sure the application references the following
include files. Note that some of these include files, which are located in the
$SINAP_HOME/Include directory, are not referenced by the caslinc.h include file.

• caslinc.h is the master CASL include file. It contains the include files most frequently
used by SINAP/SS7 client applications.

• tcap.h defines the table and data structures used by the TCAP CSL and TSL.

• scmg-prims.h defines the structure formats of SCCP management primitives. Make
sure the reference for scmg-prims.h follows the reference for caslinc.h. (This is
because the file must be referenced after the command.h include file, which is referenced
by caslinc.h.)

• prims3.h is required if the application will register to receive CONTROL primitives or
CONTROL and DATA primitives. This include file defines the structures of MTP
indication messages.

For 1993 TCAP standards, the TC_DIALOGUE_REQUEST structure is defined in the include
file, $SINAP_HOME_Include/tcglob.h. (Note that DIALOGUE_REQUEST is the
typedef for this structure. See tcap.h.) The structure temporarily stores the results of the
APDU encoding or decoding. See APDU Encoding/Decoding Functions later in this chapter for
a description of TCAP applications.

TCAP Application Registration
To register a TCAP client application process with the SINAP/SS7 system, code the application
process so that it does at least the following tasks:

1. Initialize the global variable CA_REG, which is used by the registration process.

2. Initialize the register_req_t (CA_REG) structure to define the application’s operating
characteristics. For information about the operating characteristics that are specific to
TCAP client applications, see the following section, “TCAP Registration Parameters.”

3. Call the function ca_register() to register the application with node management. If
there is a problem, ca_register() returns an error message. If this occurs, evaluate the
error message and correct the problem.

Before the application can receive and process SS7 data and/or control information, it must
be activated and it must then go into service. For instructions on how to code your
application to do this, see the section, “Going Into Service,” earlier in this chapter.
3-42 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
TCAP Registration Parameters
As with all SINAP/SS7 client applications, a TCAP application must initialize the fields of the
register_req_t structure to appropriate values before calling the ca_register()
function. Specifically, the application must initialize the register_req_t structure’s
sio_ssn_ind, sio_ssn, and ss7_input_boundary fields to the values in Table 3-4.
(You can specify either the symbolic value or the number in parenthesis.)

N O T E
If the application implements the enhanced message
distribution feature, initialize sio_ssn_ind to REG_MULT
(3) and sio_ssn to 0. (See Enhanced Message Distribution
later in this chapter for additional instructions on implementing
this feature.)

An application that consists of a control process and one or more data processes must observe
the following rules when registering with the SINAP/SS7 system:

• The application’s control process must register with a process name that is different than
the process name used by the application’s data processes. (The name of an application
process is defined by the register_req_t structure’s proc field.)

• Each application data process must register with the same process name, which is defined
by the register_req_t structure’s proc field.

• The application’s control and data processes must each register with the same application
name, which is defined in the register_req_t structure’s appl field.

Table 3-4. Register_req_t Structure Fields and Values

Field Value

sio_ssn_ind REG_SSN (2)

sio_ssn A decimal number in the range 2 through 255. This
number must be unique among all SSNs of applications
currently registered with the SINAP/SS7 system. All
processes that are part of this application must register with
the same SSN.

ss7_input_boundary SS7_INPUT_BOUNDARY_TCAP (3)
Application Design and Development 3-43

TCAP Client Applications
To define the types of primitives that the application process can receive, initialize the
register_req_t structure’s fss7 and ss7_primitive fields as shown in Table 3-5:

Table 3-6 lists the types of primitives available to a TCAP application process. See TCAP
Primitives in Chapter 2 for information about these primitives.

In addition, the following register_req_t structure fields define additional TCAP
operating characteristics that you might want to specify (see the description of
ca_register() in Chapter 6 for more information):

• tc_count defines the number of t_block_t structures to allocate for the application.

• max_dial_id and max_trans_id define the number of dialogue IDs and transaction
IDs, respectively, to allocate for the application.

• max_ism defines the maximum number of concurrent invocations allowed for the
application.

• tsl_timer_value defines the amount of time the TSL has to process a message.

Table 3-5. Primitive Fields

Process Type fss7 ss7_primitive

Control FALSE (0) SS7_CTRL_PRIMITIVE (1)

Data TRUE (1) SS7_DATA_PRIMITIVE (2)

Control and Data TRUE (1) SS7_CTRL_DATA_PRIMITIVE (3)

Table 3-6. TCAP Primitives

Primitive Type Primitives Available

Data TCAP components only

Control I_N_COORD_REQ, I_N_COORD_INDIC,
I_N_COORD_RESP,
I_N_COORD_CONF,I_N_PCSTATE_INDIC,
I_N_STATE_INDIC, I_N_STATE_REQ

Data and Control I_N-PCSTATE, I_N_STATE_INDIC,
I_N_STATE_REQ, I_N-COORD_REQ,
I_N_COORD_INDIC, I_N_COORD_RESP, and
I_N_COORD_CONF
3-44 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
Handling Incoming SS7 Messages
When the SINAP/SS7 system receives an incoming MSU containing a TCAP component,
TCAP dialogue- or transaction-handling primitives automatically activate the TCAP
application to which the TCAP component is addressed and extract the TCAP component from
the incoming MSU. The application is then responsible for retrieving and processing the TCAP
component.

The procedure for processing a TCAP component differs slightly between the network variants
of the SINAP/SS7 system. Each procedure is described separately in the sections that follow.

Processing Incoming Messages (CCITT/China/TTC/NTT)
For the CCITT, China, NTT, or TTC network variant, the procedure for processing an incoming
MSU is basically the same for both the 1988 and 1993 TCAP standards. See the sections
describing the differences in 1993 TCAP standards application, particularly “Processing an
Incoming MSU” later in this chapter.

To process a TCAP component from another application, code your CCITT, China, NTT, or
TTC TCAP client application so that it performs the following tasks:

1. Call the ca_get_tc() function to retrieve an incoming TCAP component.

2. Examine the TCAP component to determine how to process the incoming message.

• If the incoming TCAP component contains a TC_UNI or TC_BEGIN primitive,
ca_get_tc() retrieves the next available entry from the transaction ID table and
assigns it to the dialogue (by specifying it in the dialogue_id field of the
t_block_t structure).

N O T E
If the ca_get_tc() function is called with the pfunc
parameter, ca_get_tc() calls the user-supplied function to
which pfunc points. This user-supplied function assigns a
TC-user transaction ID to the dialogue.

Issue multiple calls to ca_get_tc() to retrieve all TCAP components in the
incoming message.

• If the incoming TCAP component contains a TC_INVOKE primitive, ca_get_tc()
returns the index of the T_Block to the client application that initiated the dialogue.

• If the incoming TCAP component contains a TC_REJECT or TC_ABORT primitive,
ca_get_tc() calls an ISM function to process the request. It also generates the
REJECT or ABORT component and returns an index of the T_Block to the client
application that initiated the dialogue.
Application Design and Development 3-45

TCAP Client Applications
Processing Incoming Messages (ANSI)
To process a TCAP component from another application, code your ANSI TCAP client
application so that it performs the following tasks:

1. Call the ca_get_tc() function to retrieve the next incoming TCAP component.

2. Examine the TCAP component to determine how to process the incoming message.

• If the incoming TCAP component contains a TC_UNI, TC_QRY_W_PERM, or
TC_QRY_WO_PERM, ca_get_tc() retrieves the next available entry from the
transaction ID table and assigns it to the transaction (by specifying it in the trans_id
field of the T_Block).

N O T E
If the ca_get_tc() function is called with the pfunc
parameter, ca_get_tc() calls the user-supplied function to
which pfunc points. This user-supplied function assigns a
TC-user transaction ID to the transaction.

Issue multiple calls to ca_get_tc() to retrieve all of the TCAP components in the
incoming message.

• If the incoming TCAP component contains a TC_INVOKE_L or TC_INVOKE_NL
primitive, ca_get_tc() returns the index of the T_Block to the client application
that initiated the transaction.

• If the incoming TCAP component contains a TC_REJECT or TC_ABORT primitive,
ca_get_tc() calls an ISM function to process the request. It also generates the
REJECT or ABORT component and returns an index of the T_Block to the client
application that initiated the transaction.

If the incoming message contains an SLS on the MTP routing label that the application needs
to read, see “SINAP/SS7 Interaction with the SS7 Network” in Chapter 2 for information on
using five-bit and eight-bit SLS processing schemes.

Sending Outgoing SS7 Messages
To send an outgoing message to a remote application, a SINAP/SS7 TCAP client application
must initiate a dialogue/transaction, create one or more TCAP components for the message, and
call the ca_put_tc() function to send the component(s) to the remote application. TCAP
automatically packages the TCAP component(s) in an MSU and calls an internal CASL
function to deliver the MSU to the SCCP. The SCCP then takes over processing and delivers
the MSU to the MTP for transmission to its final destination.

The procedure sending an outgoing message differs slightly between the CCITT, China, TTC,
NTT, and ANSI variants of the SINAP/SS7 system. Each procedure is described separately in
the sections that follow.
3-46 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
Sending Outgoing Messages (CCITT/China/TTC/NTT)
To send a TCAP component to another application, include calls to the following CASL
functions in your CCITT, China, TTC, or NTT TCAP application.

1. Call the function ca_get_dial_id() to obtain a unique ID for the dialogue. This
function call returns the next available entry from the transaction ID table. If multiple
dialogue IDs are required, call this function repeatedly.

2. Call the function ca_alloc_tc() to allocate a T_Block structure for the TCAP
component. If the dialogue requires multiple TCAP components, call this function once for
each component.

3. Create one or more TCAP components by initializing fields in the t_block_t,
tc_dhp_t, and tc_chp_t structures. For more information about these structures, see
The T_Block Structure (t_block_t) in the description of the ca_put_tc() function in
Chapter 6.

• Use the priority field in the tc_dhp_t field to specify the message priority for
the MSU. This parameter is valid only for SCCP Class-0 and Class-1 messages.

• Use the seq_control field in the tc_dhp_t structure to define the sequence
control. This parameter is valid only for SCCP Class-1 messages.

• Use the dialogue ID returned by ca_get_dial_id() or ca_get_tc() for the
t_block_t structure’s dialogue_id field. If the dialogue requires multiple
TCAP components, use the same dialogue ID for each component. If multiple dialogue
IDs are required, call this function repeatedly.

4. Call the function ca_put_tc() to send the TCAP component to its destination. If the
dialogue requires multiple TCAP components, call this function once for each component.

5. End a normal dialogue by calling ca_put_tc() with the t_block_t structure’s
primitive_code field set to TC_END and the tc_dhp_t structure’s
dialogue_end_type field set to indicate how the dialogue is to end: 1 indicates a
pre-arranged end; 2 indicates a basic end.

For an application-context dialogue (1993 TCAP standard), you must use a basic end. Your
application must call the ca_put_tc() function with the t_block_t structure’s
primitive_code field set to TC_END, and the tc_dhp_t structure’s
dialogue_end_type field set to 2, which indicates a basic end.

N O T E
If dialogue_end_type is not 2, the CASL returns an error.

6. Call the function ca_dealloc_tc() to deallocate the T_Block structure you allocated
for the TCAP component. If the dialogue required multiple TCAP components, call this
function once for each component.

7. Call the ca_rel_dial_id() function to release the dialogue ID and return it to the pool
of available IDs. Otherwise, the dialogue ID remains unavailable until TCAP determines
Application Design and Development 3-47

TCAP Client Applications
that the dialogue has ended, in which case, TCAP automatically releases the dialogue ID.

Sending Outgoing Messages (ANSI)
To send a TCAP component to another application, include calls to the following CASL
functions in your ANSI network variant TCAP application.

1. Obtain a unique transaction ID for the transaction by calling the ca_get_trans_id()
function. TCAP assigns the ID. If multiple transaction IDs are required, call this function
repeatedly.

2. Call the function ca_alloc_tc() to allocate a T_Block structure for the TCAP
component. If the transaction requires multiple TCAP components, call this function once
for each component.

3. Create one or more TCAP components by initializing fields in the t_block_t,
tc_thp_t, and tc_chp_t structures. For more information about these structures, see
The T_Block Structure (t_block_t) in the description of the ca_put_tc() function in
Chapter 6.

• Use the priority field in the tc_thp_t field to specify the message priority for
the MSU. This parameter is only valid for SCCP Class-0 and Class-1 messages.

• Use the seq_ctrl field in the trans_id_t structure to define a specific signaling
line selection (SLS). This parameter is valid only for SCCP Class-1 messages.

• In the trans_id field of the t_block_t structure, specify the transaction ID
returned by the ca_get_trans_id(). If the transaction requires multiple TCAP
components, use the same transaction ID for each component.

4. Call the function ca_put_tc() to send the TCAP component to its destination. If the
dialogue requires multiple TCAP components, call this function once for each component.

5. End the transaction by calling ca_put_tc() with the t_block_t structure’s
primitive_code field set to TC_RESPONSE or TC_NO_RESPONSE and the
tc_dhp_t structure’s trans_end_type field set to indicate how the transaction is to
end: 1 indicates a pre-arranged end; 2 indicates a basic end.

6. Call the function ca_dealloc_tc() to deallocate the T_Block structure you allocated
for the TCAP component. If the transaction required multiple TCAP components, call this
function once for each component.

7. Call the ca_rel_trans_id() function to release the transaction ID and return it to the
pool of available IDs. Otherwise, the transaction ID remains unavailable until TCAP
determines that the transaction has ended, in which case, TCAP automatically releases the
transaction ID.

If the application sets a specific SLS in the MTP routing label or uses SCCP Class 1 service at
the SCCP or TCAP levels and uses an eight-bit SLS, see “SINAP/SS7 Interaction with the SS7
Network” in Chapter 2 for more information.
3-48 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
1993 TCAP Standards Overview
In an advanced intelligent network (AIN), communication between applications is governed by
a message protocol, which is a set of rules defining how messages are to be exchanged between
applications. Every message protocol is registered with a standards organization and the rules
defining that protocol are published in that organization’s standards recommendations. For
example, two Integrated Services Digital Network (ISDN) applications communicate by
following the ISDN signaling standards defined in ITU-T Recommendation Q.763.

Typically, an application that provides services in an AIN (such as an application for translating
1-800 telephone numbers) is designed to operate with a particular message protocol. However,
all the switches in the network might not support that protocol. To enable the application to
support applications running on those switches, the 1993 TCAP standards allow an application
to have one or more subapplications, each supporting a different variant of the application’s
message protocol.

To communicate with the application providing services in the AIN, an application running on
a switch accesses the subapplication that supports its message protocol. The switch application
identifies the subapplication by means of a dialogue portion included in the MSU. The dialogue
portion contains an application-context name that identifies the ASE of the message protocol
being used by the subapplication. The dialogue portion can also contain optional user
information for the dialogue, such as a password or initialization information.

The subapplication handles information from the switch application and converts that
information to the format required by the main AIN application, and vice versa. For example,
an ISDN application accessed by applications running on three different types of switches might
have three subapplications. Each subapplication is accessed by the particular switch application
that uses that variant of the AIN application’s message protocol.

When you specify the ASE of the subapplication with which you want your application to
communicate, you are specifying the application context under which you want the dialogue to
execute. Throughout this chapter, a dialogue that is initiated under a specific application context
is referred to as an application-context dialogue.

Implementing 1993 TCAP Standards
The presence of a dialogue portion indicates that an MSU is part of an application-context
dialogue. The dialogue portion contains an application-context name and optional user
information. The application-context name specifies the application context to be used for the
dialogue and the user information is any optional information that you want to use for the
application-context dialogue (such as a password, application-initialization data, or
protocol-version information).

The dialogue portion, which is placed between the transaction and component portions of an
MSU, is defined in the CASL structures tc_association_t, acn_t, and
tc_user_data_t. These structures are described in Chapter 6, ‘‘CASL Function Calls.”
Application Design and Development 3-49

TCAP Client Applications
The 1993 TCAP standards allow you to include a dialogue portion in the following types of
messages.

• TC_BEGIN

• TC_CONTINUE

• TC_END

• TC_U_ABORT

To adhere to the 1993 TCAP standards, an application must contain the programming logic to
process MSUs that contain a dialogue portion. An application that adheres to the 1988 TCAP
standards need not contain this programming logic. (For examples of how to code your
application to process MSUs that contain a dialogue portion, see the sample programs
dials.c and dialr.c in the $SINAP_HOME/Samples/ccitt directory.)

Application-Context Names
At the start of a dialogue, the calling application specifies the name of the application context it
wants to use by specifying the name of the ASE describing that context. This is the same ASE
as is being used by the subapplication with which the calling application wants to communicate.
If the called application supports that application context, both applications can continue
communication using that application context. If not, the applications can negotiate for an
application context they both support.

You must specify the application-context name as a properly formatted ASE OID, encoded
according to the rules documented in ITU-T Recommendation X.690, Basic Encoding Rules.
So that you do not have to code your application to encode the application-context name as an
ASE OID, the CASL library provides the function, tc_objmk(), which automatically
encodes the OID for you. For more information, see the section, “Defining an
Application-Context Name,” later in this chapter.

Processing the Dialogue Portion of an MSU
The TCAP message-handling functions check incoming and outgoing MSUs for the presence
of a dialogue portion. If the MSU contains a dialogue portion, the message-handling function
automatically calls one of several APDU encoding/decoding functions to process the dialogue
portion. These functions are described in the sections, TCAP Message-Handling Functions and
APDU Encoding/Decoding Functions later in this chapter.

N O T E
The TCAP message-handling functions and the APDU
encoding/decoding functions are both internal to the
SINAP/SS7 system. You need not include them in your
application.
3-50 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
TCAP Message-Handling Functions
The TCAP message-handling functions check incoming and outgoing MSUs for the presence
of a dialogue portion. If one is present, the message-handling function hands off the processing
of the dialogue portion to the appropriate APDU encoding/decoding function, based on the
transaction’s current state and the message type. For example, if the transaction is currently in
an idle state and the application sends an outgoing TC_BEGIN message that contains a dialogue
portion, the message-handling function proc_req_A calls the APDU encoding function
proc_req_A_dial to create an APDU for the message. Likewise, upon receipt of an
incoming MSU that contains a dialogue portion, the message-handling function calls the
appropriate APDU decoding function to decode the MSU’s dialogue portion and write the
results to the MSU’s application-context structures.

APDU Encoding/Decoding Functions
The dialogue portion for each type of message (TC_BEGIN, TC_CONTINUE, TC_END, and
TC_U_ABORT) is associated with a particular type of APDU, each of which must be encoded
or decoded according to the rules documented in ITU-T Recommendation X.690, Basic
Encoding Rules. The SINAP/SS7 CASL library contains several internal APDU
encoding/decoding functions that automatically perform the necessary encoding/decoding for
you.

• Encoding functions create a properly encoded APDU for an outgoing MSU. These
functions use the information in the application-context structures to create the APDU for
the particular type of message defined in the MSU.

• Decoding functions extract the dialogue portion from an incoming MSU’s APDU and write
the results to the MSU’s application-context structures.

The TC_DIALOGUE_REQUEST structure, which is defined in the include file
$SINAP_HOME/Include/tcglob.h, is used to temporarily store the results of the APDU
encoding or decoding function. When creating an outgoing MSU, the TCAP checks the size of
the TC_DIALOGUE_REQUEST structure. If the structure’s size is greater than 0, the structure’s
contents (the encoded dialogue portion) are copied into the MSU between the transaction and
component portions; otherwise, the MSU is built without a dialogue portion.

Implementing 1993 TCAP Standards in Your Application
This section explains how to implement the 1993 TCAP standards in your SINAP/SS7
applications. The subsections discuss the following topics:

• Application-Programming Considerations highlights the major application programming
considerations related to developing applications that implement the 1993 TCAP standards.

• Interaction Between Nodes provides information you will need if you are developing an
application for use in a heterogeneous network consisting of nodes that adhere to the 1993
TCAP standards and nodes that adhere to the 1988 TCAP standards.

• Initiating an Application-Context Dialogue provides instructions for initiating an
application-context dialogue. It also describes how to define the application-context name.
Application Design and Development 3-51

TCAP Client Applications
• Processing an Incoming MSU provides instructions for processing an incoming MSU that
contains a dialogue portion.

• Ending an Application-Context Dialogue provides information about how to end an
application-context dialogue.

• Error Handling for an Application-Context Dialogue describes conditions that cause the
SINAP/SS7 system to abort an application-context dialogue.

Application-Programming Considerations
The following list highlights the major application programming considerations related to
developing applications that implement the 1993 TCAP standards. For detailed information
about these and other programming considerations, see the 1993 editions of ITU-T
Recommendations Q.771 through Q.775.

• As you develop the code to implement the 1993 TCAP standards in an application, refer to
the 1993 edition of ITU-T Recommendation Q.774, Figure A-5 (sheets 1 through 11). This
figure illustrates the sequence of events occurring in an application-context dialogue.
Although the SINAP/SS7 system executes many of the events automatically (for example,
creating the appropriate APDU), the figure depicts the points at which various events occur
and provides information on error handling.

• To specify the application-context name you want to use for a dialogue, the 1993 TCAP
standards require that you use the direct-reference format of that application context’s ASE
OID. In addition, you must encode the OID according to the standards documented in
ITU-T Recommendation X.690, Basic Encoding Rules.

To have the SINAP/SS7 system automatically perform the necessary encoding, code your
application to call the function tc_objmk(). For instructions, see the section, “Defining
an Application-Context Name” later in this chapter.

N O T E
objmk() is a utility supplied with the ASN.1 compiler.

• Make sure your application contains logic to handle instances in which the called
application proposes an application-context name that differs from the one your application
proposed.

• Upon receipt of a TC_BEGIN message that contains an application-context name, your
application must respond with a TC_CONTINUE message that contains the same
application-context name.

• For incoming MSUs that are part of an application-context dialogue, your application need
not examine the tc_association_t structure’s resultSourceDiag and
resultSourceDiagValue fields unless the result field is set to
rejected-permanent (1).
3-52 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
• To end an application-context dialogue, the application should send a TC_END message
that specifies a basic end. For instructions on how to code your application to do this, see
the section, Ending an Application-Context Dialogue later in this chapter.

Interaction Between Nodes
A node that implements the 1993 TCAP standards (a 1993 TCAP node) cannot interact with a
node that implements the 1988 TCAP standards (a 1988 TCAP node). However, many networks
will probably continue to be made up of both types of nodes. Since your application might run
in a heterogeneous network consisting of both types of nodes, you should consider the following
issues when developing TCAP applications:

• A 1988 TCAP node cannot process an incoming MSU that contains a dialogue portion. If
a 1988 TCAP node receives such an MSU, it will reject the MSU by sending the 1993
TCAP node an ABORT primitive whose reason code is set to Incorrect
Transaction Portion.

• If your application sends an outgoing MSU that is rejected by the called application, you
should determine why the MSU was rejected. You can do this by logging the error message
and evaluating its contents.

– If the MSU contains a syntax error, correct the error and resend the MSU.

– If the MSU’s syntax is correct, you can assume that the called application resides on a
1988 TCAP node and is therefore unable to process the MSU because it contains a
dialogue portion. In this case, Stratus recommends you remove the dialogue portion
and resend the MSU.

Initiating an Application-Context Dialogue
At the start of an application-context dialogue, the application issuing a request for services (the
calling application) specifies an application-context name and optional user information. If the
called application supports the specified application-context name, it accepts the request and
continues with the application-context dialogue. Otherwise, it rejects the request or it proposes
another application-context name. The calling application can then either continue with the
dialogue using the new application context proposed by the called application, or it can issue an
abort.

For detailed information about the sequence of steps executed by two applications engaged in
an application-context dialogue, see the 1993 editions of ITU-T Recommendations Q.771
through Q.775 (specifically, Q.774, Figure A-5 (sheets 1 through 11)).

To initiate an application-context dialogue, you must code your application to perform the
following steps, each of which is described in detail in the sections that follow.

• Define application-context information for the dialogue.

• Define an application-context name to use for the dialogue.

• Define optional user information for the dialogue.

• Initiate the dialogue.
Application Design and Development 3-53

TCAP Client Applications
Defining Application-Context Information
To define application-context information for the dialogue, make sure your application
performs the following steps.

1. Initialize the ahp field of the tc_dhp_t structure to the name of the
tc_association_t structure that contains application-context information for the
dialogue. (The tc_dhp_t structure is part of the t_block_t structure.)

2. Initialize the fields of the tc_association_t structure as follows:

• For dlgInfoPresent, specify the value DIALOGUE_INDICATOR or
FALSE(0).

• For applicationContextName, specify the name of the acn_t structure that
contains the application-context name to be used for the dialogue.

• For userInformation, specify the name of the tc_user_data_t structure that
contains any optional user information you want to include for the dialogue.

For information about the tc_association_t structure’s format, see the section, The
tc_association_t Structure in Chapter 6.

Defining an Application-Context Name
To define an application-context name to use for the dialogue, make sure your application
initializes the acn_t structure referenced in Step 2 of the section, “Defining
Application-Context Information,” earlier in this chapter. The acn_t structure specifies the
direct-reference format of the application context’s ASE OID, encoded according to the
standards documented in ITU-T Recommendation X.690, Basic Encoding Rules. For
information about the format of the acn_t structure, see “The acn_t Structure” in Chapter 6.

To have the SINAP/SS7 system automatically encode the ASE OID, your application should
call the CASL function tc_objmk(), passing a string of numbers that represents the
direct-reference format of the application context’s ASE OID. The value returned by the
tc_objmk() function is the properly encoded ASE OID for that application context. Make
sure your application writes this value to the acn_t structure.

The tc_objmk() function accepts decimal or hexadecimal values. If you use hexadecimal
notation, you must precede each hexadecimal value with the notation 0x. (For example, the
decimal notation, 0 17 134 5 1 1 1, is 0x00 0x11 0x86 0x05 0x01 0x01 0x01
in hexadecimal notation.) Figure 3-3 shows a sample tc_objmk() function call. (Your
tc_objmk() function call might be different, since the values you specify define the
3-54 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Client Applications
direct-reference format of the ASE OID for the application context you are using.)

Figure 3-3. Sample tc_objmk() Function Call

To use the tc_objmk() function, your application must include one of the following
statements. So that the application can take advantage of future enhancements, use the
#include statement in your application. If you use the extern statement, place it at the end
of the application’s #include statements.

#include <tcdialprocs.h>
or
extern acn_t *tc_objmk();

N O T E
For C++ users, please refer to tcdialprocs.h for the C++
form of this extern statement as necessary.

N O T E
The objmk() function is supplied with the ASN.1 compiler.

Defining Optional User Information
To include optional user information in the dialogue portion, your application must initialize the
tc_user_data_t structure referenced in Step 2 of the section,” Defining
Application-Context Information,” earlier in this chapter. For information about the format of
the tc_user_data_t structure, see “The tc_user_data_t Structure” in Chapter 6. If you do
not plan to include optional user information in the dialogue portion, skip this section and
proceed to the next section, “Initiating the Dialogue,” in this chapter.

The tc_user_data_t structure contains the user information you want to use for the
dialogue. You must format the structure’s userInfo field according to Section 4.2.3 of the
1993 edition of ITU-T Recommendation Q.773. Table 49 of the recommendation indicates that
user information must be defined as an ASN.1-encoded sequence of externals. You can define

#include <tcdialprocs.h>

•
•
•

ptblk->tc_user.dhp.ahp.applicationContextName =
tc_objmk(0x00, 0x11, 0x86, 0x05, 0x01, 0x01,

0x01, END_OF_OID);
Application Design and Development 3-55

TCAP Client Applications
a value for this field by using the ASN.1 compiler, which creates an ASN.1-encoded sequence
of externals for you. You can then write the compilation results to the userInfo field.

Initiating the Dialogue
To initiate the dialogue, make sure your application performs the following steps:

1. Creates a TCAP component that contains a TC_BEGIN message by initializing a
t_block_t structure and its associated structures. For information about the formats of
these structures, see the description of the CASL function ca_put_tc() in Chapter 6,
‘‘CASL Function Calls.”

2. Initiates the application-context dialogue by calling the CASL function, ca_put_tc(),
to send the TCAP component you defined in the preceding step.

Processing an Incoming MSU
The procedure for processing an incoming MSU that is part of an application-context dialogue
is basically the same as the procedure for processing a normal dialogue, which is described in
the section, “Handling Incoming SS7 Messages,” earlier in this chapter.

Upon receipt of an incoming MSU that contains a dialogue portion, the SINAP/SS7 system calls
the appropriate APDU decoding function to decode the dialogue portion, writing the results to
the tc_association_t structure and its associated structures, acn_t and
tc_user_data_t (if user information is provided for the dialogue). The tc_dhp_t
structure’s ahp field points to the tc_association_t structure. Your application is
responsible for retrieving the dialogue portion from these structures and processing both the
MSU and its dialogue portion. For an example of how to code your application to perform this
processing, see the sample program: $SINAP_HOME/Samples/ccitt/dialr.c.

You might want to code your application to examine the dlgInfoPresent field of the
tc_association_t structure to determine whether the incoming MSU contains a dialogue
portion. A value of TRUE(1) indicates the presence of a dialogue portion.

Ending an Application-Context Dialogue
Unlike a normal dialogue, which you decide how to end (by coding either a prearranged end or
a basic end), you must end an application-context dialogue using a basic end.

To end an application-context dialogue, your application must call the ca_put_tc() function
with the t_block_t structure’s primitive_code field set to TC_END and the
tc_dhp_t structure’s dialogue_end_type field set to 2, which indicates a basic end.

N O T E
If dialogue_end_type is not 2, the CASL returns an error.
3-56 SINAP/SS7 Programmer’s Guide R8052-17

SCCP Client Applications
Error Handling for an Application-Context Dialogue
There are several ways your application can perform error handling. For detailed information
about these error handling methods, as well as others, see the 1993 edition of ITU-T (CCITT)
recommendations Q.771 through Q.775, specifically, Q.774, Figure A-5 (sheets 1 through 11).

• If your application does not support the application-context name proposed by another
application, it must respond to the dialogue request with a TC_U_ABORT message
indicating that the application-context name is not supported. To create the TC_U_ABORT
message, your application must initialize the t_block_t structure’s
primitive_code field to TC_U_ABORT and it must initialize the
tc_association_t structure’s resultSourceDiagValue field to the value
application-context-name-not-supported.

• When processing an incoming MSU, your application should check the result field of
the tc_association_t structure to determine whether an error has occurred. A value
of 1 indicates an error condition. If an error has occurred, have your application examine
the pduType field of the MSU’s tc_association_t structure.

a. If the field is set to ABRT, your application should examine the abortSource field
of the tc_association_t structure to determine who aborted the dialogue. To
obtain additional information about the abort, have the application examine any user
information provided in the ABORT PDU.

b. If the field is set to AARE, your application should examine the
tc_association_t structure’s resultSourceDiag and
resultSourceDiagValue fields to obtain information about the error condition
that caused the abort. In addition, if an ABORT PDU was returned, have the application
examine any user information it contains.

The SINAP/SS7 system automatically aborts an application-context dialogue when any of the
following abnormal conditions occur.

• A TC_U_ABORT primitive is issued but the ABORT REASON parameter is missing, or it
is set to a value other than application-context-name-not-supported.

• The SINAP/SS7 system receives an MSU containing an invalid dialogue portion.

• The SINAP/SS7 system aborts the underlying transaction with which the dialogue was
associated.

• The TC user aborts the dialogue.

SCCP Client Applications
An SCCP client application is a variation of the TCAP client application. An SCCP client
application has essentially the same organization as a TCAP client application. However, the
transaction servers interface directly with the SCCP and do not use the services of the TCAP.
Application Design and Development 3-57

SCCP Client Applications
SCCP Application Include Files
When you develop an SCCP application, make sure the application references the following
include files:

• caslinc.h is the master CASL include file. It contains the include files most frequently
used by SINAP/SS7 client applications.

• prisms3.h is required if the application will register to receive CONTROL primitives or
CONTROL and DATA primitives. This include file defines the structures of MTP
indication messages. Make sure the reference to prims3.h follows the reference for
caslinc.h.

N O T E
These include files are located in the
$SINAP_HOME/Include directory.

The following two include files are required if the application handles SS7 traffic (that is,
accepts incoming MSUs and/or processes responses in outgoing MSUs).

• sccphdrs.h defines the general SCCP header and the headers for SCCP connection
requests.

• sccp-intrn.h is the SCCP internal header file.

If the application uses the connection-oriented feature (COF) for class 2 and 3 services, it must
include the following files:

• scoc-prims.h defines the format for the SCCP connection-oriented control primitives.

• sc23.h provides prototypes and general COF defines.

SCCP Application Registration
To register an SCCP client application process with the SINAP/SS7 system, code the
application process so that it does the following:

1. Initialize the global variable CA_REG, which is used by the registration process.

2. Initialize the register_req_t (CA_REG) structure to define the application’s operating
characteristics. For information about the operating characteristics that are specific to
SCCP client applications, see the following section, “SCCP Registration Parameters.”

3. Call the function ca_register() to register the application with node management. If
there is a problem, ca_register() returns an error message. If this occurs, evaluate the
error message and correct the problem.

Before the application can receive and process SS7 data and/or control information, it must
be activated and it must then go into service. For instructions on how to code your
application to do this, see the section, “Going Into Service,” earlier in this chapter.
3-58 SINAP/SS7 Programmer’s Guide R8052-17

SCCP Client Applications
SCCP Registration Parameters
As with all SINAP/SS7 client applications, an SCCP application must initialize the fields of the
register_req_t (CA_REG) structure to appropriate values before calling the
ca_register() function. Specifically, the application must initialize the
register_req_t structure’s sio_ssn_ind, sio_ssn, and ss7_input_boundary
fields to the values in Table 3-7. You can specify either the textual value or the number in
parenthesis.

N O T E S
1. If the application implements the enhanced message

distribution feature, initialize sio_ssn_ind to
REG_MULT (3) and sio_ssn to 0. Then see Enhanced
Message Distribution later in this chapter for additional
instructions on implementing this feature.

2. If the application implements the custom application
distribution feature, it will appear to be identical to
enhanced message distribution for the purposes of SCCP
management. see Custom Application Distribution later in
this chapter for additional instructions on implementing
this feature.

An application that consists of a control process and one or more data processes must observe
the following rules when registering with the SINAP/SS7 system.

• The application’s control process must register with a process name that is different than
the process name used by the application’s data processes. (The name of an application
process is defined by the register_req_t structure’s proc field.)

• Each of the application’s data processes must register with the same process name, which
is defined by the register_req_t structure’s proc field.

• The application’s control and data processes must each register with the same application
name, which is defined in the register_req_t structure’s appl field.

Table 3-7. register_req_t Structure Parameters and Values

Parameter Value

sio_ssn_ind REG_SSN (2)

sio_ssn A decimal number in the range 2 through 255. This
number must be unique among all of the SSNs of
applications currently registered with the SINAP/SS7
system. All processes that are part of this application must
register with the same SSN.

ss7_input_boundary SS7_INPUT_BOUNDARY_SCCP (2)
Application Design and Development 3-59

SCCP Client Applications
To define the types of primitives that the application process can receive, initialize the
register_req_t structure’s fss7 and ss7_primitive fields as shown in Table 3-8.

Table 3-9 lists the types of primitives available to an SCCP application process. See “SCCP
Primitives” in Chapter 2 for information about these primitives.

SCCP Application Message Processing
An SCCP application uses the ca_put_msu() and ca_get_msu() functions to transfer
MSUs to and from the SS7 network.

• To retrieve an incoming MSU addressed to it, the application issues a call to the
ca_get_msu() function.

• To send an outgoing MSU to the network, the application issues a call to the
ca_put_msu() function, specifying the remote SCCP user with which it wants to
communicate.

For the ANSI network, if an SCCP application needs to set or get an eight-bit SLS in the MTP
routing label, see “SINAP/SS7 Interaction with the SS7 Network” in Chapter 2 for more
information.

Table 3-8. Primitive Types

Process Type fss7 ss7_primitive

Control FALSE (0) SS7_CTRL_PRIMITIVE (1)

Data TRUE (1) SS7_DATA_PRIMITIVE (2)

Control and Data TRUE (1) SS7_CTRL_DATA_PRIMITIVE (3)

Table 3-9. Primitives Available to SCCP Applications

Primitive Type Primitives Available

Data TCAP components only

Control I_N_COORD_REQ, I_N_COORD_INDIC,
I_N_COORD_RESP,
I_N_COORD_CONF,I_N_PCSTATE_INDIC,
I_N_STATE_INDIC, I_N_STATE_REQ

Data and Control I_N-PCSTATE, I_N_STATE_INDIC,
I_N_STATE_REQ, I_N-COORD_REQ,
I_N_COORD_INDIC, I_N_COORD_RESP, and
I_N_COORD_CONFIG
3-60 SINAP/SS7 Programmer’s Guide R8052-17

User Part (MTP) Client Applications
User Part (MTP) Client Applications
A user part client application uses the services of the MTP only; it does not use the services of
TCAP or SCCP. Figure 3-4 shows a typical user-part client application. In this figure, assume
that load distribution is disabled and that an inbound MSU performs the distribution function.
Though the SINAP/SS7 system allows load distribution to be bypassed, the facility is available
to MTP users.

The sample user part client application depicted in Figure 3-3 would be appropriate for a TUP
application.

N O T E
The SINAP/SS7 system provides an ISUP layer currently.
However, in the past, ISUP applications have been developed as
MTP client applications.
Application Design and Development 3-61

User Part (MTP) Client Applications
Figure 3-4. Typical User Part Client Application

When the application acts as the user part, the inbound SS7 function uses the SIO to route
inbound MTP-TRANSFER primitives to it. MTP Management provides MTP control primitives
(MTP-PAUSE, MTP-RESUME, and MTP-STATUS) using IPC.

User Part (MTP) Application Include Files
When you develop an MTP application, make sure the application references the following
include files.

• caslinc.h is the master CASL include file. It contains the include files most frequently
used by SINAP/SS7 client applications.

U s e r P a r t A p p l ic a t io n

C A S L

S S 7 I /O S u b s y s te m

S IN A P N o d e
M a n a g e m e n t

M T P
M a n a g e m e n t

A p p l ic a t io n
P r o c e s s e s

In b o u n d
M S U

H a n d le r

O u tb o u n d
M S U

H a n d le r

A p p l ic a t io n
M a n a g e m e n t

P ro c e s s

C o m m a n d s ,
R e p lie s , A la r m s

M T P C o n tro l
P r im it iv e s :
• M T P - P A U S E
• M T P - R E S U M E
• M T P - S T A T U S

. . . S S 7 L in k s
K e y :

S S 7 C o m m u n ic a t io n s

In te rp ro c e s s
C o m m u n ic a t io n s (IP C)

M u lt ip le L in k s. . .
3-62 SINAP/SS7 Programmer’s Guide R8052-17

User Part (MTP) Client Applications
• prims3.h is required if the application will register to receive CONTROL primitives or
CONTROL and DATA primitives. This include file defines the structures of MTP
indication messages.

User Part (MTP) Application Registration
To register an MTP client application process with the SINAP/SS7 system, code the application
process so that it does the following:

1. Initialize the global variable CA_REG, which is used by the registration process.

2. Initialize the register_req_t (CA_REG) structure to define the application’s operating
characteristics. For information about the operating characteristics that are specific to MTP
client applications, see the User Part (MTP) Registration Parameters section which follows.

3. Call the function ca_register() to register the application with the SINAP/SS7 Node
Management. If there is a problem, ca_register() returns an error message. If this
occurs, evaluate the error message and correct the problem.

Before the application can receive and process SS7 data and/or control information, it must
be activated and it must then go into service. (For instructions on how to code your
application to do this, see Going Into Service earlier in this chapter.)

User Part (MTP) Registration Parameters
As with all SINAP/SS7 client applications, an MTP client application must initialize the fields
of the register_req_t structure to appropriate values before calling the
ca_register() function. Specifically, the application must initialize the
register_req_t structure’s sio_ssn_ind, sio_ssn, and ss7_input_boundary
fields to the values in Table 3-10. (You can specify either the symbolic value or the number in
parenthesis.)

An application that consists of a control process and one or more data processes must observe
the following rules when registering with the SINAP/SS7 system.

Table 3-10. register_req_t Structure Parameters and Values for MTP

Parameter Value

sio_ssn_ind REG_SIO (1)

sio_ssn A decimal number in the range 1 through 15. This number
must be unique among all of the SIOs of applications
currently registered with the SINAP/SS7 system. All
processes that are part of this application must register with
the same SIO.

ss7_input_boundary SS7_INPUT_BOUNDARY_MTP (1)
Application Design and Development 3-63

User Part (MTP) Client Applications
• The application’s control process must register with a process name that is different than
the process name used by the application’s data processes. (The name of an application
process is defined by the register_req_t structure’s proc field.)

• Each of the application’s data processes must register with the same process name, which
is defined by the register_req_t structure’s proc field.

• The application’s control and data processes must each register with the same application
name, which is defined in the register_req_t structure’s appl field.

To define the types of primitives that the application process can receive, initialize the
register_req_t structure’s fss7 and ss7_primitive fields as shown in Table 3-11:

Table 3-12 lists the types of primitives available to an MTP application process. See MTP
Primitives in Chapter 2 for information about these primitives.

User Part (MTP) Application Message Processing
An MTP application uses the ca_put_msu() and ca_get_msu() functions to transfer
MSUs to and from the SS7 network.

• To retrieve an incoming MSU, the application issues a call to the ca_get_msu()
function.

• To send an outgoing MSU to the network, the application issues a call to the
ca_put_msu() function.

Table 3-11. Primitive Types Received for MTP Application

Process Type fss7 ss7_primitive

Control FALSE (0) SS7_CTRL_PRIMITIVE (1)

Data TRUE (1) SS7_DATA_PRIMITIVE (2)

Control and Data TRUE (1) SS7_CTRL_DATA_PRIMITIVE (3)

Table 3-12. Primitives Available to MTP Applications

Primitive Type Primitives Available

Control MTP-PAUSE, MTP-RESUME, MTP-STATUS

Data and Control MTP-PAUSE, MTP-RESUME, MTP-STATUS,
MTP-TRANSFER
3-64 SINAP/SS7 Programmer’s Guide R8052-17

User Part (MTP) Client Applications
For the ANSI network, if an MTP application needs to set or get an eight-bit SLS in the MTP
routing label, see “SINAP/SS7 Interaction with the SS7 Network” in Chapter 2 for more
information.

MTP Routing Based on SLS and DPC
In the CCITT or China network variants of the SINAP/SS7 system, MTP-boundary users can
ensure sequentiality of messages by routing based solely on the signaling link selection (SLS)
and destination point code (DPC). For example, if a telephone user part (TUP) user employs the
CIC for the SLS value for all messages pertaining to that circuit, all messages will go out over
the same link to a particular DPC, even when load sharing over two link sets, thus ensuring they
all remain in sequence. However, for any one DPC, only 8 links in each link set can be used
when load sharing over link sets. With multiple DPCs and more than 8 links per link set, an even
load distribution might be achieved, but there is no guarantee. This feature only pertains to the
CCITT and China variants, which use a 4-bit SLS (16 possible values).

To enable MTP routing based on SLS and DPC, define the following environment variable
before starting or restarting the SINAP/SS7 system:

MTP_SLS4_LOAD_SHARE

You can define the variable by uncommenting it in your
$SINAP_HOME/Bin/sinap_env.[sh or csh] file to have the variable defined
automatically each time you start the SINAP/SS7 system.

If the MTP_SLS4_LOAD_SHARE environment variable is not set, the default action for CCITT
and CHINA variants is to support 16 links per link set, with a random choice of linkset when
load sharing. This ensures even distribution, but not sequentiality.

N O T E S
1. This option does not affect the TCAP or SCCP user. It also

does not affect the ISUP user, as link set selection and link
selection over a possible 16 links per link set is done
transparently to the user by the SINAP ISUP code.

2. If you are running the MultiStack product, you must set the
environment variable separately for each node where you
want to activate this feature.

In the ANSI network, MTP-boundary users can ensure sequentiality of messages by setting
either a five-bit or eight-bit SLS value in the MTP routing label (see “SINAP/SS7 Interaction
with the SS7 Network” in Chapter 2 for more details). If the system user selects an eight-bit SLS
(using the CHANGE-SLSTYPE MML command) and the application sets an eight-bit SLS
value, the SINAP node maps the value to the signaling link code (SLC) for a specific link, which
remains the same until a network event such as a changeover/changeback occurs. If the system
user selects a five-bit SLS and the application sets an eight-bit SLS value, the SINAP node
Application Design and Development 3-65

ISUP Services Applications
masks out the upper three most significant bits of the SLS. However, the truncated SLS still
maps to a specific link. To see how the SLS maps to a specific link, use the sy, #ort,ls or
the #ort,cls command (if using a combined link set) to index the SINAP SLC.

ISUP Services Applications
The ISUP services feature supports the services provided by the ISDN User Part (ISUP)
protocol of Signaling System Number 7 (SS7). ISUP provides the signaling functions required
to support circuit-switched services for voice and non-voice connections to an integrated
services digital network.

By default, the ISUP services feature is turned off. To activate the ISUP services feature, you
must define an environment variable before starting or restarting the SINAP/SS7 system. For
detailed information on implementing ISUP services applications, see the SINAP/SS7 ISDN
User Part (ISUP) Guide (R8053).

Considerations for Implementing SINAP/SS7 Features
This section describes things you should be aware if you plan to implement any SINAP/SS7
features in an application. For considerations on implementing ISUP services features, see the
SINAP/SS7 ISDN User Part (ISUP) Guide (R8053). This section discusses the following topics.

• Routing capabilities enable all variants of the SINAP/SS7 system to perform SCCP routing
based on a global title address or to perform global title translation. The fictitious
originating point code (FOPC) feature, available only in the ANSI variant, enables the
SINAP/SS7 system to specify an OPC in the MTP routing label that is different than the
SCCP calling party address’s point code of the outbound MSU.

• Enhanced message distribution enables a SINAP/SS7 application to register with multiple
SSNs or to register to receive input from specific OPCs. This feature is available only to
applications that interface with the SINAP/SS7 system at the SCCP or TCAP boundary.

• SCCP Third Party Address field facilitates routing between an SSP/node, a TCP/IP agent,
and an application.

• Custom Application Distribution (CAD) enables TCAP applications to register for
application distribution based on the ServiceKey message parameter of the ETSI CS1
INAP initialDP invoke operation. This feature extends the capabilities provided by the
enhanced message distribution feature.

• Multiple link congestion levels provide the following ITU-T (CCITT) congestion options
for the CCITT and China variants of the SINAP/SS7 system: National Multiple Congestion
States with Congestion Priority option (Q.704, 3.8.2.2 and National Multiple Congestion
States without Congestion Priority option (Q.704, 3.8.2.3) in addition to the default option:
International One Congestion Onset and One Congestion Abatement option (Q.704,
3.8.2.1).
3-66 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• MTP User Flow Control enables the SINAP/SS7 system to generate a User Part
Unavailable (UPU) message when the user part is unavailable (for example, the ISDN User
Part).

• Extended unitdata (XUDT) and extended unitdata service (XUDTS) messages can be
exchanged by applications running on networks configured for CCITT or China.

• The CCITT network variant can be configured to enable a SINAP node to receive and
process SCCP subsystem tests in an XUDT message. You activate this feature by setting an
environment variable.

• SNM messages with nonzero SLCs enables the SINAP/SS7 system to use a nonzero SLC
value for any SNM message that is not related to a signaling link. This feature is available
for the CCITT, China, and ANSI network variants.

• The MTP restart process helps prevent routing problems that can occur after the system
resumes sending user traffic following a failure due to invalid routing information or too
many parallel activities.

• MTP time-controlled changeover supports handling of long-term or short-term processor
outages or changeover orders received from the remote end during the MTP Level 3 T1
timer period.

• MTP time-controlled diversion delays changeback to avoid missequencing messages to
destination points after a remote point code restarts. This feature is only available for the
ANSI network variant.

• MTP Management Inhibit supports management inhibit procedures for link-forced
uninhibit request messages based on 1992 ANSI standards and 1988 ANSI standards for
MTP.

• Priority, sequence control, and quality of service parameters enable you to specify how the
SINAP/SS7 system should process outgoing MSUs.

• SLS Message Distribution enables the SINAP/SS7 system to distribute an incoming MSU
based on the value of its SLS field. This feature is available only to applications that
interface with the SINAP/SS7 system at the MTP or SCCP boundary.

• Eight-bit or five-bit SLS processing scheme selection enables use of eight-bit or five-bit
SLSs for all incoming and outgoing messages. This feature is available in the ANSI
network variant only.

• Connection-oriented services enable an application to establish and maintain a connection
or logical communication path with another application for the purpose of exchanging
small and large messages.

• Load control reduces the risk that incoming MSUs will be lost or discarded during times of
severe network congestion. This feature is available only to applications that interface with
the SINAP/SS7 system at the TCAP boundary.

• Loopback detection enables the SINAP/SS7 system to detect when a remote link is in
loopback mode. This feature is available for the CCITT network variant only.
Application Design and Development 3-67

Considerations for Implementing SINAP/SS7 Features
• Transfer-restricted message handling enables the CCITT network variant to use the
national network option for restricting message traffic routing.

• The ANSI network variant can be configured to issue an RSR/RSP in response to TFR/TFP
messages either before or after an MTP Level 3 T10 timer expires. Set an environment
variable to select either network behavior option. These options conform to either the 1988
or the 1992 ANSI Standards behavior.

Routing Capabilities
This section describes the following routing capabilities available for Transaction Capabilities
Application Part (TCAP) messages:

• Global Title Addressing (GTA)

• Global Title Translation (GTT)

• Fictitious originating point code (FOPC) feature

• Alternative Destination Point Code (ADPC) feature

Global Title Addressing (GTA)
The SINAP/SS7 system supports SCCP routing based on a global title, which enables
SINAP/SS7 application processes to access the global title element of an SCCP called- or
calling-party address. In global title addressing, the SINAP/SS7 system does not perform global
title address translation; the application must perform the translation.

N O T E
The SINAP/SS7 system allows both hexadecimal and numeric
values (A-F and 0-9) to be used in Global Title strings when the
environment variable HEX_GLOBAL_TITLE is defined.

To use the global title addressing feature, define the environment variable
BYPASS_SINAP_GLOBAL_TITLE_TRANSLATION before starting the SINAP/SS7 system.
If you do not define this variable, GTT is implemented, as described in the next section.

The ability to route on global titles affects SINAP/SS7 functionality in the following ways:

• An outgoing TCAP message can specify a called party address that contains both a global
title and an SSN of 0. The message is sent regardless of the status of the destination.

• An incoming TCAP message, whose called party address contains a global title, is passed
to the application. The SINAP/SS7 system performs syntax checking on the global title and
rejects the message if the syntax is incorrect.

Global Title Translation (GTT)
A global title is a type of address, such as a series of dialed digits, that does not itself contain
the addressing information necessary to route a message signaling unit (MSU) to its destination.
3-68 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Instead, SCCP must perform global title translation (GTT), a process that translates the global
title into addressing information that can then be used to route a message to its destination.

N O T E
To bypass GTT in the SINAP/SS7 SCCP layer and implement
global title addressing capabilities instead, define the
environment variable,
BYPASS_SINAP_GLOBAL_TITLE_TRANSLATION before
starting the SINAP/SS7 software. This allows you to pass
messages containing a global title without actually translating
the global title.

For SCCP to perform GTT, you must provide information about how you want each global title
translated. You do this by creating global title entries using the CREATE-GTT command. Each
entry describes a particular global title and specifies how it should be translated. You can define
a maximum of 4000 global title entries. You can specify a global title to be translated into a
DPC, SSN, a new global title, or any combination thereof. The global title entry is stored in a
segment of shared memory known as the GTT table.

N O T E
The GTT table is not a table in the true sense of the word; it is
simply a storage area for global title entries.

SCCP performs GTT when the address indicator of the SCCP’s called party address of an
inbound or outbound message is set to indicate routing on global titles.

Address Indicator
The first octet (that is, eight bits) of the SCCP called- or calling-party address contains an
address indicator that specifies whether the address contains a DPC, an SSN, and/or a global
title. SCCP determines how to route an MSU from the information in the SCCP called party
Application Design and Development 3-69

Considerations for Implementing SINAP/SS7 Features
address. Figure 3-5 shows the address indicator’s format, which differs slightly between
variants.

Figure 3-5. Address Indicator Formats

Descriptions of the bits in the address indicator follow:

• Bit 8 is not used in the CCITT, TTC, NTT, or China network variants. It is reserved for
future use. In the ANSI variant, this bit signifies the network type: 0 for international and
1 for national.

• Bit 7, the routing indicator, indicates how SCCP should route the MSU. A value of 0
indicates routing on global title, and a value of 1 indicates routing on DPC and SSN.

• Bits 6 through 3, the global title indicator, define the address components included in the
global title. For more information about global title indicators, see Chapters 3 and 4 of the
SINAP/SS7 User’s Guide (R8051).

• In CCITT, TTC, NTT, and China, bits 2 and 1 have the following meaning.

– Bit 2, the SSN indicator bit, is set to 1 to indicate that the address contains an SSN.

– Bit 1, the point-code (PC) indicator, is set to 1 to indicate that the address contains a
DPC or an origination point code (OPC).

• In ANSI, bits 2 and 1 have the following meaning.

– Bit 2, the PC indicator, is set to 1 to indicate that the address contains a DPC or an OPC.

– Bit 1, the SSN indicator bit, is set to 1 to indicate that the address contains an SSN.

Bits 8 7 6 5 4 3 2 1

Rsrvd Rtg
ind

SSN
ind

PC
ind

Global title
ind

CCITT, TTC, NTT, and China Address Indicator

Bits 8 7 6 5 4 3 2 1

Net
ind

Rtg
ind

PC
ind

SSN
ind

Global title
ind

ANSI Address Indicator
3-70 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Global Title Format
A global title consists of several different types of address components, each defining a
particular characteristic of the global title. The global title format, as defined by the global title
indicator (GTI), determines the address components that are included in a global title.

Table 3-13 describes the address components that make up a global title. See the appropriate
documentation for your network variant for more information on GTT components.

Table 3-13. Global Title Address Components

Address Component Description

Global Title Indicator
(GTI)

Indicates the global title format. The GTI value specifies
which address components are included in the global title.

Translation Type (TT) Directs the MSU to the appropriate global title translation
function.

Numbering Plan (NP) Indicates the numbering plan used for the global title’s
address information (for example, ISDN/Telephony,
ISDN/Mobile, or data).

Encoding Scheme (ES) The part of the numbering plan that indicates the type of
encoding, if any, that is used. The SINAP/SS7 system uses
the ES to determine whether the global title address
information is an ODD (ES=1) or EVEN (ES=2) number of
BCD digits.

Nature-of-Address
Indicator (NOAI)

Indicates the type of number used in the global title (for
example, a subscriber number, a national significant
number, or an international number). (Not used for the
ANSI network variant.)

Note: The default valid range for this indicator is 1 through
4. If the GTT_BYPASS_NOAI_CHECK environment variable
is defined for a node, the valid range is from 0 through 127.
The variable must be defined for each node in a
SINAP/SS7 environment. You can uncomment the
environment variable in the sinap_env.sh or
sinap_env.csh file where it will be automatically defined
each time you start the SINAP node.
Application Design and Development 3-71

Considerations for Implementing SINAP/SS7 Features
Table 3-14 lists the global title format associated with each GTI value. Note that the global title
formats differ slightly between the network variants.

GTT Processing
The CREATE-GTT command creates a global title entry describing the global title and how it
should be translated.

Table 3-15 describes how the CREATE-GTT command arguments correspond to the global title
address components.

When performing SCCP routing control for both inbound and outbound MSUs, the SINAP/SS7
system examines the called party address field in the SCCP header. If the address indicator

Table 3-14. GTI Values and Global Title Formats

CCITT, China, TTC, and NTT
Global Title Formats ANSI Global Title Formats

GTI Value
Global Title Contents

GTI Value
Global Title Contents

0 No global title 0 No global title

1 NOAI only 1 TT, NP, and ES†

† The global title formats for ANSI GTI 1 and CCITT/China/TTC/NTT GTI 3 are
identical.

2 TT only 2 TT only

3 TT, NP, and ES

4 TT, NP, ES, and NOAI

Table 3-15. CREATE-GTT Arguments

Arguments Description

GTI, NOAI, TT, NP Defines the address components included in the global title,
as defined by the GTI. For example, a global title with a GTI
of 1 contains the NOAI and LADDR address components. A
global title with a GTI of 4 contains the TT, NP, NOAI, and
LADDR address components.

LADDR, HADDR Defines the global title’s address information

DPC, SSN, NADDR Defines the new DPC, SSN, and/or address information that
replaces the original global title

DPC2, SSN2 Define the new DPC and SSN information if the original
SCCP is unavailable.
3-72 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
specifies routing on global title, the SINAP/SS7 system searches the global title entries for one
that matches the global title in the called address. A match occurs when all the global title’s
address components are the same as the values in a particular global title entry. To compare the
address information in a global title to the address information in a global title entry, both sets
of address information must be the same length. For example, the 9-digit string, 180055512,
would not match global titles in the range, 1800555111 to 1800555444 (which are each 10 digits
long).

If the SINAP/SS7 system finds a global title entry with the same GTI, TT, NP and/or NOAI as
the global title in the SCCP called party address, SCCP then examines the low address
(LADDR) and high address (HADDR) of the matching global title entry. If only the LADDR is
specified, SCCP looks for an exact match of the LADDR and the global title. If the LADDR and
the HADDR are both specified, SCCP looks to see if the global title is lexically greater than or
equal to the LADDR and less than or equal to the HADDR.

If the global title match is successful, SCCP replaces the DPC, SSN, and/or address information
in the SCCP called party address with the replacement values defined in the global title entry.
If SCCP replaces the global title’s address information, the SINAP/SS7 system resets the SCCP
called party address routing indicator bit to 0 to specify routing on global title. If SCCP does not
replace the global title’s address information, the SINAP/SS7 system sets the SCCP called party
address routing indicator bit to 1 to specify routing on DPC and SSN.

The translation of a global title yields one of the following results.

• DPC

• SSN

• GT

• Any combination of DPC, SSN, and GT

• For CCITT only, DPC2 and SSN2 for alternate routing if the primary SCCP is unavailable
(see Alternate SCCP Routing later in this chapter for more information)

• The translation for the GT does not exist

If the translation of a global title in an incoming MSU results in a DPC that differs from your
node’s own point code, SCCP attempts to reroute the MSU to the new DPC.

Alternate SCCP Routing
The CCITT network variant has the optional ability to route global title-related MSUs to an
alternate or “backup” SCCP if the “primary” one is unavailable.

Two types of GTTs can result in MSUs being sent to the backup DPC and/or SSN. The two GTT
types are:

• RouteOnGT

• RouteOnSSN
Application Design and Development 3-73

Considerations for Implementing SINAP/SS7 Features
RouteOnGT translates the global title to another global title that requires further GTT at a
remote DPC’s SCCP. For RouteOnGT, the status of any remote subsystems would usually be
immaterial.

To prevent testing the availability of the remote subsystems, set the environment variable
GLOBAL_TITLE_SSN_NO_CHECK. To make this environment variable permanent,
uncomment it in the $SINAP_HOME/Bin/sinap_env.[sh or csh] before starting the
SINAP/SS7 system:

GLOBAL_TITLE_SSN_NO_CHECK=1

RouteOnSSN locally translates the global title into a remote DPC and SSN. For
RouteOnSSN, the availability status of the remote subsystem is important and the MML
should create the appropriate remote subsystem entries.

During normal system operation, the SINAP/SS7 system translates the global title either to
another global title for translation at a remote primary DPC (RouteOnGT) or to DPC/SSN for
processing at a remote primary DPC (RouteOnSSN). If the primary is not operational, the
SINAP/SS7 system attempts to route the information to the backup DPC/SSN (DPC2/SSN2).

To specify an alternate SCCP for GTT, specify the DPC2 and/or the SSN2 parameters. When
the DPC parameter is specified (is not NONE), you can specify the DPC2 parameter to define a
different DPC for backup routing. Similarly, when the SSN parameter is specified, you can use
the SSN2 parameter to define a different SSN for backup routing.

To enter the parameters using the Terminal Handler, set the environment variable
GTT_WITH_BACKUP_DPC_SSN to 1 (one) before starting the SINAP node. You can make
this environment variable permanent by uncommenting it in the file
$SINAP_HOME/Bin/sinap_env.[sh or csh] before starting the SINAP node:

GTT_WITH_BACKUP_DPC_SSN=1

To input the command through send_cm, use the existing syntax for CREATE-GTT, but add
the fields SSN2= and DPC2= to the entry where these fields represent the alternate SCCP. It is
not necessary to set this environment variable when using the send_cm command. For
example,

send_cm -s”CREATE-GTT:GTI=4,TT=8,NP=7,NOAI=2,LADDR=500000,
HADDR=999999,SSN=254,SSN2=253,DPC=2730,DPC2=2731;”

N O T E S
1. This command must be entered on one line only.
3-74 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
2. Since the parsing is position-independent, you can use a
different order of keywords, for example:

send_cm -s”CREATE-GTT:GTI=4,TT=8,NP=7,NOAI=2,
LADDR=500000, HADDR=999999,DPC=2730,SSN=254,
DPC2=2731,SSN2=253;”

The sample command indicates to the SINAP/SS7 system that, for this global title, if the SCCP
for DPC 2730 is out of service, the global title must be translated at the designated remote
SCCP, DPC 2731. Also, if the global title has been locally translated and DPC 2730, SSN 254
is out of service, the results of the global title will be transferred to DPC 2731, SSN 253.

N O T E
Remote systems must keep the SINAP/SS7 system informed of
their subsystem status by means of the appropriate messages,
such as SSA/SSP, for this feature to work.

For backward compatibility, it is not necessary to specify the DPC2 or SSN2 fields if this
feature is not desired.

If the primary and secondary SCCPs are both unavailable, the SINAP/SS7 system returns a
NOTICE error message.

Defining and Maintaining GTT Table Entries
To configure your SINAP/SS7 node to implement GTT functionality, issue the MML command
CREATE-GTT to define a global title entry for each global title that you plan to use or that the
SINAP/SS7 system might encounter. The global title entry must describe the global title and
indicate how it should be translated.

After you define global title entries for your SINAP/SS7 node, the node can support applications
that implement GTT functionality. For information about the issues to consider when
developing an application that implements GTT functionality, see, Defining Application Logic
for Implementing GTT at the next section.

The SINAP/SS7 User’s Guide (R8051) describes the following commands you use to define and
maintain GTT table entries:

• CREATE-GTT creates a global title entry.

• CHANGE-GTT changes the contents of an existing global title entry.

• DELETE-GTT deletes a global title entry.

• DISPLAY-GTT displays all global title entries configured on your SINAP node.
Application Design and Development 3-75

Considerations for Implementing SINAP/SS7 Features
Defining Application Logic for Implementing GTT
Consider the following issues as you design and develop application-programming logic for
implementing GTT in an application.

• When defining the SCCP called party address, set bit 7 of the address indicator to 0 to
specify routing on global title. Set bit 7 to 1 to specify routing on DPC/SSN.

In addition, you must set all other bits of the address indicator accordingly. For
example, if the SCCP called party address contains a DPC, you must set the PC indicator
bit to 1. Likewise, if the SCCP called party address contains an SSN, you must set the SSN
indicator bit to 1.

• You can include a global title in either of the following types of messages.

– For connectionless services, include the global title in UNITDATA messages.

– For connection-oriented services, include the global title in the connection-request
message used to establish a connection with a remote application. (For information
about how to code your application to implement connection-oriented services, see
Implementing Connection-Oriented Services in an Application later in this chapter.)

• You can code an application to call the CASL function ca_lookup_gt() to perform a
global title lookup and return the translation results for a specific global title.

Fictitious Originating Point Code (ANSI only)
The fictitious originating point code (FOPC) feature enables the ANSI network variant of the
SINAP/SS7 system to set the MTP routing label’s OPC field to an OPC that is different than the
SCCP calling party address’s point code. The FOPC defines the OPC that the SINAP/SS7
system is to use in place of the MTP routing label’s OPC. This functionality is typically used in
handover processing. Using the FOPC, the SINAP/SS7 system can set the MTP routing label’s
OPC field to any OPC, including the SINAP/SS7 system’s own signaling point (OSP).

Three MML commands facilitate the use of an FOPC. (See the SINAP/SS7 User’s Guide
(R8051) for detailed descriptions of the commands.)

• CREATE-FOPC defines the FOPC you want the SINAP/SS7 system to use.

• DISPLAY-FOPC displays an existing FOPC.

• DELETE-FOPC deletes an existing FOPC.

The field, fictitious_OPC, is part of the t_block_t structure. It is a Boolean data type
that indicates whether the SINAP/SS7 system is to use the FOPC feature.

• Set fictitious_OPC to FALSE if you do not want the SINAP/SS7 system to use the
FOPC feature. In this case, the MTP routing label’s OPC is copied from the SCCP calling
party address’s point code, if provided, or else from the SINAP node’s own signaling point
code (OSP) configured using the CREATE-OSP command.
3-76 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• Set fictitious_OPC to TRUE if you want the SINAP/SS7 system to use the FOPC
feature. In this case, the MTP routing label’s OPC is derived from the FOPC created with
the CREATE-FOPC command. Note that the calling-address-pointer field of the
SCCP-level message retains a pointer to the calling party’s OPC.

To use FOPC functionality in your SINAP/SS7 applications, perform the following steps.

1. Define the following environment variable and assign it the value shown in the example
below. (Use whatever procedures are appropriate for the UNIX shell you are using.) You
might also want to edit your SINAP/SS7 environment file (sinap_env.sh or
sinap_env.csh) so that this variable is defined automatically each time you start the
SINAP/SS7 system. Note that you must define the variable before you start the SINAP/SS7
system.

ANSI_SINAP_FOPC=YES

2. Issue the following MML command to create the FOPC to be used in place of the MTP’s
routing label’s OPC (where network-cluster-member defines the OPC).

CREATE-FOPC:FOPC=network-cluster-member;

3. For a TCAP user application, before calling the ca_put_tc() function to send the MSU,
set the tc_user.fictitious_OPC field of the t_block_t structure to TRUE. For a
SCCP and MTP application, it must set m_block_t structure’s
tc_ctrl.call_disposition to TRUE to have the FOPC used in the OPC field of
the MTP routing label.

Alternative Destination Point Code (ANSI, CCITT, and China only)
The alternative destination point code (ADPC) feature enables the SINAP/SS7 system to set the
MTP routing label’s DPC field without the provision of DPC value from the SCCP called party
address. Normally, an outgoing TCAP or SCCP message specifies both the SSN and DPC (or a
GT to be translated by SINAP/SS7 system into SSN and DPC) before invoking CASL API -
ca_put_tc() or ca_put_msu(). The DPC of the SCCP called party address is in turn copied to the
DPC field of the MTP routing label for outbound routing purpose. With ADPC feature, the
application can send an outgoing TCAP or SCCP message with no DPC provided at the SCCP
called party address, which is useful for processing a handover query. In this case, SINAP
TCAP or SCCP application needs to specify the alternative DPC so that SINAP/SS7 system can
set the DPC field of the MTP routing label to the value defined by the alternative DPC feature.

1. To use the alternative DPC feature in the ANSI or China TCAP variant, mask the
t_block_t structure’s tc_user.thp.tb_options with USE_ALT_DPC (0x01,
that is, mask bit position 1 to 1) and set:

• tc_user.thp.alt_DPC[0] to the member field of the alternative DPC

• tc_user.thp.alt_DPC[1] to the cluster field of the alternative DPC

• tc_user.thp.alt_DPC[2] to the network field of the alternative DPC
Application Design and Development 3-77

Considerations for Implementing SINAP/SS7 Features
2. To use the alternative DPC feature in the CCITT TCAP variant, mask the t_block_t
structure’s tc_user.dhp.tb_options with USE_ALT_DPC (0x01, that is, mask
bit position 1 to 1) and set tc_user.dhp.alt_DPC, which is U32 (32-bit unsigned
integer). The CCITT TCAP variant references the tc_user.dhp structure (dialogue
handling primitive).

3. The ANSI or China variant’s SCCP user application references the tc_alt.alt_dpc structure.
The data structure contains four U8 fields for member, cluster and network of the ANSI or
China point code format and a status field. To use the alternative DPC feature in the ANSI
or China variant, the SCCP user application set the m_block_t data structure’s
tc_alt.alt_dpc.status with USE_ALT_DPC (0x01) and set:

• tc_alt.alt_dpc.member to the member field of the alternative DPC

• tc_alt.alt_dpc.cluster to the cluster field of the alternative DPC

• tc_alt.alt_dpc.network to the network field of the alternative DPC

4. The CCITT variant’s SCCP user application references the tc_alt.alt_ccitt structure. The
data structure contains a U16 dpc field and a U8 status field. To use the alternative DPC
feature in the CCITT variant, the SCCP user application set the m_block_t data structure’s
tc_alt.alt_ccitt.status with USE_ALT_DPC (0x01) and set tc_alt.alt_ccitt.dpc to the
alternative DPC value.

Enhanced Message Distribution
Enhanced message distribution is available to applications that interface with the SINAP/SS7
system at the SCCP or the TCAP boundary. This feature provides a mechanism for expanding
the discrimination rules that the SINAP/SS7 system uses to route incoming MSUs to their
destinations. For example, an application can use this feature to:

• Accept input for a number of other applications

• Accept input from a specific OPC or set of OPCs

• Use the same SSN as another application

The SINAP/SS7 system routes an incoming MSU to its destination based on the MSU’s SSN.
If an application is registered with that SSN, the SINAP/SS7 system routes the incoming MSU
to that application. An application that implements enhanced message distribution can define
additional criteria that must be met in order for the SINAP/SS7 system to route incoming MSUs
to it. These criteria are referred to as an application’s message distribution information.

When an application implements enhanced message distribution, the SINAP/SS7 system
examines every incoming MSU destined for the application. If the characteristics of the
incoming MSU match the application’s message distribution information, the SINAP/SS7
system passes the MSU to the application; otherwise, if it is configured to do so, the SINAP/SS7
system discards the MSU.
3-78 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Processing Overview
The CASL function ca_dist_cmd() and the structure dist_cmd_t are used to facilitate
enhanced message distribution.

• The ca_dist_cmd() function provides access to message distribution information. An
application calls this function to define message distribution information, and to retrieve or
delete existing message distribution information.

• The structure dist_cmd_t is used to pass message distribution information. When the
ca_dist_cmd() function is called, a pointer to this structure is passed to the function.
The structure’s cmd field specifies whether the ca_dist_cmd() function call is to
define, retrieve, or delete message distribution information for an application. If the
function call is to define message distribution information, this structure contains that
information; if the function call is to retrieve message distribution information, this is the
structure to which that information is written.

The dist_cmd_t structure contains two arrays: one lists the SSNs considered valid for
the application, the other lists valid OPCs. The SINAP/SS7 system uses these arrays to
determine whether to route an incoming MSU to the application.

To implement enhanced message distribution, an application registers with the SINAP/SS7
system with certain register_req_t structure fields set to specific values. These values tell
the SINAP/SS7 system that the application is implementing enhanced message distribution. The
application defines its message distribution information by initializing the dist_cmd_t
structure and calling the CASL function ca_dist_cmd(), passing a pointer to this structure.
Thereafter, the SINAP/SS7 system routes incoming MSUs to the application based on the
application’s message distribution information.

The following is a list of enhanced message distribution features.

• An application’s message distribution information can be updated dynamically during
SINAP/SS7 operation without disrupting the application’s active processing.

• If an application has concerned point codes (CPCs), the SINAP/SS7 system maintains
status information for each CPC.

• If an application’s status changes, the SINAP/SS7 system notifies each CPC associated
with that application.

• If a CPC’s status changes, the SINAP/SS7 system notifies each application associated
with that CPC.

• The SINAP/SS7 system provides two environment variables for specifying how the
SINAP/SS7 system is to handle discarded MSUs.

• DISCARDS_PER_ALARM specifies the number of MSUs that the SINAP/SS7 system
is to discard before generating an alarm.

• UDTS_NO_OPC specifies whether the SINAP/SS7 system is to generate a UDTS
(UnitData Service) message when the MSU’s OPC is not valid for the specified SSN.
Application Design and Development 3-79

Considerations for Implementing SINAP/SS7 Features
The Message Distribution Information Structure
The structure in which message distribution information is stored, dist_cmd_t, has the
following format. The dist_cmd_t structure is defined in the include file register.h, as
are the variables MAX_APPL_SSN and MAX_APPL_OPC.

typedef struct dist_cmd_s
{

U32 appl; /* APPL_THIS -1 */
U8 cmd; /* DIST_SET 1 */

/* DIST_DEL 2 */
/* DIST_INQ 3 */

U8 boundary; /* SS7_INPUT_BOUNDARY_NA 0 */
/* SS7_INPUT_BOUNDARY_SCCP23 4 */

S8 ssn_count; /* DIST_ALL 0 */
U8 opc_count; /* DIST_ALL_OTHER 0 */
U8 ssn[MAX_APPL_SSN]; /* 32 */
U32 opc[MAX_APPL_OPC]; /* 128*/

} dist_cmd_t;

Table 3-16 provides a brief description of the fields in the dist_cmd_t structure. Detailed
information about these fields is presented in the section Defining Message Distribution
Information later in this chapter.

Table 3-16. dist_cmd_t Structure Fields

Field Description

appl Specifies the name of the application whose message
distribution information is being defined or retrieved

cmd Defines the task to perform on the application’s message
distribution information: define, delete, or retrieve

boundary Defines the boundary on which task is registered:
SS7_INPUT_BOUNDARY_NA for non-COF or
SS7_INPUT_BOUNDARY_SCCP23 for COF. Only required for
DIST_INQ with appl = 0.

ssn_count Specifies the number of SSNs to associate with the
application

opc_count Defines the number of OPCs from which the application can
accept input

ssn An array of SSNs, each of which will be associated with the
application

opc An array of OPCs, from each of which the application can
accept input
3-80 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Implementing Enhanced Message Distribution
This section provides information about how to implement enhanced message distribution for
an application. It contains the following subsections.

• “Considerations” describes things you should be aware of as you implement enhanced
message distribution.

• “Handling Discarded MSUs” provides instructions for specifying how you want the
SINAP/SS7 system to handle discarded MSUs.

• “Application Registration” describes the procedure the application must follow to register
with the SINAP/SS7 system.

• “Defining Message Distribution Information” describes the procedure the application must
follow to define message distribution information.

• “Activating the Application” provides instructions for activating the application.

Considerations
You should consider the following when implementing enhanced message distribution for a
SINAP/SS7 application.

• Enhanced message distribution increases the demand on shared-memory usage; therefore,
you may need to increase the value of the UNIX tunable system parameter SHMMAX.

For the HP-UX operating system, use the HP-UX operating system administration utility
(sam) to change the SHMMAX and SHMSEG system parameters in the
/usr/conf/master.d/core-hpux file.

Before modifying the SHMMAX parameter, you should check with your system
administrator to make sure the new value will work with other products and applications
running on the system. See the appropriate documentation for your UNIX system for more
information.

• If the application uses the load control facility, be aware of the following:

– When the SINAP/SS7 User’s Guide (R8051) instructs you to specify the application’s
SSN for load control MML commands and CASL functions, you must specify the
application’s name instead (for example, ENABLE-LOAD-CONTROL,SSN=DB12
instead of ENABLE-LOAD-CONTROL,SSN=230).

– In addition, for CASL you must specify the application name as a zero filled, right
justified U32 word. (For instructions on how to convert the application name to this
format, see the description of the appl field in the section, “Defining Message
Distribution Information,” later in this chapter.)

Handling Discarded MSUs
The SINAP/SS7 system provides two environment variables for specifying how you want the
SINAP/SS7 system to handle discarded MSUs. Define these environment variables at a UNIX
Application Design and Development 3-81

Considerations for Implementing SINAP/SS7 Features
system prompt before you start the SINAP/SS7 system by following the appropriate procedure
for the shell you are using.

• Define the following environment variable if you want the SINAP/SS7 system to generate
a UDTS message when it receives an MSU whose OPC is not valid for the specified SSN.
If you do not define this variable, the SINAP/SS7 system discards the MSU and does not
generate a UDTS message. You need not assign a value to the variable; the SINAP/SS7
system simply checks that the variable exists.

UDTS_NO_OPC

• Define the following environment variable if you want the SINAP/SS7 system to generate
an alarm after discarding the number of MSUs defined by n. If you do not define this
environment variable, the SINAP/SS7 system generates an alarm after discarding
approximately five MSUs (this number may vary).

DISCARDS_PER_ALARM=n

To turn off the functionality implemented by either environment variable, remove the variable’s
definition by following the appropriate procedure for the shell you are using. You must then
restart the SINAP/SS7 system for the changes to take effect. (For instructions, see the UNIX
documentation for that shell.) For example, if you are using the C shell, issue the command
unsetenv UDTS_NO_OPC and restart the SINAP/SS7 system.

Application Registration
To register with the SINAP/SS7 system, an application initializes the fields of the
register_req_t structure and then calls the CASL function ca_register(). To
implement enhanced message distribution, an application must follow certain guidelines when
registering with the SINAP/SS7 system. For example, the application must initialize certain
fields of the register_req_t structure to specific values. (For more information about
application registration and the register_req_t structure, see the description of the
ca_register() function in
Chapter 6.)

N O T E
The application must initialize all register_req_t fields
before calling ca_register() to register with the
SINAP/SS7 system.

To implement enhanced message distribution, the application must follow these guidelines
when registering with the SINAP/SS7 system.

• If the application is configured for load control, the application’s name, which is specified
in the appl field, must contain at least two alphabetic characters: a through z or A through
Z (for example, DB12 or TCRV). These alphabetic characters are needed so that the
application implements enhanced message distribution and uses the load control facility.
3-82 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
See the section Considerations earlier in this chapter for additional guidelines and
considerations.

N O T E
In the register_req_t structure’s appl field, the
application name is specified as an ASCII character string of up
to four bytes. However, the application name must be specified
as a zero filled, right justified, U32 word in the appl field of
the dist_cmd_t structure and in CASL functions used to
implement load control. For information about how to convert
the application name to and from this format, see the
descriptions of the ca_pack() and ca_unpack() functions
in Chapter 6, ‘‘CASL Function Calls.”

• The application must register to receive input at the SCCP or TCAP boundary. To do this,
the application must specify one of the values listed in Table 3-17 for the
ss7_input_boundary fields. Applications that receive input at the MTP boundary
cannot implement enhanced message distribution.

N O T E
It is possible to have two applications with the same point code
and SSN, one registered at the SCCP boundary and the other at
the SCCP23 boundary, handling traffic for both connectionless
(SCCP) and connection oriented (SCCP23) service. Both of
these processes are coded to use Enhanced Distribution. Both
applications share the same SSN and may have identical OPC
lists. Support is limited to one SSN only.

• The application must initialize the sio_ssn_ind and ssn_sio fields of the
register_req_t structure to the following values. These values indicate that the
application will have multiple SSNs and/or multiple OPCs associated with it.

Table 3-17. SS7 Input Boundary Settings for Enhanced Message Distribution

SS7 Input Setting Description

SS7_INPUT_BOUNDARY_SCCP=2 UDT SCCP

SS7_INPUT_BOUNDARY_TCAP=3 UDT TCAP

SS7_INPUT_BOUNDARY_SCCP23=4 SCCP COF

SS7_INPUT_BOUNDARY_TCAPX=6 XUDT TCAP

SS7_INPUT_BOUNDARY_SCCPX=7 XUDT SCCP
Application Design and Development 3-83

Considerations for Implementing SINAP/SS7 Features
– For sio_ssn_ind, specify the value REG_MULT.
– For sio_ssn, specify the value 0.

• All application instances must register with the same set of registration parameters (for
example, sio_ssn or sio_ssn_ind).

• All application instances must use the same message distribution information. The
SINAP/SS7 system does not allow an application instance to register if its message
distribution information differs from that of an already registered application instance.

• The application can have a maximum of two process names registered with the SINAP/SS7
system.

Defining Message Distribution Information
To define message distribution information, an application must initialize the fields of the
dist_cmd_t structure and then call the ca_dist_cmd() function, passing a pointer to this
structure. The following list describes each field in the dist_cmd_t structure.

• The appl field specifies the name of the application whose message distribution
information is being defined or retrieved. In the register_req_t structure’s appl
field, the application name is specified as an ASCII character string of up to four bytes.
However, in the appl field of the dist_cmd_t structure, the application name must be
specified as a zero filled, right justified, U32 word. To convert an application name to this
format, code the application so that it calls the function ca_pack(), passing the character
string that defines the application name; the function returns the application name as a
zero-filled, right-justified, U32 word. To convert the application name back to a character
string, code the application so that it calls the function ca_unpack(), passing the U32
word and a pointer to a character string; the function converts the application name to a
character string.

• The cmd field specifies the task to perform on the application’s message distribution
information. Valid values are as follows:

• DIST_SET defines the message distribution information for an application or
modifies an application’s existing message distribution information.

• DIST_DELETE deletes an application’s message distribution information, which
means that the application no longer supports enhanced message distribution.

• DIST_INQ retrieves an application’s message distribution information.

• The boundary field is only required for the DIST_INQ command when the appl field is
0. It should be set to SS7_INPUT_BOUNDARY_NA to select a non-COF application and
to SS7_INPUT_BOUNDARY_SCCP23 to select a COF application.

The remaining fields: ssn_count, ssn, opc_count, and opc define the discrimination
rules that you want the SINAP/SS7 system to follow when routing incoming MSUs to the
application. See the subsections “Applications Using SSN Discrimination,” “Applications
Using OPC Discrimination,” and “Applications Using the Same SSN” later in this section for
additional information about how to define different types of discrimination rules for an
application.
3-84 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Use the ssn_count and ssn fields to define an SSN array that lists the SSN(s) that you want
to associate with the application. When the SINAP/SS7 system receives an incoming MSU, it
examines the MSU’s SSN; if the SSN is listed in the application’s SSN array, the SINAP/SS7
system sends the MSU to the application. If you do not want the SINAP/SS7 system to perform
message discrimination based on an incoming MSU’s SSN, specify the value 0 for
ssn_count and leave the SSN array empty.

• The ssn_count field specifies the number of SSNs that you want to associate with the
application. This value cannot exceed the value of MAX_APPL_SSN, which is defined in
the include file $SINAP_HOME/Include/register.h. The SSN array defined by
the ssn field must contain as many entries as ssn_count defines.

• The ssn field is an array of SSNs, each of which is to be associated with the application.
The number of SSNs in this array must match the number defined by ssn_count. If the
value of ssn_count is 0, make sure that this array is empty.

Use the opc_count and opc fields to define an OPC array that lists the OPC(s) from which
you want the application to receive incoming MSUs. When the SINAP/SS7 system receives an
incoming MSU destined for the application, it examines the MSU’s OPC; if the OPC is listed
in the application’s OPC array, the SINAP/SS7 system sends the MSU to the application. If you
do not want the SINAP/SS7 system to perform message discrimination based on an incoming
MSU’s OPC, specify the value 0 for opc_count and leave the OPC array empty.

• The opc_count field specifies the number of OPCs from which you want the application
to accept input. This value cannot exceed the value of MAX_APPL_OPC, which is defined
in the include file $SINAP_HOME/Include/register.h. The OPC array defined by
the opc field must contain as many entries as opc_count defines.

• The opc field is an array that lists each OPC from which the application can accept input.
The number of OPCs in this array must match the number defined by opc_count. If the
value of opc_count is 0, make sure that this array is empty.

Applications Using SSN Discrimination
If an application’s message distribution information includes an SSN array, the SINAP/SS7
system uses SSN discrimination to route incoming MSUs to the application: if the MSU’s SSN
is listed in the SSN array, the SINAP/SS7 system routes the MSU to the application. To
configure the application to accept incoming MSUs for a number of other applications, define
an SSN array that lists the SSN of each of these applications. When the SINAP/SS7 system
receives an incoming MSU destined for one of these applications, the SINAP/SS7 system routes
the MSU to this application, which is then responsible for delivering the MSU to the appropriate
SSN.

N O T E
You can also define a list of OPCs from which the application
can receive input by creating an OPC array. In this case, the
SINAP/SS7 system routes an incoming MSU to the application
only if both the MSU’s SSN and OPC are listed in these arrays.
Application Design and Development 3-85

Considerations for Implementing SINAP/SS7 Features
If registered at the SCCP23 boundary only one SSN is
supported in the SSN array. There may be multiple OPCs in the
OPC array.

The following sample dist_cmd_t structure contains the message distribution information
that you might define for the application HNDL, which accepts input for three SINAP/SS7
applications (SSNs 120, 220, and 240).

typedef struct dist_cmd_s
{

U32 HNDL; /* appl */
U8 DIST_SET; /* cmd */
U8 0; /* boundary */
S8 3; /* ssn_count */
U8 0; /* opc_count */
U8 [120 /* ssn */

220 /* ssn */
240]; /* ssn */

U32 [NULL]; /* opc */
} dist_cmd_t;

Applications Using OPC Discrimination
If an application’s message distribution information includes an OPC array, the SINAP/SS7
system uses OPC discrimination to route incoming MSUs to the application: if the MSU’s OPC
is listed in the OPC array, the SINAP/SS7 system routes the MSU to the application. If the OPC
is not listed in the array, the SINAP/SS7 system discards the MSU; however, if you have
defined the environment variable UDTS_NO_OPC, the SINAP/SS7 system does not discard the
MSU, but instead sends a UDTS message to the OPC.

Applications Using the Same SSN
Sometimes it is useful for multiple applications to use the same SSN. For example, to have the
SINAP/SS7 system interface with a heterogeneous group of network switches, you can develop
several similar SINAP/SS7 applications, each of which supports a particular type of network
switch. By associating a specific OPC or set of OPCs with each application process, you can
direct input from a network switch to the appropriate switch-supporting application process.

N O T E
When multiple applications use the same SSN, each application
must define an OPC array that specifies a different OPC or set
of OPCs; applications that use the same SSN cannot accept
input from the same OPC.

If several applications use the same SSN, each application must initialize the following fields
of its dist_cmd_t structure as follows:
3-86 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• For appl, specify the name of the application (a zero-filled, right-justified, U32 word),
which must be unique.

• For ssn, define an array that lists the SSN being used, which will be the same for each
application (ssn_count will be 1).

• For opc, define an array that lists a unique OPC or set of OPCs from which the application
can accept input (opc_count will specify the number of OPCs in this array).

The following sample dist_cmd_t structure shows the message distribution information for
three SINAP/SS7 applications, each of which uses the SSN 230. The first application, SW1,
accepts input from OPC 254-052-001; the second, SW2, accepts input from OPC
254-020-005; and the third, SW3, accepts input from OPC 230-002-001.

{ {
appl = SW1; appl = SW2;
cmd = DIST_SET; cmd = DIST_SET;
boundary = 0; boundary = 0;
ssn_count = 1; ssn_count = 1;
opc_count = 1; opc_count = 1;
ssn = 230; ssn = 230;
opc = 254-052-001; opc = 254-020-005;

} }

{
appl = SW3;
cmd = DIST_SET;
boundary = 0;
ssn_count = 1;
opc_count = 1;
ssn = 230;
opc = 230-002-001;

}

Activating the Application
To activate an application that implements enhanced message distribution, code the application
so that it sends an I_N_STATE_REQ, SCMG_UIS message to the SCCP management process
(SCMG) for each of its configured SSNs. This step activates the application, which now
implements enhanced message distribution.

N O T E
Before going out of service, have the application send an
I_N_STATE_REQ, SCMG_UOS message to the SCMG for
each of its configured SSNs.
Application Design and Development 3-87

Considerations for Implementing SINAP/SS7 Features
Retrieving Message Distribution Information
You can retrieve two types of message distribution information: the SSN and OPC arrays
associated with a particular application, or the name of the application whose message
distribution information matches a particular SSN/OPC combination. To retrieve message
distribution information, code the application so that it calls the ca_dist_cmd() function
and passes a pointer to a dist_cmd_t structure; the SINAP/SS7 system returns the requested
information in this structure.

• To retrieve the SSNs and OPCs associated with a particular application, initialize the
dist_cmd_t structure’s appl field to the name of the application (a zero-filled,
right-justified, U32 word). The SINAP/SS7 system returns the application’s SSN and OPC
arrays in the dist_cmd_t structure’s ssn and opc fields.

• To retrieve the name of the application whose SSN and OPC criteria match a particular
SSN/OPC combination, initialize the dist_cmd_t structure’s appl field to the value 0
and initialize the ssn[0] and opc[0] fields to the SSN/OPC combination. You must also
specify the application’s boundary, either SS7_INPUT_BOUNDARY_NA to select a
non-COF application or SS7_INPUT_BOUNDARY_SCCP23 to select a COF application.
The SINAP/SS7 system returns the name of the application (a zero-filled, right-justified,
U32 word) in the appl field of the dist_cmd_t structure. This is the application to
which the SINAP/SS7 system would send an incoming MSU with that particular SSN/OPC
combination.

Changing Message Distribution Information
You can change an application’s message distribution information without disrupting the
application’s active processing. When you change an application’s message distribution
information, the changes apply to each of the application’s instances. Note, however, that these
changes do not affect an application’s existing transactions (those that are waiting in an input
queue). This is because existing transactions are considered to have already been delivered.

To change message distribution information, an application must first retrieve the existing
information, then modify it, and save the changes. To do this, code the application so that it
performs the following steps.

1. Initialize the fields of the dist_cmd_t structure as follows:

• Initialize appl to the name of the application (a zero-filled, right-justified, U32 word)
whose message distribution information you want to change.

• Initialize cmd to the value DIST_INQ.

2. Call the ca_dist_cmd() function and pass it a pointer to the dist_cmd_t structure
that was initialized in Step 1. The SINAP/SS7 system returns the application’s message
distribution information in the ssn_count, opc_count, ssn, and opc fields of the
structure.

3. Initialize the dist_cmd_t structure to modify the application’s message distribution
information and initialize the cmd field to the value DIST_SET.
3-88 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
4. Call ca_dist_cmd(), passing a pointer to the structure that was initialized in step 3. The
function call updates the application’s message distribution information to reflect the
changes to dist_cmd_t.

Deleting Message Distribution Information
When you delete an application’s message distribution information, the application no longer
supports enhanced message distribution. To delete an application’s message distribution
information, code the application so that it calls the ca_dist_cmd() function, passing a
pointer to a dist_cmd_t structure whose fields are initialized as follows:

• Initialize appl to the name of the application (a zero-filled, right-justified, U32 word)
whose message distribution information you want to delete.

• Initialize cmd to the value DIST_DEL.

You cannot delete a portion of an application’s message distribution information by following
this procedure. Instead, you must follow the procedure described in the preceding section,
“Changing Message Distribution Information.”

SCCP Third Party Address
This field facilitates routing between an SSP/node, an agent, and an application. The field saves
the original routing information and replaces it with the routing information of the TCP/IP
agent. The SINAP/SS7 system stores information specified in the sccp_3rd_party_addr
field in the mblock as the original calling party address information so the information is
retained when an SS7 over TCP/IP agent (registered at the SCCP boundary) overwrites the
original SCCP called party address with its own point code and pseudo SSN. The information
is required to establish a two-way dialogue with an application registered at the TCAP boundary
on the same SINAP node and system. When the TCP/IP agent receives messages from a TCAP
application, the agent requires the original SCCP calling party address to correctly format and
route messages back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for CCITT
variants) or transaction (for ANSI variants), the field specifies the SCCP called party address of
the TCAP application. In this case, the called party address is required because the original
called party address provided in the tblock and mblock is configured to address the own
signaling point (OSP) code and pseudo SSN of the TCP/IP agent running on the same SINAP
node.

The CASL transparently copies the sccp_3rd_party_addr field between the tblock and
mblock in both directions when sending and receiving tblocks. The SINAP driver
initializes this field in the mblock to zeros when the SINAP node receives messages from
Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the tblock.h and
mblock.h include files.
Application Design and Development 3-89

Considerations for Implementing SINAP/SS7 Features
Custom Application Distribution
The SINAP/SS7 system supports a custom application distribution (CAD) feature that enables
a SINAP node to distribute TCAP message traffic to specific applications based on the value of
selected, protocol-specific, message parameters. The CAD feature is implemented on one or
more SINAP nodes as an extension to the capabilities provided by enhanced message
distribution (multiple applications registered for the same SSN).

CAD currently provides a protocol-specific implementation based on the European
Telecommunications Standards Institute (ETSI) Capability Set 1 (CS-1) Intelligent Network
Application Protocol (INAP) standards. (ETSI CS-1 INAP is derived from the ITU-T CS-1
INAP standards which can also be supported by this feature.)

CAD requires much of the same functionality provided by the SINAP/SS7 enhanced message
distribution feature. This includes the capability to filter and distribute message traffic based on
OPCs as well as SSNs. (See the section on Enhanced Message Distribution earlier in this
chapter.) Like enhanced message distribution, CAD is available to applications that interface
with the SINAP/SS7 system at the TCAP boundary. CAD provides an additional mechanism
(ServiceKeys) for further expanding the discrimination rules that the SINAP/SS7 system uses
to route incoming MSUs to their destinations.

Generic CAD Registration
Applications requiring custom distribution must initially register with the SINAP node to
receive input at the TCAP boundary and specify the value REG_MULT for the sio_ssn_ind
and 0 for the sio_ssn fields in the register_req_t structure. Except for being restricted
to the TCAP boundary, this is the same procedure currently used for applications that register
for enhanced message distribution.

Use the function ca_cust_dist_cmd()to specify the custom application distribution
criteria. This function is an extended version of the ca_dist_cmd() function used for
enhanced distribution. In addition to the dist_cmd_t structure used to specify the application
name, command, SSN, and OPC criteria, the ca_cust_dist_cmd() function also specifies
the ID of the type of custom distribution being implemented and a type-specific structure used
to define the custom distribution criteria. The type-specific criteria structure is specified as an
abstract (void *) pointer. The actual structure type is determined by the custom type ID
parameter.

Unlike enhanced message distribution, multiple applications can be registered for the same SSN
and OPC, as long as they all use the same custom distribution type ID. As with enhanced
distribution, you can implement custom distribution for all SSNs, or for all OPCs with one or
more SSNs. Although you can change the custom distribution criteria for an application at
run-time, you cannot change the custom distribution type, once it has been set.

CS-1 INAP-Specific CAD Registration
Applications requiring Capability Set 1 (CS-1) Intelligent Network Application Protocol
(INAP) custom distribution are able to specify ServiceKey values in addition to SSN and OPC
values when specifying their custom application distribution criteria within the
3-90 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
ca_cust_dist_cmd() function. The custom type-specific criteria structure includes an
integer ServiceKey Count field and a fixed-size integer ServiceKey array allowing up to 64
entries (per SINAP node). An application may specify from 0 to 64 ServiceKey values.

An application that registers for CS-1 INAP custom application distribution with a ServiceKey
value of 0 (zero) is designated as the default or fallback application. All message traffic that
matches the SSN and OPC criteria specified for that application, but cannot be sent to any other
application registered for the same SSN or OPC with specific ServiceKey criteria, is sent to the
fallback application. This includes TCAP TC-BEGIN messages that contain:

• InitialDP invoke operations without a ServiceKey parameter

• InitialDP invoke operations with a ServiceKey value not specified by any other application

• Any invoke operation other than InitialDP or AssistRequestInstructions (ARI)

• Any message that does not meet the parsing criteria applied when determining the
component type, operation, ServiceKey, or Correlation ID value, but does match the
specified SSN/OPC criteria

The ca_cust_dist_cmd() parameter criteria with ServiceKey values of 0, also enables
CS-1 INAP ARI processing for applications that do not require the ServiceKey based
application distribution feature.

N O T E S
1. Only one service may register as the fallback application

for a given SSN/OPC criteria.

2. Two applications may not register for the same ServiceKey
and the same SSN/OPC criteria.

3. No specific custom distribution parameters are required in
relation to CS-1 INAP ARI operation processing.

Generic CAD Message Processing
Once the SINAP/SS7 system determines that REG_MULT is specified for the SSN of a received
message, enhanced message distribution processing is invoked. If enhanced distribution
determines that the SSN and/or OPC entry appropriate for the received message contains a
custom application distribution type ID, instead of an application index, the SINAP/SS7 system
checks a type-specific distribution table to determine the destination of the message. The
destination of the message may be an application, a process, or undefined, if the message is to
be discarded. The SINAP/SS7 system may also modify fields in the mblock structure
containing the message. Specifically, the SINAP/SS7 system fills in the pid of the process to
receive the message, if the message is to be distributed directly to a specific process. When the
SINAP node determines the destination of the message is an application, the node uses the load
control type registered for that application to determine the final destination process.
Application Design and Development 3-91

Considerations for Implementing SINAP/SS7 Features
The SINAP node only invokes the custom type-specific distribution function for TCAP BEGIN
(QUERY message in ANSI) or UNI messages. Other message types are always distributed to the
process that is already handling the established dialogue (or transaction in ANSI). The
SINAP/SS7 system determines if a given message is a TCAP message, as opposed to an SCCP
user part message of some other type, before it can determine the TCAP package type and
custom type-specific distribution. The fact that custom application distribution is specified for
that SSN/OPC implies that TCAP parsing is appropriate.

CS-1 INAP Message Processing
The SINAP node parses all messages sent to the CS-1 INAP type-specific distribution function
to confirm that the first message component is an invoke component and to extract the operation
code. Both the CCITT and ANSI forms of the operation code are supported. Any failure to
decode these fields results in fallback message handling. This applies whenever errors occur
during the parsing of the message. Further processing of the message is determined by the
operation code. The SINAP/SS7 system implements specific processing for only the
InitialDP and ARI operations. Any other operation results in fallback message handling.

CS-1 INAP Message Processing For an InitialDP Operation
Before any further message parsing is performed, the SINAP/SS7 system takes the following
actions:

• Determine if any ServiceKeys are configured for the specified SSN/OPC.

If yes, parsing continues.

If not, the SINAP node performs fallback message handling.

• The SINAP node confirms the presence of a parameter sequence tag followed by a
parameter sequence length.

• The following tag must be that of the ServiceKey parameter [CONTEXT 0], or the SINAP
node assumes that no ServiceKey parameter is present, and it performs fallback message
handling.

• The ServiceKey parameter length and value is then decoded.

• The SINAP/SS7 system’s table of ServiceKey values configured for the specified
SSN/OPC is then searched.

If a match is found, the table index for the application specified in the ServiceKey table
entry is returned, along with the indication that the message should be distributed to an
application.

If no matching ServiceKey value is found, the SINAP node performs fallback message
handling.

CS-1 INAP Message Processing For an ARI Operation
Message parsing continues with confirming the presence of the parameter sequence tag and
length fields. The following tag must be that of the CorrelationID parameter [CONTEXT
3-92 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
0] or the message is considered to be in error, and fallback message handling is performed. At
this point the number of octets specified by the length field are decoded as the
CorrelationID parameter. The CorrelationID parameter is defined to be in the ITU-T
Q.763 “Generic Digits” format. Of all the fields defined in the “Generic Digits” format, only the
actual digits field is of significance to CS-1 INAP message processing. Exactly 10 binary coded
decimal (BCD) digits must be present in the digits field. The SINAP node decodes the BCD
digits as two integers, a five digit IPC index, and a five-digit TCAP dialogue/transaction ID.
Only the IPC index is significant to the SINAP/SS7 system. The decoded IPC index is stored in
the mblock tc_ctrl ipc_index field, and is subsequently used to look up the process
ID in the IPC table. The process ID, in turn, is stored in the mblock ca_ctrl pid field,
and the function returns an indication that the message should be routed directly to a process.

Except for requiring that the SSN/OPC enhanced distribution tables reflect the fact that CS-1
INAP type custom application distribution was specified by an application, no specific tables
are maintained for ARI operation processing. The SINAP/SS7 system determines the process
ID of the process that is to receive the ARI message from the IPC index embedded in the ARI
CorrelationID parameter. This parameter, received from an intelligent peripheral (IP) with
intelligent network (IN) capabilities (or an assisting SSP), by definition, contains the same
digits specified in the CorrelationID parameter of the EstablishTemporaryConnection
(ETC) operation. These are the same digits sent by the original Service Control Function (SCF)
service that initiated the user-assisted “switch-out.”

For example, the original switch (SSP) processing a call switches the call to another switch.
(This could be another SSP or SS7 ETSI/CS-1 INAP capable intelligent peripheral (IN IP). The
call is switched in order to play announcements or otherwise interact with the user. This is
usually when the original SSP does not have the required announcements or capabilities to play
them (under the direction of the SCF service via the ETC operation). The assisting SS7 SP (SSP
or IN IP) initiates an entire new dialogue to inquire what user interaction is to be performed.

In order to more efficiently correlate the ARI to the original service that sent the ETC, the
information included in the CorrelationID parameter must be sufficient to identify both the
process where the original service is running, and the TCAP dialogue or transaction ID that
identifies the specific service instance within that process.

The CASL function ca_enc_cs1_corrid() ensures that the digits used, when formatting
the CorrelationID parameter, identify the IPC index and dialogue/transaction ID in the
same format understood by the CS-1 INAP specific message distribution function in the
SINAP/SS7 system. Applications that implement any of the features of CS-1 INAP specific
custom application distribution must use this function to format the ETC CorrelationID
parameter.

A complimentary CASL function ca_dec_cs1_corrid() decodes the digits field in a
received ARI CorrelationID parameter. In this case, it is the dialogue or transaction ID that
is significant to the process and must correlate the ARI to the original service instance.
Application Design and Development 3-93

Considerations for Implementing SINAP/SS7 Features
If an application requires a different format of the ETC CorrelationID parameter digits, the
application may not specify CS-1 INAP-specific custom application distribution and no other
applications can be configured for the same SSN/OPC criteria.

CS-1 INAP Message Processing For SFR Operation
The SINAP/SS7 system provides specific processing of the ServiceFilteringResponse operation
and treats this operation as an unrecognized operation. In this case the SINAP node performs
fallback message handling.

CS-1 INAP Fallback Message Processing
Fallback message processing is invoked whenever CS-1 INAP specific message processing is
unable to determine an application or process to distribute a given message to, for any reason,
including errors detected in the message format. The CS-1 INAP specific routing tables include
a field where for every configured SSN/OPC a fallback application, as described for CS-1 INAP
specific custom application distribution registration, can be stored. If a fallback application is
defined for the SSN/OPC of a message falling into this category, the message is distributed to
that application. If a fallback application is not defined, an indication is returned specifying that
the message should be discarded. At this point, the same processing of discarded messages
employed in enhanced message distribution is utilized. This includes the environment variable
tunable options to return such messages on error and/or report alarms for every n number of
messages discarded.

The purpose of a fallback application can vary with the implementation. For example, a fallback
application may be specified as the only application for a given SSN and/or OPC criteria. This
would be appropriate for an application that does its own ServiceKey dispatching to internally
defined services, but requires the ETSI CS-1 INAP specific ARI message processing. This is in
order to ensure that the ARI messages are distributed to the same data processes that are already
processing the original service. Alternately, where a separate application is defined for each of
several different sets of ServiceKeys, all using the same SSN/OPC criteria, the fallback
application might be defined only to process protocol errors or other unexpected message
traffic. This would allow error responses, appropriate to the specific protocol, to be sent back to
the originator of the offending message.

The fallback application is also the only application that can receive SFR operations, or
InitialDP operations that do not contain a ServiceKey parameter.

SCCP Management Considerations for CAD
For the purposes of SCCP management, custom application distribution is identical to enhanced
distribution. SCCP management is only concerned with the disposition of the SSN and OPC
criteria.

Configuring Multiple Link Congestion Levels
The SINAP/SS7 network variants provide congestion handling in different ways, depending on
the network variant. This section describes how to configure the CCITT, China, ANSI, TTC,
and NTT network variants to handle network congestion.
3-94 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Variant Differences
In the CCITT and China network variants, you can configure the following congestion levels:

1. International One Congestion Onset, One Congestion Abatement level (the default if the
environment variable CCITT_CONGESTION_OPTION is not defined)

2. National Multiple Congestion States With Congestion Priority

3. National Multiple Congestion States Without Congestion Priority

In the ANSI, TTC, and NTT variants, the SINAP/SS7 system automatically implements
multiple congestion levels (0-3) with congestion priority. The congestion priority is set within
the client applications.

Congestion States
Multiple link congestion states enable the SINAP/SS7 system to maintain up to four levels of
signaling link congestion (0, 1, 2, and 3), and to set a link’s congestion status according to these
levels. The system uses the same congestion onset, abatement, and discard levels in all variants
of the SINAP/SS7 system.

The SINAP/SS7 system implements multiple link congestion levels on a system-wide basis so
that when you specify the thresholds for each link-congestion level, the SINAP/SS7 system
monitors each of its configured links for these thresholds. A link’s congestion status indicates
the level of congestion that the link is experiencing based on the number of messages on the
link’s SS7 driver queue. When the number of messages on the queue exceeds the number of
messages allowed for a particular congestion level, the SINAP/SS7 system increases the value
of the link’s congestion status to indicate the level of congestion the link is experiencing. As the
link becomes less congested, the SINAP/SS7 system decrements the value of the link’s
congestion status.

N O T E
In the variant, if the congestion priority level (set within the
application) is greater than the congestion discard level set for a
DPC, the message is sent. If the congestion priority level is less
than the discard level, the system discards the message. The
default message priority level is 0. (See the SINAP/SS7 User’s
Guide (R8051) for information on changing the message
priority within an application.)

In all network variants of the SINAP/SS7 system you can display and change the settings of
threshold values by issuing the MML commands, DISPLAY-SYSTAB and
CHANGE-SYSTAB, respectively. You can also display the settings of congestion onset,
abatement, and discard tables by using the SINAP/SS7 system utility, sy, from any SINAP/SS7
login window. These processes are described in Chapter 4 of the SINAP/SS7 User’s Guide
(R8051).
Application Design and Development 3-95

Considerations for Implementing SINAP/SS7 Features
Implementing Multiple Link Congestion Functionality
To implement multiple link congestion functionality in the CCITT or China network variant,
you must set the environment variable for this function before starting the SINAP/SS7
software. You can do this when you initially set up the network, or you can stop the system and
return to the UNIX prompt. Enter a value for the link congestion environment variable and
restart the SINAP/SS7 system. The system then implements congestion handling when it is
needed according to the values you defined. See Appendix B, ‘‘SINAP/SS7 Environment
Variables,” for more information on setting environment variables.
3-96 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Table 3-18 provides the environment variables available for the
CCITT_CONGESTION_OPTION.

Table 3-18. Environment Variables for CCITT and China Link Congestion (Page 1 of 3)

Environment Variable Type of Link-Congestion Handling to Use

INTERNATIONAL_1_CONGESTION The international signaling network option that
provides a single congestion onset threshold
(CONON1) and a single congestion abatement
threshold (CONAB1). It also uses a single discard
threshold (CONDIS1) .

If you do not define the
CCITT_CONGESTION_OPTION environment
variable, the CCITT and China network variants
implement the International One Congestion Onset,
One Congestion Abatement option as the default
method of handling link congestion.

NAT_MUL_CONG_WITH_PRIO The national signaling network option that allows
multiple signaling link congestion levels with
congestion priority. This option is available to both
the CCITT and China network variants by setting
the CCITT_CONGESTION_OPTION to
NAT_MUL_CONG_WITH_PRIO.

This option allows client applications to set
congestion priority based on multiple congestion
levels (0-3). This option uses these thresholds:

• Congestion Onset (CONON1, CONON2,
CONON3)

• Congestion Abatement (CONAB1, CONAB2,
CONAB3)

• Congestion Discard (CONDIS1, CONDIS2,
CONDIS3)

Note: This option is the default method of
handling link congestion for the ANSI, TTC,
and NTT network variants.
Application Design and Development 3-97

Considerations for Implementing SINAP/SS7 Features
NAT_MULT_CONG_WO_PRIO The national signaling network option that allows
multiple signaling link congestion levels without
congestion priority.

Available in the CCITT and China network variants,
this option allows the SINAP/SS7 system to
maintain up to four levels of link congestion (0-3)
and to set a link’s congestion status according to
these levels. If you specify this option, you must
also specify values for the following additional
environment variables:

• CONGESTION_STATUS - Specifies the level of
link congestion (0, 1, 2, or 3) that your SS7
network supports. (Level 0 is the lowest; level
3 is the highest.) The value 2 specifies that the
SINAP node supports three levels of link
congestion (0, 1, and 2). The value 3 specifies
that the SINAP node supports all four levels of
link congestion (0, 1, 2, and 3).

• CONGESTION_INITIAL_VALUE - Defines the
initial link congestion level that the SINAP/SS7
system uses to determine the occurrence of
congestion on a link. When the number of
MSUs on the link’s SS7 driver queue exceeds
the congestion onset threshold for the link
congestion level defined by this environment
variable, the SINAP node considers the link to
be congested with this level. Valid values are
1, 2, or 3. The default value is set to 1. This
value should not be greater than the value of
the variable CONGESTION_STATES.

• CONGESTION_TX_TIMER - Defines the
interval in seconds between congestion onset
measurements. The valid range for this value
is 1 through 255 seconds (the default is 1).
When this timer expires, the SINAP/SS7
system counts the number of messages on the
link’s SS7 driver queue and if the number of
messages exceeds the value of the
congestion onset threshold, the SINAP/SS7
system increments the link’s congestion status
by 1.

Table 3-18. Environment Variables for CCITT and China Link Congestion (Page 2 of 3)

Environment Variable Type of Link-Congestion Handling to Use
3-98 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Multiple Congestion States Without the Congestion Priority
When a link is not congested, the link’s congestion status is 0. The SINAP/SS7 system considers
a link congested when the number of messages on the link’s SS7 driver queue exceeds the
congestion-onset threshold for the congestion level defined by the environment variable,
CONGESTION_INITIAL_VALUE. For example, if CONGESTION_INITIAL_VALUE is set
to the value 2 (congestion level 2), the SINAP/SS7 system compares the number of messages
on the link’s queue to the value of the CONON2 table. As long as the number of messages on the
queue is less than the value of CONON2, the link is not considered congested. When the number
of messages exceeds this threshold, the link is considered congested. For example, if the value
of CONON2 is 110, the link becomes congested when the number of messages on its queue
exceeds 110. When this happens, the SINAP/SS7 system sets the link’s congestion status to the
value specified by the command, CONGESTION_INITIAL_VALUE, and starts the timers,
CONGESTION_TX_TIMER and CONGESTION_TY_TIMER.

When the CONGESTION_TX_TIMER timer expires, the SINAP/SS7 system measures the
number of messages on the link’s SS7 driver queue. If the number of messages on the queue
exceeds the value of the next higher level’s congestion-onset threshold (specified in the
appropriate CONON table), the SINAP/SS7 system increments the link’s congestion status by 1
and restarts the CONGESTION_TX_TIMER timer. For example, if a link’s congestion status is
currently 1, and the number of messages on its queue exceeds the value of the CONON2 table,
the SINAP/SS7 system increments the link’s congestion status from 1 to 2.

When the CONGESTION_TY_TIMER timer expires, the SINAP/SS7 system measures the
number of messages on the link’s SS7 driver queue. If the number of messages on the queue is
less the value of the next lower level’s congestion abatement threshold (specified in the
appropriate CONAB table), the SINAP/SS7 system decrements the link’s congestion status by 1
and restarts the CONGESTION_TY_TIMER timer. For example, if a link’s congestion status is
currently 3 and the number of messages on its queue is less than the value of the CONAB2 table,
the SINAP/SS7 system decrements the link’s congestion status from 3 to 2.

The SINAP/SS7 system continues to count messages and restart the congestion timers until the
number of messages on the link’s SS7 driver queue is less than the congestion abatement

NAT_MULT_CONG_WO_PRIO
(Continued)

• CONGESTION_TY_TIMER - Defines the interval in
seconds between congestion abatement
measurements. The valid range for this value is 1
through 255 seconds (the default is 1). When this
timer expires, the SINAP node counts the number
of MSUs on the link’s SS7 driver queue. If the
number of MSUs on the queue is less than the
value of the congestion abatement threshold, the
SINAP node decrements the link’s congestion
status by 1.

Table 3-18. Environment Variables for CCITT and China Link Congestion (Page 3 of 3)

Environment Variable Type of Link-Congestion Handling to Use
Application Design and Development 3-99

Considerations for Implementing SINAP/SS7 Features
threshold defined by CONAB1. When the number of messages on the link’s queue drops below
this value, the SINAP/SS7 system no longer considers the link congested.

N O T E
The information in the “Measuring Congestion for Multiple
Congestion States Without Congestion Priority Option” section
is described in Table 3-18.

Notifying the Application of Congestion
The SINAP/SS7 system notifies an application that a link is congested by sending a message to
the application’s interprocess communications (IPC) queue. The application can then either stop
sending messages or reduce the number of messages it sends, until the congestion level returns
to normal. The SINAP/SS7 system sends a message after the application has sent eight outgoing
messages over a congested link; in addition, the SINAP/SS7 system writes a message to its
alarm log.

The message can be either of the following:

• If an application is registered to receive input at the SCCP or TCAP boundary, the
SINAP/SS7 system sends the application an I_N_PCSTATE_INDIC message.

• If an application is registered to receive input at the MTP boundary, the SINAP/SS7 system
sends the application an I_MTP_STATUS message.

Link Congestion Thresholds
The thresholds for each link congestion level are defined by separate sets of system tables.
Congestion onset (CONON) tables define the upper threshold for a particular link congestion
level. Congestion abatement (CONAB) tables define the lower threshold. Congestion discard
(CONDIS) tables define the threshold before messages are discarded.

• CONON1, CONAB1, and CONDIS1 define the congestion-level-1 thresholds.

• CONON2, CONAB2, and CONDIS2 define the congestion-level-2 thresholds.

• CONON3, CONAB3, and CONDIS3 define the congestion-level-3 thresholds.
3-100 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Table 3-19 lists each congestion table and its default value.

N O T E
In the CCITT network variant, if you do not implement the
national signaling network option (multiple link-congestion
states with or without congestion priority), the SINAP/SS7
system defaults to the international signaling network option,
which has only one congestion onset and one abatement level.
The SINAP/SS7 system then uses the threshold levels for
CONON1 and CONAB1 to determine a link’s congestion status.

Priority, Sequence Control, and Quality of Service
This section describes several parameters you can use in an application to specify how the
SINAP/SS7 system should process outgoing MSUs. Two parameters support priority and
sequence control. Two parameters support protocol class and return option and define
quality-of-service (QOS) characteristics. The include files for these parameters are located in
the $SINAP_HOME/Include directory.

Table 3-19. Congestion Thresholds

Threshold Default Value

CONON1 80

CONAB1 50

CONON2 110

CONAB2 90

CONON3 140

CONAB3 120

CONDIS1 130

CONDIS2 170

CONDIS3 210
Application Design and Development 3-101

Considerations for Implementing SINAP/SS7 Features
The following list describes each parameter and indicates the structure field in which you define
its value.

N O T E
For examples of how to code your TTC and NTT network
variant’s application to use these parameters, see the sample
TTC programs tcsend.c and tcrecv.c in the directory
$SINAP_HOME/Samples/ttc.

• Priority specifies the message priority for the MSU. This parameter is valid only for SCCP
class-0 and class-1 messages. Valid values are in the range 0 through 3 (lowest to highest).
Table 3-20 shows the structures and fields in which to define this parameter, depending on
the application type.

• Sequence control specifies the value to use for the signaling link selection (SLS) field of
the MSU’s MTP routing label. This parameter is valid only for SCCP class-1 messages.
Valid values are in the range 0 through 15 for TTC and NTT, and 0 through 31 for all other
stacks excluding ANSI.

For the ANSI network variant, the default value placed into the sequence control parameter is
0 through 31. This same value is used in the sequence control parameter when you select a
five-bit SLS using the CHANGE-SLSTYPE MML command. However, if you select an
eight-bit SLS through the CHANGE-SLSTYPE command, the value placed in the sequence
control parameter is in the range of 0-255. See “SINAP/SS7 Interaction with the SS7
Network” in Chapter 2 for more details.

Table 3-20. Priority Parameters’ Structure and Field

Application
Type Structure Field

TCAP tc_dhp_t priority

tc_thp_t (ANSI) priority

SCCP sccp_ctrl_t** sccp_msg_priority

MTP msu_t li †

**For ANSI or China network variants, bits 5 and 6 of the msu_t
structure’s sio field are for the message priority (with possible values
from 0 through 3). For the CCITT variant, no message priority is defined
or used.
† MTP applications for the TTC and NTT network variants define priority
in the two high-order bits, 8 and 7, of the msu_t structure’s li field; the
remaining bits, 6 through 1, continue to be used to specify length.
3-102 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
The SLS field determines the link over which the MSU is routed. You can route multiple
MSUs over the same link by assigning the same SLS value to each MSU. Table 3-21 shows
the structure and field in which to define this parameter, depending on the application type.

• Protocol class specifies the type of protocol class to use when sending the MSU, and return
option specifies what the SINAP/SS7 system should do if an error occurs. You use a single
value to define both parameters, as described in Table 3-22.

Table 3-23 shows the structure and field in which to define the
return-option and protocol-class parameters, depending on the application type.

Table 3-21. Sequence Control Structures and Fields

Application
Type Structure Field

TCAP tc_dhp_t seq_control

trans_id_t (ANSI) sccp_seq_ctrl

SCCP sccp_ctrl_t sccp_seq_control

MTP N/A N/A

Table 3-22. Protocol Class and Return option Values

Value Description

0 Connectionless class 0, no return on error

1 Connectionless class 1, no return on error

0x80 Connectionless class 0, return on error

0x81 Connectionless class 1, return on error

Table 3-23. Return Option and Protocol Class Parameters Structure and Field

Application
Type Structure Field

TCAP tc_dhp_t qlty_of_svc

tc_thp_t (ANSI) qlty_of_svc

SCCP sccp_user_t ret_prot

MTP N/A N/A
Application Design and Development 3-103

Considerations for Implementing SINAP/SS7 Features
MTP User Flow Control
The SINAP/SS7 system supports MTP user flow control for the CCITT, China, and ANSI
network variants. The TTC and NTT network variants do not support user part unavailable
(UPU) messages. (the SINAP/SS7 system’s implementation of this feature conforms to
Telcordia specifications and follows the standards set forth in ITU-T (CCITT)
Recommendation Q.704 (1988 and 1993, Sections 11.2.7 and 15.17) UPU functionality is part
of MTP Level 3 signaling traffic flow control. This feature enables MTP to send a UPU message
to an origination user part (that is, an application) when the SINAP/SS7 system cannot deliver
an incoming message to its destination. The origination application can then arrange to stop
sending messages to that destination until it becomes available again.

N O T E
This feature is required by the China network variant.

The remainder of this section explains how to implement MTP user flow control and describes
how the SINAP/SS7 system generates a UPU message and responds to a UPU message from
another point code.

Implementing MTP User Flow Control
To activate the MTP user flow control feature, define the environment variable
MTP_USER_FLOW_CTL at a UNIX prompt before you start the SINAP/SS7 system. (For
instructions, see ‘‘Defining SINAP/SS7 Environment Variables’’ in Appendix B.)

N O T E
You need not assign a value to the MTP_USER_FLOW_CTL
environment variable; the SINAP/SS7 system verifies the
existence of the variable.

To turn off the MTP user flow control feature, remove the definition for the
MTP_USER_FLOW_CTL environment variable by following the appropriate procedure for the
shell you are using. For example, if you are using the C shell, issue the command: unsetenv
MTP_USER_FLOW_CTL.

If the MTP_USER_FLOW_CTL variable is not defined, the SINAP/SS7 system does not
generate a UPU message when it cannot deliver an incoming message, even if the destination
user part is unavailable. If the variable is defined, the SINAP/SS7 system generates a UPU
message when it receives an incoming message that it cannot deliver.

For ISUP messages, no UPU will be sent if ISMG is running, even if no ISUP application is
running. To overcome this ISUP limitation, a new feature, controlled by a SINAP environment
variable called “ISUP_UPU_FEATURE”, is introduced. ". When the user sets
ISUP_UPU_FEATURE to 1 in sinap_env.[sh|csh], the feature will be activated. At the
same time, SINAP will implicitly activate the environment variable called
3-104 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
"MTP_USER_FLOW_CTL". If the user wants "MTP_USER_FLOW_CTL" only, please do not
specify "ISUP_UPU_FEATURE".

When the feature is activated, SINAP will send User Part Unavailability (UPU) message to each
remote point code from incoming ISUP messages when the ISUP user application is down. If
both ISMG and SCRs are down, the UPU message will contain the cause of UNEQUIPPED, if
ISMG is up but SCR is down, the UPU message will contain the cause of INACCESSIBLE. The
UPU message will be only sent once for the same remote point codes. The ANSI variant of
SINAP/SS7 is based on T1.111 (1990/1992), which does not have "Unavailability cause" field
(added in 1996 T1.111) in the UPU message. As shown at 15.17.2/T1.111.4 (1992), these four
bits are coded "0000" as Spare field in UPU. This new feature be automatically disabled for
DLPC/LPCR configuration, even if we have the environment variable ISUP_UPU_FEATURE
set. This is because in DLPC/LPCR configuration, SINAP will be acting as an STP. Hence, we
can send TFP message to the remote ends to stop ISUP traffic flow.

Generating a UPU Message
If you define the MTP_USER_FLOW_CTL environment variable, the SINAP/SS7 system
generates a UPU message when either of the following situations occur.

• When an incoming MSU cannot be delivered because the specified destination user part is
unavailable, the SINAP/SS7 system’s MTP Level 3 (L3) sends a UPU message to the MTP
L3 on the OPC and generates the following event, where %s is a signaling information octet
(SIO) or SSN string and %d is an SIO or SSN number.

Lost MSU, Process Not Found (%s %d)

• When the specified user part’s input queue becomes full, or when the number of MSUs on
the queue has reached a threshold defined by the formula
threshold = Q - (Q / 10), where Q is the number of MSUs that the input queue
holds. For example, if the user part’s input queue holds 50 MSUs, the SINAP/SS7 system
will generate UPU messages for that user part when there are 45 MSUs on the input queue;
if the input queue holds 40 MSUs, its threshold is 36.

The SINAP/SS7 system supports several UPU message unavailability-cause reasons which are
documented in the 1993 edition of ITU-T recommendation Q.704, section 15.17. They explain
Application Design and Development 3-105

Considerations for Implementing SINAP/SS7 Features
why MTP could not deliver a message to its destination. Table 3-24 describes the meaning of
these messages.

Handling Incoming UPU Messages
When the SINAP/SS7 system receives an incoming UPU message, it means that one of the
applications running on the SINAP/SS7 system sent an outgoing message to a remote node but
the message could not be delivered to its destination. On receipt of an incoming UPU message,
the SINAP/SS7 system examines the upu_id_cause field of the nested structure
m_block_t.ud.ccitt_msu.mtp_ud.upu to determine why the outgoing message
could not be delivered. The upu_id_cause field, previously named user_part_id,
contains either network-congestion information or a UPU unavailability-cause reason, as
described in Table 3-25.

Table 3-25 describes the meaning of the bits in the mtp_status_t structure’s status field
and the scmg_ipc_t.primitives.pcstate structure’s pc_status field. Bit 7
indicates the field’s contents. If bit 7 is 0, the field’s 0 and 1 bits contain network-congestion
information. If bit 7 is 1, the field contains a UPU unavailability-cause reason: bits 4 through 6
contain the reason, and bits 0 through 3 contain the user part ID.

Table 3-24. Unavailability-Cause Values for UPU Messages

Unavailability-Cause Value Numeric Values Description

UPU:unknown 0 Unknown reason

UPU:unequipped remote user 1 The user part is not
equipped.

UPU:inaccessible remote user 2 The user part is
equipped but not
accessible.
3-106 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
N O T E
The unavailability-cause reason is stored in the field’s upper
four bits.

The SINAP/SS7 system uses the information in the upu_id_cause field to generate an
MTP-STATUS primitive that it sends to the appropriate MTP user part via IPC. If the
upu_id_cause field contains a UPU unavailability-cause reason, the SINAP/SS7 system
sends an MTP-STATUS primitive to the MTP user part identified by bits 0 through 3 (the user
part ID). For example, on receipt of an incoming UPU message with a user part ID of 3 and an
unavailability-cause reason of 0 (unknown), the SINAP/SS7 system sends an MTP-STATUS
primitive to SCCP management (SCMG) because SCMG’s MTP user part ID is 3. SCMG then
uses the information in the MTP-STATUS primitive to generate an N-PCSTATE primitive,
which it then broadcasts to all registered SCCP user parts.

N O T E
If the user part ID identifies multiple user parts, as in the case of
an application with multiple instances, the SINAP/SS7 system
generates an MTP-STATUS primitive for each user part. If the

Table 3-25. Status Field Bits

Bit Groupings Bits in the status or pc_status Field
7 6 5 4 3 2 1 0 Description

Group 1:
Congestion
Information

0 0 0 0 0 0 0 0 Congestion level 0

0 0 0 0 0 0 0 1 Congestion level 1

0 0 0 0 0 0 1 0 Congestion level 2

0 0 0 0 0 0 1 1 Congestion level 3

Group 2:†
UPU Message
Information

† In the UPU message information bits, yyyy is the user-part ID, which is formatted
according to ITU-T Recommendation Q.704, Section 15.17.4.

1 0 0 0 y y y y Unknown

1 0 0 1 y y y y Unequipped
remote user‡

‡ If the UPU message information bits indicate unequipped remote user, the SINAP/SS7
system cannot send a primitive to the user part because it is not currently active. In this case,
the SINAP/SS7 system logs an event message to the Alarm Log file and discards the UPU
message.

1 0 1 0 y y y y Inaccessible
remote user
Application Design and Development 3-107

Considerations for Implementing SINAP/SS7 Features
specified user part is not active, the SINAP/SS7 system logs an
event message to the Alarm Log file and discards the UPU
message.

To evaluate the UPU message’s unavailability-cause reason, your application should examine
the MTP-STATUS or N-PCSTATE primitive sent by the SINAP/SS7 system. Use the
information in Table 3-25 to interpret the UPU message’s meaning. (Note that the structures
containing these primitives, mtp_status_t and pcstate, are defined in the prims.h
include file.)

• MTP applications should examine the mtp_status_t structure, which contains the
MTP-STATUS primitive. The UPU unavailability-cause reason is defined in the structure’s
status field.

• SCCP applications should examine the scmg_ipc_t.primitives.pcstate
structure, which contains the I_N_PCSTATE primitive. The UPU unavailability-cause
reason is defined in the structure’s pc_status field.

For an example of how to code an application to examine the MTP-STATUS primitive, see the
$SINAP_MASTER/Samples/ccitt/mtprecv.c sample program. For an example of
how to examine the I_N_PCSTATE primitive, see the I_N_PCSTATE_INDIC switch
statement in the $SINAP_MASTER/Samples/ccitt/tcrecv.c sample program.
(SINAP_MASTER is the directory in which the SINAP/SS7 software is installed; the default is
/opt/sinap_master for the HP-UX operating system. You can examine the MASTER field
in the /etc/sinap_master file to determine where the SINAP/SS7 software is installed on
your system.)

XUDT and XUDTS Messages (CCITT and China)
SINAP/SS7 networks configured for CCITT or China support the following two types of
messages that might be exchanged by applications running in your network:

• Extended unitdata (XUDT) messages carry segmented message data for connectionless
protocol classes, 0 and 1. The message sends data with or without optional parameters.
XUDT message segments are those message signaling unit (message) segment sizes that
are smaller than the default or maximum segment size used to exchange messages in the
SINAP/SS7 system.

• The SINAP/SS7 system sends extended unitdata service (XUDTS) messages to the
originating SCCP application when an XUDT message with optional parameters cannot be
delivered to its destination because of an error. An XUDTS message is sent only when the
return on error option is set in the XUDT message.

Applications can exchange XUDT messages if they register with CASL at the SCCP XUDT or
TCAP XUDT boundary. However, applications can still use the existing API to exchange
unitdata (UDT) messages even if they are registered at the SCCP XUDT or TCAP XUDT
boundary.
3-108 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
The mechanism for determining whether the message type is UDT or XUDT differs for
applications registering at the SCCP and TCAP boundaries. An application registering at the
SCCP boundary specifically builds a message of the type, UDT or XUDT, and sets the desired
message size. An application registering at the TCAP boundary uses the total size of all
components to decide the message type. The program can override this decision by using the
TC_REQUESTX primitive in the tblock when the ca_put_tc() function is called.

The maximum segment size, including the length of the data and address parameter fields in the
MSU, depends on the network variant being used.

XUDT functionality segments messages up to 2048 bytes long into multiple XUDT message
segments up to a maximum of 16. The maximum segment size (including the length of the data
and address parameter fields in the MSU) depends on the network variant you are using. For the
CCITT variant, the maximum segment size is 254 bytes. For the China variant, the maximum
segment size is 251 bytes.

All XUDT messages that are segments of the same message are assigned the same unique
identification number or local reference number (LRN). Each time an LRN is released, it cannot
be reused on a node-wide basis for a minimum period of time defined by the SCCP freeze timer,
SCTX. This timer defines the time period during which an LRN assigned to multiple segments
of the same message is frozen.

N O T E
The SINAP/SS7 system automatically provides the freeze timer
value in the current software release and does not implement
any changes you might make to the SCCP SCTX timer. See
Chapter 4 of the SINAP/SS7 User’s Guide (R8051) for
information on displaying and changing the XUDT timer
values.

The message reassembly process must receive all segments and reassemble the message within
the time period specified in the SCCP reassembly timer, SCTY. There is one SCTY timer per
node. All segments of an XUDT message must be received and reassembled before the SCTY
timer expires. The default value is 1 second. If the message is not reassembled in the allowed
time period, the SINAP/SS7 system discards the message and sends an XUDTS message to the
originating application if the XUDT message had return message on error specified
in the protocol class field. This error message indicates that the message was not delivered
because of an error. The XUDTS messages contains the first segment of the XUDT message.
The SINAP/SS7 system handles XUDTS messages and XUDT messages in the same manner.

You can display the XUDT timer values using the following MML command:

DISPLAY-SYSTAB:TABID=SCCPTM,TIMER=SCTY;

or use the send_cm command to issue the command.
Application Design and Development 3-109

Considerations for Implementing SINAP/SS7 Features
You can change an SCCP XUDT timer value through the Terminal Handler using the MML
command, CHANGE-SYSTAB. See Chapter 4 of the SINAP/SS7 User’s Guide (R8051) for
more information on displaying and changing XUDT timer values.

XUDT MSU Segment Sizes
The system guarantees that each MSU segment generated for an XUDT message is the same
size, except for the last segment. You can use the default segment size for your network variant,
or define a smaller size.

Issue the following sy command to view the default XUDT MSU segment size for your system:

#sta,xudt

The SINAP/SS7 system uses the maximum segment size as the default for the network variant
being used. For CCITT, the maximum segment size is 254 bytes. For China, the maximum
segment size is 251 bytes. Both sizes include the data and address fields of the MSU.

You can define a segment size that is smaller than the maximum (default) size by
uncommenting the following environment variable in the SINAP environment file,
$SINAP_HOME/Bin/sinap_env.[csh or sh], when you start the SINAP/SS7 system:

SINAP_XUDT_SEGMENT_SIZE

N O T E S
1. The SINAP/SS7 system uses the default segment size

unless you define the SINAP_XUDT_SEGMENT_SIZE
environment variable, or if you specify a segment size
greater than the maximum allowed for your variant.

2. The segment size relates to the size of the MSU going
across the network. The segment size is used to tune the
network and is not used to determine when TCAP should
use UDT or XUDT messages.

Validating the XUDT Message Segment Size
The nmnp process validates the value specified in the SINAP_XUDT_SEGMENT_SIZE
environment variable shared memory static tables. Each process that registers for either the
SCCP or TCAP XUDT boundary, reads the value from shared memory and stores it in the
global variable, CA_XUDT_SEG. The ca_put_msu_int function uses the CA_XUDT_SEG
global variable to perform segmentation processing.

N O T E
The ca_put_msu_int function is an internal function called
directly by either ca_put_msu() or ca_put_tc(). See
Chapter 6 for more information on these CASL functions calls.
3-110 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Programming Considerations for XUDT/XUDTS Messages
Application developers should consider the information in the sections that follow when
developing applications that use XUDT messages.

CASL Registration
To implement the XUDT/XUDTS functionality, an application must register with CASL using
one of the following ss7_input_boundary parameters specified in the
register_reg_t structure in the register.h header file.

• SS7_INPUT_BOUNDARY_SCCPX

• SS7_INPUT_BOUNDARY_TCAPX

Any application that registers using either of these boundaries requires an additional set of
buffers for XUDT message segmentation and reassembly processing. The application must use
the reassembly_count parameter in the register_reg_t structure in register.h
to define the number of reassembly buffers it requires. The number of buffers defined
determines the number of incoming XUDT messages that can be simultaneously reassembled
at any point in time. CASL uses one reassembly buffer per incoming XUDT message.

The Node Management process cl_register() internal function ensures that multiple
instances of the same application register at the same input boundary.

An application can also use the existing API to exchange UDT/UDTS messages, even when it
is registered at the SCCP XUDT or TCAP XUDT boundary.

SCCP Applications
After registering with CASL using the parameter SS7_INPUT_BOUNDARY_SCCPX, an
SCCP application builds the XUDT mandatory and variable parameters (defined in mblock_t
in the mblock.h file), builds the data parameter in a private buffer, and inserts the pointer to
data and size in appropriate fields in the mblock_t structure. When the application program
issues a ca_put_msu(), CASL segments the message for transmission on the network.
When the application issues a ca_get_msu() as the XUDT message is read from the
network, CASL blocks the application until the complete message is received, then passes the
message pointer in mblock.

Before sending an XUDT message, an SCCP application program performs the following
processing:

• Puts the data into a user buffer large enough to contain the data.

N O T E
The application does not specify the size of the data field, but
places a pointer to the user data buffer and ignores the single
octet data length field. As the data is segmented, CASL inserts
the data length in the data parameter on each MSU. A single
Application Design and Development 3-111

Considerations for Implementing SINAP/SS7 Features
octet cannot specify the length of a large message (more than
the maximum allowed for the variant being used).

• Places a pointer to the user data buffer in [m_block_t->]sc_prim.p_user_data
(in the sccp_prim_t structure in mblock.h).

• Puts the size of the data field in [m_block_t->]sc_prim.user_data_size (in
the sccp_prim_t structure in mblock.h). The application is not required to put the
overall message size in the [m_block_t->]mtp_ctrl.msg_size field.

• Stores the SC_CTRL_EXUNITDATA in [m_block_t->]sc_ctrl.sccp_ctrl (in
the sccp_ctrl_t structure in mblock.h).

• Uses the ccitt_sccp_xuser_t message format structure (for the CCITT network
variant) or the ansi_sccp_xuser_t message format structure (for the China network
variant) to format the XUDT message.

• Stores the SC_N_EXUNITDATA in the

[m_block_t->]ud.msu.mtp_ud.sccpx.msg_type field

Note that this reference and the reference

[m_block_t->]ud.ccitt_msu.mtp_ud.sccpx.msg_type

can both be used for standard CCITT messages. However, for standard China messages in
the China variant, you should modify the reference as follows:

 [m_block_t->]ud.ansi_msu.mtp_ud.sccpx.msg_type

• Stores the maximum number of global title translations (up to 15) a message can undergo
in the [m_block_t->]ud.msu.mtp_ud.sccpx.hop_counter field.

• Stores 0 in the [m_block_t->]ud.msu.mtp_ud.sccpx.op_off field, since
CASL uses this field internally.

• Initializes the remaining fields the same way it does a for a UDT request.

N O T E
All fields are accessed by
[m_block_t->]ud.msu.mtp_ud.sccpx ret_prot,
cld_off, clg_off, and tcap_off.

• Stores the address fields in the [m_block_t->]ud.msu.mtp_ud.sccpx.ud field.

To send an XUDT message an SCCP application calls the ca_put_msu() function and
passes a pointer to the m_block_t structure that holds the XUDT message. CASL then
segments the data buffer and sends the number of XUDT MSUs required to carry the data.
3-112 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
To read an XUDT message, the application program calls the ca_get_msu() function.
CASL blocks the application program until one of the following conditions occurs:

• A complete XUDT message is reassembled. CASL returns a pointer to the m_block_t
that holds the message. The [m_block_t->]sc_ctrl.sccp_ctrl of the message
is set to SC_CTRL_EXUNITDATA. The data parameter portion of the message is
contained in a separate buffer pointed to by
[m_block_t->]sc_prim.p_user_data. The length of the data parameter is
stored in [m_block_t->]sc_prim.user_data_size. The mandatory and
variable fields are stored in [m_block_t->]ud.msu.mtp_ud.sccpx.ud.

 The SCCP portion of the message uses the XUDT format defined in one of the following
structures, depending on the network variant being used:

• ccitt_sccp_xuser_t

• ansi_sccp_xuser_t (for the China variant)

• A nonxUDT MSU (SC_CTRL_UNITDATA, or SC_CTRL_NOTICE) is received. CASL
returns a pointer to the m_block_t that holds the message. The
[m_block_t->]sc_ctrl.sccp_ctrl is set to either SC_CTRL_UNITDATA or
SC_CTRL_NOTICE.

N O T E
Both UDTS and XUDTS messages are received at the SCCP
boundary as SC_CTRL_NOTICE messages. It is up to the
application to check the msg_type field in the SCCP user
structure to determine if the message is a UDTS or XUDTS
message.

The data is stored in the [m_block_t->]ud.msu.mtp_ud.sccp.ud for
SC_CTRL_UNITDATA and SC_CTRL_NOTICE messages carrying a UDTS. It is stored
in [m_block_t->]ud.msu.mtp_ud.sccpx.ud for SC_CTRL_NOTICE messages
carrying a XUDTS. The length of the overall message is stored in
[m_block_t->]mtp_ctrl.msg_size for both SC_CTRL_UNITDATA and
SC_CTRL_NOTICE messages (in the mtp_ctrl_t structure in mblock.h).

• There is no data to be returned to the application. In this case, the application, returns -1
and errno is set to EINTR. This condition occurs when a blocked read
(ca_get_msu_(wait)) has been specified. Otherwise, the application returns the error
CA_ERR_NO_MSUS. In either case, the application should call ca_get_msu() again.

When CASL detects a reassembly error such as an out-of-order segment, a reassembly timeout,
or a lack of reassembly buffers, it terminates the reassembly processing associated with the
message and returns an XUDTS message across the network containing the appropriate error
message (assuming the return message on error option was set for the XUDT message). CASL
Application Design and Development 3-113

Considerations for Implementing SINAP/SS7 Features
then continues to process messages in the receive buffer until one of the following conditions
occurs:

• A complete XUDT message is reassembled

• A nonxUDT message is received

• Processing of the receive buffer is complete and no messages exist to return to the
application

Then, CASL returns the appropriate value.

TCAP Applications
After a TCAP application has registered with CASL using the parameter
SS7_INPUT_BOUNDARY_TCAPX, CASL allocates 2048-byte component buffers, one per
tblock. The [t_block_t->].chp.extnd_data_ptr in the associated tblock (in
the t_block_t and tc_chp_t structures in tblock.h) points to each allocated buffer.
CASL allocates these component buffers in addition to the XUDT reassembly buffers it
allocates. The data size is put in [t_block_t->].chp.extnd_data_size.

N O T E
The tblock data length field
([t_block_t->].chp.tot_data_len) is set to 0.

If the size of the component fits in a single MSU (less than or equal to MAX_DATA_SIZE_C),
the component data is put in [t_tblock_t->].chp.data and the length is put in
[t_tblock_t->].chp.tot_data_len.

N O T E
Be sure to set the unused fields of the extended data length field
([t_block_t->].chp.extnd_data_size and/or
[t_tblock_t->].chp.tot_data_len) to 0.

Once the reassembly and component buffers are allocated, the TCAP application can build large
messages using XUDT segmented messages (greater than 240 octets), and/or put many
segments (as many as fit in a 2048-byte buffer). The application issues a ca_put_tc()
function call with the tblock index as a parameter. As the application issues each
ca_put_tc(), it saves the message segments in a buffer until the application issues a
ca_put_tc() for the transaction. Then the TCAP application builds all segments in a buffer
and calls one of its internal functions (ca_put_msu_int()) to write the message to the
network.

CASL segments the message and sends the number of MSUs required to move the message
across the network. At this point CASL determines whether to use a UDT or XUDT message to
carry the data based on the total length of the combined components. CASL sends a UDT if all
3-114 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
the components fit into a single MSU. Otherwise, CASL sends an XUDT message if the
combined size of the components is less than or equal to 2048 bytes.

The application can ensure the components are carried in a XUDT message, by using the
TC_REQUESTX primitive in the [t_block_t->].primitive_type field of the
transaction component. The use of the TC_REQUESTX primitive is only valid for applications
registered at the SS7_INPUT_BOUNDARY_TCAPX input boundary).

The XUDT message also contains a mandatory hop counter parameter which limits the number
of global title translations (GTTs) that can be performed on the message. On outbound TCAP
messages, (TCAP) CASL provides a default count of 12. You can override this default value by
inserting a value in [t_tblock_t].dhp.hop_count (in the tc_dhp_t structure in
tblock.h).

You can set an environment variable (TCRELAY=X) and the SINAP node will update the
hop_count field in the tc_dhp_t message (in the t_block_t structure) with the
incoming hop_count value. This allows TCAP applications to access and process the latest
hop counter values.

Valid range for the hop counter is 1 through 15. CASL uses the value (if specified) in
dhp.hop_count to write the TCAP message.

When the application issues a ca_get_tc() function call (either blocked or unblocked) and
the message is contained in an XUDT message, CASL blocks the application until the complete
message is received. The data portion of the message is parsed for components. The
ca_get_tc() returns an index to the tblock or an error (the same as for UDT messages).
If the component fits in the tblock, it is returned in the tblock. If the component is larger
than the data area of the tblock, a new pointer (chp.extnd_data_ptr) and size field
(chp.extnd_data_size) point to the large component.

XUDT Message Formats
The XUDT message format is different from the UDT message format, as shown in Table 3-26.
Your application should use the structure in mblock.h for the message format that
corresponds to the network variant you are using.

Table 3-26. XUDT Message Format

Network Variant Structure to Use

CCITT ccitt_sccp_xuser_t

China ansi_sccp_xuser_t
Application Design and Development 3-115

Considerations for Implementing SINAP/SS7 Features
N O T E
Since the China network variant uses ANSI-style point code
and message formats, the China variant must use the ANSI
structure for XUDT message formats.

1996 ITU-T SCCP XUDT/XUDTS Importance Parameter Support
To enable 1996 ITU-T SCCP Importance Parameter (1996 ITU-T Q.713 3.19) support in
XUDT/XUDTS messages (CCITT only), define the following environment variable before
starting the SINAP/SS7 system:

SCCP_ITU96_IMPORTANCE_PARM

For user application registering at SS7_INPUT_BOUNDARY_SCCPX boundary, a field -
importance_parm - has been added at mblock.h sccp_ctrl_t data structure as U8 data type to
represent for the 3-bit Importance values. Since 0 is also a valid Importance value, the MSB of
importance_parm is used as a flag to indicate if Importance parameter is included and the 3
LSBs of importance_parm arethe Importance values.

For user application registering at SINAP SS7_INPUT_BOUNDARY_TCAPX boundary, a
field - importance_parm - has been added at tblock.h tc_dhp_t data structure, which has the
similar representation/usage as the importance_parm at mblock.h sccp_ctrl_t.

To access or set the values of the Importance Parameter at the XUDT message received or to be
sent, the user application must access or set the importance_parm field at the corresponding
m_block_t or t_block_t data structure accordingly.

Processing SCCP Subsystem Tests in XUDT Messages
To enable SCCP subsystem tests in XUDT messages (CCITT only), define the following
environment variable before starting the SINAP/SS7 system:

CCITT_XUDT_SCMG

If you do not define this variable, the SINAP/SS7 system discards any XUDT SCCP
management (SCMG) messages it receives since SCMG messaging is normally handled only
by UDT messages.

If the CCITT_XUDT_SCMG environment variable is enabled, then the SINAP node: sends a
subsystem allowed (SSA) message to the original calling address if the subsystem (SSN)
specified in the XUDT message is allowed. The SSA is sent in a UDT message.

You do not need to specify a value for the environment variable. The SINAP/SS7 system only
verifies the existence of the variable.
3-116 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
To enable SCCP subsystem tests in XUDT messages automatically each time you start the
SINAP/SS7 system, uncomment the CCITT_XUDT_SCMG environment variable in
$SINAP_HOME/Bin/sinap_env.[csh or sh].

Handling SNM Messages with Nonzero SLCs
SINAP/SS7 networks configured for CCITT, China, or ANSI support handling SNM messages
with non-zero SLCs. The 1988 ITU-T (CCITT) MTP standards (Q.704) require that all MTP
Level 3 SNM messages use a signaling link code (SLC) of 0. One feature of the 1993 ITU-T
(CCITT) (Q.704) standards is the ability to use a nonzero SLC value for any SNM message that
is not related to a signaling link, such as a signaling route management (SRM) message.

In the CCITT and China network variants, you must activate this feature on a CCITT or China
network variant node by defining the environment variable MTP_WHITE_BOOK_SLC on that
node before starting the SINAP/SS7 system. You need not assign a value to the variable. The
SINAP/SS7 system simply verifies that the variable exists. For the ANSI network variant, you
do not need to specifically set this variable; non-zero SLC is the default. For instructions on
defining variables, see Appendix B, ‘‘SINAP/SS7 Environment Variables.”

If the MTP_WHITE_BOOK_SLC variable is not defined, the SINAP/SS7 system discards any
incoming SNM messages whose SLC is not 0. If the variable is defined, the SINAP/SS7 system
allows incoming SNM messages to have an SLC value other than 0.

N O T E
In the ANSI network variant, there is no need to set the
MTP_WHITE_BOOK_SLC variable. The ANSI variant allows
nonzero SLC as the default behavior.

The MTP Restart Process
The Message Transfer Part (MTP) restart process enables the MTP at a signaling point that has
just become available to bring sufficient signaling links into the available state to handle
expected traffic and to stabilize its routing before user traffic is restarted to the signaling point.
The MTP restart process helps prevent routing problems that can occur after the system resumes
sending user traffic following a failure due to invalid routing information or too many parallel
activities, such as link activation or changeback. MTP restart ensures that the system has
sufficient signaling links available to handle the expected traffic volume and the route to the
signaling point is stable. A signaling point is unavailable if all connected links are unavailable.
It becomes available when at least one link connected to the signaling point becomes available.

MTP restart is supported by the CCITT, ANSI, and China network variants and adheres to the
1993 ITU-T recommendations for MTP and the 1992 ANSI standards for MTP. The TTC and
NTT network variants do not support MTP restart functionality.
Application Design and Development 3-117

Considerations for Implementing SINAP/SS7 Features
Since MTP restart requires links to other nodes in the SS7 network, MTP restart functionality
does not apply to the operation of a single node. If, for any reason (such as testing or performing
local loopback procedures), you operate a single SINAP node, you should not enable the MTP
restart feature.

You activate the MTP restart process by enabling specific environment variables for the
network variant you are configuring. This section describes the MTP restart process and
discusses the following topics:

• An overview of MTP processing

• Enabling MTP restart functionality

See the SINAP/SS7 User’s Guide (R8051) for information about displaying MTP restart
information and changing system table timer and link congestion threshold settings.

MTP Restart Processing Overview
If the MTP restart environment variable is set, the SINAP/SS7 system performs MTP restart
(also called signaling point restart control (SPRC)) whenever you activate the SINAP/SS7
system on a node. The MTP restart procedure can be applied when a SINAP node is the
restarting signaling point or when a node adjacent to the SINAP node is the restarting signaling
point. The process provides time for the node’s links and routes to come into service before the
node begins sending user traffic over them. Throughout MTP restart, the node activates and
unblocks its links using normal signaling link management (SLM) procedures. This ensures a
smooth flow of traffic through the network.

During MTP restart, the node does not pass user traffic between its applications and the
applications running on other nodes. Instead, the node exchanges network-status information
with its adjacent nodes using the following types of messages:

• Signaling link test management (SLTM)

• Signaling link test acknowledgment (SLTA)

• Traffic restart allowed (TRA)

• Transfer prohibited (TFP)

• Transfer restricted (TFR)

• Transfer allowed (TFA)

• Transfer restart waiting (TRW) (ANSI only)

These messages indicate the availability of the links and routes between the nodes. Once MTP
restart ends, the MTP informs each of its user parts (that is, applications) that they can begin
passing user traffic.

Several timers define time limits for MTP restart activities. The timers and values differ
between the network variants and are described in the following sections. To change these timer
values, see Chapter 4 of the SINAP/SS7 User’s Guide (R8051).
3-118 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Enabling MTP Restart Functionality
The SINAP/SS7 system performs the following major steps to execute MTP restart:

• Initiates MTP restart processing

• Processes messages during MTP restart

• Completes MTP restart

The CCITT, China, and ANSI network variants support MTP restart functionality, but are
activated by different environment variables and differ slightly in their timer values and
functionality. The major differences between the variants are as follows:

• The ANSI network variant has a larger set of timers and protocols concerning messages
received, timer expiration, and timer stoppage

• The ANSI network variant contains the traffic restart waiting (TRW) message.

The following sections describe how to run MTP restart on each network variant.

MTP Restart Processing (CCITT and China)
To implement the MTP restart on your system, define the appropriate environment variable on
each node, as follows.

• Define the following variable on the node before starting the SINAP/SS7 system:
MTP_WHITE_BOOK_RESTART. You need not assign a value to the variable. The
SINAP/SS7 system simply verifies the variable exists.

If the variable is defined, the MTP restart process is performed whenever you start or restart
the SINAP/SS7 system on the node. If the MTP_WHITE_BOOK_RESTART variable is not
defined, MTP restart is not performed when the SINAP/SS7 system is started or restarted
on the node.

• To enable MTP restart functionality automatically each time you start or restart the
SINAP/SS7 system, uncomment the MTP_WHITE_BOOK_RESTART environment
variable in $SINAP_HOME/Bin/sinap_env.[csh or sh].

At the beginning of the MTP restart process, the SINAP/SS7 system activates the L3T20 timer
and marks all concerned routes ALLOWED. The L3T20 timer defines the maximum amount of
time allowed to complete all MTP restart activities. The L3T21 timer defines the amount of
time to stop sending traffic to another node because that node is performing MTP restart. (See
“Displaying the MTP and SCCP System Tables” in Chapter 4 of the SINAP/SS7 User’s Guide
(R8051) for information about these timers.)

While the MTP restart process is active, the SINAP/SS7 node and its adjacent nodes monitor all
of the TFA, TFP, and TFR messages they exchange. The SINAP/SS7 system and its adjacent
nodes use the information in these messages to mark those routes available or unavailable and
to update the MTP routing tables. The MTP restart procedure works effectively only if the status
of the links and routes remains fairly stable.
Application Design and Development 3-119

Considerations for Implementing SINAP/SS7 Features
During MTP restart, the SINAP/SS7 system handles incoming and outgoing messages as
follows:

• The SINAP/SS7 system performs normal processing of SLTM and SLTA messages, which
have a service indicator (SI) of 0001. (The SI consists of bits 0 through 3 of the service
information octet (SIO) field.)

• The SINAP/SS7 system only processes signaling network management (SNM) message
types: TRA, TFP, TFR, and TFA. The SINAP/SS7 system discards all other SNM messages
types, such as:

• Changeover and changeback message (CHM)

• Signaling-data-link-connection-order message (DLM)

• Emergency-changeover message (ECM)

• Signaling-traffic-flow-control message (FCM)

• Management inhibit message (MIM)

• Signaling-route-set-test message (RSM)

• User part flow control (UFC) message groups

SNM messages have a service indicator (SI) of 0000.

• The SINAP/SS7 system discards all incoming and outgoing MTP messages whose SI is not
0000 or 0001.

• The SINAP/SS7 system discards all incoming and outgoing messages (user traffic) for all
types of applications: TCAP, SCCP, and ISUP.

Completing MTP Restart
For the CCITT, China, and ANSI network variants, MTP restart ends when the designated
timers expire, or when the SINAP/SS7 node receives TRA messages over more than half of all
currently activated link sets, (whichever occurs first).

At the completion of MTP restart, the SINAP/SS7 node sends a TRA message to each of its
adjacent nodes to indicate it is ready to accept user traffic. The SINAP/SS7 system informs each
of its local MTP user parts that restart has ended by sending each user part an MTP-RESUME
primitive that indicates the accessibility of each adjacent node. The SINAP/SS7 node can then
resume passing user traffic for its MTP user parts.

N O T E
If MTP restart is enabled, the SINAP/SS7 system does not send
the MTP-RESUME primitive a specific timer (L3T20 for
CCITT/China variants or L3T23 for ANSI variants) expires or
until MTP restart ends. If MTP restart is not enabled, the
3-120 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
SINAP/SS7 system sends a primitive whenever a link set or
route set comes into service.

See “Displaying the MTP and SCCP System Tables” in Chapter 4 of the SINAP/SS7 User’s
Guide (R8051) for a description of the MTP restart timers and valid timer settings.

MTP Restart Processing for the ANSI Network Variant
To enable the SINAP/SS7 system to perform MTP restart (based on the 1992 edition of ANSI
standards) on a particular node, define the following environment variable before starting the
SINAP/SS7 system:

MTP_ANSI92_RESTART

You need not assign a value to the environment variable. The Node Management Parent (nmnp)
process validates the existence of the environment variable.

N O T E S
1. You should be familiar with the fundamental operation of

the ANSI MTP restart process as indicated in Section 9 of
the ANSI T1.111.4 standards. MTP restart is not applicable
to wholly single node operation. Disable the feature if
running a single node since this feature requires links to
other nodes in the SS7 network.

2. If you do not define this variable, the ANSI restart
functionality is not implemented and the network
processing is based on the 1990 ANSI standards for MTP,
which do not include restart functionality.

3. To enable MTP restart functions automatically each time
you start the SINAP/SS7 system, uncomment the
MTP_ANSI92_RESTART environment variable in
$SINAP_HOME/Bin/sinap_env.[csh or sh].

MTP restart can be applied in two different ways: using a SINAP node as the restarting
signaling point, or using a node adjacent to the SINAP node as the restarting signaling point.
Both options are described in the following sections. Only a full restart can be performed; the
ANSI network variant does not support a partial restart.

ANSI MTP Level 3 timers define the maximum amount of time the restart signaling point or its
adjacent signaling points can take to perform specific MTP restart tasks. You can access these
timers by executing the MML command, CHANGE-SYSTAB. (See Chapter 4 of the SINAP/SS7
User’s Guide (R8051) for more information.)
Application Design and Development 3-121

Considerations for Implementing SINAP/SS7 Features
Message Processing During MTP Restart
The signaling point carries out link activation procedures on as many other unavailable links as
possible. When the first link goes into the in-service state at Level 2, the restarting signaling
point begins accepting only the SNM message types: TFP, TFR, TFA, TRA, TRW, CBD, and
CBA that have an SI of 0000 and SLT and SLTA messages with an SI of 0010. It discards any
other SNM message types.

While a SINAP node is restarting, user traffic (for example, SCCP and TCAP traffic) is
discarded. When an adjacent node is restarting, user traffic to and from the adjacent destination
is discarded.

Performing MTP Restart on a SINAP Node
If the environment variable, MTP_ANSI92_RESTART is defined and all links from this SINAP
node are unavailable, the node initiates a full MTP restart.

If the environment variable is defined, the interval for which the SINAP node is unavailable is
set to persist for at least the time period defined in timer T27 (2 through 5 seconds). This ensures
adjacent points are aware the restarting node is unavailable.

The node attempts to bring a predetermined number of links in each of its link sets into the
available state. Links that are transmitting or receiving processor outage status units become
ineffective since SINAP does not support local processor outage (LPO). In this case, MTP
restart operations resume after timer T27 expires. Messages buffered in MTP Level 2 during the
period of unavailability on those transmitting or receiving links are discarded unless the
messages were buffered for a period less than the interval defined in timer T1. The SINAP node
carries out link activation procedures on as many other unavailable links as possible.

When the first link goes into the in-service state at Level 2 or another route becomes available
(triggered by the receipt of a TFA, TFR, or TRA message or by the corresponding link set
becoming available), the restarting node processes any TFP, TFR, TFA, TRA, TRW, CBD, and
CBA messages. The SINAP node starts T22 and T26 timers either when the first signaling link
goes into the in-service state at Level 2, or when the first signaling link becomes available at
Level 3.

When the restarting node receives a TRW message before user traffic restarts on the link(s) to
the signaling point that sent the TRW message, timer T25 starts. Traffic cannot restart on that
link set until the restarting node receives a TRA message or the timer expires.

When the first signaling link of a signaling link set is available, the restarting node immediately
restarts the MTP message traffic terminating at the far end of the link set. The node also sends
a TRW message to the signaling point at the far end of the link set.

When timer T26 expires, the node restarts timer T26 and sends a TRW message to the adjacent
signaling points connected by an available link.

Level 3 management stops timer T22 when sufficient links are available to carry the expected
signaling traffic. When timer T22 expires or is stopped, the restarting SINAP node starts timer
3-122 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
T23. During the T23 period, the signaling point receives additional TFP, TFR, TRA, and TRW
messages. After TRA messages are received from all available links or Level 3 management
determines sufficient TRA messages were received and traffic can be handled, timer T23 is
stopped.

N O T E S
1. The SINAP/SS7 system counts the number of available

links. When 50% of the load-sharing links are available, the
SINAP/SS7 system stops timer T22 and starts T23. Timer
T23 stops when 50% of the expected TRA messages are
received.

2. Although ANSI does not support partial restart, you can
simulate a partial restart by assigning a small value to T22
and T23 timers.

When timer T23 stops or expires, timer T26 stops. The restarting node sends TRA messages to
adjacent signaling points and starts user traffic by sending users MTP-RESUME primitives for
all accessible destinations. The node also starts timer T29 for all signaling points to which a
TRA message was sent.

If the first link in a previously unavailable link set becomes available while T23 or T24 is
running, the restarting node sends a TRW message to the point at the far end of the link.

The SINAP/SS7 system does not support ANSI timers T24 and T30, which are timers for an
STP.

Performing MTP Restart on an Adjacent Node
The SINAP/SS7 system considers the MTP of an adjacent signaling point is restarting when the
first link in a direct link set is in the in-service state at Level 2 or another route becomes
available (triggered by the receipt of a TFA, TFR, or TRA message or by the corresponding link
set becoming available). At this point, the SINAP node processes TRW, TRA, TFP, TFR, and
TFA messages from the restarting signaling point. Timer T28 starts at this point or when the
first signaling link becomes available at MTP Level 3. The changeback procedure is executed
at the end of adjacent MTP restart.

If the SINAP node receives a TRW message from the adjacent restarting signaling point while
timer T28 is running or before T28 starts, the node starts timer T25 and stops T28 if it is running.
If the node receives a TRW message from the adjacent restarting signaling point while timer
T25 is running, the node restarts timer T25.

When the first link in a link set to the adjacent restarting point becomes available, the SINAP
node sends a TRA message to the adjacent restarting signaling point.

After the SINAP node receives a TRA message from the adjacent restarting point, the SINAP
node stops T25 or T28 (whichever is running) and restarts traffic on the link set to the adjacent
Application Design and Development 3-123

Considerations for Implementing SINAP/SS7 Features
restarting point. The node sends MTP-RESUME primitives to users concerning the adjacent
restarting point and any destinations made accessible by it.

When timer T28 expires, the SINAP node restarts traffic on the link set to the adjacent restarting
point if a TRA message was not sent to it. If one was sent, the node starts T25, completes
sending TFP and TFR messages, and sends a TRA message. Then, unless a TRW message was
received from the adjacent restarting point without a subsequent TRA message, the SINAP node
stops timer T25 and restarts traffic on the link set to the adjacent restarting point.

If timer T25 expires, the node restarts traffic on the link set to the adjacent restarting signaling
point. After traffic restarts, if the node does not receive a TRA message from the adjacent
restarting point, the node restarts timer T29. If the node receives an unexpected TRA or TRW
message from an adjacent restarting signaling point, the node returns a TRA message to the
adjacent restarting point originating the unexpected message and starts timer T29.

A received TRW or TRA message is not unexpected if T22 or T23 is running and a direct link
is in-service at Level 2 to the point originating the message, or if T25, T28, T29, or T30 is
running for the signaling point that originated the message.

Completing MTP Restart
For the CCITT, China, and ANSI network variants, MTP restart ends when the designated
timers expire, or when the SINAP/SS7 node receives TRA messages over more than half of all
currently activated link sets, (whichever occurs first).

At the completion of MTP restart, the SINAP/SS7 node sends a TRA message to each of its
adjacent nodes to indicate it is ready to accept user traffic. The SINAP/SS7 system informs each
of its local MTP user parts that restart has ended by sending each user part an MTP-RESUME
primitive that indicates the accessibility of each adjacent node. The SINAP/SS7 node can then
resume passing user traffic for its MTP user parts.

N O T E
If MTP restart is enabled, the SINAP/SS7 system does not send
the MTP-RESUME primitive until timer L3T20 (CCITT/China)
or L3T23 (ANSI) expires or until MTP restart ends. If MTP
restart is not enabled, the SINAP/SS7 system sends a primitive
whenever a link set or route set comes into service.

See “Displaying the MTP and SCCP System Tables” in Chapter 4 of the SINAP/SS7 User’s
Guide (R8051) for a description of the MTP restart timers and the valid timer settings.

MTP Time-Controlled Changeover
The SINAP/SS7 system supports time-controlled changeover (TCCO) procedures, as defined
in the 1993 ITU-T (CCITT) Recommendations and 1992 ANSI Recommendations for MTP.
You activate this TCCO feature on a SINAP node by setting the appropriate environment
3-124 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
variable for the network variant being used. TCCO supports handling of long-term or short-term
processor outages or changeover orders received from the remote end during the MTP Level 3
T1 timer period.

This section provides an overview of TCCO processing for both short- and long-term outages
and describes the environment variable you need to define before starting TCCO on your
system.

Overview of MTP TCCO Processing
The SINAP/SS7 system implements TCCO procedures and starts the MTP T1 timer under the
following conditions:

• When the SINAP/SS7 system receives a remote processor outage (either short- or
long-term) on a link at the remote end and it is not possible to exchange changeover
messages because doing so might cause a link failure.

• No signaling path exists between the two ends of the unavailable link so the exchange of
changeover messages is impossible.

• A signaling link currently carrying traffic was marked inhibited either locally or remotely.

In each case, the Level 3 changeover control (TCOC) function receives the message,
signaling link unavailable, from the link availability control (TLAC) function.
When TCOC receives this message, the SINAP/SS7 system initiates changeover or TCCO
activities.

Short-Term Processor Outage
A short-term processor outage is one that terminates before the MTP T1 timer expires. If the
SINAP/SS7 system receives a changeover order for the unavailable link from the remote end
during the T1 timer period, the system initiates normal changeover procedures, completes
TCCO procedures, and sends a changeover acknowledgment (COA) to the remote end.

Long-Term Processor Outage
A long-term remote processor outage occurs when the MTP Level 3 TCCO T1 timer expires.
To avoid sending old messages when the remote processor outage state terminates, the
SINAP/SS7 system discards MTP Level 2 messages in the retransmission buffer and
synchronizes sequence numbers.

N O T E
The SINAP/SS7 system flushes old messages and synchronizes
MTP Level 2 sequence numbers by failing the link when T1
expires (a long-term processor outage condition). This puts the
link out of service, flushes old messages, synchronizes
sequence numbers, and starts the initial alignment procedure
Application Design and Development 3-125

Considerations for Implementing SINAP/SS7 Features
If a changeover order is received for the unavailable link after the T1 timer expires, the
concerned signaling point responds with an emergency changeover acknowledgment (ECA).

Implementing the TCCO Feature
You must define the appropriate environment variable to enable TCCO functionality for the
CCITT, China, and ANSI network variants. TCCO is automatically enabled in the TTC and
NTT network variants.

For the CCITT and China network variants, define the following environment variable to
implement TCCO functionality based on 1993 ITU-T recommendations for MTP.

MTP_WHITE_BOOK_TCCO

If you do not define it, the system defaults to TCCO procedures based on the 1988
recommendations.

For the ANSI network variant, define the following environment variable to implement TCCO
functionality based on the 1992 ANSI standards for MTP.

MTP_ANSI92_TCCO

If you do not define it, the system defaults to TCCO procedures based on the 1990 standards.

To implement TCCO features each time you start an ANSI-configured SINAP/SS7 system, add
the variable to the $SINAP_HOME/Bin/sinap_env. [csh or sh] file.

MTP Time-Controlled Diversion
The SINAP/SS7 system implements a time-controlled diversion (TCD) process when the
signaling point at the far end of the link made available is currently inaccessible from the
signaling point initiating the changeback order. The SINAP/SS7 system also performs TCD
when the concerned signaling point is accessible, but there is no signaling route to it using the
same outgoing signaling link(s) or one of the same signaling links from which traffic is diverted.

TCD is primarily used at the end of MTP restart when an adjacent signaling point becomes
available. TCD is intended to delay changeback to avoid missequencing messages to destination
points after a remote point code restarts. Traffic diversion can be performed at the discretion of
the signaling point initiating changeback, as follows:

• On a destination basis for each traffic flow

• On an alternative signaling link basis for all destinations previously diverted on the
alternative signaling link

• Simultaneously for a number of alternative signaling links or for all alternative signaling
links
3-126 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
A signaling point can also apply TCD for changeback between different link sets, instead of
using the sequence control procedure, to avoid possible message missequencing or problems
with multiple, parallel changebacks.

When changeback is initiated after MTP restart, the adjacent signaling point stops traffic to the
point where it is restarting and diverts traffic to alternative links for an interval defined by timer
T3. After that interval, the adjacent signaling point starts traffic on the links made available. The
time delay minimizes the probability of out-of-sequence message delivery to the destination
point(s).

Implementing TCD Feature for ANSI Network Variant
To enable TCD based on 1992 ANSI standards, define the following environment variable
before starting the SINAP/SS7 system:

MTP_ANSI92_TCD

If you do not define this variable, the system defaults to TCD functionality based on the 1990
ANSI standards. To have the TCD feature defined each time you start the SINAP/SS7 system,
add the variable to the $SINAP_HOME/Bin/sinap_env.[csh or sh] file.

If the TCD feature is enabled via the environment variable MTP_ANSI92_TCD, then the
SINAP/SS7 system delays changeback completion 500 ms (the default value of the T3 timer)
for each link coming into service. Do not enable TCD if you do not want this delay to occur.

Do not enable the TCD feature via the environment variable MTP_ANSI92_TCD if the
MTP_ANSI92_RESTART environment variable is already set. The restart procedure defined
by the MTP_ANSI92_RESTART environment variable automatically activates TCD.

N O T E
The Node Management node parent (nmnp) process validates
the existence of the value specified in this environment variable
and stores the value in shared memory in the static tables.

Implementing the MTP Management Inhibit Feature (ANSI)
To enable MTP Management Inhibit based on 1992 ANSI standards, define the following
environment variable before starting the SINAP/SS7 system:

MTP_ANSI92_MANAGEMENT_INHIBIT

If you do not define this variable, the system defaults to MTP Management Inhibit functionality
based on the 1988 ANSI standards. To have MTP Management Inhibit based on 1992 ANSI
standards defined each time you start the SINAP/SS7 system, add the variable to the
$SINAP_HOME/Bin/sinap_env.[csh or sh] file.
Application Design and Development 3-127

Considerations for Implementing SINAP/SS7 Features
If the MTP Management Inhibit feature is enabled via the environment variable
MTP_ANSI92_MANAGEMENT_INHIBIT, then a Link Uninhibit Acknowledgment (LUA) is
sent and traffic restarted when no response is received for Link Force Uninhibited (LFU)
requests. If, for any reason, an uninhibit signaling link message is not received in response to a
link forced uninhibit message, the SINAP/SS7 system waits until timer T13 expires. If this is
the first expiry of T13 for this uninhibition attempt on this link, the procedure is restarted
including inspection of the status of the inhibited link. If the link is marked failed, blocked, or
timer T13 has expired for the second time during uninhibition of this link, management is
informed and the uninhibition is abandoned.

Signaling Link Selection (SLS) Message Distribution
The SINAP/SS7 system supports the following types of load distribution:

• Round-robin distribution places MSUs sequentially on each of an application’s incoming
queues

• Least-utilized distribution places MSUs on the application’s incoming queue with the
fewest MSUs.

• Signaling link selection (SLS) distributes MSUs based on the value of their SLS field. SLS
message distribution ensures that MSUs routed over the same link are handled by the same
application instance. It is useful for circuit-related signaling protocols such as Telephone
User Part (TUP), which require that MSU sequences be preserved on a per-circuit basis.

When an application instance registers, the SINAP/SS7 system assigns it an SLS code. The
SINAP/SS7 system keeps track of the SLS codes assigned to application instances by
maintaining a listing of SLS codes for the application. You can display this listing by issuing
the appropriate sy command (#SLD). For instructions, see the section “Displaying SLS
Assignments” later in this chapter.

N O T E
When the number of active application instances changes, the
SINAP/SS7 system updates its SLS map, which may disrupt an
existing dialogue and cause MSUs to be lost. Also, when the
number of active links changes, the sender will typically
reassign SLS codes, which may necessitate restarting a dialogue
that is already in process.

Implementing SLS Message Distribution
To implement SLS message distribution, an application must register with the SINAP/SS7
system as follows:

• The application must register to receive input at the SCCP boundary, or it must register with
a service information octet (SIO) instead of an SSN.
3-128 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• The application must register with the inbound_load_dist_type field of the
register_req_t structure set to 3, which specifies SLS_DISTRIBUTION.

For more information, see the descriptions of the register_req_t structure’s
sio_ssn_ind, sio_ssn, and ss7_input_boundary fields in the description of the
ca_register() function in Chapter 6, ‘‘CASL Function Calls.”

Displaying SLS Assignments
You can display information about an application’s load distribution (round-robin,
least-utilized, or SLS distribution) by issuing the #SLD command through the SINAP/SS7
utility (sy). To invoke the utility, type sy from the command line of a SINAP/SS7 login
window (that is, any window through which you have logged in as the user SINAP).

The first line of the #SLD command output identifies the application and the number of active
application instances. The second line (SLS Distribution) displays the SLS code assigned
to each of the application’s instances. Each position in this line corresponds to an SLS code (0
through 15); the number of the application instance assigned this SLS code appears in this
position. For example, an SLS distribution of 5, 5, 4, 3... indicates that application
instance 5 is assigned SLS codes 0 and 1; application instance 4 is assigned SLS code 2;
application instance 3 is assigned SLS code 3; and so on.

N O T E
In the ANSI network variant, if you specified an eight-bit SLS
via the CHANGE-SLSTYPE MML command, messages for the
appropriate application that contain an eight-bit SLS have the
three most significant bits masked out because the instance
number of the application is contained in the lower four bits of
the SLS and can only take on the values 0-15 (the maximum
capability). See “SINAP/SS7 Interaction with the SS7
Network” in Chapter 2 for more details.If you use the SLS
message distribution feature with eight-bit SLS processing
enabled, the remote sender must only set the lower four bits of
the SLS. Setting any other bits will exceed the maximum
capabilities of this feature and result in unpredictable system
performance. Therefore, the sending application and the
receiving application (running on the SINAP node) must agree
on the instance number protocol and the SLS field must not
exceed 15.

The following command examples are for an application that uses SLS load distribution;
however, you can also issue these commands to display the load-distribution information for an
application that uses round-robin or least-utilized load distribution. Note that the pound sign (#)
is part of the #SLD command.
Application Design and Development 3-129

Considerations for Implementing SINAP/SS7 Features
• To display the SLS mapping for an application that registered with an SIO, enter the
following form of the command (where sio_number is the SIO).

#SLD,SIO,sio_number

The following command specifies an application that registered with an SIO of 5. The
command output indicates that the application has two instances whose SLS assignments
are as follows: application instance 2 is assigned SLS codes 0 through 7, and instance 1 is
assigned SLS codes 8 through 15.

#SLD,SIO,5
SIO 5: instance count = 2
SLS Distribution = 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

• To display the SLS mapping for an application that registered with an SSN, enter the
following form of the command (where ssn_number is the SSN).

#SLD,SSN,ssn_number

The following command specifies an application that registered with an SSN of 254. The
command output indicates that the application has five instances whose SLS assignments
are as follows: application instance 5 is assigned SLS codes 0, 1, and 4; instance 4 is
assigned SLS codes 3, 10, and 11; instance 3 is assigned SLS codes 2, 8, and 9; instance
2 is assigned SLS codes 5, 6, and 7; and instance 1 is assigned SLS codes 12, 13, 14, and
15.

#SLD,SSN,254
SSN 254: instance count = 5
SLS Distribution = 5 5 3 4 5 2 2 2 3 3 4 4 1 1 1 1

• In some cases, the SINAP/SS7 system identifies an application by its name rather than its
SSN (for example, if the application implements enhanced message distribution and is one
of several applications that use the same SSN). To display the SLS assignments of such an
application, issue the following command (where appl_name is the name of the
application).

#SLD,APPL,appl_name

The following command specifies a load control application whose name is DB12. The
command output indicates that the application has three instances whose SLS assignments
are as follows: application instance 3 is assigned SLS codes 0, 1, 2, 8,
and 9; instance 2 is assigned SLS codes 5, 6, 7, 10, and 11; and instance 1 is assigned
SLS codes 3, 4, 12, 13, 14, and 15.

#SLD,APPL,DB12
APPL DB12: instance count = 3
SLS Distribution = 3 3 3 1 1 2 2 2 3 3 2 2 1 1 1 1
3-130 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Enabling Random SLS Generation
SINAP, by default, conforms to the ANSI T1.111.4 standard (1988) and uses a default SLS of
zero for the Route Set Congestion Test (RCT) message. However, always sending the RCT
message on the same link within the same link set that the TFC was received on always results
in the RCT message testing the same network path, which may or may not be congested. If
traffic is not evenly distributed this may result in over controlling (which will occur when the
RCT message is routed on the path that is more likely to be congested) or under controlling
(which will occur when the RCT message is routed on the path that is more likely to not be
congested).

Random Link Selection
To smooth out this effect, the SINAP node provides a feature for the user to enable the
generation of a random link selection (SLS) for RCT. The random SLS is placed in the SLS field
of the outgoing RCT message.

To enable this feature change $SINAP_HOME/sinap_env[.sh or.csh]:

MTP_RCT_LOAD_SHARING_SLS

N O T E
This feature is available for ANSI users only. Setting the
environment variable has no effect for other NSP variants.

Setting SLS Bits in the MTP Routing Label
In the TTC and NTT network variants, you can set the SLS bits into the routing label of the
MTP, using the macro NTT_CA_SET_LABEL.

N O T E
The NTT and TTC network variants both use the macros
TTC_CA_GET_DPC, TTC_CA_GET_OPC,
TTC_CA_GET_SLS, TTC_CA_GET_SLC and
TTC_CA_GET_PRIO (including TTC_PRIO_MASK).

The sample programs in $SINAP_HOME/samples/ttc
use the macro CA_SET_LABEL, which is set to
TTC_CA_SET_LABEL (by default).

For the NTT variant, the sample programs must use
NTT_CA_SET_LABEL. For the TTC variant, the sample
programs can use CA_SET_LABEL or
TTC_CA_SET_LABEL.
Application Design and Development 3-131

Considerations for Implementing SINAP/SS7 Features
In the ANSI network variant, you can set the SLS bits in the routing label of the MSU using the
macro ANSI_CA_SET_LABEL. If the SINAP node is configured with the default SLS value
(5) or a SINAP user sets a five-bit SLS value using the CHANGE-SLSTYPE MML command,
the SINAP node masks out the upper three most significant bits of the SLS value. However, if
a SINAP user selects an eight-bit SLS (via the CHANGE-SLSTYPE MML command), the
SINAP node uses the full eight bits of the SLS (no masks). See “SINAP/SS7 Interaction with
the SS7 Network” in Chapter 2 for more detailed information.

Connection-Oriented Services (CCITT, ANSI, China)
This section describes the SINAP/SS7 connection-oriented feature (COF), which provides
SCCP Class 2 and Class 3 connection-oriented services.

• Class 2 provides basic connection-oriented services.

• Class 3 provides connection-oriented services with flow control.

Currently, you can implement connection-oriented services only in SINAP/SS7 configurations
that use the CCITT, ANSI, and China network variants for their network protocol, and possibly
(although not necessarily) for their TCAP protocol. Since the TTC and NTT standards do not
define the use of connection-oriented services, the TTC and NTT variants of the SINAP/SS7
system do not support this feature.

This section contains the following topics:

• A processing overview of connection-oriented services

• Information on connection-oriented messages and primitives

• Instructions for activating and implementing connection-oriented services

N O T E
Throughout this section a nested structure (that is, a structure
within another structure) is indicated by notation. For example:

sccp_ipc_t.i_block_t.dest_id.

This notation refers to the destination field of the i_block_t
structure, which is contained within the sccp_ipc_t
structure.

See the SINAP/SS7 User’s Guide (R8051) for information on administrative considerations for
connection-oriented services. In addition, you can refer to the sample files sc23send.c and
sc23rec.c in the samples/ccitt/ directory for more information about using
connection-oriented services on the CCITT network variant. For the China network variant, see
the samples of the same names in the samples/china directory.
3-132 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Processing Overview
Connection-oriented services enable an application to establish and maintain a connection or
logical communication path with another application for the purpose of exchanging small and
large messages. A small message contains no more than 256 bytes of user data, the maximum
amount of user data that fits in a single message. A large message contains between 257 and
8192 bytes of user data, which is more data than can fit in a single message. Therefore, the user
data in a large message must be divided into multiple segments, each of which is then
transported over the SS7 network in a single message. At the destination, the user data in each
of these messages is reassembled to form the original user data, which consisted of a single
block of data.

To use connection-oriented services, an application running on the SINAP/SS7 system (the
local application) must assign certain values to specific fields in its CA_REG global variable.
Table 3-27 lists and describes the fields in the CA_REG global variable.

N O T E
The connections_are_owned field is internal to the
SINAP/SS7 system and should not be modified. See the
description of the register.h file in Chapter 6 for more
information.

Implementing connection-oriented services consists of two distinct types of functions:

• The SCCP-SCCP connection-oriented control (SCOC) process performs management
functions, such as establishing and releasing a connection. Management requests and
responses are passed between the local application and the SCCP-SCOC by means of
interprocess communications (IPC) messages. These requests and responses are passed
between SCCP-SCOC and the remote application via messages that SCCP-SCOC sends
and receives on behalf of the local application.

• The local and remote applications perform data-communication functions that enable the
applications to exchange data directly by passing messages to each other. The SCCP-SCOC
process is not involved in this data exchange.

The SCCP-SCOC Process
The SCCP-SCOC process performs the management functions necessary to provide
connection-oriented services (for example, assigning a connection ID to each connection and

Table 3-27. CA_REG Global Variable Fields

Field Description

max_user_data_size The maximum number of user data block in bytes

max_connections The maximum number of connections for this
process
Application Design and Development 3-133

Considerations for Implementing SINAP/SS7 Features
maintaining information about all active connections). The SCCP-SCOC process is the
connection-oriented equivalent to the SCCP management process (SCMG), which performs all
of the processing necessary to provide an application with connectionless services.

The SCCP-SCOC process relays connection-management requests and responses between local
and remote applications during the connection-establishment and connection-release stages.
When a local application wants to establish a connection with a remote application, it does not
send a connection request directly to the remote application. Instead, the local application sends
the SCCP-SCOC process an IPC message containing the connection request. SCCP-SCOC then
writes the connection request to a message, which it forwards to the remote application.
Likewise, the SCCP-SCOC process receives the remote application’s response as a message,
which it translates to an IPC message and sends to the local application.

The Stages of Connection-Oriented Communication
The process of communicating via connection-oriented services consists of the following
stages:

• The connection-establishment stage occurs when two applications obtain a unique
connection ID and establish a connection. During this stage, the local and remote
applications do not communicate directly. Instead, the applications communicate via IPC
messages.

• The data-transfer stage occurs when the applications communicate with each other directly
via the connection they established earlier. During this stage, the local application can call
CASL functions (ca_put_sc() and ca_get_sc()) to send messages to and retrieve
messages from the remote application.

• The connection-release stage occurs when the connection and its associated resources are
released.

Maintaining Information on Active Connections
The SINAP/SS7 system stores information on active connections in a segment of shared
memory called local reference memory (LRM). The LRM is an array of sccp_lrm_t
structures, each containing information about a single active connection between a local and
remote application. The LRM entry contains information such as the SSN of the local and
remote applications, the connection ID, and the state of the connection.

Each LRM entry is assigned a local reference number (LRN), defined as an sccp_lrn_t
structure, that serves as an index into the LRM array. When a connection is established, the
connection ID is assigned to an LRN to tie the connection to a particular entry in the LRM array.
The local and remote applications each have a separate LRM entry. The source LRN identifies
the local application’s LRM entry, and the destination LRN identifies the remote application’s
LRM entry.
3-134 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
N O T E
The sccp_lrm_t and sccp_lrn_t structures are internal
to the SINAP/SS7 system. They are defined in the sccp.h
include file.

Inactive Connections and Releasing LRNs
Applications using a connection might not immediately be aware that the connection was
released. Therefore, when a connection is released, the connection’s LRN remains unavailable
(or frozen) for a certain amount of time. During this time period, which is defined by the
STGUARD timer, the LRN cannot be assigned to another connection. Freezing an LRN ensures
that an LRN being used for one connection is not reassigned to another connection before either
application realizes the original connection has been released. For example, suppose that two
applications are communicating over a connection identified by a particular LRN. Now suppose
that the connection is released and, before either application realizes the connection has gone
away, the connection’s LRN is reassigned to another connection. In this case, either application
might attempt to send a response over a connection that no longer exists.

After the amount of time specified by STGUARD, the LRN becomes available and can be
assigned to another connection. Note that a connection’s LRN is frozen even when the
connection is subsequently released by the local application or refused by the remote
application.

A connection’s LRN is not released when the connection is released. Instead, the LRN is frozen
for the amount of time defined by the STGUARD timer. During this time period, the LRN cannot
be assigned to another connection, even if it means that the connection cannot be established
because no more LRNs are available.

The release_lrn command releases frozen LRNs so they can be assigned to other
connections. The command can also display LRN statistics such as the total number of LRNs
available, the number of LRNs currently being used, and the number of frozen LRNs. This
command is described in Chapter 4 of the SINAP/SS7 User’s Guide (R8051).

Large Message Segmentation and Reassembly
Connection-oriented services enable applications to exchange small and large messages. A
small message contains no more than 256 bytes of user data, the maximum amount of user data
that fits in a single message. A large message contains between 257 and 8192 bytes of data,
which is more data than can fit in a single message. Therefore, the user data in a large message
must be divided into multiple segments, each of which is then transported over the SS7 network
as a single message. At the destination, the user data in each single message is reassembled into
the original data, which is then considered a single block of data.

The CASL functions, ca_get_sc() and ca_put_sc(), automatically perform message
segmentation and reassembly of large messages. You need only to allocate the memory for the
buffer in which to store the user data for the message.
Application Design and Development 3-135

Considerations for Implementing SINAP/SS7 Features
SCCP Connection-Oriented Timers
SCCP connection-oriented timers define the amount of time allowed to perform specific
connection-oriented tasks (for example, the timer STCONEST defines the amount of time
allowed to establish a connection). Table 3-28 presents information about the SCCP
connection-oriented timers. For detailed information about these timers, see ITU-T
Recommendation Q.714.

N O T E
In Table 3-28, the column labeled “Q.714 Timer” presents the
name of the timer as it is referred to in ITU-T Recommendation
Q.714, and the column labeled “SCCP Timer Name” presents
the name of the corresponding SINAP/SS7 timer.

The SINAP/SS7 system tables store the values of the SCCP connection-oriented timers. You
access these system tables by means of the MML commands DISPLAY-SYSTAB and

Table 3-28. SCCP Connection-Oriented Timers

Q.714 Timer
SCCP
Timer
Name

Range of Valid
Values Description

T(conn est) STCONEST 1 - 2 minutes Connection establishment timer

T(iar) STIAR 3 - 6 minutes Receive inactivity timer for
inbound messages

T(ias) STIAS†

† The value of the STIAR timer must be greater than the value of the STIAS timer.

1 - 2 minutes Send inactivity timer for
outbound messages

T(reset) STRESET 10 - 20 seconds Amount of time to wait for a reset
confirm message

T(rel) STREL 10 - 20 seconds Amount of time to wait for a
release complete message after
a disconnect

T(interval) STRELINT 0 - 60 seconds Total amount of time to repeat
the release message

T(repeat rel) STRELREP 0 - 20 seconds Amount of time between each
repeated release message

T(guard) STGUARD 8 - 16 minutes Amount of time to hold an LRN
before assigning it to another
connection
3-136 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
CHANGE-SYSTAB. For detailed information about these commands, see the discussions on
“Displaying the MTP and SCCP System Tables” and “Changing the System Table Timer and
Link-Congestion Threshold Settings” in the SINAP/SS7 User’s Guide (R8051).

Connection-Oriented Messages and Primitives
This section describes the messages and primitives that the SINAP/SS7 system uses to
implement connection-oriented services. It contains the following topics.

• IPC message types

• Connection-oriented control primitives used in IPC messages

• Connection-oriented data primitives used in data MSUs

IPC Message Types
The local application and the SCCP-SCOC process use the following types of IPC messages to
convey the information necessary to establish and manage connections.

• Request messages (for example, n_connect_req and n_disconnect_req) are
those that the local application sends to the remote application to request a particular action.

• Indication messages (for example, n_connect_ind and n_disconnect_ind) are
those that the local application receives, indicating that the remote application is requesting
a particular action. For example, the local application receives an n_connect_ind
message when the remote application wants to establish a connection.

• Response messages (for example, n_connect_res and n_reset_res) are those that
the local application sends in response to a remote application’s request. For example, the
local application sends an n_connect_res message to respond favorably to the remote
application’s request to establish a connection.

• Confirmation messages (for example, n_connect_con and n_reset_con) are those
that the local application receives, indicating that the remote application has accepted and
acted upon a request. For example, the local application receives an n_connect_con
message when the remote application agrees to the connection request sent by the local
application.

These messages are passed between the local application and the SCCP-SCOC process by
means of several CASL structures, which are part of the sccp_ipc_t structure (described in
Chapter 6). Each IPC message type is defined within a particular sccp_ipc_t structure. For
example, a connection-request message is defined in the scoc_con_req_t structure, and a
request for a connection ID is defined in the scoc_get_connid_t structure.

Connection-Oriented Control Primitives Used in IPC Messages
Table 3-29 and Table 3-30 briefly describe the connection-oriented control primitives used in
the IPC messages passed between the local application and the SCCP-SCOC process. These
primitives define the IPC message type. For detailed information about any of these primitives,
see ITU-T Recommendation Q.712.
Application Design and Development 3-137

Considerations for Implementing SINAP/SS7 Features
Table 3-29 describes the connection-control primitives that you can include in the IPC messages
that the local application sends to SCCP-SCOC, and the sccp_ipc_t structure in which the
IPC message is defined. When sending one of these IPC messages to SCCP-SCOC, your
application must set the IPC message’s
sccp_ipc_t.i_block_t.ipc_trans_t.msg_type field to one of the values listed in
the column labeled “Primitive.” In addition, your application must initialize the sccp_ipc_t
structure listed in the corresponding column labeled “Structure.”

Table 3-30 describes the connection-control primitives used in the IPC messages that the local
application receives from SCCP-SCOC, along with the sccp_ipc_t structure in which the
IPC message is defined. For incoming IPC messages, your application should examine the value
of the i_block_t.ipc_trans_t.msg_type field to determine whether the message is a
connection-oriented message. If the field’s value matches one of the values in the column
labeled “Primitive,” the message is a connection-oriented message. The application should then
read the message by examining the sccp_ipc_t structure listed in the corresponding column
labeled “Structure.”

Table 3-29. Outgoing Connection-Control Primitives

Primitive Structure Purpose

I_N_CONNECT_REQ scoc_con_req_t Request to establish a
connection with a remote
application

I_N_CONNECT_RES scoc_con_res_t Response to accept a remote
application’s request to establish
a connection

I_N_RESET_REQ scoc_res_req_t Request to initiate a reset
procedure to reinitialize
sequence numbers for the
connection (class-3 services
only)

I_N_RESET_RES scoc_res_res_t Response to accept a remote
application’s request to initiate a
reset procedure to reinitialize
sequence numbers for the
connection (class-3 services
only)

I_N_DISCONNECT_REQ scoc_dis_req_t Request to disconnect (release)
the connection

I_SCOC_GET_CONNID scoc_get_connid_t Request to obtain a connection
ID for a connection
3-138 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Connection-Oriented Data Primitives Used in Data MSUs
Table 3-31 and Table 3-32 list the connection-oriented data primitives used in the data MSUs
passed between local and remote applications. The primitives define the type of data in the
MSU. For detailed information about any of these primitives, see ITU-T Recommendation
Q.712.

Table 3-31 describes the connection-oriented data primitives that you can include in the data
MSUs that the local application sends to the remote application. Your application must set the
field m_block_t.ud_ccitt_msu_t.mtp_ud.ccitt_sccp_user_t.msg_type to
one of the values in the column labeled “Primitive” to define the MSU’s data type.

Table 3-30. Incoming Connection-Control Primitives

Primitive Structure Purpose

I_N_CONNECT_CON scoc_con_con_t Remote response accepting a
local application’s connection
request

I_N_CONNECT_IND scoc_con_ind_t Remote request to establish a
connection

I_N_RESET_CON scoc_res_con_t Remote response to accept a
local application’s request to
initiate a reset procedure to
reinitialize sequence numbers for
the connection (class-3 services
only)

I_N_RESET_IND scoc_res_ind_t Remote request to initiate a reset
procedure to reinitialize
sequence numbers for the
connection (class-3 services
only)

I_N_DISCONNECT_IND scoc_dis_ind_t Remote request to disconnect
(release) the connection; can be
a response to a connection
request

I_SCOC_CID_RESULT scoc_cid_result_t SCCP-SCOC response to
request for connection ID
Application Design and Development 3-139

Considerations for Implementing SINAP/SS7 Features
In addition, your application must initialize the sccp_ipc_t structure listed in the
corresponding column labeled “Structure.”

Table 3-32 describes the connection-oriented data primitives used in the data MSUs received
by the local application. Your application should examine the value of the
m_block_t.ud.ccitt_msu_t.mtp_ud.ccitt_sccp_user_t.msg_type field.
If the field’s value matches one of the values in the column labeled “Primitive,” the MSU
contains data for a connection-oriented message. The application should then read the data by
examining the sccp_ipc_t structure listed in the corresponding column labeled “Structure.”

Table 3-31. Outgoing Connection-Oriented Data Primitives

Primitive Structure Purpose

SC_DATA_FORM1 sccp_dt1_t Sends a data-form-1 message

SC_DATA_FORM2 sccp_dt2_t Sends a data-form-2 message

SC_EXPEDITED_DATA sccp_expdata_t Sends expedited data, which is a
data-form-2 message that
bypasses the flow-control
settings defined for the
connection

Table 3-32. Incoming Connection-Oriented Data Primitives

Primitive Structure Purpose

SC_DATA_FORM1 sccp_dt1_t Contains a data-form-1 message

SC_DATA_FORM2 sccp_dt2_t Contains a data-form-2 message

SC_EXPEDITED_DATA sccp_expdata_t Contains expedited data, which
is a data-form-2 message that
bypasses the flow-control
settings defined for the
connection

SC_RESET_REQUEST sccp_resetreq_t Remote request to initiate a reset
procedure to re-initialize
sequence numbers

SC_RELEASED sccp_rlsd_t Remote request to release the
connection and associated
resources
3-140 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Defining Connection-Oriented Structures
The following CASL structures are used for connection-oriented services. Chapter 6 describes
each structure in detail.

• sccp_ipc_t structure—Passes IPC messages between the local application and the
SCCP-SCOC process. This structure contains several structures, each of which passes a
particular type of message.

• sccp_prim_t structure—Conveys information about large messages, such as the
message size and buffer location. This is an internal structure.

• sccp_cldclg_t structure—Contains information about the SCCP called- or
calling-party address for a connection-oriented message.

• sccp_dt1_t structure—Transports a data-form-1 message.

• sccp_dt2_t structure—Transports a data-form-2 message.

• sccp_expdata_t structure—Transports a message containing expedited data.

When sending either an IPC message to the SCCP-SCOC process or a data MSU to another
application, your application must initialize the appropriate structures. When your application
is processing an incoming MSU or IPC message, the structures will have been initialized by the
other application, the SCCP-SCOC process, or the SINAP/SS7 system.

In the descriptions of structure fields in Chapter 6, ‘‘CASL Function Calls,” input indicates a
field (and possibly a corresponding structure) that your application must initialize, and output
indicates a field (and possibly a corresponding structure) that will have been initialized by the
other application, SCCP-SCOC, or the SINAP/SS7 system.

Activating Connection-Oriented Services
To activate connection-oriented services on a SINAP/SS7 node, you must define the
environment variables described in Table 3-33 at a UNIX system prompt before starting the
SINAP/SS7 system on a node. To define these variables automatically each time you start the
SINAP/SS7 system, add the variables to the $SINAP_HOME/Bin/sinap_env.[csh or
sh] file.
Application Design and Development 3-141

Considerations for Implementing SINAP/SS7 Features
Table 3-33. Environment Variables for LRNs

Implementing Connection-Oriented Services in an Application
This section provides the background information necessary to design and develop SCCP
applications that use connection-oriented services. It contains two subsections, “Application
Design Considerations” describes the issues to consider as you design and develop your
application and “Summary of Connection-Oriented Application Processing” summarizes the
tasks your application must perform to use connection-oriented services.

Application Design Considerations
You should consider the following issues as you design and develop applications that use
connection-oriented services.

• When your application sends or receives expedited data (that is, a data MSU of the type
SC_EXPEDITED_DATA), the CASL automatically sends a copy of the expedited data to
the SCCP-SCOC process. This is necessary so that SCCP-SCOC can issue an
expedited-data acknowledgment (SC_CTRL_EXPD_ACK) on behalf of your application.
Note that your application need not perform any action to send a copy of the data to
SCCP-SCOC nor to issue the expedited-data acknowledgment.

Environmental Variable Description

SINAP_TOTAL_LR_MEMS=nnnn Defines the number of local reference
memory (LRM) structures specified by
nnnn (up to 2000).

SINAP_USER_LR_MEMS=nnnn Defines the maximum number of
connections (up to 2000), specified by
nnnn, that an application can have open
at any time.
Note: Every connection requires an LRM;
therefore, regardless of the value
specified for SINAP_USER_LR_MEMS, the
SINAP/SS7 system will not establish more
connections than the number of LRMs
defined by SINAP_TOTAL_LR_MEMS.

SINAP_TOTAL_LR_NUMS=nnnn Allocates the number of LRMs specified
by nnnn (up to 5000). To accommodate
the amount of time a local reference
number (LRN) is frozen after use. Stratus
recommends allocating more LRNs than
LRMs.

SINAP_LRN_FREEZE_TIMEOUT=nnnn Specifies the number of seconds (up to
1800) before an unused LRN is released
and can be assigned to another LRM
structure.
3-142 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• If your application will handle large messages (that is, messages that are 257 to 8192 bytes
in length), consider the following:

• The ca_get_sc() and ca_put_sc() functions automatically perform the
necessary message segmentation and reassembly. However, your application must
allocate and manage the memory for the buffers used to store the message’s user data.

• The sccp_prim_t structure conveys information about large messages. The
structure’s *p_user_data field is a pointer to the memory buffer that contains the
message’s user data, and the structure’s user_data_size field indicates the data’s
size. In addition, the more_data_ind field indicates whether the message has more
user data than can fit in a single MSU. If the user data fits in a single MSU, the value
of this field is 0; otherwise, the value of this field is 1, which indicates that subsequent
MSUs contain additional user data.

• Only an application’s control process can handle large messages; the application’s data
processes cannot. To handle large messages, an application process must register with
the SINAP/SS7 system with the CA_REG variable’s ss7_primitive field set to
SS7_CTRL_DATA_PRIMITIVE or to the value 3. (Registering in this manner
ensures that all segments of a large message are handled by the same application
instance.)

Summary of Connection-Oriented Application Processing
The following list describes the tasks a local application must perform to implement
connection-oriented services, each of which is described in the following sections.

1. Register for connection-oriented services.

2. Obtain a connection ID to use for the connection.

3. Request a connection with the remote application.

4. Respond to a connection request from a remote application.

5. Begin sending data if the remote application accepts the connection request.

6. Retrieve data sent by the remote application.

7. Release the connection once the data transaction has ended.

N O T E
The application also must perform several other tasks, such as
sending a user in service (UIS) message to SCCP management
and terminating processing.

The following sections describe how to perform each task listed above. The descriptions each
contain a programming example that shows the application logic for performing a particular
connection-oriented task. These programming examples are for illustrative purposes only, and
your application logic might differ from that shown in the example. Note that the examples are
taken from the sample programs, sc23common.c, sc23send.c, and sc23recv.c, which
Application Design and Development 3-143

Considerations for Implementing SINAP/SS7 Features
are located in the directory: $SINAP_MASTER/Include/Samples/ccitt. The SCCP
connection-oriented services include file sc23.h is also located in this directory.

Task 1: Registering for Connection-Oriented Services

As part of the process of registering with the SINAP/SS7 system, a local application initializes
the CA_REG global variable, which has a type definition of register_req_t structure. The
CA_REG variable contains registration parameters that define the application’s operating
characteristics.

To use connection-oriented services, an application must assign the values listed below to the
following CA_REG fields. Note that the application also must assign values to the other
CA_REG fields, which are described in the ca_register() function’s register_req_t
structure description in Chapter 6 of this manual.

• For ss7_input_boundary, specify the value SS7_INPUT_BOUNDARY_SCCP23.

• For max_user_data_size, specify the maximum allowable size (in bytes) of user data
in large messages.

• For max_connections, specify the maximum number of simultaneous connections
allowed for this application process, up to a maximum of 1000.

N O T E
Based on the values of max_user_data_size and
max_connections, the SINAP/SS7 system creates a pool of
memory buffers in which to store the user data for large
messages.

Task 2: Obtaining a Connection ID to Use for the Connection

To begin a communication session with a remote application, the local application must obtain
a connection ID from the SCCP-SCOC process by performing the following steps:

A. Obtain the IPC key for the SCCP-SCOC process by calling the CASL function
ca_get_key(), as shown in the following example. (The values AN_SC and PN_SCOC
define the application and process names, respectively, for the SCCP-SCOC process.)

B. Define the IPC message by initializing the following structure fields:

• For the sccp_ipc_t.i_block_t.dest_id field, specify the IPC key returned
by ca_get_key() to identify the SCCP-SCOC process as the IPC message’s
destination.

• For the sccp_ipc_t.i_block_t.ipc_trans_t.msg_type field, specify
the value I_SCOC_GET_CONNID. This particular message tells SCCP-SCOC to
return the next available connection ID.

ca_get_key(0, 0, AN_SC, PN_SCOC, 0, &ipc_key_t);
3-144 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• For the sccp_ipc_t.scoc_get_connid_t.ssn field, specify the
application’s SSN to link the connection ID to the local application.

C. Call the function ca_put_msg() to deliver the I_SCOC_GET_CONNID message to
SCCP-SCOC.

Figure 3-6 shows a sample program module that requests a connection ID. Each figure callout
corresponds to one of the preceding steps.

Figure 3-6. Requesting a Connection ID

The local application waits for SCCP-SCOC to respond with the connection ID by performing
the following steps:

A. Call the CASL function ca_get_msg() to read the IPC queue, waiting for an IPC
message whose i_block_t.ipc_trans_t.msg_type field is set to
I_SCOC_CID_RESULT.

B. On receipt of such an I_SCOC_CID_RESULT message, check the
sccp_ipc_t.scoc_cid_result_t.conn_id field, which contains the
connection ID.

request_connid()
{
 static sccp_ipc_t sc_prim;
 ipc_key_t sccp_key;

 memset((char *)&sc_prim, 0, sizeof(sc_prim));
 if (ca_get_key(0, 0, AN_SC, PN_SCOC, 0, &sccp_key) == -1)
 printf(“scsend23: ca_get_key: %s\n”, CA_ERR);

 sc_prim.iblock.dest_id = sccp_key;
 sc_prim.iblock.trans.msg_type = I_SCOC_GET_CONNID;
 sc_prim.primitives.get_connid.ssn = MySSN;
 sc_prim.iblock.msg.len = sizeof(sc_prim) - sizeof(i_block_t);

 if (ca_put_msg((i_block_t *)&sc_prim, 10) == -1)
 printf(“scsend23: ca_put_msg: %s\n”, CA_ERR);
 else
 printf(“scsend23: sent conn_id request to scoc\n”);

•
•
•

A

B

C

Application Design and Development 3-145

Considerations for Implementing SINAP/SS7 Features
Figure 3-7 shows a sample program module that implements the preceding programming logic
using a switch statement. Each figure callout corresponds to one of the preceding steps.

Figure 3-7. Obtaining the Connection ID

void empty_ipc_queue(U16 source)
{
 int i;
 int ret_status = RET_OK;
 BOOL fwait = FALSE; /* FALSE=do not wait, TRUE=wait forever */
 union ib_s {
 i_block_t ipc_header;
 mtp_pause_resume_t pc_ind;
 mtp_status_t congestion_ind;
 scmg_ipc_t sc_state;
 sccp_ipc_t sc_prim;
 } ib;

while (TRUE)
 {
 /* get any msg type; store msg in ib */
 ret_status = ca_get_msg(0, (i_block_t *)&ib, sizeof(ib), fwait);

switch (ib.ipc_header.trans.msg_type)
 {

case I_MTP_PAUSE:
printf (“sc23: MTP-PAUSE primitive received, dpc:%lu\n”,

ib.pc_ind.dpc);
break;

case I_SCOC_CID_RESULT:
ConnId = ib.sc_prim.primitives.cid_result.conn_id;

/* if conn_id is negative, the get connection id failed */
/* most likely the system has no more lrn entries */
/* set ValidId to YES to indicate that a result was received */

ValidId = YES;
break;

•
•
•

}
}

}

A

B

3-146 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Task 3: Requesting a Connection with the Remote Application

A local application requests a connection with the remote application by performing the
following steps.

A. Obtain the IPC key for the SCCP-SCOC process by calling the CASL ca_get_key()
function.

B. Define the IPC message by initializing the following structure fields.

• For the sccp_ipc_t.i_block_t.dest_id field, specify the IPC key of the
SCCP-SCOC process.

• For the sccp_ipc_t.i_block_t.ipc_trans_t.msg_type field, specify
the value I_N_CONNECT_REQ. This particular message tells SCCP-SCOC that you
want to establish a connection with the remote application whose addressing
information you will provide in Step C.

• For the sccp_ipc_t.primitives.scoc_con_req_t.conn_id field,
specify the connection ID obtained earlier in “Obtaining a Connection ID.” If the
remote application accepts the connection request, SCCP-SCOC assigns this
connection ID to the connection.

C. Define addressing information for the remote application by assigning values to the fields
in the sccp_ipc_t.primitives.scoc_con_req_t.sccp_cldclg_t
structure.

D. Define the local application’s own addressing information by assigning values to the fields
in the sccp_ipc_t.primitives.scoc_con_req_t.sccp_cldclg_t
structure.

E. Define the type of connection you want to establish by assigning appropriate values to the
fields in the sccp_ipc_t.primitives.scoc_con_req_t structure.

F. Call the function ca_put_msg() to deliver the I_N_CONNECT_REQ message to the
SCCP-SCOC process, which will then forward an MSU to the remote application.

Figure 3-8 shows a sample program module that requests a connection with the remote
application. Each figure callout corresponds to one of the preceding steps.
Application Design and Development 3-147

Considerations for Implementing SINAP/SS7 Features
Figure 3-8. Sending a Connection Request

void send_n_connect_req(U16 conn_id)
{
 ipc_key_t sccp_key;
 sccp_ipc_t sc_prim;

 /* send connect request ipc msg to scoc process */
 memset((char *)&sc_prim, 0, sizeof(sc_prim));
 if (ca_get_key(0, 0, AN_SC, PN_SCOC, 0, &sccp_key) == -1)
 printf(“scsend23 ca_get_key: %s\n”, CA_ERR);

 sc_prim.iblock.dest_id = sccp_key;
 sc_prim.iblock.trans.msg_type = I_N_CONNECT_REQ;
 sc_prim.primitives.n_connect_req.conn_id = conn_id;

 /* setup called party address */
 sc_prim.primitives.n_connect_req.called_address.pc_ind = 1;
 sc_prim.primitives.n_connect_req.called_address.pc = RemotePC;
 sc_prim.primitives.n_connect_req.called_address.ssn_ind = 1;
 sc_prim.primitives.n_connect_req.called_address.ssn = RemoteSSN;
 sc_prim.primitives.n_connect_req.called_address.gti_len = 0;
 sc_prim.primitives.n_connect_req.called_address.rtg_ind = 1;

sc_prim.primitives.n_connect_req.called_address.national = 0;

 /* setup calling party address */
 sc_prim.primitives.n_connect_req.calling_address.pc_ind = 1;
 sc_prim.primitives.n_connect_req.calling_address.pc =

PSTATIC->static_dt.own_SPC;
 sc_prim.primitives.n_connect_req.calling_address.ssn_ind = 1;
 sc_prim.primitives.n_connect_req.calling_address.ssn = MySSN;
 sc_prim.primitives.n_connect_req.calling_address.gti_len = 0;
 sc_prim.primitives.n_connect_req.calling_address.rtg_ind = 1;
 sc_prim.primitives.n_connect_req.calling_address.national = 0;

 sc_prim.primitives.n_connect_req.data_ack_used = 1;
 sc_prim.primitives.n_connect_req.exp_data_used = 1;
 sc_prim.primitives.n_connect_req.qos_class = ClassOfServ;
 sc_prim.primitives.n_connect_req.qos_flow = 4;
 sc_prim.primitives.n_connect_req.ud_len = 0;

printf(“Class Of Service in N_CONNECT_REQ: %d\n”,
sc_prim.primitives.n_connect_req.qos_class);

sc_prim.iblock.msg.len = sizeof(sc_prim) - sizeof(i_block_t);

 if (ca_put_msg((i_block_t *)&sc_prim, 10) == -1)
 printf(“scsend23: ca_put_msg: %s\n”, CA_ERR);
 else
 printf(“scsend23: sent n_connect_req to scoc, conn_id:%d\n”,conn_id);
}

•
•
•

A

B

C

D

E

F

3-148 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
The local application must perform the following steps to determine whether the remote
application has accepted the connection request.

A. Call the CASL function ca_get_msg() to read the IPC queue and wait for an IPC
message whose i_block_t.ipc_trans_t.msg_type field is set to
I_N_CONNECT_CON or I_N_DISCONNECT_IND. These particular messages indicate
whether the remote application accepted or rejected the connection request.

B. This step is optional. Provide error-handling logic to handle instances when
ca_get_msg() cannot retrieve an IPC message.

C. Receipt of an I_N_CONNECT_CON message indicates that the remote application
accepted the connection request. The local application can begin sending data to the remote
application, as described later in this chapter.

D. Receipt of an I_N_DISCONNECT_IND message indicates that the remote application did
not accept the connection request. The local application can perform steps to determine
why the remote application refused the connection request.

Figure 3-9 shows how to implement the preceding programming logic using a switch
statement. Each figure callout corresponds to one of the preceding steps.
Application Design and Development 3-149

Considerations for Implementing SINAP/SS7 Features
Figure 3-9. Retrieving a Response to a Connection Request

void empty_ipc_queue(U16 source)
{
 int i;
 int ret_status = RET_OK;
 BOOL fwait = FALSE; /* FALSE=do not wait, TRUE=wait forever */
 union ib_s {
 i_block_t ipc_header;
 mtp_pause_resume_t pc_ind;
 mtp_status_t congestion_ind;
 scmg_ipc_t sc_state;
 sccp_ipc_t sc_prim;
 } ib;

while (TRUE)
{
/* get any msg type; store msg in ib */

 ret_status = ca_get_msg(0, (i_block_t *)&ib, sizeof(ib), fwait);

if (ret_status == -1)
{
if (errno != ENOMSG)

 printf(“mtprecv: %s\n”, CA_ERR);
break;

}
else

{
switch (ib.ipc_header.trans.msg_type)

 {
case I_N_CONNECT_CON:

DT2SeqNo = 0;
SendId = 0;
RecvId = 0;
ValidConn = YES;
break;

case I_N_DISCONNECT_IND:
ConnId = 0;
DisConn = YES;
ValidId = NO;
ValidConn = NO;
break;

•
•
•

}
}

}

A

B

C

D

3-150 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Task 4: Responding to a Connection Request From a Remote Application

The following steps describe the tasks that a local application must perform to retrieve and
respond to a connection request from another application.

A. Call the CASL function ca_get_msg() to read the IPC queue, waiting for an IPC
message whose i_block_t.ipc_trans_t.msg_type field is set to
I_N_CONNECT_IND. This message type is a connection request from the remote
application.

B. This step is optional. Provide error-handling logic to handle instances when
ca_get_msg() cannot retrieve an IPC message.

C. Receipt of an I_N_CONNECT_IND message indicates that the remote application wants
to establish a connection with the local application.

D. Save the connection ID to use in subsequent responses.

E. This step is optional. Check to see whether to negotiate the class-of-service (COS) and
flow-control parameter values with the remote application. (Note that Figure 3-10 does not
contain the programming logic for performing parameter negotiation.)

F. Respond to the remote application’s connection request.

• Send an I_N_CONNECT_RES message to the SCCP-SCOC process to indicate
acceptance of the remote application’s connection request. One method of doing this
is to call the program module send_n_connect_res, as shown in Figure 3-9. (The
section, “The send_n_connect_res Program Module,” later in this chapter describes
this program module.)

• Send an I_N_DISCONNECT_REQ message to the SCCP-SCOC process to indicate
rejection of the remote application’s connection request.

Figure 3-10 shows how to implement the preceding programming logic using a switch
statement. Each figure callout corresponds to one of the preceding steps.
Application Design and Development 3-151

Considerations for Implementing SINAP/SS7 Features
Figure 3-10. Responding to a Connection Request

void empty_ipc_queue(U16 source)
{
 int i;
 int ret_status = RET_OK;

BOOL fwait = FALSE; /* FALSE=do not wait, TRUE=wait forever */
 union ib_s {
 i_block_t ipc_header;
 mtp_pause_resume_t pc_ind;
 mtp_status_t congestion_ind;
 scmg_ipc_t sc_state;
 sccp_ipc_t sc_prim;
 } ib;

 while (TRUE)
 {
 /* get any msg type; store msg in ib */
 ret_status = ca_get_msg(0, (i_block_t *)&ib, sizeof(ib), fwait);
 if (ret_status == -1)
 {
 if (errno != ENOMSG)
 printf(“mtprecv: %s\n”, CA_ERR);
 break;
 }
 else
 {
 switch (ib.ipc_header.trans.msg_type)
 {

case I_N_CONNECT_IND:
if (Mode == SINGLESTEP)

printf(“sc23: N_CONNECT_IND received, conn_id:%u\n”,
 ib.sc_prim.primitives.n_connect_ind.conn_id);

ConnId = ib.sc_prim.primitives.n_connect_ind.conn_id;
if (Negotiation == NO)
{

 ClassOfServ = ib.sc_prim.primitives.n_connect_ind.qos_class;
FlowControl = ib.sc_prim.primitives.n_connect_ind.qos_flow;

}
send_n_connect_res(ib.sc_prim.primitives.n_connect_ind.conn_id);
DT2SeqNo = 0;
SendId = 0;
RecvId = 0;
ValidConn = YES;
break;
•
•
•

default:
 printf(“sc23: unexpected IPC msg, msgtype=%ld\n”,

ib.ipc_header.trans.msg_type);
 }
 }
}

A

B

C

D

F

E

3-152 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
The send_n_connect_res Program Module
The following steps describe the tasks that a local application must perform to accept a
connection request from a remote application.

A. Obtain the IPC key for the SCCP-SCOC process by calling the CASL ca_get_key()
function.

B. Define the IPC message by initializing the following structure fields.

• For the sccp_ipc_t.i_block_t.dest_id field, specify the IPC key of the
SCCP-SCOC process.

• For the sccp_ipc_t.i_block_t.ipc_trans_t.msg_type field, specify
the value I_N_CONNECT_RES. This message tells SCCP-SCOC that you want to
accept the remote application’s connection request.

• For the sccp_ipc_t.primitives.scoc_con_res_t.conn_id field,
specify the connection ID retrieved earlier in Task 4: Responding to a Connection
Request from a Remote Application.

• As an optional step, you can negotiate the connection’s COS and flow-control
parameter values with the remote application by assigning values to other fields in the
sccp_ipc_t.primitives.scoc_con_res_t structure.

C. Call the function ca_put_msg() to deliver the I_N_CONNECT_RES message to the
SCCP-SCOC process, which will then forward an MSU to the remote application.
Application Design and Development 3-153

Considerations for Implementing SINAP/SS7 Features
Figure 3-11 shows the send_n_connect_res program module, which accepts a remote
application’s connection request. Each figure callout corresponds to one of the preceding steps.

Figure 3-11. The send_n_connect_res Program Module

Task 5: Begin Sending Data if the Remote Application Accepts the Connection Request

Once a connection is established, the local application can begin sending data MSUs to the
remote application by performing the following steps.

A. Define the type of MSU to send by initializing the m_block_t.sccp_ctrl_t structure
fields, as follows:

• For the sccp_ctrl field, specify the value SC_CTRL_DATA_REQ.

void send_n_connect_res(U16 conn_id)
{
 ipc_key_t sccp_key;
 sccp_ipc_t sc_prim;

 /* send connect response (confirm) IPC msg to SCOC process */
 memset((char *)&sc_prim, 0, sizeof(sc_prim));
 if (ca_get_key(0, 0, AN_SC, PN_SCOC, 0, &sccp_key) == -1)
 printf(“sc23send: ca_get_key: %s\n”, CA_ERR);

 sc_prim.iblock.dest_id = sccp_key;
 sc_prim.iblock.trans.msg_type = I_N_CONNECT_RES;
 sc_prim.primitives.n_connect_res.conn_id = ConnId;
 sc_prim.primitives.n_connect_res.resp_address = 0;
 sc_prim.primitives.n_connect_res.data_ack_used = NO;
 sc_prim.primitives.n_connect_res.exp_data_used = YES;
 sc_prim.primitives.n_connect_res.qos_class = ClassOfServ;
 sc_prim.primitives.n_connect_res.qos_flow = FlowControl;
 sc_prim.primitives.n_connect_res.ud_len = 0;
 sc_prim.iblock.msg.len = sizeof(sc_prim) - sizeof(i_block_t);

 printf(“Class Of Service: %d, in N_CONNECT_RES\n”
 ,sc_prim.primitives.n_connect_res.qos_class);

 if (ca_put_msg((i_block_t *)&sc_prim, 10) == -1)
 printf(“sc23send: ca_put_msg: %s\n”, CA_ERR);
 else
 printf(“sc23send: sent n_connect_res to scoc\n”);
}

•
•
•

A

B

C

3-154 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
• For the sccp_source field, specify the value SC_USER to indicate that the local
application is an SCCP user.

B. Call the CCITT_CA_SET_LABEL macro to create the MTP routing label for the MSU.

C. Define the destination for the data MSU by specifying the connection ID as the value of the
m_block_t.sccp_prim_t.conn_id field.

D. For
m_block_t.ud.ccitt_msu_t.mtp_ud.ccitt_sccp_user_t.msg_type,
specify one of the following values to define the type of data MSU you want to send:
SC_DATA_FORM1, SC_DATA_FORM2, or SC_EXPEDITED_DATA.

E. Initialize one of the following SCCP data structures to define the MSU data. (Note that
Figure 3-12 shows how to send a data-form-1 MSU.)

• For data-form-1 MSUs (SCCP protocol class 2), use the sccp_dt1_t structure and
specify the value SC_DATA_FORM1 for the structure’s msg_type field. Specify the
MSU data in the ud field, and specify its length in the ud_len field.

• For data-form-2 MSUs (SCCP protocol class 3), use the sccp_dt2_t structure and
specify the value SC_DATA_FORM2 for the structure’s msg_type field. Specify the
MSU data in the ud field, and specify its length in the ud_len field.

• For expedited-data MSUs (which are data-form-2 MSUs that enable you to disable
flow-control settings), use the sccp_expdata_t structure and specify the value
SC_EXPEDITED_DATA for the structure’s msg_type field. Specify the MSU data
in the ud field, and specify its length in the ud_len field.

N O T E
To assemble the MSU, the CASL takes the information in the
SCCP data structure and writes it to the appropriate fields in the
m_block_t structure. For example, the user data you define
in the sccp_dt1_t structure’s ud field is written to the ud
field of the sccp_user_t structure (which is part of the
m_block_t structure).

F. For the m_block_t.mtp_ctrl_t.msg_size field, specify the length of the MSU’s
user data, which is equal to the length of the ud field of the SCCP data structure plus eight
bytes. (For example, if the ud field is 255 bytes, define the length of the MSU as 263 bytes.)

G. Call the CASL ca_put_sc() function, passing the m_block_t structure initialized in
the preceding steps.

Figure 3-12 shows a sample program module that sends a data MSU to the remote application.
Each figure callout corresponds to one of the preceding steps.
Application Design and Development 3-155

Considerations for Implementing SINAP/SS7 Features
Figure 3-12. Sending a Data MSU

void send_dt1(U16 conn_id)
{
 int ret_status, i, j, m;
 m_block_t n, *p_m;
 sccp_dt1_t *p_dt1;

 p_m = &n;
 memset((char *)p_m, 0,sizeof(m_block_t));

 /* send outgoing SC_DATA_FORM MSU */
 p_m->sc_ctrl.sccp_ctrl = SC_CTRL_DATA_REQ;
 p_m->sc_ctrl.sccp_source = SC_USER;

 CCITT_CA_SET_LABEL(p_m->ud.ccitt_msu.label, RemotePC,
 PSTATIC->static_dt.own_SPC, 0);

 p_m->sc_prim.conn_id = conn_id;

 p_dt1 = (sccp_dt1_t*)&(p_m->ud.msu.mtp_ud.sccp.msg_type);

 p_dt1->msg_type = SC_DATA_FORM1;
 p_dt1->ud[0] = 1; /* BID */
 p_dt1->ud[1] = DT2SeqNo;

p_dt1->ud[2] = SendId;
 p_dt1->ud[3] = RecvId;

 j = 4;

/* fill the data record with printable ASCII characters */
for (m = 1; m <= 2; m++)

 {
 for (i = 32; i <= 126; i ++)
 p_dt1->ud[j++] = i;
 }

p_dt1->ud_len = j++;
 DT2SeqNo += 1;

 /* 8 + total_sccp_msg_length for CCITT */
 p_m->mtp_ctrl.msg_size = 8 + sizeof(sccp_dt1_t);

 ret_status = ca_put_sc(p_m);
 if (ret_status == (int)RET_ERR)
 printf(“scsend23: cannot send DT1 to sinap\n”);
 else

printf(“scsend23: DT1 sent, conn_id:%d seqno:%d\n”, conn_id,
DT2SeqNo-1);
}

•

A

B

C

D

E

F

G

3-156 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Task 6: Retrieving Data from the Remote Application

To process incoming data MSUs from the remote application, the local application should
perform the following steps.

A. Call the CASL ca_get_sc() function to retrieve an incoming MSU.

B. Determine the type of incoming data MSU by checking the value of the
m_block_t.ud.ccitt_msu_t.mtp_ud.ccitt_sccp_user_t.msg_type
field.

C. On receipt of an SC_DATA_FORM1 MSU, the local application can respond by returning
a data-form-1 MSU, as shown in callouts C1, C2, and C3.

C1. Assign the current connection ID to the connection_id parameter, and increment
the RecvId count.

C2. Obtain the sender’s ID either from the buffer pointed to by the
m_block_t.sccp_prim_t.p_user_data field (if this is a large message) or
from the sccp_dt1_1 structure’s ud field (if this is a small message).

C3. Call the send_dt1 program module to send the response MSU, passing the current
connection ID as an argument. (The send_dt1 program module is shown later in this
chapter in “The send_dt1 Program Module.”)

D. On receipt of an SC_DATA_FORM2 MSU, the local application can respond by returning
a data-form-2 MSU, as shown in callouts D1, D2, and D3.

D1. Assign the current connection ID to the connection_id parameter, and increment
the RecvId count.

D2. Obtain the sender’s ID either from the buffer pointed to by the
m_block_t.sccp_prim_t.p_user_data field (if this is a large message) or
from the sccp_dt2_t structure’s ud field (if this is a small message).

D3. Call the send_dt2 program module to send the response MSU, passing the current
connection ID as an argument. (The send_dt2 program module is shown later in this
chapter in “The send_dt2 Program Module.”)

E. Receipt of an SC_EXPEDITED_DATA MSU indicates the presence of expedited data in
the sccp_expdata_t structure’s ud field.
Application Design and Development 3-157

Considerations for Implementing SINAP/SS7 Features
Figure 3-13 shows a sample program module that retrieves an incoming data MSU. Each
figure callout corresponds to one of the preceding steps.

void empty_msu_queue(U16 user)
{
 int i, j;
 int bid, seqno, size;
 int finished, connection_id;
 m_block_t *p_m;
 sccp_expdata_t *p_expd;
 sccp_dt2_t *p_dt2;
 sccp_dt1_t *p_dt1;
 finished = NO;

 while (!finished)
 {
 p_m = ca_get_sc(0);

 if (p_m != (m_block_t*)RET_ERR)
 {

 switch (p_m->ud.ccitt_msu.mtp_ud.sccp.msg_type)
{

case SC_DATA_FORM1:
 p_dt1 = (sccp_dt1_t*)&(p_m->ud.msu.mtp_ud.sccp.msg_type);

ValidMsg = YES;

/* respond with a data form 1 message */
 if (user == RECEIVER)
 {
 connection_id = p_m->sc_prim.conn_id;
 RecvId++;

/* pick up the send identification from either the MSU or large data
buffer */

if (p_m->sc_prim.p_user_data != (U8 *)NULL
 && p_m->sc_prim.user_data_size != 0)
 SendId = p_m->sc_prim.p_user_data[2];
 else
 SendId = p_dt1->ud[2];

/* do not send a response message if no request to do so is posted */
if (DataResponse == YES)

 send_dt1(connection_id);
 DT2Count += 1;
 }

break;

A

B

C1

C2

C

C3
3-158 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Figure 3-13. Retrieving an Incoming Data MSU

case SC_DATA_FORM2:
 p_dt2 = (sccp_dt2_t*)&(p_m->ud.msu.mtp_ud.sccp.msg_type);

ValidMsg = YES;

/* respond with a data form 2 message */
 if (user == RECEIVER)
 {
 connection_id = p_m->sc_prim.conn_id;
 RecvId++;

/* pick up the send identification from either the MSU or large data
buffer */

if (p_m->sc_prim.p_user_data != (U8 *)NULL
 && p_m->sc_prim.user_data_size != 0)
 SendId = p_m->sc_prim.p_user_data[2];
 else
 SendId = p_dt2->ud[2];

/* do not send a response message if no request to do so is posted */
if (DataResponse == YES)

 send_dt2(connection_id);
 DT2Count += 1;
 }

break;

case SC_EXPEDITED_DATA:
 p_expd =
(sccp_expdata_t*)&(p_m->ud.msu.mtp_ud.sccp.msg_type);
 if (Mode == SINGLESTEP)

printf(“Expedited Data msu received
conn_id:%d,ltid:%c%c%c%c\n”,

p_m->sc_prim.conn_id, p_expd->ud[4],
p_expd->ud[5], p_expd->ud[6], p_expd->ud[7]);

 break;
 }

}
 else if (errno != CA_ERR_NO_MSUS && errno != EINTR)
 {
 finished = YES;
 printf(“msu read error: %d\n”, errno);
 }
 else
 finished = YES;
 }
}

•

D

E

D1

D2

D3
Application Design and Development 3-159

Considerations for Implementing SINAP/SS7 Features
The send_dt1 Program Module
Figure 3-14 shows the send_dt1 program module, which retrieves an incoming data-form-1
message from the remote application. For more information on the send_dt1 program
module, see the section, “The send_n_connect_res Program Module,” earlier in this chapter.

Figure 3-14. Retrieving an Incoming Data-Form-1 Message

void send_dt1(U16 conn_id)
{
 int ret_status, i, j, m;
 m_block_t n, *p_m;
 sccp_dt1_t *p_dt1;

 p_m = &n;
 memset((char *)p_m, 0,sizeof(m_block_t));

 /* send outgoing SC_DATA_FORM MSU */
 p_m->sc_ctrl.sccp_ctrl = SC_CTRL_DATA_REQ;
 p_m->sc_ctrl.sccp_source = SC_USER;

 CCITT_CA_SET_LABEL(p_m->ud.ccitt_msu.label, RemotePC,
 PSTATIC->static_dt.own_SPC, 0);

 p_m->sc_prim.conn_id = conn_id;

 p_dt1 = (sccp_dt1_t*)&(p_m->ud.msu.mtp_ud.sccp.msg_type);
 p_dt1->msg_type = SC_DATA_FORM1;
 p_dt1->ud[0] = 1; /* BID */

p_dt1->ud[1] = DT2SeqNo;
 p_dt1->ud[2] = SendId;
 p_dt1->ud[3] = RecvId;

 j = 4;

/* fill the data record with printable ASCII characters */

 for (m = 1; m <= 2; m++)
 {
 for (i = 32; i <= 126; i ++)
 p_dt1->ud[j++] = i;
 }

 p_dt1->ud_len = j++;
 DT2SeqNo += 1;

 /* 8 + total_sccp_msg_length for CCITT */
 p_m->mtp_ctrl.msg_size = 8 + sizeof(sccp_dt1_t);
 ret_status = ca_put_sc(p_m);
 if (ret_status == (int)RET_ERR)
 printf(“sc23send: cannot send DT1 to sinap\n”);

else
 printf(“sc23send: DT1 sent, conn_id:%d seqno:%d\n”, conn_id, DT2SeqNo-1);
}

•
•
•
3-160 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
The send_dt2 Program Module
Figure 3-15 shows the send_dt2 program module, which retrieves an incoming data-form-2
message from the remote application. For more information on the send_dt2 program
module, see the section, “The send_n_connect_res Program Module,” earlier in this chapter.
Application Design and Development 3-161

Considerations for Implementing SINAP/SS7 Features
Figure 3-15. Retrieving an Incoming Data-Form-2 Message

void send_dt2(U16 conn_id)
{
 int ret_status, i, j, m;
 m_block_t n, *p_m;
 sccp_dt2_t *p_dt2;

 p_m = &n;
 memset((char *)p_m, 0,sizeof(m_block_t));

 /* send outgoing SC_DATA_FORM MSU */
 p_m->sc_ctrl.sccp_ctrl = SC_CTRL_DATA_REQ;
 p_m->sc_ctrl.sccp_source = SC_USER;

 CCITT_CA_SET_LABEL(p_m->ud.ccitt_msu.label, RemotePC,
 PSTATIC->static_dt.own_SPC, 0);

 p_m->sc_prim.conn_id = conn_id;

 p_dt2 = (sccp_dt2_t*)&(p_m->ud.msu.mtp_ud.sccp.msg_type);
 p_dt2->msg_type = SC_DATA_FORM2;
 p_dt2->ud[0] = 1; /* BID */
 p_dt2->ud[1] = DT2SeqNo;

p_dt2->ud[2] = SendId;
 p_dt2->ud[3] = RecvId;

 j = 4;

/* fill the data record with printable ASCII characters */

 for (m = 1; m <= 2; m++)
 {
 for (i = 32; i <= 126; i ++)
 p_dt2->ud[j++] = i;
 }

 p_dt2->ud_len = j++;
 DT2SeqNo += 1;

 /* 8 + total_sccp_msg_length for CCITT */
 p_m->mtp_ctrl.msg_size = 8 + sizeof(sccp_dt2_t);
 ret_status = ca_put_sc(p_m);
 if (ret_status == (int)RET_ERR)
 printf(“sc23send: cannot send DT2 to sinap\n”);
 else

printf(“sc23send: DT2 sent, conn_id:%d seqno:%d\n”, conn_id, DT2SeqNo-1);
}

•
•
•
3-162 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Task 7: Releasing the Connection

After completing the data transaction, the local application should release the connection by
performing the following steps. (Note that the remote application can also release the
connection.) You may want to include these steps as part of the application’s termination
process, which includes sending a UOS (user-out-of-service) message to SCCP management
and then calling the CASL function ca_terminate() to terminate the application’s
processing.

To release the connection and end the communication session, the local application must
perform the following steps.

A. Obtain the IPC key for the SCCP-SCOC process by calling the CASL ca_get_key()
function.

B. For the sccp_ipc_t.i_block_t.dest_id field, specify the IPC key of the
SCCP-SCOC process.

C. For the sccp_ipc_t.i_block_t.ipc_trans_t.msg_type field, specify the
value I_N_DISCONNECT_REQ. This particular message tells SCCP-SCOC that you want
to release the specified connection with the remote application.

D. Assign appropriate values to the fields in the
sccp_ipc_t.primitives.scoc_dis_req_t structure to provide the information
for the disconnect request. For a normal end, specify the value SCCP_CAUSE_REL_EUO
for the structure’s reason field.

E. Call the function ca_put_msg() to deliver the I_N_DISCONNECT_REQ message to
the SCCP-SCOC process.

The disconnect request releases the connection between the local and remote applications, and
returns the connection ID to the pool of available connection IDs. Note that the local application
need not wait for a response from SCCP-SCOC.

Figure 3-16 shows the terminate program module, which terminates application processing.
The terminate program module calls the send_n_disconnect_req program module
(also shown), which issues a disconnect request to release a connection.
Application Design and Development 3-163

Considerations for Implementing SINAP/SS7 Features
Figure 3-16. Releasing the Connection

void terminate(U16 source)
{
 static terminate_t term;

 send_nstate_uos_to_sccp();
ca_withdraw(); /* inform driver not to send any MSUs */
printf(“Terminating this process - wait 15sec\n”);

 sleep(15);

/* if this is the send side, then disconnect */
if (source == SENDER)

 send_n_disconnect_req(ConnId);

 term.ipc_key = CA_KEY;
 term.msg_type = TERM_SELF_INITIATED;
 term.fss = 0;
 strcpy((char *)&term.reason[0], “Client application exiting”);

term.exit_code = 0;

 ca_terminate(&term);
exit(0);

}
•
•
•

void send_n_disconnect_req(U16 conn_id)
{
 ipc_key_t sccp_key;
 sccp_ipc_t sc_prim;

 /* send released IPC msg to SCOC process */
 memset((char *)&sc_prim, 0, sizeof(sc_prim));
 if (ca_get_key(0, 0, AN_SC, PN_SCOC, 0, &sccp_key) == -1)
 printf(“sc23send: ca_get_key: %s\n”, CA_ERR);

 sc_prim.iblock.dest_id = sccp_key;

 sc_prim.iblock.trans.msg_type = I_N_DISCONNECT_REQ;
 sc_prim.primitives.n_disconnect_req.conn_id = conn_id;
 sc_prim.primitives.n_disconnect_req.reason = SCCP_CAUSE_REL_EUO;
 sc_prim.primitives.n_disconnect_req.resp_address = 0;
 sc_prim.primitives.n_disconnect_req.ud_len = 0;

 sc_prim.iblock.msg.len = sizeof(sc_prim) - sizeof(i_block_t);

 if (ca_put_msg((i_block_t *)&sc_prim, 10) == -1)
printf(“sc23send: ca_put_msg: %s\n”, CA_ERR);

 else

C

A

D

3-164 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
Load Control
The load control facility, hereafter referred to as load control, improves application throughput
when there is severe network congestion and reduces the risk that incoming MSUs will be lost
or discarded due to timeouts. It can be applied only to applications registered at the TCAP input
boundary. It cannot be set up for MTP or SCCP applications. This section provides an overview
of load control and describes the considerations of which you should be aware as you design
and build TCAP applications in which load control will be implemented. See the SINAP/SS7
User’s Guide (R8051) for more information about implementing load control.

Load control can be invoked by operator command or programmatically (forced load control)
but normally goes into effect due to monitored conditions being met (automatic load control).
Load control is optional. It is set up on an application basis and each application can have its
own load control parameters. Once set up, load control can be enabled or disabled on a
system-wide, application, or instance basis. Load control can take place on a group basis for an
application as a whole, or on an individual basis for each separate instance. The setup and
enablement parameters for a subsystem are persistent. They are retained in the static database
and only need to be reissued when a change is called for.

During normal SS7 network operation, an application processes MSUs in the order in which
they arrive. However, when there is extreme network congestion, the application may not be
able to handle all of its incoming MSUs; therefore, it is important for the application to complete
existing transactions before initiating new ones. To accomplish this, load control allows the
SINAP/SS7 system to assign precedence to MSUs that are part of an existing transaction
(continuation MSUs).

You configure an application for load control by defining the application’s load control
operating characteristics. These operating characteristics specify how the SINAP/SS7 system is
to perform load control processing, and they define such things as the maximum level of
network congestion considered acceptable for the application.

After configuring the application, you enable load control, which causes the SINAP/SS7 system
to begin monitoring the application’s congestion level. There are two options to specify when
load control should begin.

The first option involves evaluating the MSU delay count and the input queue length. Each
incoming message is given a timestamp that indicates the time of its arrival. The SINAP/SS7
system uses this timestamp to evaluate the length of time between the message arrival and when
the application places a response on the output queue. This length of time, as well as the input
queue length, is optionally considered in calculating the congestion level. When the congestion
level exceeds the threshold level defined by the application’s load control operating
characteristics (hereafter called overload conditions), the SINAP/SS7 system begins load
control processing.

The second option for determining load control onset involves disabling the use of MSU delay
counts and considering only the input queue length versus the threshold. Incoming MSUs are
not timestamped. See Chapter 3 of the SINAP/SS7 User’s Guide (R8051) for more information.
Application Design and Development 3-165

Considerations for Implementing SINAP/SS7 Features
N O T E
If you are not using MSU delay counts, which use timestamps,
the restriction requiring using the same T_block for output
does not apply.

Performing Load Control Processing
Each SINAP/SS7 application has an input queue on which the SINAP/SS7 system places
incoming MSUs. This input queue functions as a first-in, first-out (FIFO) queue; hereafter, this
queue is referred to as the application’s input queue. To perform load control processing, the
SINAP/SS7 system creates a second input queue for the application. This queue functions as a
last-in, first-out (LIFO) queue; hereafter, this queue is referred to as the application’s LIFO
queue.

At load control onset, the SINAP/SS7 system evaluates the MSUs that are currently on the
application’s input queue and discards the ones that initiate a new transaction (BEGIN and UNI
for CCITT/TTC/NTT/China; QUERY and UNI for ANSI). Thereafter, the SINAP/SS7 system
places all incoming MSUs on the application’s LIFO queue. The SINAP/SS7 system continues
to place continuation MSUs (those that are part of an existing transaction) on the application’s
input queue. MSUs that are not of this category, such as dialogue responses, continue to be
placed on the FIFO queue. To make use of the timestamp applied to incoming MSUs, an
application must use the same t_block_t structure for the incoming MSU’s response as was
used by the incoming MSU; otherwise, the timestamp is rendered useless.

When timestamping is used, each incoming MSU is timestamped when it arrives at that
process’s input queue. The CASL TCAP functions are modified to save this timestamp, if
present, in an array of timestamps paralleling the tblock array, as the incoming mblock is
not preserved. On TCAP output, the saved timestamp, if present, is inserted in the first timeslot
in the outgoing mblock. When the mblock is extracted from the process’s output queue in the
driver before going to the Link Multiplexor, the difference between the current time and this
timestamp is compared with the setup delay limit. If this limit is reached or exceeded, a prs
counter is incremented and compared against the setup count limit, else the counter is reset. If
the timestamp is not present, the counter is also reset.

The application processes the MSUs on its input queue first. When all these MSUs have been
processed, the application begins processing the MSUs on its LIFO queue (those that initiate
new transactions). If the LIFO queue becomes full, the SINAP/SS7 system discards the oldest
MSU on the queue to make room for a new incoming MSU. Messages are always discarded
from the LIFO queue when they exceed a given timeout period that has been configured. If the
next MSU extracted from the LIFO queue has experienced excessive delay (a setup parameter)
and, by implication, so has the rest of the LIFO queue, the queue’s contents are discarded.

TCAP MSU dialogue begins are considered those that are NOT flagged in the mblock
as DR_TO_PID. This is so that if forced load control is invoked or automatic load control comes
into effect, scanning of the FIFO queue for dialogue begins can be done rapidly.
3-166 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
The LIFO queue used during load control has a maximum length equal to that specified for the
LIFO queue at registration. If an MSU about to be queued on the LIFO queue would cause it to
overflow, the oldest MSU on the queue is discarded instead.

An additional restriction is that group load control can be used with either least used or round
robin inbound load distribution, whereas individual load control can only be used with round
robin, where instance loads could vary widely. Doing an MML or CASL setup with
type=individual, when the application has registered as least used will result in an
error being returned. When the setup parameters are pre-existing (already set up in the static
database) and an application then registers, the ca_register() function can return with the
following new error codes:

• CA_ERR_REG_NOT_TCAP - Indicates the input boundary is specified as SCCP, but load
control has been set up.

• CA_ERR_REG_DIST_WRONG - Indicates the load distribution type is
LEAST_UTILIZED, but the load control setup type is specified as individual.

• CA_ERR_REG_THRESHOLD - Indicates the maximum input MSU count is less than the
load control threshold value.

The SINAP/SS7 system continues to perform load control processing until the application has
processed all MSUs on its input and LIFO queues (for all instances if on a group basis), or until
you terminate load control (see the section, “Disabling Load Control for an Application” later
in this chapter). When both queues are empty, the SINAP/SS7 system disables load control
processing for the application. Since the application is still configured and enabled for load
control, the SINAP/SS7 system continues to monitor the application for overload conditions.
When the application again experiences overload conditions, the SINAP/SS7 system invokes
load control processing for the application.

Load control is persistent and once it is set up for an SSN or application it stays set up even when
the application is terminated or the SINAP/SS7 system is restarted. The only way to remove the
load control setting for such an application is to delete it by using an MML command (see the
sections describing load control in the SINAP/SS7 User’s Guide (R8051)) or a CASL function
(see Chapter 6, ‘‘CASL Function Calls”).

Alarms of major levels are always issued for all cases of load control and abatement. Alarms
are issued separately for instances if individual load control is in effect.

Implementing Load Control Functionality
Any application that interfaces with the SINAP/SS7 system at the TCAP boundary can
implement load control functionality. You can configure and enable an application for load
control by issuing MML commands from the SINAP/SS7 system’s Terminal Handler, or by
including CASL function calls in the application (typically, in the application’s control
process).

You can use a combination of MML commands and CASL functions to implement load control
for an application. For example, you can develop an application that calls the CASL function
Application Design and Development 3-167

Considerations for Implementing SINAP/SS7 Features
ca_setup_locon() but does not call ca_enable_locon(). The
ca_setup_locon() function call configures the application for load control; however,
since ca_enable_locon() is not called, the application is not enabled for load control. You
must issue the MML command ENABLE-LOAD-CONTROL to enable load control. If you then
want to change the application’s load control characteristics, you can issue the
SETUP-LOAD-CONTROL command rather than have the application call
ca_setup_locon(), which would necessitate recompiling the application. (See “Load
Control Functions” in Chapter 6 for a description of load control CASL functions, and see
Appendix A, ‘‘SINAP/SS7 MML Command Summary,” for a summary of load control MML
commands. The SINAP/SS7 User’s Guide (R8051) provides detailed information about the
Terminal Handler and load control MML commands.)

N O T E S
1. Load control cannot be implemented by an application that

has one process performing both control and data
processing, and another process with one or more instances
also performing data processing at the same time. To
implement load control, an application must have a
separate control process, or it must have a process with
several instances, one of which performs control
processing.

2. An application should implement load control only in
response to extreme network congestion. The use of load
control does not guarantee that incoming MSUs will not be
lost.

Configuring Load Control
You configure an application for load control by issuing the MML SETUP-LOAD-CONTROL
command or by having the application call the ca_setup_locon() function. By
configuring an application for load control, you define the various thresholds that determine the
application’s maximum allowable congestion level. Other arguments specify how the
SINAP/SS7 system is to perform load control processing for the application.

You cannot configure individual application instances for load control because by default, the
SETUP-LOAD-CONTROL command and the ca_setup_locon() function affect all
instances of the application. However, when you enable load control, you can enable load
control for a subset of the application’s instances, thereby selectively implementing load
control processing for specific application instances.

Enabling Load Control for an Application
After configuring an application for load control, you initiate load control operation. You do this
by issuing the MML ENABLE-LOAD-CONTROL command or by having the application call
the ca_enable_locon() function, which causes the SINAP/SS7 system to begin
monitoring the application’s congestion level. When the application experiences overload
3-168 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
conditions, the SINAP/SS7 system automatically begins performing load control processing for
the application.

For the SINAP/SS7 system to implement load control processing, load control must be enabled
at each of the following levels.

• System – The SINAP/SS7 system is enabled to perform load control processing.

• Application – A particular application is enabled to perform load control processing.

• Instance – Individual application instances are enabled to perform load control processing.

By default, the MML ENABLE-LOAD-CONTROL command and the ca_enable_locon()
function automatically enable load control at the system and instance levels. You enable load
control at the application level by issuing the MML ENABLE-LOAD-CONTROL command or
having the application call the ca_enable_locon() function, specifying the application for
which you want load control enabled.

When load control is enabled (at all levels), monitoring of the input and output queues begins.
When a threshold is exceeded for the length of the input FIFO queue and, if optionally specified,
a running count of consecutive output MSUs is delayed beyond a time limit, load control begins.
These conditions must be met by all instances of a subsystem if group load control was specified
at setup. The threshold, delay time, and count limit are all parameters set using the
SETUP-LOAD-CONTROL command described in the SINAP/SS7 User’s Guide (R8051).

If you disable load control at the system level, you cannot enable load control for a particular
application until you first re-enable load control at the system level.

• You disable load control at the system level by issuing the MML
DISABLE-LOAD-CONTROL command or having the application call the
ca_disable_locon() function with SSN=ALL.

• You re-enable load control at the system level by issuing the MML
ENABLE-LOAD-CONTROL command or having the application call the
ca_enable_locon() function with SSN=ALL.

Likewise, if you disable load control for specific application instances, you must also explicitly
re-enable load control for those instances; enabling load control at the application level does not
supersede the load control enablement settings for individual application instances. For
example, if you disable load control for instances 1, 3, and 5 of an application whose specified
subsystem number (SSN) is 254, you must explicitly re-enable load control for those instances;
enabling load control for SSN 254 does not enable load control for instances 1, 3, and 5.

Disabling Load Control for an Application
The SINAP/SS7 system automatically terminates load control processing when the application
finishes processing all MSUs on its input queue and on the LIFO queue created at the onset of
load control processing. However, load control is persistent, and once set up for an application,
it stays even when the application terminates or the SINAP/SS7 system is restarted. To remove
load control settings for an application, use one of the following commands:
Application Design and Development 3-169

Considerations for Implementing SINAP/SS7 Features
• To terminate load control completely, issue the MML DISABLE-LOAD-CONTROL
command or have the application call the ca_disable_locon() function. The
SINAP/SS7 system does not return to monitoring the application for overload conditions.
To reactivate load control, you must re-enable load control for the application.

• To reconfigure the application and remove load control functionality, issue the MML
SETUP-LOAD-CONTROL command or have the application call the
ca_setup_locon() function with TYPE=DELETE. The application continues to
execute; however, it is no longer configured for load control.

N O T E
When you use either of these methods to terminate load control,
the SINAP/SS7 system extracts MSUs from the application’s
LIFO queue in FIFO fashion and appends them to the
application’s input queue. The SINAP/SS7 system discards any
MSUs that would cause the input queue to overflow.

The Disable Load Control (DISABLE-LOAD-CONTROL) command or the
ca_disable_locon() function terminates load control completely at the system,
application, or instance level. The SINAP node does not return to monitoring the application
for overload conditions. To reactivate load control, you must re-enable load control for the
application. You can access this command through the DISABLE option of the load control
menu.

You can disable load control at the system level, the application level, or the instance level in
the following ways:

• Disabling load control at the system level terminates load control operation for all
applications configured for load control. In the case of a critical situation this allows an
operator or control program to disable load control for all applications by using a single
command or function call. To disable load control at the system level, issue the
DISABLE-LOAD-CONTROL command or ca_disable_locon() and specify the
value ALL for the SSN argument.

N O T E
After disabling load control at the system level, you must
re-enable load control at the same level before you can enable
load control for an individual application. (You re-enable load
control at the system level by issuing the
ENABLE-LOAD-CONTROL command and specifying the
value ALL for the SSN argument.)

• Disabling load control at the application level terminates load control operation for all
instances of a specific application. To disable load control at the application level, issue the
DISABLE-LOAD-CONTROL command or ca_disable_locon(). Specify the SSN
3-170 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
of the application as the value of the SSN argument and specify the value ALL for the
INSTANCE argument, or omit INSTANCE from the command line.

• Disabling load control at the instance level terminates load control operation for one or
more instances of an application. To disable load control at the instance level, issue the
DISABLE-LOAD-CONTROL command or ca_disable_locon(). Specify the SSN
of the application as the value of the SSN argument and specify the number of the
application instance as the value of the INSTANCE argument. To use this form of the
DISABLE-LOAD-CONTROL command or ca_disable_locon(), the application
must be configured for individual-type operation. (See the description of the
ca_disable_locon() TYPE argument in Chapter 6, ‘‘CASL Function Calls.”)

N O T E S
1. For an instance, disabling load control at any level disables

load control for that instance.

2. When an application stops running, load control cancels
the disablement settings of individual application
instances.

3. After disabling load control for specific application
instances, you must re-enable load control for those same
instances. Enabling load control at the application level
does not override the enablement settings for individual
application instances. For example, the following
command disables load control for instances 1, 3, and 5 of
the application whose SSN is 254.

DISABLE-LOAD-CONTROL:SSN=254:INSTANCE=1&3&5

4. Issuing the command,
ENABLE-LOAD-CONTROL:SSN=254, (which enables
load control for all instances of SSN 254) does not
re-enable load control for instances 1, 3, and 5 of SSN
254. To re-enable load control for those instances, you
must issue the following command.

ENABLE-LOAD-CONTROL:SSN=254:INSTANCE=1&3&5

If you issue the DISABLE-LOAD-CONTROL command or ca_disable_locon() while
the SINAP/SS7 system is performing load control processing for an application, the
SINAP/SS7 system extracts MSUs from the application’s LIFO queue in FIFO fashion and
appends them to the application’s input queue. The SINAP/SS7 system discards MSUs that
have been on the application’s LIFO queue longer than the time defined by the
SETUP-LOAD-CONTROL command or ca_disable_locon() ABATEDELAY argument.
(See “Enabling Load Control for an Application” earlier in this chapter for how to configure
load control parameters for an application.) The SINAP/SS7 system also discards any MSUs
that would cause the application’s input queue to overflow.
Application Design and Development 3-171

Considerations for Implementing SINAP/SS7 Features
EXIT-LOAD-CONTROL and ca_exit_locon() apply only to forced load control. Using
them when forced load control is not in effect results in an error message or code. These cause
premature abatement of load control in the same manner as disabling load control, except load
control stays enabled. INVOKE-LOAD-CONTROL or ca_invoke_locon() converts
automatic load control, if it is in effect, to forced load control with no other changes except that,
during forced load control, there is no monitoring of abatement conditions.

Terminating a process results in the driver attempting to redistribute the MSUs on the FIFO and
then LIFO queues to other existing instances. This results in abatement of either form of load
control then in effect for that instance, which might effect the group. The state of the application
remains enabled.

Setup deletion during either form of load control results in premature abatement. The state of
the process remains running, but without load control setup.

The setup and enablement parameters in the shared memory static database are saved to disk
when a BACKUP-NODE command is executed. However, the MML commands to set up,
enable, or disable a subsystem, since they affect the static database, are logged to the rclog
file for possible later playback with a RESTORE-NODE command. The application’s use of the
corresponding CASL function results in building a corresponding MML string and placing it in
rclog. The setup strings have a NOTIFY=Y/N parameter, even though this cannot be entered
by the user through MML. The RESTORE-NODE command replaces the static database with
the last saved version, with optional playback of the MML strings in the rclog file. This
updates the setup and enablement settings for every running process set up for load control.

Enabling Loopback Detection (CCITT)
For the CCITT network variant only, when the loopback detection environment variable is
defined, the SINAP/SS7 system can detect when a remote link is in a loopback mode. During a
signaling link test (SLT), normally run after MTP Level 2 alignment, if the system receives
signaling test messages (SLTMs) from the remote link that are identical to the SLTMs it sent to
that link for all signaling link test attempts, and no correct signaling link test acknowledgment
(SLTA) message is received, the SINAP/SS7 system sets a loopback diagnostic indicator to
allow display of the loopback status on the DISPLAY-LINK screen.

N O T E
The loopback detection feature is active only during the
signaling link test procedure.

To enable the loopback detection feature, define the following environment variable before you
start or restart the SINAP/SS7 system:

LOOPBACK_DISPLAY
3-172 SINAP/SS7 Programmer’s Guide R8052-17

Considerations for Implementing SINAP/SS7 Features
It is not necessary to assign a value to the variable. The SINAP/SS7 system only verifies the
existence of the variable. You can define the environment variable at the UNIX command level
before starting or restarting the SINAP node. To automatically define the variable each time you
start the SINAP node, uncomment the variable in the
$SINAP_HOME/Bin/sinap_env[.csh or.sh] file.

If you do not define the environment variable, the SINAP/SS7 system does not perform
loopback detection and the loopback status is not displayed on the DISPLAY-LINK screen.

Enabling Transfer-Restricted Message Handling
For the CCITT network variant, when the SINAP node receives a transfer-restricted (TFR)
message, the node starts the MTP Level 3 T10 timer and does not send a signaling route set
restricted (RSR) test message immediately. An RSR is sent to the signaling transfer point
referring to the destination declared restricted by the TFR message every T10 period until a
transfer-allowed (TFA) message is received.

To use the transfer-restricted (national network) option you must define the following
environment variable before you start or restart the SINAP node:

MTP_WHITE_BOOK_TFR

To automatically define this environment variable each time you start or restart the SINAP
node, uncomment the variable in the SINAP/SS7 environment file
$SINAP/HOME/Bin/sinap_env[.csh or.sh]. You do not need to assign a value to
the variable, the SINAP/SS7 system simply verifies the existence of the variable.

When the MTP_WHITE_BOOK_TFR option is defined, the Display Routeset
(DISPLAY-RSET) command, accessed through sysopr, displays the following additional
status states for the selected route sets and routes:

For Route Set Status: R - DPC restricted
P - DPC prohibited

For Route Status: R - Transfer restricted
P - Transfer prohibited

Figure 3-17 shows a situation where LSET1 route is restricted (status of “R”) and LSET2 route
is prohibited (status of “P”). The status of the resulting RSET3 route set (or DPC=3003) is
“Rbc,” where “R” indicates that DPC is accessible, but restricted.
Application Design and Development 3-173

Considerations for Implementing SINAP/SS7 Features
Figure 3-17. Sample Output with Restricted Message Handling

For the ANSI network variant, the SINAP/SS7 system can process both the transfer-restricted
(national network) and transfer-controlled (U.S. networks), but does not allow the
transfer-controlled (international networks).

RSR/RSP in Response to TFR/TFP (ANSI)
For the ANSI network variant default setting, when the SINAP/SS7 system receives a TFR or
TFP message, it waits until the MTP Level 3 T10 timer expires before sending a signaling route
set test for restricted or prohibited destination (RSR or RSP) messages. This behavior conforms
to1992/1996 ANSI and ITU-T specifications. However, there is a deviation in the 1988 ANSI
Standard’s MTP Level 3 SDL diagram, Figure 46/T1.111.4 (RSRT sheet 1 of 3), where an RSR
or RSP is responded to right after the TFR or TFP is received by the receiving node, and then
after every T10 period. If this behavior is desired, set the environment variable:

MTP_ANSI88_RSR_RST

Display Route Set:

RSet Name = RSET3, DPC = 3003, CPC Count of LSSN = 0
State = ACTIVE, Status = Rbc, Load Sharing = YES

RouteName Priority Status
LSET1 1 aRlr
LSET2 2 aPlr

--Route Set Status Legend--
a - DPC accessible A - DPC not accessible
 R - DPC restricted
 P - DPC prohibited
b - route set not blocked B - route set blocked
c - route set not congested C - route set congested

--Route Status Legend--
a - link set available A - link set not available
x - transfer allowed X - transfer not allowed
 P - transfer prohibited
l - link set not congested L - link set congested
r - route not congested R - route congested
3-174 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
To automatically define this environment variable each time you start or restart the SINAP
node, uncomment the variable in the SINAP/SS7 environment file
$SINAP/HOME/Bin/sinap_env[.csh or.sh]. You do not need to assign a value to
the variable. The SINAP/SS7 system simply verifies the existence of the variable.

Error Handling
When you develop an application, you typically expect some type of dialogue to occur between
this application and one or more other applications. As you develop your application, you
should be aware of all potential deviations from the planned dialogue and you should develop
error-handling logic to process any and all of these deviations. For example, if your application
expects to receive a RESPONSE from another application and instead receives a QUERY, your
application should discard that MSU and return an error message.

N O T E
Upon receipt of an invalid component, your application should
generate a REJECT message. It may also be appropriate for
your application to deallocate any T_Blocks that had been
allocated for the dialogue/transaction that failed.

The value returned by a CASL function indicates whether the function call was successful. To
provide client application programmers with a familiar programming environment, CASL
functions indicate an error condition by using the following UNIX-like methods.

• A function that normally returns a 0 or greater value will return -1 if it is unsuccessful.

• A function that normally returns a pointer will return a NULL if it is unsuccessful.

When a CASL function fails, the function sets the variable errno to a specific error code to
indicate the reason for the failure. The include file $SINAP_HOME/Include/ca_error.h
defines the possible error codes a CASL function can return. The UNIX file sys/errno.h
defines UNIX error codes and their meaning.

The global memory array CA_ERR[] contains an ASCII string in which the first several bytes
are allocated for the error number, and the remainder of the array contains a description of the
error. This array, which is defined in the $SINAP_HOME/Include/sinapintf.h include
file, is not used by all CASL functions. Note, however, that all CASL functions return errno.

Error-Handling Considerations
The following list describes considerations of which you should be aware as you design and
develop error-handling mechanisms for your application. The remainder of this section
Application Design and Development 3-175

Error Handling
describes the meaning of certain error-handling primitives your application can receive or be
required to send, and provides instructions for how to handle these primitives.

• When a call to ca_put_msg() or ca_put_msg_def() fails, the SINAP/SS7 system
calls the CASL function ca_ipc_fail_event() to inform trouble management of the
failure. (An application process calls ca_put_msg() or ca_put_msg_def() to
deliver an IPC message to another process.) The ca_ipc_fail_event() function
delivers an alarm to trouble management to indicate that the SINAP/SS7 system was unable
to deliver the IPC message. Upon error return, the application should attempt to resend the
IPC message or it should perform appropriate error-handling actions.

The alarm contains the following information.

– The type of IPC message that could not be delivered, along with the process that sent
the message (the source) and the process to which the message was destined (the
destination).

– The value of errno returned by the ca_put_msg() or ca_put_msg_def()
function call that failed.

– The number of times that ca_ipc_fail_event() was called by the process
attempting to send the IPC message. (This count is important because critical alarms
may be lost when a queue overflows.)

• When a call to ca_get_msu() or ca_get_tc() returns with a return code of -1 and
errno set to EINTR, the application process should read all of its IPC messages by calling
ca_get_msg() in nonblocking mode (fwait set to 0).

Rather than indicating an actual error condition, this situation indicates that the application
process received an IPC message while it was executing a blocking-mode call to
ca_get_msu() or ca_get_tc(). To take advantage of this functionality without
using signals, the application process must set its register_req_t structure’s
fsignal field to 2 (IPC_NOTIFY_WITHOUT_SIGNAL).

• The IPC_NOTIFY_WITHOUT_SIGNAL option for fsignal with ca_register()
returns EINTR only if no MSUs are waiting and there is IPC. To avoid this problem, you
can take one of the following actions in your application program:

• Set fsignal to TRUE, have SIG_S7_IPC signal caught by the function that sets the
global flag, and test this flag after each call to ca_get_tc_ref(). The
ca_get_tc_ref() function passes its reference argument by value to the
get_msu_int(*prefwait) function, thereby causing a window in the latter
function before it tests this value, in which a signal (such as an IPC signal) could occur.
In this case, the signal handler function’s action of setting the global variable,
refwait, to FALSE would have no effect and result in a blocking read() without
a return of EINTR. This condition could produce a delay of IPC notification, which
might be unacceptable for some applications.
3-176 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
• Call ca_get_msg() in non-blocking mode, looping until no IPC is available, before
each call to ca_get_tc(). This eliminates both the need for IPC signals and the
overhead of an additional system call each time.

Dialogue and Transaction Errors
When a dialogue/transaction error occurs, a single tc_dhp_t structure (CCITT, TTC, NTT,
and China network variants) or tc_thp_t structure (ANSI network variant) is returned or
sent. However, if the structure is being sent in response to an MSU that contained both
dialogue/transaction and component parts, then multiple T_Blocks would have been
assigned. In this case, it is the application’s responsibility to deallocate those extra T_Blocks.

Table 3-34 describes the meaning of dialogue/transaction primitives and provides information
about how your application should handle them.

Table 3-34. Dialogue/Transaction Primitives (Page 1 of 2)

Primitive Description

TC_U_ABORT
(Indication)

This primitive indicates that the other TCAP application has
decided to abandon this transaction. The dest_tid field of the
TC_U_ABORT request primitive identified the transaction being
aborted. The reason for the abort is provided in the
pa_report_cause field of the tc_dhp_t structure
(CCITT/TTC/NTT/China) or the tc_thp_t structure (ANSI) that
was returned with the primitive. If the structure’s
tot_ua_info_length field is greater than 0, then more
information is provided in the ua_info field.

The application should call ca_dealloc_tc() to free up any
component T_Blocks that were allocated for the
dialogue/transaction. The application can also call
ca_put_event() to log the error in order to trigger an event
that results in operator intervention or causes the application to
stop transaction processing.
Application Design and Development 3-177

Error Handling
Component-Handling Errors
This section describes the primitives that an application may receive as the result of a
component-handling error. These types of errors typically involve several component
T_Blocks; therefore, the application should check the last_comp_ind field of the
tc_chp_t structure to determine the exact number of T_Blocks. In addition, the application
should also check to see whether it received a NotLast component flag.

TC_U_ABORT
(Request)

This primitive indicates that this TCAP application has decided to
abandon the current transaction due to a problem that makes
normal response impossible. The application must do the
following before issuing the primitive:

• Fill in the pa_report_cause, tot_ua_info_length, and
ua_info fields of the tc_dhp_t structure
(CCITT/TTC/NTT/China) or the tc_thp_t structure (ANSI).

• Swap the destination and originating dialogue/transaction IDs,
which are defined in the dest_tid and orig_tid fields of the
of the tc_dhp_t structure (CCITT/TTC/NTT/China) or the
tc_thp_t structure (ANSI).

• Call ca_dealloc_tc() to free up any component T_Blocks
that were allocated for the dialogue/transaction.

Note: The SINAP/SS7 system discards transaction
components that had been previously sent by means of
the ca_put_tc() function.

TC_P_ABORT
(Indication)

This primitive indicates that the transaction was aborted by the
SINAP/SS7 TCAP transaction-sublayer, perhaps because the
transaction timer expired. (The timer’s value is defined by the
register_req_t structure’s tsl_timer_value field.) The
reason for the abort is provided in the pa_report_cause field
of the tc_dhp_t structure (CCITT/TTC/NTT/China) or the
tc_thp_t structure (ANSI) that was returned with the primitive.
If the structure’s tot_ua_info_length field is greater than 0,
then more information is provided in the ua_info field.

The application should call ca_dealloc_tc() to free up any
component T_Blocks that were allocated for the
dialogue/transaction. The application can also call
ca_put_event() to log the error in order to trigger an event
that results in operator intervention or causes the application to
stop transaction processing.

Table 3-34. Dialogue/Transaction Primitives (Page 2 of 2)

Primitive Description
3-178 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
Table 3-35 describes the meaning of component-handling primitives and provides information
about how your application should handle them.

Table 3-35. Component-Handling Primitives (Page 1 of 5)

Primitive Description

TC_L_CANCEL
(Indication)

The SINAP/SS7 system issues this primitive to indicate that the
transaction was aborted because the transaction timed out. (The
length of time allowed to process the transaction was specified
by the calling party in the tc_chp_t structure’s timer_value
field.) Only a single component is returned (in the tc_chp_t
structure); the dialogue/transaction component is not returned.
The SINAP/SS7 system issues a TC_L_CANCEL primitive for
each of the transaction’s INVOKE primitives.

The application should call ca_dealloc_tc() to free up any
component T_Blocks that were allocated for the
dialogue/transaction. The application can also call
ca_put_event() to log the error in order to trigger an event
that results in operator intervention or causes the application to
stop transaction processing.

Note: If the transaction responds at a later time, the result
will be discarded by the SINAP/SS7 TCAP transaction
sublayer (TSL).

TC_U_CANCEL
(Request)

Your application can issue this primitive to discard any
components that have already been sent to TCAP’s component
sublayer for processing. Upon receipt of this primitive, the
SINAP/SS7 system cancels the sending of pending components.

The application must issue this primitive before calling the
ca_put_tc() function to send the dialogue/transaction
component for this transaction (identified by the trans_id field
of the t_block_t structure). Once the application issues the
TC_U_CANCEL request primitive, it can resume sending new
components for the transaction.
Application Design and Development 3-179

Error Handling
TC_U_ERROR
(Request)

The other TCAP application issues this primitive to indicate that it
was unable to execute the requested operation.

Upon receipt of this primitive, your application should evaluate
the tc_chp_t structure’s data field to determine the cause of the
problem; the other application will have filled in the Error Code
tag value based on the definitions in ITU-T (CCITT)
Recommendation Q.773, Table 25, or ANSI Recommendation
T1.114.3. In addition, this field will contain application-specific
information values for Error Code length and data. The other
application may also return optional tagged parameters that are
application specific.

TC_U_ERROR
(Indication)

The other TCAP application issues this primitive to indicate that
an operational error occurred.

Upon receipt of this primitive, your application should perform
whatever action has been agreed upon beforehand and should
deallocate this T_Block component. If there was only a single
component, your application should also deallocate the
dialogue/transaction T_Block component. In addition, you may
want your application to call ca_put_event() to log the error,
which is useful for triggering an event that results in operator
intervention or terminates the application.

TC_U_REJECT
(Request)

Your application can issue this primitive to indicate an improperly
constructed component. The problem is typically an unknown
parameter ID. The application issuing this primitive fills in the
tc_chp_t structure’s problem_type and
problem_specifier fields with standard values to define the
problem. In addition, the application can also provide optional
parameters in the tc_chp_t structure’s data field.

Note: An application issuing this primitive must issue a
separate primitive for each of the MSU’s components,
each of which has the same invoke ID (specified in the
tc_chp_t structure’s invoke_id field).

Table 3-35. Component-Handling Primitives (Page 2 of 5)

Primitive Description
3-180 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
TC_U_REJECT
(Indication)

The other TCAP application issues this primitive to indicate that it
received an improperly constructed component in a
TC_U_REJECT request primitive.

Upon receipt of this primitive, your application should examine
the tc_chp_t structure’s problem_type and
problem_specifier fields to determine what caused the
problem. Your application should then perform the appropriate
steps to handle the situation.

In addition, you may want your application to call
ca_put_event() to log the error. This is useful for triggering an
event that results in operator intervention or terminates the
application.

Table 3-35. Component-Handling Primitives (Page 3 of 5)

Primitive Description
Application Design and Development 3-181

Error Handling
TC_L_REJECT
(Indication)

The SINAP/SS7 component sublayer issues this primitive and
sends it to the local TCAP user to indicate receipt of a duplicate
or invalid component.

The component sublayer moves the information in the
problem_code field for the invalid MSU into the
problem_type and problem_specifier fields of the
tc_chp_t structure. In addition, the SINAP/SS7 Invoke State
Mechanism (ISM) generates a TC_R_REJECT indication
primitive, which it will send to the remote TCAP user if the local
TCAP user decides to process the invalid MSU and continue with
the dialogue/transaction. The TC_R_REJECT primitive will not be
sent if the error occurs during an ending operation such as
TC_RESULT_LAST.

Upon receipt of this primitive, your application can do either of
the following:
• Terminate the dialogue/transaction. To do this, your application

should format a TC_END message (CCITT) or a TC_RESPONSE
message (ANSI). The SINAP/SS7 system will automatically
format a REJECT component using information from the ISM.
In addition, your application should deallocate any T_Block
components allocated for the dialogue/transaction.

• Continue the dialogue/transaction with a rejected component.
If you want to continue a dialogue/transaction even though one
of its components has been rejected, your application should
perform whatever procedures it and the other TCAP user
previously agreed upon. When your application issues a call to
ca_put_tc() to send continuation data for the
dialogue/transaction, the SINAP/SS7 system will send the data
and the TC_R_REJECT primitive to the other TCAP user.

You might also want your application to call ca_put_event() to
log the error. This is useful for triggering an event that results in
operator intervention or terminates the application.

Table 3-35. Component-Handling Primitives (Page 4 of 5)

Primitive Description
3-182 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
Triggering Events and Trouble Treatment
Trouble Management handles events according to information in the trouble treatment table
(treat.tab). You create the basis for this table by editing the file
$SINAP_HOME/Library/treat.tab.

Adding an Event or Changing Its Treatment
The following steps show how to add an event or change the way the SINAP/SS7 system treats
it.

1. Edit the treat.tab file in $SINAP_HOME/Library to add an event or change the
way the SINAP/SS7 system treats it.

TC_R_REJECT
(Indication)

This primitive indicates that the remote TCAP user received an
improperly constructed MSU but has decided to continue the
dialogue/transaction anyway. The information in the invalid
MSU’s problem_code field is written to the tc_chp_t
structure’s problem_type and problem_specifier fields.

Typically, TC_R_REJECT primitives indicate receipt of a reject
MSU. A TC_R_REJECT T_Block is generated for all types of
general problems: an unrecognized correlation ID for an INVOKE
problem type, an unrecognized correlation ID and an unexpected
RR for a RETURN RESULT problem type, and an unrecognized
correlation ID and unexpected RE for a RETURN ERROR
problem type.

Upon receipt of this primitive, your application should do the
following:
• Examine the problem_type and problem_specifier

fields of the tc_chp_t structure to determine why the MSU
was improperly constructed.

• Deallocate any T_Block components allocated for the
dialogue/transaction.

• Perform whatever steps were agreed upon with the other
TCAP user.

• Optionally, you may want your application to call
ca_put_event() to log the error. This is useful for triggering
an event that results in operator intervention or terminates the
application.

Table 3-35. Component-Handling Primitives (Page 5 of 5)

Primitive Description
Application Design and Development 3-183

Error Handling
2. Use the nmtr program to convert treat.tab to an intermediate format called
tm_treat.lod. The nmtr program has the following syntax (where filename is the
name of the file to be converted).

nmtr [-I] filename

The -I argument installs the tm_treat.lod file in the directory
$SINAP_HOME/Bin/shm/pri and renames the file to TREAT_load. If you do not use
this argument, you must copy the file manually to the directory and rename it
TREAT_load.

3. Invoke the SINAP/SS7 MML command READ-TREAT. The SINAP/SS7 system reads the
TREAT_load file into the trouble treatment table.

N O T E
When you invoke READ-TREAT, the SINAP/SS7 system
reinitializes any counters (that is, accumulation of events per
time period) to 0.

Setting Up the Trouble Treatment Table
The following section describes the format of the trouble treatment table (treat.tab). When
you edit treat.tab, you designate the category and subcategory treatment that Trouble
Management implements when it receives the event.
3-184 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
The treat.tab file has the following format.

TREAT_BEGIN
CATEGORY=category
 SUBCATEGORY=subcategory
 FREQ_COUNT=freq_count
 FREQ_WINDOW=freq_window
 ALARM_TYPE=alarm_type
 ALARM_COLOR=alarm_color
 ALARM_TRIGGER=alarm_trigger
 TERM_PROCESS_TRIGGER=term_process_trigger
 TERM_SUBSYS_TRIGGER=term_subsys_trigger
 SCRIPT_PATH=script_path
 SCRIPT_TRIGGER=script_trigger
 NEW_EVENT=new_category,new_subcategory
 NEW_EVENT_TRIGGER=new_event_trigger
 SUBCAT_END
 SUBCATEGORY=subcategory

.

.

.
 SUBCAT_END
CAT_END
CATEGORY=category
 SUBCATEGORY=subcategory

.

.

.
TREAT_END

Table 3-36 lists and describes the fields in the treat.tab file.

Table 3-36. Trouble Treatment Table (treat.tab) Fields (Page 1 of 3)

Field Name Description

CATEGORY Specifies the alarm category. Categories are defined system
wide; each value for the CATEGORY field has a unique meaning to
the system. The value you assign to CATEGORY can be any
number from 1 through 30 or a label. A label is a constant
(#define value) that you create in your own include file. The
trouble treatment table can contain multiple categories. However,
you must specify each category in ascending order; for example,
category 2 cannot precede category 1.
Application Design and Development 3-185

Error Handling
SUBCATEGORY Specifies the classification of an event within a category. The
value you assign to SUBCATEGORY can range from 1 through 30
or be a label. There can be multiple subcategories in the file. You
must specify each subcategory in ascending order; for example,
subcategory 2 cannot precede subcategory 1.

FREQ_COUNT Specifies the count of events to occur within the time specified by
FREQ_WINDOW before the SINAP/SS7 system triggers an alarm.
You must assign either an integer value or a label to
FREQ_COUNT.

FREQ_WINDOW Specifies the interval, in seconds, in which to count events before
the SINAP/SS7 system triggers an event. You must assign either
an integer value or a label to FREQ_WINDOW.

ALARM_TYPE Specifies the type of alarm the SINAP/SS7 system will send to all
processes that are registered to receive this alarm class.
Possible values are REG_CRITICAL, REG_MAJOR, REG_MINOR,
or REG_NOTICE. Critical alarms are severe, service-affecting
conditions that require immediate attention. These alarms are
automatically written to the UNIX system log and system console.
Major alarms are the result of hardware or software conditions
that indicate a serious disruption of service. Minor alarms are the
result of troubles that do not have a serious effect on customer
service. Notice alarms are the result of a service-affecting
situation and are provided for information purposes only.

ALARM_COLOR Specifies the severity of the alarm. Possible values are RED,
YELLOW, GREEN, and WHITE, which correspond to the numbers
displayed in the alarm (4 through 1, respectively). Currently, the
SINAP/SS7 system does not use this field.

ALARM_TRIGGER Specifies the type of alarm to trigger. Possible values are:

• SINGLE_EVENT triggers an alarm on a single event.

• FREQ_MON triggers an alarm when the frequency count is
exceeded within the time specified by FREQ_WINDOW.

TERM_PROCESS_
TRIGGER

Specifies when to terminate the process that has sent the alarm.
Possible values are SINGLE_EVENT and FREQ_MON.

TERM_SUBSYS_
TRIGGER

Specifies when to terminate the subsystem with the offending
process. Possible values are SINGLE_EVENT and FREQ_MON.

Table 3-36. Trouble Treatment Table (treat.tab) Fields (Page 2 of 3)

Field Name Description
3-186 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
Specify comments in the treat.tab file by enclosing them with a slash and an asterisk, for
example, /* information */.

Within a subcategory definition, you must combine certain actions. For example, to specify
frequency monitoring, you must use the FREQ_COUNT and FREQ_WINDOW fields. To specify
alarms, you must use the ALARM_TYPE, ALARM_COLOR, and ALARM_TRIGGER fields. To
specify script files, you must use both the SCRIPT_PATH and SCRIPT_TRIGGER fields. To
specify secondary events, you must use both the NEW_EVENT and NEW_EVENT_TRIGGER
fields.

To disable any action, do not specify it or any of its associated actions.

Figure 3-18 shows an example of the file used to create a trouble treatment table.

SCRIPT_PATH Specifies the path name of a user-defined script file. Trouble
Management spawns a shell to call a script you have defined.
You can use scripts for any purpose you define; however, you
should not program real-time actions using the script. The name
of the script can be up to 31 characters long.

SCRIPT_TRIGGER Specifies when to trigger the script. Possible values are
SINGLE_EVENT and FREQ_MON.

NEW_EVENT Specifies the category and subcategory for the new event the
SINAP/SS7 system generates upon receiving the specified
trigger. You can specify a new event with a new category and
subcategory. The new event contains the ASCII string from the
original event and goes to Trouble Management. Trouble
Management limits the daisy chaining of events to a predefined
limit of 32. This limit is imposed to prevent event messages from
circulating in an endless loop.

NEW_EVENT_
TRIGGER

Specifies when to trigger the new event. Possible values are
SINGLE_EVENT and FREQ_MON.

Table 3-36. Trouble Treatment Table (treat.tab) Fields (Page 3 of 3)

Field Name Description
Application Design and Development 3-187

Error Handling
Figure 3-18. Sample treat.tab File

#include <caslinc.h> /*SINAP Include Files */
#include <dr_incl.h> /* SINAP Driver Include File */

 /* User defined include files should be included here */
 /* Explicit path names are required for files not in */
 /* /home/sinap/Include */

/* Define treatment for Client Application Z (assigned number 23) */

TREAT_BEGIN
 CATEGORY=CLIENT_Z

/* Subcategory */

SUBCATEGORY=CLIENTZ_SUB1

 /* Generate trigger after 3 events in 10 seconds */
 FREQ_COUNT=3
 FREQ_WINDOW=10

 /* Trigger Minor Alarm after a Single Event */
 ALARM_TYPE=REG_MINOR
 ALARM_COLOR=YELLOW
 ALARM_TRIGGER=SINGLE_EVENT

 / * Generate New Event (CLIENT_Z, CLIENTZ_SUB2) Upon Frequency Mon.Trigger */
 NEW_EVENT=CLIENT_Z, CLIENTZ_SUB2
 NEW_EVENT_TRIGGER=FREQ_MON

 SUBCAT_END

 /* Subcategory CLIENTZ_SUB2 */

SUBCATEGORY=CLIENTZ_SUB2

 /* Trigger Critical Alarm after a Single Event */
 ALARM_TYPE=REG_CRITICAL
 ALARM_COLOR=RED
 ALARM_TRIGGER=SINGLE_EVENT
3-188 SINAP/SS7 Programmer’s Guide R8052-17

Error Handling
Figure 3-18. (Continued) Sample treat.tab File

 /* Terminate Subsystem */

 TERM_SUBSYS_TRIGGER=SINGLE_EVENT

 /* Execute User Script */

 SCRIPT_PATH="/usr/client/zdir/restartz"
 SCRIPT_TRIGGER=SINGLE_EVENT

SUBCAT_END
 CAT_END
TREAT_END
Application Design and Development 3-189

Error Handling
3-190 SINAP/SS7 Programmer’s Guide R8052-17

Chapter 4
Application Testing,

Debugging, and
Troubleshooting4-

This chapter provides information about testing and troubleshooting applications and
debugging them if necessary. It contains the following sections.

• “Listing Active SINAP/SS7 Processes” provides instructions for determining whether all
SINAP/SS7 processes are active, which is the first thing you should do if you suspect a
problem with your client application.

• “Evaluating Alarms and Events” describes the types of alarms and events that the
SINAP/SS7 system reports. These alarms and events can sometimes aid you in debugging
a problem with your client application.

• “The BITE Subsystem” describes how you can use the BITE subsystem to troubleshoot and
debug your client application. BITE consists of several facilities for monitoring and
evaluating the operation of a client application: scenario execution, a monitor facility, a
log-analysis program, and an MML command for sending debug messages to an
application.

• “BITE Commands Reference” provides a description of the MML commands that you can
use to monitor, debug, and troubleshoot a client application.

• “Measurement Collection Commands” provides a description of several MML commands
that you can use to collect measurements related to the number and types of messages that
the SINAP/SS7 system sends and receives.

• “Log-Analysis Commands Reference”describes the log-analysis commands and their
relational operators.
Application Testing, Debugging, and Troubleshooting 4-1

Listing Active SINAP/SS7 Processes
Listing Active SINAP/SS7 Processes
If you suspect you have a problem with one of your client applications, first determine if all the
SINAP/SS7 processes are running. Each SINAP/SS7 process has a unique label. Table 4-1
contains an alphabetical listing of SINAP/SS7 processes and their labels.

To determine whether a particular SINAP/SS7 process is active, you must display a list of active
system processes, then check the command’s output to see if any SINAP/SS7 processes are
listed. To display a full listing of all active processes on the system, issue the following
command from the UNIX prompt. From the command output, you can determine which
SINAP/SS7 processes are currently active.

ps -eaf | grep sinap | more

Table 4-1. SINAP/SS7 Process Labels (Page 1 of 2)

BITE Subsystem Processes

bibp BITE Parent Process

bilf Log File Process

bimi Man Machine Interface

bitu Link Test User Part Process

MTP Subsystem Processes

l3cb Changeback Process

l3co Changeover Process

l3cr Controlled Rerouting Process

l3dt Message Distribution Process

l3fr Forced Rerouting Process

l3la Link Availability Control Process

l3ls Link Set Control Process

l3mp MTP Management Parent Process

l3mt MTP Level-3 Management Process

l3rc signaling Routing Process

l3rt Message Routing Function

Node Management Processes

nmc1 Client Management Process
4-2 SINAP/SS7 Programmer’s Guide R8052-17

Evaluating Alarms and Events
Evaluating Alarms and Events
The SINAP/SS7 system produces alarms and events. An event is an unusual occurrence that
may or may not result in an error. Trouble Management logs every software event in the
Software Notebook and every hardware or network event in the Alarm History log. The
category and subcategory of the event (specified with the ca_put_event() function call)
determine the file to which an event is logged. An alarm is an error message that results from a
particular command or system event. Alarms are identified according to the part of the
SINAP/SS7 system from which they originate, and appear only on terminals registered for
alarm display.

An alarm consists of the following components.

• Originator information specifies the entity that detected the alarm. In Figure 4-1, the first
line contains the data N1, M1, NM, TM. This indicates that the process on the default node
(N1), default module (M1), of Trouble Management (TM) within Node Management (NM)
detected the alarm.

• Alarm information gives the date and time of the alarm, its class, severity, and color. In
Figure 4-1, the first alarm has a class of 4. It is a critical alarm requiring immediate action,
and its color is 4 or red. (See ‘‘Setting Up the Trouble Treatment Table’’ in Chapter 3 for
information about alarm classes and colors.)

• Alarm data in the form of an ASCII string explains why the alarm was generated. In Figure
4-1, the last line of the second alarm contains the line
Health check timeout, pid = 471, indicating that the alarm was sent because
of a health check timeout for process ID 471.

nmcm Command Management Process

nmdm Deferred Message Process

nmds Disk I/O Server Process

nmip IPC Handler Process

nmmc Measurement Collection Process

nmni SS7 Network Interface Process

nmnp Node Management Parent Process

nmth Terminal Handler Process

nmtm Trouble Management Process

SCCP Management Process

scmg SCCP Management Process

Table 4-1. SINAP/SS7 Process Labels (Page 2 of 2)
Application Testing, Debugging, and Troubleshooting 4-3

Evaluating Alarms and Events
Figure 4-1 shows two sample alarms.

Figure 4-1. Sample Alarm Format

Alarm Notification and Severity
All processes that are registered to receive a specific alarm category and type receive alarm
notification. By default, SINAP/SS7 alarm messages are written to the following file (where
mmdd is the date).

$SINAP_HOME/Logs/system/ALMmmdd

Alarms and Software Notebook Events
To determine which subsystem is reporting an alarm, check errno for an error message code
and an accompanying error message. The following is a list of the errno values used by
specific SINAP/SS7 subsystems. These values are defined in the SINAP/SS7 ca_error.h
include file.

errno Value Subsystem

1 – 256 UNIX or SS7 Driver

1000 – 1999 Node Management

2000 – 2999 CASL

3000 – 3999 TCAP

4000 – 4999 SCCP

5000 – 5999 MTP

6000 – 6999 BITE

7000 – 7999 Client application

 N1,M1,NM,TM, 1998-06-29 11:46:25,
 Class = 4, Critical Alarm - Immediate Action Required, Color = 4
 **** Process NM,NI (pid=5667) died..., signal=9

 Trouble Notification:
 N1,M1,NM,TM, 1998-07-12 21:57:11,
 Class = 2, Minor Alarm - Repairs Required, Color = 2
 Health check timeout, pid = 471
4-4 SINAP/SS7 Programmer’s Guide R8052-17

Evaluating Alarms and Events
Software Notebook Events and Messages
The Node Management Software Notebook is a log of software events and error messages
which you can access by using the MML command REPORT-NBOOK.

MTP Alarms
MTP alarms can take two forms. For a description of these forms and an explanation of the
related events, see the include file $SINAP_HOME/Include/mtpevents.h.

MTP level-3 Management Process errors have the following format.

l3mt module #, state # - input # error,

All other MTP level-3 processes have the following format.

MTP3 state event: sub: #, state: #, code: 0x#

Nondata Primitives
If the SCCP or TCAP sends a nondata primitive, use the appropriate standards documentation
to determine the problem and decode the messages.

System Log File
The SINAP/SS7 system writes some of its messages to the UNIX system log file. While some
of the messages are normal, others indicate a potential problem with the SINAP/SS7 system or
UNIX. See the SINAP/SS7 User’s Guide (R8051) for information about the types of messages
that the SINAP/SS7 system writes to the UNIX system log file.

User-Supplied Error Messages and Events
A client application process can send events and error messages as IPC messages to Node
Management’s Trouble Management Process. Upon receiving an event, Trouble Management
logs the event to disk and determines how to respond to it, based on the event category and
subcategory specified in the event. You set the treatment for a particular category and
subcategory combination in the trouble treatment table.

Because all user events are software events, they are logged in the Software Notebook. You can
program events for all categories and subcategories. The only exceptions are the hardcoded
alarms that are generated when you have not specified treatment for a particular category and
subcategory in an event, or when event daisy chaining exceeds the predefined limit.
Application Testing, Debugging, and Troubleshooting 4-5

The BITE Subsystem
The BITE Subsystem
The BITE subsystem provides built-in and external test and monitoring facilities to help you
detect problem areas, monitor the traffic on various links, and simulate network operation in
order to test applications without affecting the normal processing of your SINAP/SS7
configuration. BITE provides the following capabilities, each of which is described in the
sections that follow.

• The monitor facility enables you to monitor applications, processes, SS7 links, and IPC
paths. During a monitor session, information is collected and written to a BITE log file,
which you can then analyze through BITE’s log-analysis program. You use the MML
commands and , respectively, to initiate and terminate a BITE monitor process. For more
information, see “The BITE Monitor Facility” and the MML command descriptions later
in this chapter.

• The log-analysis program processes information logged by BITE. This program provides
several commands for finding, displaying, and selecting particular records in a log file, and
for printing the results. For more information, see “The BITE Log-Analysis Program” later
in this chapter.

• The scenario execution feature provides a controlled environment in which to simulate
network operation for the purpose of testing a SINAP/SS7 application. You can determine
whether the application is functioning correctly by monitoring its operation during the
scenario execution. You use the MML commands and , respectively, to start and stop a
scenario execution. (These commands are described in detail later in this chapter.)

In addition, the Database Builder program constructs the MSU(s) to be used with scenario
execution. For more information about scenario execution or the database builder program,
see the “Scenario Execution” section later in this chapter.

• The MML command enables you to send debug messages to an active application. (See its
command description later in this chapter.)

The BITE Monitor Facility
The BITE monitor facility traces messages from any level of the system, and thus provides an
in-depth look at the system’s status. This means that you can check an application’s status at the
SS7 level. For example, suppose you confirm that your SINAP/SS7 configuration is
functioning, but MSUs are not being processed. You can use the BITE to further investigate the
problem and to determine whether the application is receiving and responding to inquiries and
whether the SS7 driver is sending information.

You initiate a BITE monitor process by issuing the MML command START-MON, specifying
the entities to be monitored and the types of operations for which you want to collect
information (read or write, or both). The monitor process keeps track of the specified entities in
order to collect the specified information, which it writes to a BITE log. You must issue the
MML STOP-MON command to terminate the monitoring session. Then, you can use BITE
4-6 SINAP/SS7 Programmer’s Guide R8052-17

The BITE Subsystem
log-analysis commands to display and extract records and obtain summary information from the
BITE log, which contains the data collected during the monitoring session.

A BITE log contains all records received during a BITE monitoring session, in the order in
which they are received. These records are in I_Block format, with SS7 M_Block structures
embedded in the I_Block structure. BITE monitor logs can contain IPC, SS7, and LNK
messages.

• If the log contains IPC messages, see the iblock.h include file to decode the message
type. You can then use the appropriate .h file to decode the message structure.

• If the log contains SS7 or LNK messages, use the mblock.h include file to determine the
message type and structure. You may also need to refer to the appropriate standards
documentation to decode messages. However, the log-analysis program performs most of
this decoding for you.

Scenario Execution
Scenario execution is a BITE feature that provides a controlled environment in which you can
test a client application to see how it operates. During a scenario execution, you simulate the
operation of an SS7 network by running two applications simultaneously: one is the application
being tested (the test application) and the other is a specialized scenario-execution application
that acts as a peer to the test application.

To evaluate the test application’s operation, you can use the BITE facility to monitor
communication between the test and scenario-execution applications during the scenario
execution. To do this, initiate a BITE logging session in another window by issuing the MML
command. The BITE facility logs communication between both applications to a log file. When
the scenario has finished executing (when the scenario-execution application has terminated),
you can use the BITE log-analysis commands to examine the log file and determine whether the
test application is operating correctly. In this way, you can test your client application (the test
application) without running it in an SS7 network.

The Scenario-Execution Application (se_send)
The scenario-execution application acts as the test application’s peer: it sends messages to the
test application and processes any responses. Thus, the scenario-execution application simulates
the operation of an application with which the test application would communicate. For
example, if you are testing an MTP application, you would develop a scenario-execution
application that transfers MSUs from the test application and accepts responses from the test
application.

A sample scenario-execution application is included with the SINAP/SS7 software,
$SINAP_HOME/Samples/se_send. You can use the se_send application to test client
applications that you have developed or you can use it as a template for developing other
scenario-execution applications.

The se_send program does the following:
Application Testing, Debugging, and Troubleshooting 4-7

The BITE Subsystem
• Sends TCAP messages (like BEGIN and INVOKE) to the application being tested

• Receives responses (like END/RETURN) from the application being tested

• Works with applications registered at any SS7 protocol level (MTP, SCCP, and TCAP)

N O T E
If you want to modify the se_send application, Stratus
recommends making a copy of se_send and modifying the
copy.

Using the Database Builder to Create Test MSUs
To run scenario execution, you must construct a test MSU for the scenario-execution
application to send to the test application. You must use the Database Builder program to
construct this MSU. The Database Builder is a menu-driven interface which can be used to build
different types of MSU messages for different types of applications and scenarios. When you
construct a test MSU, you must define the MSUs MTP routing label, the SCCP message (which
includes message type, protocol class, called- and calling-party addresses), and the TCAP data.
The Database Builder program automatically constructs the MTP header and its control
structure. In the MTP header’s control structure, the message ID and size are set; all other fields
are initialized to 0.

To create a test MSU for a scenario execution, perform the following steps.

1. Use either of the following methods to create an ASCII file that contains the TCAP data
you want to include in the MSU. This is the file whose path name you will specify for
option 20 (TCAP data) of the Database Builder menu.

• Create the file by using a standard text editor such as vi. Format the TCAP user data
according to the standards documentation appropriate for the variant of the
SINAP/SS7 system you are using. Data should appear as character pairs, separated by
spaces, dashes, horizontal tabs, carriage returns, or line feeds.

N O T E
You must use hexadecimal format for the data.

The following example shows a sample line of data in the TCAP data file.

60 61 5E 6C A1 2B 02 01 02 06 02 83 01 F2 22

• Use the TCAP data in a BITE log. You can do this by saving the BITE log to a system
file and then using a standard text editor (such as vi) to extract the TCAP data and
write it to a separate file. (For information about how to save a BITE log to a system
file, see the description of the log-analysis command later in this chapter.)
4-8 SINAP/SS7 Programmer’s Guide R8052-17

The BITE Subsystem
2. Activate the Database Builder program by typing the following command from the
command line of a SINAP/SS7 login window. (The message_file argument is an
optional argument that specifies the path name of a file to which an existing test MSU was
saved. To open the file and display that MSU, include this argument in the command line.)

bidb [message_file]

The following Database Builder menu displays.

N O T E
The values shown are the default values for the menu options.
If you opened an existing test MSU file, the values for that MSU
would be displayed instead.

Figure 4-2. The Database Builder Menu

3. Construct a test MSU by specifying an appropriate value for each of the Database Builder
menu options. If the option’s default value is appropriate, you need not specify a value for
that option.

To select a Database Builder menu option, use the keyboard to type in the number that
corresponds to that option and press RETURN. In most cases, the system will display a
prompt that contains a list of valid values for that option. Use the keyboard to type in the
desired value or its corresponding number and press RETURN. The Database Builder
displays the value you specified for that menu option.

The Database Builder menu options are described here.

X - Exit and Create file; Q - Quit
1. SIO: 3
2. DPC: 2730
3. OPC: 0
4. SLS: 1
10. SCCP msg type : UNITDATA
11. SCCP protocol class : 0, no return on error
12. SCCP called address : pc(none) ssn(none)
13. SCCP calling address: pc(none) ssn(none)
20. TCAP data:

enter option>
Application Testing, Debugging, and Troubleshooting 4-9

The BITE Subsystem
• Option 1 specifies the service information octet (SIO). Valid values are in the range 1
through 15.

• Options 2 and 3 specify the MSU’s destination point code (DPC) and the originating
point code (OPC), respectively. Specify the point code by using the appropriate
address format for the variant of the SINAP/SS7 system you are using (for example,
2730 for CCITT or 254-12-8 for ANSI.)

N O T E
If you plan to run the scenario-execution application and the test
application on the same system, specify that system’s point code
for both the DPC and the OPC.

• Option 4 specifies the signaling link selection (SLS) field. Valid values are in the range
0 to 15.

• Option 10 specifies the type of SCCP message you are constructing
(9 – UNITDATA or 10 – UNITDATA_SVC).

• Option 11 specifies the type of SCCP protocol class (0 or 1) and the error return
option (0 – NO RETURN ON ERROR or 8 – RETURN ON ERROR).

• Option 12 specifies the SCCP called-party address (pc and ssn)

• Option 13 specifies the SCCP calling-party address (pc and ssn).

• Option 20 specifies the path name of an ASCII file that contains the TCAP data to be
included in the message. For information about how to create this file, see Step 1.

4. When you have specified a value for all of the menu options, enter the value X. The program
prompts for the name of a file to which to save the test MSU. Provide the requested
information and press RETURN.

The Database Builder program constructs the test MSU and saves it to the specified file.
(This file is then used as input to the START-SCEN command, which initiates a scenario
execution.) The program exits and you are returned to the command line of the SINAP/SS7
login window from which you invoked the Database Builder program.

5. Proceed to the following section, “Procedures for Running a Scenario Execution,” for
instructions on running the scenario execution.

Procedures for Running a Scenario Execution
Once you have created the test MSU to be used for your scenario execution session, perform the
following steps to initiate the scenario execution.

1. Activate the application you plan to test. For example, if you are testing the sample TCAP
program, tcrecv.c, you would issue the command tcrecv to activate the application.
4-10 SINAP/SS7 Programmer’s Guide R8052-17

The BITE Subsystem
N O T E
When you built the test MSU in the preceding procedure, you
should have specified the SSN of the test application as the
value of the SCCP called-party address, which appears as
option 12 in the Database Builder menu.

2. Open two windows on the same terminal or on two different terminals. Use the appropriate
procedure for the window manager you are using on your system. (For instructions, see the
documentation for that window manager.)

3. In one window, activate the scenario-execution application by issuing the following
command. For the FILE parameter, specify the path name of the scenario-execution
application; in this case, se_send.

START-SCEN:ENT=(,,TCAP,RECV),FILE=$SINAP_HOME/se_send;

N O T E
You must have already activated the application being tested
(step 1); otherwise, the scenario-execution application will send
MSUs to an SSN that is unavailable and the scenario execution
will fail.

4. In the other window, or on another terminal, issue the following command to start a BITE
monitoring session (where log is the name of the log file to which to write the results).
You use the BITE facility to monitor and log transactions between the scenario execution
application (in this case se_send.c) and the application being tested (in this case
tcrecv.c).

START-MON:ENT=(SS7,,TCAP,RECV,),DISP=Y,LOG=log;

5. When the scenario execution has finished executing, issue the following command to
obtain the ID number of the scenario, which you will need to halt it. Issue this command
from the same window in which the scenario execution was running.

DISPLAY-SCEN;

6. Issue the following command to halt the scenario execution (where scenario_id is the
ID that the SINAP/SS7 system assigned to this scenario-execution process).

STOP-SCEN:ENT=scenario_id; <

The BITE Log-Analysis Program
You can use the BITE log-analysis program to display and analyze information in a BITE log.
You can invoke this program by performing either of the following actions.
Application Testing, Debugging, and Troubleshooting 4-11

The BITE Subsystem
• Type bila from the command line of a SINAP/SS7 login window (that is, any window
through which you have logged in as the user sinap).

• Select the Log Analysis option from the Terminal Handler’s BITE menu.

The SINAP/SS7 system activates the log-analysis program and displays the log-analysis menu,
shown in the following panel.

To issue a BITE log-analysis command, use the keyboard to type in the command line for the
command; or, type help to display help information. (The log-analysis commands are
described in the section “Log-Analysis Commands Reference” later in this chapter.)

Be aware of the following considerations as you issue log-analysis commands.

• You must enter the complete command line for the command you want to execute (for
example, display:file=log_0529 and not simply display). Unlike the Terminal
Handler, the BITE log-analysis program does not build a command based on your input to
specific prompts. (For a description of command’s syntax, see the command description
later in this chapter.)

• You can type the command in lowercase letters (for example, find:file=log0529);
you need not use uppercase letters (for example, FIND:FILE=LOG0529).

• The semi-colon (;) at the end of the command is optional; you need not include it in the
command line.

********************** BITE LOG ANALYSIS **********************
The Syntax of the MML Command is:

COMMAND:PARAMETER=[OPERATION]VALUE,...;

The Log Analysis Commands are:

– FIND

– SELECT

– SUMMARY

– DISPLAY

– QUIT

Enter the Log Analysis MML Command, or enter ‘help’ for more information:
4-12 SINAP/SS7 Programmer’s Guide R8052-17

Log-Analysis Commands Reference
Log-Analysis Commands Reference
This section describes the following log-analysis commands:

• DISPLAY

• FIND

• SELECT

• SUMMARY

• QUIT

Each command accepts a relational operator for any of its arguments. For example, in the
key_value argument of the FIND command, you can use the value 2&&4. This indicates that
all records for OPC 2, 3, and 4 are to be extracted. In addition, you must use these relational
operators when specifying the key_value argument. For descriptions of these commands and
keywords, see the following two tables.

Table 4-2 shows a list of available relational operators.

The = and ~= operators compare numeric values or ASCII strings.

N O T E
ASCII strings must be enclosed in quotation marks (").

The >=, <=, <, and > operators compare numeric values. The && operator compares an
inclusive range of two numeric values. The | operator compares a set of specific numeric
values.

Table 4-2. Relational Operators

Operator Notation

Equal To =

Not Equal To ~=

Greater Than >

Less Than <

Greater Than or Equal To >=

Less Than or Equal To <=

Range &&

A Set of Specific Numbers |
Application Testing, Debugging, and Troubleshooting 4-13

Log-Analysis Commands Reference
To locate particular records in a log file, you can include one of the keywords listed in the
following table in the log-analysis command. The log-analysis program searches the log file for
records that match the specified criteria. For example, to find all records in the log file
LOGSS710 that begin at 12:00, end at 1:30, and contain an SIO of 3, include the FILE, BT,
ET, and SIO keywords in the FIND command line as follows:

FIND:FILE=LOGSS710 BT=12:00:00,ET=1:30:00,SIO=3;

Table 4-3 lists the keywords available for searching for a record in a log file.

Table 4-3. Keywords for Searching Log File Records (Page 1 of 2)

Keyword Meaning

General Keywords (for searching all records)

BT Begin Time (use last I_Block time stamp)

ET End Time (use last I_Block time stamp)

FILE Log File Name

OFILE Output File Name

I_Block Keywords (for searching I_Block records)

MSG I_Block Message Type

REF I_Block Reference Number

MON I_Block Monitor ID

SCEN I_Block Scenario ID

O_ENT I_Block Originator Entity – Specify as
(NNAME,MNAME,ANAME,PNAME,INST)

D_ENT I_Block Destination Entity – Specify as
(NNAME,MNAME,ANAME,PNAME,INST)

M_Block Keywords (for searching M_Block records)

TIME M_Block Time Stamp

CA_LNK M_Block CASL Control Physical Link ID

CA_SRC M_Block CASL Control Source Field

CA_SND M_Block CASL Control Message Sender

CA_CNT M_Block CASL Control Lost M_Block Count

SC_MSG M_Block SCCP Message Type
4-14 SINAP/SS7 Programmer’s Guide R8052-17

Log-Analysis Commands Reference
SC_PRO M_Block SCCP Protocol

MT_MSG M_Block MTP Control Message ID

MT_SEQ M_Block MTP Control Sequence Number

MT_SID M_Block MTP Sender ID

MT_SZ M_Block MTP Message Size

BIB M_Block L2 BIB-BSN

FIB M_Block L2 FIB-FSN

LI M_Block L2 LI

SIO M_Block SIO

DPC M_Block DPC

OPC M_Block OPC

SLS M_Block SLS

HO1 M_Block H0-H1 Code

Table 4-3. Keywords for Searching Log File Records (Page 2 of 2)

Keyword Meaning
Application Testing, Debugging, and Troubleshooting 4-15

Log-Analysis Commands Reference
DISPLAY
SYNOPSIS
DISPLAY:FILE=logfile;

DESCRIPTION
The DISPLAY command displays the BITE log specified by the logfile argument. Include
the log file’s complete path name in the logfile argument; otherwise, the command returns
an error.

The command displays each record’s field, starting with the I_Block header, and followed by
the data contents. If the record is an IPC message, the data is displayed in hexadecimal format.
If the record data is an SS7 message (M_Block), then the display is further broken down to the
L2, SIO, DPC, OPC, SLS, and MTP message types, and hexadecimal data dumps (SCCP and
TCAP message contents).

• If the log contains IPC messages, see the iblock.h include file to decode the message
type. You can then use the appropriate .h file to decode the message structure.

• If the log contains SS7 or LNK messages, use the mblock.h include file to determine the
message type and structure. You may also need to refer to the appropriate standards
documentation to decode messages; however, the log-analysis program performs most of
this decoding for you.

Once the file displays in the log-analysis program, you can save it to a system file by entering
the following command at the log-analysis prompt (:). For filename, specify the path name
of the system file to which you want to save the BITE log. If you do not specify a full path name,
the system saves the file to the default BITE log directory, $SINAP_HOME/Logs/bite.

filename

Until the BITE log is saved to a system file, you can only examine it by means of BITE
log-analysis commands. Once you save the log to a system file, you can examine it by using any
of the system’s standard display utilities (such as vi, page, or cat).

EXAMPLES
The following command displays the log file test1.23sep, which is located in the default
directory for BITE log files ($SINAP_HOME/Logs/bite).

************************** BITE LOG ANALYSIS **************************
The Syntax of the MML Command is:

COMMAND:PARAMETER=[OPERATION]VALUE,...;
DISPLAY:file=/user/sinap/Logs/bite/test1.23sep
4-16 SINAP/SS7 Programmer’s Guide R8052-17

Log-Analysis Commands Reference
The following example shows a sample IPC data record. (See the iblock.h include file for a
description of the fields in the I_Block, in which the IPC data is stored.)

******************** DISPLAY LOG RECORD FILE

IPC Data: Record= 0001
 Timestamp Index= 2
Time: 18:32:14:156 Tsid= 02 (Appl= BI, Proc= LF)
Time: 18:32:14:156 Tsid= 01 (Appl= BI, Proc= MI)

 Transaction: MSG= 0X00000003 REF= 5 MON= 2 SCEN= 0
 Originator: NODE= N1 MOD= M1 APPL= BI PROC= MI INST= 1
 Destination: NODE= N1 MOD= M1 APPL= NM PROC= TH INST= 1
 Message: MORE= 0 LEN= 201 RET CODE= 29
IPC data:
 e1 80 16 0b 4e 31 2c 4d 31 2c 42 49 2c 4d 49 16 - a...N1,M1,BI,MI.
 14 31 39 39 38 2d 31 31 2d 30 33 20 20 31 38 3a - .1998-11-03 18:
 33 32 3a 31 34 16 00 02 01 06 16 32 53 54 41 52 - 32:14......2STAR
 54 2d 4d 4f 4e 3a 45 4e 54 3d 28 49 50 43 2c 4e - T-MON:ENT=(IPC,N
 31 2c 4d 31 2c 42 49 2c 4d 49 29 2c 44 49 53 50 - 1,M1,BI,MI),DISP
 3d 59 2c 4c 4f 47 3d 69 70 63 2e 6c 6f 67 02 01 - =Y,LOG=ipc.log..
 1d 16 4c 2d 2d 2d 2d 74 69 6d 65 2d 2d 2d 2d 20 - ..L----time----
 2d 2d 2d 6f 72 69 67 2d 2d 2d 20 2d 2d 2d 64 65 - ---orig--- ---de
 73 74 2d 2d 2d 20 2d 2d 6d 73 67 5f 74 79 70 65 - st--- --msg_type
 2d 2d 20 73 69 7a 65 20 2d 2d 2d 2d 2d 2d 2d 2d - -- size --------
 2d 2d 64 61 74 61 2d 2d 2d 2d 2d 2d 2d 2d 2d 16 - --data---------.
 00 16 00 16 00 00 00 f3 80 16 0c 20 20 42 49 2c -s... BI,
 20 20 4d 49 2c 4f 4b 00 00 - MI,OK..
******************** DISPLAY LOG RECORD FILE

Application Testing, Debugging, and Troubleshooting 4-17

Log-Analysis Commands Reference
The following figure shows the format of an MSU data record. (For a description of the fields
in the M_Block, which contains the MSU data, see the SINAP/SS7 mblock.h include file.)

NOTES
Each record contains up to eight time stamp fields. The log-analysis program displays the last
logged time first and the first logged time last, and it extracts the records according to the last
logged time.

******************** DISPLAY LOG RECORD FILE

MSU data: Record= 0001
 Timestamp Index= 3
Time: 17:54:49:156 Tsid= 04 (Appl= , Proc=)
Time: 17:54:49:156 Tsid= 06 (Appl= , Proc=)
Time: 17:54:49:000 Tsid= 07 (Appl= , Proc=)

 Transaction: MSG= 0X00000105 REF= 0 MON= 1 SCEN= 0
 Originator: NODE= N1 MOD= M1 APPL= BI PROC=_LNK INST= 0
 Destination: NODE= N1 MOD= M1 APPL= BI PROC= 0 INST= 0
 Message: MORE= 0 LEN= 300 RET CODE= 0
M_BLOCK header:
 BITE_Control: CMD= 0 QUAL= 0 LINK= 0 PID1= 0
 PID2= 0 RW= 0 MON= 0
 CASL_Control: LOST CNT= 00 PID= 0 LINK= 0x0000 SENDER= 0
 IBLK= 0 RW= R MON= 1 SSN_SIO= 0
 TCAP_Control: MSG= 0 TRANS= 00 ABORT TYPE= 0 ABORT CAUSE= 0
 SCCP_Control: CTRL= 0 SRC= 0 DEST= 0 SLS5= 0x00 ERROR= 0 PRIO= 0
SEQ= 0
 MTP_Control: MSGID= 0x11 SEQID= 00 MSGTYPE= 5 SENDID= 170 MSG
SIZE= 124 MTP user data: (HEX) 00 00 12 22 20 00
f4 a0
SS#7 data:
 L2: BIB= 179 FIB= 181 LI= 63
 SIO= 0x03 (NI= 00, SI= 03) SCCP
 DPC= 01-119-03(3003) OPC= 01-085-02(2730) SLS= 06
Message Block: (HEX) Length= 116

 09 80 03 07 0b 04 43 bb 0b fd 04 43 aa 0a fe 64 -C;.}.C*.~d
 62 62 48 04 00 1e 00 ab 6c 5a a1 2b 02 01 66 06 - bbH....+lZ!+..f.
 02 83 01 f2 22 aa 0b 84 09 01 00 21 0a 08 60 06 - ...r"*.....!..`.
 99 11 84 07 02 00 21 06 02 21 42 84 06 07 00 01 -!..!B.....
 03 22 04 df 45 01 17 a1 2b 02 01 67 06 02 83 01 - ."._E..!+..g....
 f2 22 aa 0b 84 09 01 00 21 0a 08 60 06 99 11 84 - r"*.....!..`....
 07 02 00 21 06 02 21 42 84 06 07 00 01 03 22 04 - ...!..!B......".
 df 45 01 17 - _E..
4-18 SINAP/SS7 Programmer’s Guide R8052-17

Log-Analysis Commands Reference
FIND
SYNOPSIS
FIND:FILE=logfile,OFILE=file,key=key_value;

DESCRIPTION
This FIND command extracts the records from a log file that satisfy all criteria specified in the
command’s arguments. The command has the following arguments.

logfile
Specifies the name of the log file to open by searching the Logs/bite directory for the
appropriate log file.

file
Specifies the name of the file to which extracted records are saved.

key
Specifies a key word from the fields in the log file record. For permissible values, see Table
4-3 earlier in this chapter.

key_value
Specifies the value to search for in the MSU; for example, a beginning and ending time
range (BT and ET), destination point code (DPC), and signaling information octet (SIO).
The value of key_value is dependent on the value of key.

You can specify more than one key and key_value.

EXAMPLES
The following example extracts all the records in the LOGSS710 log file that begin at 12:20,
end at 2:30, have a DPC of 1-1-8, an OPC of 1-1-8, and contain an SIO of 3. The records
that meet these criteria are written to the file called TSTSUM.

FIND:FILE=LOGSS710,OFILE=TSTSUM,BT=12:20:00,ET=2:30:00,DPC=1-1-8,OPC=1-1-8,SIO=3;
Application Testing, Debugging, and Troubleshooting 4-19

Log-Analysis Commands Reference
SELECT
SYNOPSIS
SELECT:FILE=logfile,OFILE=file,key=key_value;

DESCRIPTION
The SELECT command extracts the records from a log file that satisfy any of the criteria
specified in the command’s arguments. The command has the following arguments.

logfile
Specifies the name of the log file to open.

file
Specifies the name of the file to which extracted records are saved.

key
Specifies a key word from the fields in the log file record. Valid values are listed in Table
4-3 earlier in this chapter.

key_value
Specifies the value to search for in the MSU; for example, a beginning and ending time
range (BT and ET), destination point code (DPC), and signaling information octet (SIO).
The value of key_value is dependent on the value of key.

You can specify more than one key and key_value.

EXAMPLES
The following example extracts all records from the LOGSS710 log file that have a DPC of
1-1-8, or an OPC of 1-1-8. The records that meet either of these criteria are written to the
tstsum file.

SELECT: FILE=LOGSS710,OFILE=TSTSUM,DPC=1-1-8,OPC=1-1-8
4-20 SINAP/SS7 Programmer’s Guide R8052-17

Log-Analysis Commands Reference
SUMMARY
SYNOPSIS
SUMMARY:FILE=logfile,OFILE=file,key=key_value;

DESCRIPTION
The SUMMARY command counts the records in the specified log file. A record is counted if it
contains the values specified in the command’s arguments. The command has the following
arguments.

logfile
Specifies the name of the log file to open.

file
Specifies the name of the file to which extracted records are saved.

key
Specifies a key word from the fields in the log file record. For a list of valid values, see
Table 4-3 earlier in this chapter.

key_value
Specifies the value to search for in the MSU; for example, a beginning and ending time
range (BT and ET), destination point code (DPC), and signaling information octet (SIO).
The value of key_value is dependent on the value of key.

You can specify more than one key and key_value.

EXAMPLES
The following example counts all records from the record log called LOGSS710, using the key
values MSG and CA_LNK, and writes these records to a file called TSTSUM.

SUMMARY:FILE=LOGSS710,OFILE=TSTSUM,MSG=X105,CA_LNK=32;
******************** LOG FILE SUMMARY File:TSTSUM *******************
FILE/home/sinap/Logs/bite/LOGSS710
Total records: 2
MSG: 2
CA_LNK: 1

EOF
Application Testing, Debugging, and Troubleshooting 4-21

Log-Analysis Commands Reference
QUIT
SYNOPSIS
QUIT

DESCRIPTION
This command terminates the Log Analysis program, returning you to the SINAP/SS7 login
window from which you invoked the program.

NOTES
You can specify the QUIT command as:

• QUIT:;

• QUIT:

• or QUIT
4-22 SINAP/SS7 Programmer’s Guide R8052-17

BITE Commands Reference
BITE Commands Reference
This section describes each of the following BITE MML commands. The commands are
presented in alphabetical order.

• DISPLAY-SCEN displays information about all active scenarios.

• sends a debug command to a process.

• initiates a monitor process, in which the BITE collects information about the specified
entities.

• initiates a scenario using the BITE scenario execution program.

• stops the specified BITE monitor process.

• stops the specified scenario.
Application Testing, Debugging, and Troubleshooting 4-23

BITE Commands Reference
DISPLAY-SCEN
SYNOPSIS
DISPLAY-SCEN;

DESCRIPTION
This command displays information about active scenarios. (You initiate a scenario by means
of the BITE scenario-execution program.) You can use the DISPLAY-SCEN command to
obtain the scenario ID assigned to the scenario; you will need this ID when you issue the MML
command STOP-SCEN to terminate the scenario. The DISPLAY-SCEN command displays a
line of information about each active scenario; the scenario’s ID is the first thing listed. (For
more information about scenarios and scenario execution, see “Scenario Execution” earlier in
this chapter.)

The DISPLAY-SCEN command has no arguments.

EXAMPLES
The following is sample output of DISPLAY-SCEN. The scenario shown in the following
example has a scenario ID of 1.

NOTES
The alternative and man page format for DISPLAY-SCEN is DISPL-SCEN. This command is
accessible from the BITE Commands menu.

DISPLAY-SCEN;
current active scenarios:

1 ENT=(,,CLIENT_SCEN,PROCESS_1,1),FILE=FILENAME;
4-24 SINAP/SS7 Programmer’s Guide R8052-17

BITE Commands Reference
START-DBG
SYNOPSIS
START-DBG:ENT=(entity),MSG=message;

DESCRIPTION
This command sends a debug message to the specified process. The command has the following
arguments.

entity
Specifies the node, module, application, process names, and instance number of the process
to receive debug messages. The format of entity is

ID0,ID1,ID2,ID3,ID4

where ID0 is the node name, ID1 is the module name, ID2 is the application name, ID3
is the process name, and ID4 is the instance number. The commas are part of the format of
entity.

message
Specifies the content of the message being sent to the destination process. (Message content
depends on the destination process.) The destination process must intercept the message.
For example, you can turn on a debug mask so that your process sends related debug
messages to the BITE, which can then display them at the terminal or write them to a log.

You must specify the message argument as the last argument in the command line.
Because the semicolon (;) is the terminating character for the command, you cannot use it
in your message.

EXAMPLES
The following example shows the START-DBG command for an application with a registered
name of APPL, a process name of PROC, and a message that is a debug mask. Both the
application and process are on the same node and module.

START-DBG:ENT=(N1,M1,APPL,PROC,1),MSG=debug_mask 0x00000ff0;

NOTES
The alternative and man page format for START-DBG is STA-DBG. This command is
accessible from the BITE Commands menu.
Application Testing, Debugging, and Troubleshooting 4-25

BITE Commands Reference
START-MON
SYNOPSIS
START-MON:ENT= (entity)[(&entity)][,DISP=Y/N] ,LOG=filename
[,CONT=Y/N];

DESCRIPTION
This command initiates monitoring for specified entities from any SINAP/SS7 process. If no
errors are detected, the command returns a monitor ID. The command has the following
arguments.

entity
Specifies the type of message (IPC, SS7, or link) and process or link identities to be
monitored. The format of entity is

TYPE,ID0,ID1,ID2,ID3,ID4,[R/W]

where TYPE can have the value IPC, SS7, or LNK.

If TYPE is IPC or SS7, ID0 represents the node name, ID1 represents the module name,
ID2 represents the application name, ID3 represents the process name, and ID4 represents
the instance number. However, ID2 and ID3 are required, and ID0, ID1, and ID4 are
optional. The default node name is the name of the current node. The default module name
is the current local module. If you omit the ID4 parameter, the SINAP/SS7 system
monitors all current instances. Any instance created after the command is executed is not
monitored.

If TYPE is LNK, ID0 represents the link number. ID1, ID2, ID3, and ID4 are not
present.

To monitor different paths using the same log file, you can specify more than one entity by
separating each with an ampersand (&).

The R and W arguments are optional. Specifying R indicates a monitoring read; specifying
W indicates a write operation. If you omit either option, the SINAP/SS7 system assumes that
both read and write operations are desired. You can specify up to eight entities.

DISP
Determines whether the monitored events should be displayed on the operator terminal.
Fields displayed include the application name and process name of the message originator,
the application name and process name of the message’s destination, the message type, the
last time stamp, data size, and first eight bytes of data. You must enter either Y or N.

filename
Specifies the log file name in which the monitored events are logged. The SINAP node
writes all log files to the directory Logs/bite. If the storage capacity is exceeded, the
node discontinues the log activity and sends an alarm to Trouble Management. The default
4-26 SINAP/SS7 Programmer’s Guide R8052-17

BITE Commands Reference
size for this log is 200K bytes.

In addition to the limitation that the Logs/bite partition imposes for all BITE log files,
there is a default size limit for each log file. If a log file reaches the limit, the SINAP/SS7
system automatically closes it and sends an alarm to Trouble Management.

CONT
Specifies whether continuous logging should be enabled. Normally, the BITE stops
monitor output to a log file when the file size surpasses 200K. The CONT argument allows
you to specify that data beyond 200K should be saved. When the BITE log file reaches its
limit and CONT is specified, the file is renamed to a backup file, and a new logging file is
opened. The backup file is of the format filename.bak. The system deletes any
previous backup file with the same name.

Logging continues until you stop it with the STOP-MON command.

To use this argument, you must specify a value for filename. The default value for this
argument is N.

EXAMPLES
The following is sample output of START-MON.

The values in the time field represent the last time stamp during monitoring.

The values in the orig field represent the originator application name and process name. In
this example, Node Management is the application name, and the Node Management Client
Management and Command Management processes represent the process names.

The values in the dest field represent the destination application name and process name. In
this example, the Node Management is the application name, and the Node Management Client
Management and Command Management processes represent the process names.

 START-MON:ENT=(IPC,,,NM,CL),DISP=Y;

----time---- --orig--- --dest--- --msg_type--- --size--- ------data----

NM,CL,OK
0007:51:34:105 NM,CL1 NM,CM1 RUOK 000R
0107:51:34:105 NM,CM1 NM,CL1 IMOK 000W
0207:52:34:103 NM,CL1 NM,CM1 RUOK 000R
0307:52:34:103 NM,CM1 NM,CL1 IMOK 000W
Application Testing, Debugging, and Troubleshooting 4-27

BITE Commands Reference
The msg_type field represents the type of message being sent, for example, RUOK and IMOK.
In the example, because health check operations are enabled, health check messages appear in
the field.

The size field represents the data size for the M_Block or I_Block. Because no messages
are being transmitted, this field is blank.

The data field represents the first eight bytes of the message; in this case, they do not exist.

NOTES
The alternative and man page format for START-MON is STA-MON. This command is
accessible from the BITE Commands menu.
4-28 SINAP/SS7 Programmer’s Guide R8052-17

BITE Commands Reference
START-SCEN
SYNOPSIS
START-SCEN:ENT=(entity),FILE=filename debug_mask test_MSU;

DESCRIPTION
This command starts a scenario and returns the scenario ID it assigned to the scenario. For more
information about scenarios and scenario execution, see “Scenario Execution” earlier in this
chapter.

The command has these arguments.

entity
Specifies the node, module, application, process names, and instance number of the process
being tested. The format of entity is

ID0,ID1,ID2,ID3,ID4

where ID0 is the node name, ID1 is the module name, ID2 is the application name, ID3
is the process name, and ID4 is the instance number. The commas are included in the
format of entity.

For remote testing, or for testing routing, do not specify an entity. The scenario execution
program must register with the SINAP/SS7 system as a signaling information octet (SIO)
application or an SSN application. For local test, use your own PC for the DPC. For remote
testing, the DPC in the MSU should indicate the destination PC.

filename
Specifies the name of the scenario-execution file you want to run for this scenario
execution.

debug_mask
Specifies a debug mask to be used for the scenario execution (for example, 0xffff). For
a list of valid values, see the cadbg.h include file.

test_MSU
Specifies the name of the Database Builder program file that contains the test MSU you
want to use for the scenario execution. Because the semicolon (;) is used to terminate the
MML START-SCEN command, you cannot use it in your test MSU. For information about
creating this file, see “Using the Database Builder to Create Test MSUs” earlier in this
chapter.

NOTES
The alternative and man page format for START-SCEN is STA-SCEN. This command is
accessible from the BITE Commands menu.
Application Testing, Debugging, and Troubleshooting 4-29

BITE Commands Reference
STOP-MON
SYNOPSIS
STOP-MON:ENT=monitor_id;

DESCRIPTION
This command stops monitoring for specified entities.

The monitor_id argument specifies the entity to be stopped. Use the value the START_MON
command returns for this argument, or use the DISPLAY_MON command to see all active
monitor IDs.

NOTES
This command is accessible from the BITE Commands menu.
4-30 SINAP/SS7 Programmer’s Guide R8052-17

BITE Commands Reference
STOP-SCEN
SYNOPSIS
STOP-SCEN:ENT=scenario_id;

DESCRIPTION
This command stops a specified scenario execution.

The scenario_id argument specifies the ID of the scenario you want to stop. For this
argument, specify the value returned by the START-SCEN command, or use the
DISPLAY_MON command to see the IDs assigned to all active scenarios.

NOTES
This command is accessible from the BITE Commands menu.
Application Testing, Debugging, and Troubleshooting 4-31

Measurement Collection Commands
Measurement Collection Commands
Although not a part of the BITE subsystem, the following MML commands are useful for
collecting measurements related to the number and types of messages that the SINAP/SS7
system sends and receives. When you issue a measurement reporting command, you use the
start and stop arguments in the commands to specify the time period you want the report to
cover. The commands generate a report presenting the statistics gathered for that time period.
You can generate a report for a particular time period, such as a day, a week, a month, or longer.

You must set the SINAP_ALT_MEASUREMENT_INTERVAL environment variable before
starting the SINAP/SS7 system to define the measurement interval you want to use according
to Table 4-4.

For example, if you set it to 1 or 15, a 15-minute measurement interval is used. A 15-minute
interval allows you to produce reports for any time period between 15 minutes and one year. If
you set it to 0 or 30, the SINAP/SS7 system uses a 30-minute interval and produces reports for
30-minute time periods. The system default is 30 minutes if no time is defined for this
environment variable.

You can save a measurement report to a file by specifying the file name and location using the
Print to Filename argument. You can then print and view particular reports when
needed. See the section in Chapter 2 of the SINAP/SS7 User’s Guide (R8051) on enabling and
disabling the printing functions for information on activating the print options in the
SINAP/SS7 system.

For each command, you can define the time period the report covers, generate a report that
presents the statistics or measurements gathered, save the report to a file, and print a copy of the
report.

You specify the time and date information using these guidelines:

• For the start and end date, use the format [CC]YY-MM-DD where [CC]YY is the century
and the year, for example, 1998.(Optionally, you can enter only a two digit year, for
example, 98.) MM is the month, for example, 01 for January. DD is the date, for example, 15.
Include hyphens between the values, as in 1998-01-15, or optionally, 98-01-15.

Valid values for the year arguments include:

Table 4-4. Setting Measurement Intervals

Setting Measurement Interval

0 or 30 30 Minutes (default)

1 or 15 15 Minutes

2 or 5 5 Minutes
4-32 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
• CC = 19 or 20

• YY = 80 through 99 for century 19, or 0 through 38 for century 20

• MM = 01 through 12

• DD = 01 through 31

To generate a report for today’s measurements, you can enter the value, TODAY, as the date
argument instead of using the format [CC]YY-MM-DD. If you do not specify an end date,
the command uses the same date as the start date.

• For the start and end time, use the format HH:MM where HH is the hour and MM is the
minutes. Include a colon between the values. If no end time is specified, the command
generates a report for a 30-minute period, beginning at the specified start time. For
example, if you specify 12:00 as the start time and do not specify an end time, the command
generates a report for the 30-minute time period between 12:00 and 12:30.

Valid values for the start and end times are:

• HH = 1 through 24

• MM = Either 00 or 30

Report Measurement Considerations
When you issue commands to generate a measurement report, consider the following:

• Measurements are only generated while the SINAP node is active. If you issue a
measurement-reporting command for a period of time during which the SINAP node was
inactive, the command generates an empty measurement report.

If the SINAP node was active for any amount of time during the specified time period, the
measurement report will contain data, but it will not be obvious from the data how much of
the time the SINAP node was active. If the measurement report contains MTP statistics,
you can determine the amount of time that the SINAP node was active from the L2 Serv
field of the MTP measurements section. The L2 Serv field shows the amount of time (in
seconds) that the SINAP node was active during the time period covered by the
measurement report. For example, suppose you generate an MTP measurement report for
a 24-hour period of time during which the SINAP node was active for only 12 hours.
Although the report appears to contain data for the specified 24-hour time period, the L2
Serv field indicates that the SINAP node was only active for 12 of the 24 hours.

• A blank measurement report indicates there is no measurement data for the specified time
interval. This indicates one of the following conditions: the SINAP node was not running
during the specified time period, the SINAP node was running but the
measurement-collection process was turned off, or the log file containing those
measurements was deleted from the $SINAP_HOME/Logs/system directory.

• If you issue one of the measurement-reporting commands and specify an invalid period of
time, the command returns an error message.
Application Testing, Debugging, and Troubleshooting 4-33

Measurement Collection Commands
Saving the Report to a File and Printing It
You can save the measurement report to a file and print it, using the following instructions:

1. Display the measurement report you want to save using the appropriate command.

2. Press CTRL-P to invoke the Print Options menu.

3. Select the Print to Filename option.

4. Specify a filename and press RETURN. The file saves by default into the
/home/sinap/sysopr directory. If you want to save it to another location, include the
file path in the file name specification. For example, specifying the file path,
FILE=/home/sinap/mtp-1230, writes the measurement file, mtp-1230, to the
home directory of the SINAP/SS7 login account, /home/sinap.

You can report measurements for each MTP, SCCP, and TCAP subsystem or for all systems.

The measurements commands are described in the following sections in alphabetical order.

• DUMP-TABLE dumps (saves) the contents of the MTP routing and management tables to
the static table file.

• REPORT-MALL reports the results of all measurements related to the MTP, SCCP, and
TCAP subsystems.

• REPORT-MMTP creates a report on MTP-related information.

• REPORT-MSCCP creates a report on SCCP-related measurements.

• RETRIEVE-NOM retrieves the oldest 5, 15, or 30-minute node network management
report.

• RETRIEVE-SMR retrieves the most recently compiled 5-minute node network
management report.

• REPORT-MTCAP creates a report on TCAP-related measurements.

• START-MEASURE starts a measurement-collection process.

• START-MWRITE starts a measurement-write process in which measurements are written
to a measurement log.

• STOP-MEASURE stops a measurement-collection process.

• STOP-MWRITE terminates a measurement-write process.
4-34 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
DUMP-TABLE
SYNOPSIS
DUMP-TABLE;

DESCRIPTION
The Dump Table (DUMP-TABLE) command dumps (saves) the contents of the MTP routing
and management tables to the static table file,
($SINAP_HOME/cm_display/static_table), in binary format. The Stratus Customer
Assistance Center (CAC) can use this file to aid in problem analysis. This command has no
arguments.

EXAMPLES
The following is sample output from the DUMP-TABLE command.

NOTES
The alternative and man page format for this command is dump-table.

M DUMP TABLE ok
table dumped in file:home/sinap/cm_display/static-table

Application Testing, Debugging, and Troubleshooting 4-35

Measurement Collection Commands
REPORT-MALL
SYNOPSIS
REPORT-MALL:DATE=date,TIME=time[,PRINT=print],[FILE=file];

DESCRIPTION
This command reports the results of all measurements related to the MTP, SCCP, and TCAP
subsystems. Specify the date and time as described previously. For the print argument, specify
YES for printing to the default printer, NO for no printing, or the printer ID for printing to a
printer.
4-36 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
EXAMPLES
The following sample output of REPORT-MALL shows the measurements for all subsystems
for the 30-minute time period starting at 8:30 AM on June 24:

NOTES
The alternative and man page format for the REPORT-MALL command is rept-mall.

M REPORT-MALL:DATE=TODAY,TIME=08:30;
command completed

Report MTP 30 minute measurements:
MTP 30 minute measurements: 06/24, 08:30

Link Name L3 Unava L3 Cong L3 TX L3 RX L2 Serv L2 SU Err
LNKA00 0 0 0 0 0 0
LNKA02 0 0 0 0 0 0
LNKA03 0 0 0 0 0 0
LNKA04 0 0 0 0 0 0

SP MSU Discarded

Report SCCP Measurements:

SCCP Measurements: 06/24, 08:30

PC Not Available = 0
Network Configuration = 0
SSN Not Available = 0
Unequipped User = 0
Syntax Error = 0
Unknown Reason = 0

SSN Message Sent Message Received
254 0 0

Report TCAP Measurements:

TCAP Measurements: 06/24, 08:30

SSN Comp Sent Comp Rcvd Local Reject Return Error
254 0 0 0 0
Application Testing, Debugging, and Troubleshooting 4-37

Measurement Collection Commands
REPORT-MMTP
SYNOPSIS
REPORT-MMTP:DATE=date,TIME=time[,PRINT=print],[FILE=file];

DESCRIPTION
This command creates a report on MTP-related information. Specify the date and time as
described previously. For the print argument, specify YES for printing to the default printer, NO
for no printing, or the printer ID for printing to a printer.

EXAMPLES
The following sample report shows measurement data of REPORT-MMTP for a 30-minute time
period beginning at 8:30 AM on June 24:

NOTES
The alternative and man page format for REPORT-MMTP is rept-mmtp.

REPORT-MMTP:DATE=TODAY,TIME=08:30;
command completed

MTP 30 minute measurements: 06/24, 08:30

Link Name L3 Unava L3 Cong L3 TX L3 RX L2 Serv L2 SU Err
LNKA00 0 0 0 0 0 0
LNKA02 0 0 0 0 0 0
LNKA03 0 0 0 0 0 0
LNKA04 0 0 0 0 0 0

SP MSU Discarded
4-38 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
REPORT-MSCCP
SYNOPSIS
REPORT-MSCCP:DATE=date,TIME=time[,PRINT=print],[FILE=file];

DESCRIPTION
This command reports SCCP-related measurements. Specify the date and time as described
previously. For the print argument, specify YES for printing to the default printer, NO for no
printing, or the printer ID for printing to a printer.

EXAMPLES
The following sample output of REPORT-MSCCP shows an SCCP report for a 30-minute report
interval beginning at 8:30 AM on June 24. User entries are in bold type.

NOTES
The alternative and man page format for REPORT-MSCCP is rept-msccp.

REPORT-MSCCP:DATE=TODAY,TIME=08:30;
command completed
SCCP Measurements: 06/24, 08:30

PC Not Available = 0
Network Configuration = 0
SSN Not Available = 0
Unequipped User = 0
Syntax Error = 0
Unknown Reason = 0

SSN Message Sent Message Received
254 0 0
Application Testing, Debugging, and Troubleshooting 4-39

Measurement Collection Commands
REPORT-MTCAP
SYNOPSIS
REPORT-MTCAP:DATE=date,TIME=time[,PRINT=print],[FILE=file];

DESCRIPTION
This command reports TCAP-related measurements. Specify the date and time as described
previously. For the print argument, specify YES for printing to the default printer, NO for no
printing, or the printer ID for printing to a printer.

EXAMPLES
The following sample output of REPORT-MTCAP shows a TCAP report for a 30-minute
interval beginning at 8:30 AM on June 24.

NOTES
The alternative and man page format for REPORT-MTCAP is rept-mtcap.

REPORT-MTCAP:DATE=TODAY,TIME=08:30;
command completed

Report TCAP Measurements:

TCAP Measurements: 06/24, 8:30

SSN Comp Sent Comp Rcvd Local Reject Return Error
254 0 0 0 0
4-40 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
RETRIEVE-NOM
SYNOPSIS
RETRIEVE-NOM;

DESCRIPTION
The Retrieve Oldest 5, 15, or 30-Min Measurement (RETRIEVE-NOM) command retrieves the
oldest 5, 15, or 30-minute node network management measurement report. After it displays, the
report is deleted. The output for this command is similar to the output for REPORT-MALL. (See
the previous section on reporting measurements for MTP, SCCP, and TCAP.)

The SINAP/SS7 system collects statistical information on the number of times and the length
of time that destination point codes (DPCs) are inaccessible during a 5, 15, or 30-minute period.
The SINAP/SS7 system keeps track of the route set used to access individual DPCs by applying
a timestamp (time received) to each route set. The SINAP/SS7 system also maintains two
structures, rcMeasData and routeSetMeasurements, for each route set. The structures
contain inaccessibility information.

N O T E
When the SINAP/SS7 system first starts, the system marks each
route set as inaccessible and sets the timestamp of each route set
to the time that the SINAP/SS7 system was started. When the
route set first becomes accessible, the SINAP/SS7 system uses
this timestamp to measure the length of time that route set was
initially inaccessible.

During each 5, 15, or 30-minute measurement period, the SINAP/SS7 l3rc process collects
inaccessibility data for each route set and stores this data in static memory in the route set’s
rcMeasData structure. At the end of the measurement period, the contents of rcMeasData
are written to the route set’s routeSetMeasurements structure, which is stored in shared
memory. The SINAP/SS7 system re-initializes the rcMeasData structure’s fields to zero and
begins collecting inaccessibility data for the next 5, 15, or 30-minute measurement period.

N O T E
To display the measurements for a particular destination point
code (DPC), issue the REPORT-MMTP command or the
REPORT-MALL command and specify the current date and
time. The SINAP/SS7 system displays the DPC’s
inaccessibility measurements for the preceding 5, 15, or
30-minutes. The first column, Destination, indicates the
DPC whose measurements are displayed. The second and third
columns indicate the number of times and the total amount of
Application Testing, Debugging, and Troubleshooting 4-41

Measurement Collection Commands
time, respectively, that the DPC was inaccessible during the
preceding 5, 15, or 30-minutes.

There are no arguments for this command.

NOTES
The alternative and man page format for RETRIEVE-NOM is rtrv-nom.
4-42 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
EXAMPLES
The following sample screen shows the 30-minute network management measurement report
for the RETRIEVE-NOM command.

M RETRIEVE-NOM;
command completed

Report MTP 30 minute measurements:
MTP 30 minute measurements: 12/14, 00:00 - 12/14, 00:30

Link Name L3 Unava L3 Cong L3 TX L3 RX L2 Serv L2 SU Err
LNK0 1800 0 0 0 0 0

Number of MSUs: 0 0
LNK1 0 0 0 0 0 0

Number of MSUs: 0 0
LNK2 0 0 0 0 0 0

Number of MSUs: 0 0
LNK3 0 0 0 0 0 0

Number of MSUs: 0 0
LNK4 0 0 0 0 0 0

Number of MSUs: 0 0
LNK5 0 0 0 0 0 0

Number of MSUs: 0 0
LNK6 0 0 0 0 0 0

Number of MSUs: 0 0
LNK7 0 0 0 0 0 0

SP MSU Discarded
Destination Occurrences Duration

3003 0 1800
Report SCCP Measurements:

SCCP Measurements: 12/14, 00:00 - 12/14, 00:30

PC Not Available = 0
Network Configuration = 0
SSN Not Available = 0
Unequipped User = 0
Syntax Error = 0
Unknown Reason = 0

Report TCAP Measurements:

TCAP Measurements: 12/13, 23:30 - 12/14, 00:00

SSN Comp Sent Comp Rcvd Local Reject Return Error
254 0 0 0 0
Application Testing, Debugging, and Troubleshooting 4-43

Measurement Collection Commands
RETRIEVE-SMR
SYNOPSIS
RETRIEVE-SMR;

DESCRIPTION
The Retrieve Latest 5, 15, or 30-Minute Measurement (RETRIEVE-SMR) command retrieves
the most recently completed node network management measurement report, including the
beginning and ending times of the period. After the report displays, it is deleted. You cannot
save or print the output. If there are any measurements older than the ones being retrieved, they
are also deleted.

EXAMPLES
The following sample output shows a 5-minute network management report.

NOTES
The alternative and man page format for RETRIEVE-SMR is rtrv-smr.

M RETRIEVE-SMR;
command completed

Report MTP 5-minute measurements:
MTP 5 minute measurements: 11/17. 19:12

Adjacent SP Unavailable
3003 299

0 0
0 0
0 0
0 0
0 0
4-44 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
START-MEASURE
SYNOPSIS
START-MEASURE:MEASURE=measure;

DESCRIPTION
This command starts on-demand measurements and reports the data that is collected by the
measurements collection process. The measure argument specifies the on- demand
measurements to be initiated. Possible values for measure are as follows:

OCTXMT signaling Information Field (SIF) and Service Information Octet (SIO) transmitted.

OCTRCV SIF and SIO octets received.

EXAMPLES
The following is sample output from the Measurement Collection Process.

NOTES
The alternative and man page format for START-MEASURE is sta-measure.

Description Level Units Duration Activation
Duration of Link in the In-Service State MTP 2 seconds/SL 30 minute Permanent
Number of Signal Units in Error MTP 2 events/SL 30 minute Permanent
Duration of SL Unavailability MTP 3 seconds/SL 30 minute Permanent
Number of SIF and SIO Octets Transmitted MTP 3 octets/SL 30 minute On Demand
Number of SIF and SIO Octets Received MTP 3 octets/SL 30 minute On Demand
MSUs discarded Due to SL Congestion MTP 3 MSUs/SL 30 minute Permanent
Duration of Adjacent SP Inaccessible MTP 3 seconds/SP 5 minute Permanent
MSUs Discarded Due to a Routing Data FailureMTP 3 MSUs/SP 5 minute Permanent
Routing Failure-Point Code Not Available SCCP messages 30 minute Permanent
Routing Failure-Network Congestion SCCP messages 30 minute Permanent
Routing Failure-Subsystem Unavailable SCCP messages 30 minute Permanent
Routing Failure-Unequipped User SCCP messages 30 minute Permanent
Syntax Error Detected SCCP messages 30 minute Permanent
Routing Failure-Reason Unknown SCCP messages 30 minute Permanent
Total Messages Sent SCCP msgs/appl 30 minute Permanent
Total Messages Received SCCP msgs/appl 30 minute Permanent
Total TCAP Components Sent TCAP comp/appl 30 minute Permanent
Total TCAP Components Received TCAP comp/appl 30 minute Permanent
TCAP Local Rejects TCAP rej/appl 30 minute Permanent
TCAP Return Errors TCAP err/appl 30 minute Permanent

Key:
SL = signaling Link SP = signaling Point
SIF = signaling Information Field SIO = Service Information Octet
For further information, see ANSI Recommendation T1.111.6
Application Testing, Debugging, and Troubleshooting 4-45

Measurement Collection Commands
START-MWRITE
SYNOPSIS
START-MWRITE;

DESCRIPTION
This command initiates writing of measurements to the measurement logs in the
$SINAP_HOME/Logs/system directory. There are no arguments for this command.

NOTES
The alternative and man page format for START-MWRITE is sta-mwrite.
4-46 SINAP/SS7 Programmer’s Guide R8052-17

Measurement Collection Commands
STOP-MEASURE
SYNOPSIS
STOP-MEASURE:MEASURE=measure;

DESCRIPTION
This command stops on-demand measurements.

The measure argument specifies the on-demand measurements to be stopped. Valid values are
as follows:

OCTXMT SIF and SIO octets transmitted

OCTRCV SIF and SIO octets received

NOTES
The alternative and man page format for this command is stop-measure.
Application Testing, Debugging, and Troubleshooting 4-47

Measurement Collection Commands
STOP-MWRITE
SYNOPSIS
STOP-MWRITE;

DESCRIPTION
This command stops measurement writing to the measurement logs in
$SINAP_HOME/Logs/system. The command has no arguments.

NOTES
The alternative and man page format is stop-mwrite.
4-48 SINAP/SS7 Programmer’s Guide R8052-17

Chapter 5
Sample Applications5-

This chapter presents samples of different types of SINAP/SS7 applications. All the network
variants support sample TCAP applications. The CCITT and China network variants also
support sample SCCP and MTP applications. CCITT and ANSI variants support sample ISUP
applications. For information on sample ISUP applications, see the SINAP/SS7 ISDN User Part
(ISUP) Guide (R8053).

The following sections cover all the sample application programs for the different network
variants:

• “Compiling the Sample Applications”

• “Sample TCAP Application”

• “Sample SCCP Applications”

• “Sample MTP Applications”

By default, these sample applications are located in the following directory:

$SINAP_HOME/Samples/<network variant>

For example, the sample applications for the CCITT network variant are located in the
directory:

$SINAP_HOME/Samples/ccitt

The sample program directory contains executable and non-executable programs. The sample
program names with a .c suffix (for example, tcsend.c) are non-executable. The sample
application program names without the .c suffix (for example, tcsend) are the executable
programs. To execute the sample programs, move to the directory in which the programs are
located and enter the name of the executable program (without the .c suffix). For example, to
execute the TCAP sample program tcsend, enter the command tcsend from the directory
in which the program is located, for example:

$SINAP_HOME/Samples/ccitt/

To change any sample program provided with the SINAP/SS7 software, make a copy of the
program, then make the changes to the copy. After making modifications, compile the modified
program to create a new executable file. See the following section, “Compiling the Sample
Applications,” for instructions.
Sample Applications 5-1

Compiling the Sample Applications
Compiling the Sample Applications
The sample applications, provided in the SINAP Installation package, are compiled differently
depending on your operating system.

Solaris Operating Systems
The 64-bit release version of the SINAP/SS7 software for Solaris/SPARC is designed to run on
a Sun Netra 20/T4 or SunFire V480 series platform with Solaris 8 installed. The Solaris 8 kernel
runs in 64-bit mode. The SINAP processes run in 32-bit mode, however, SINAP user
applications are supported in either 32-bit or 64-bit mode. This is made possible by providing
SINAP CASL and ISSL libraries in both 32-bit and 64-bit modes.

N O T E
The SINAP SS7-over-IP and LSSUTIL libraries are only
supported in 32-bit mode.

At $SINAP_HOME/Samples/ansi and $SINAP_HOME/Samples/ccitt directories,
the Makefile (for making 32-bit sample test programs) and Makefile.64bit (for the
64-bit mode) provide examples of CC_XOPTS, CFLAGS and LDFLAGS settings for making
32-bit and 64-bit mode executables respectively. The default, 32-bit mode, sample test
programs, are provided in the SINAP release, however, they can be replaced with 64-bit mode
executable versions, by executing “make -f Makefile.64bit” after “make clean”
from the $SINAP_HOME/Samples/ansi or $SINAP_HOME/Samples/ccitt
directory. Similarly, 32-bit mode sample test programs can be restored by executing the “make
clean” then “make” or “make -f Makefile” scripts.

HP-UX Operating Systems
The SINAP/SS7 software on the 64-bit mode HP-UX operating system has all 32-bit SINAP
libraries installed under $SINAP_MASTER/Library and 64-bit SINAP libraries installed
under $SINAP_MASTER/Library/64bit. Note that SINAP/SS7 on the 64-bit mode
HP-UX operating system has only 64-bit SINAP libraries and all SINAP processes are built for
64-bit mode. SINAP releases prior to SINAP 11.0 on 32-bit HP-UX operating systems have
only 32-bit SINAP libraries, which are under $SINAP_MASTER/Library, and 32-bit
SINAP processes.

Stratus ft Linux Systems
On Stratus ft Linux systems, all libraries and sample programs are 32-bit.

Sample Applications
Two makefiles, Makefile and Makefile.64bit, are provided under the SINAP samples
directories of ANSI and CCITT variants (i.e. $SINAP_HOME/Samples/[ansi, ccitt],
5-2 SINAP/SS7 Programmer’s Guide R8052-17

Compiling the Sample Applications
to make 32-bit and 64-bit sample test programs similar to the ones described above in the
‘Solaris Operating Systems’ section.

The tcsend.c and tcrecv.c sample programs contain calls to CASL functions. The
sample programs also rely on specific SINAP/SS7 header files, libraries, and external routines.
Therefore, when compiling tcsend.c or tcrecv.c, perform the following steps. (These
steps are based on the assumption that the programs are located in the directory
$SINAP_HOME/Samples/<network variant>.)

• Log in as the user, sinap.

• Issue the compile command (cc) from the directory in which the sample programs are
located (by default, $SINAP_HOME/Samples/<network variant>).

• Specify the directory $SINAP_HOME/Include in the compile command line.
$SINAP_HOME/Include contains the header files used by the sample programs.

• Specify the directory $SINAP_HOME/Library in the compile command line.
$SINAP_HOME/Library contains the CASL library, which contains the CASL calls
made by the sample programs.

• Specify the object file tcap_2.o in the compile command line. This object file defines
the external routine print_comp, which tcsend.c and tcrecv.c use to handle their
output. (The tcap_2.c program is also located by default in the directory
$SINAP_HOME/Samples.)

As an alternative, this can be done by utilizing $SINAP_HOME/Samples/<network
variant>/Makefile to compile a sample program. For example, issue “make tcsend”
or “make tcrecv” or recompile everything under that directory by issuing the “make” after
“make clean” command.

The following examples illustrate the commands you issue to compile the sample program
tcsend.c on different platforms.

1. For HP-UX 32-bit mode:
cc -I. -I$SINAP_HOME/Include -I/usr/include -Wp,-H300000 -Ae
-D_HPUX_SOURCE -D_HPUX -D_LP_32_64_ +DA1.1 -L$SINAP_HOME/Library -lCASL
-o tcsend tcsend.c tcap_2.o

2. For HP-UX 64-bit mode:
cc -I. -I$SINAP_HOME/Include -I/usr/include -Wp,-H300000 -Ae
-D_HPUX_SOURCE -D_HPUX +DD64 -L$SINAP_HOME/Library/64bit -lCASL
-o tcsend tcsend.c tcap_2.o

3. For Solaris 32-bit mode:
/opt/SUNWspro/bin/cc -I. -I$SINAP_HOME/Include -I/usr/include
xtarget=ultra2 xt -DSOLARIS_SYSTEM -D_SOLARIS -D_LP_32_64_
xs xCC -L$SINAP_HOME/Library -lCASL -o tcsend tcsend.c tcap_2.o

4. For Solaris 64-bit mode:
Sample Applications 5-3

Sample TCAP Application
/opt/SUNWspro/bin/cc -I. -I$SINAP_HOME/Include -I/usr/include
xtarget=ultra2 xarch=v9 xt -DSOLARIS_SYSTEM -D_SOLARIS -D__LP64__
xs xCC -L$SINAP_HOME/Library/64bit -lCASL -o tcsend tcsend.c tcap_2.o

5. For the Stratus ft Linux operating system:
cc -I. -I$SINAP_HOME/Include -I/usr/include
-DLINUX_SYSTEM -D_LINUX -DLINUX -D_LP_32_64_
-L$SINAP_HOME/Library -lCASL -lLiS -o tcsend tcsend.c tcap_2.o

N O T E
You must issue this command from the directory in which
tcsend.c is located, which by default is
$SINAP_HOME/Samples/<network variant>

Sample TCAP Application
This section describes a sample TCAP application that is made up of two test application
programs (tcsend.c and tcrecv.c) that invoke another application process which you
must link to the programs. Each network variant supports the sample applications described.
However, the TTC variant activates these samples in a slightly different manner that is
described separately.

N O T E
tcsend and tcrecv have been enhanced with a new input
parameter "y". Currently this parameter must be used in
conjunction with UDT messages and is applicable for the
CCITT variant only. This parameter, when passed to the
program, will verify that the data sent by tcsend is correctly
received by tcrecv and vice versa. Any data mismatch will
terminate the program.

tcsend.c
The sample program tcsend.c sends a TCAP message with three components to the
tcrecv.c sample program. Before activating tcsend.c, you should activate the sample
program tcrecv.c. Otherwise, tcsend.c sends messages to a nonexistent program. To
activate tcsend.c, issue the command tcsend from the directory where tcsend.c is
located (by default $SINAP_HOME/Samples/<network variant>).
5-4 SINAP/SS7 Programmer’s Guide R8052-17

Sample TCAP Application
N O T E
To avoid error conditions, do not execute multiple instances of
this program at the same time. The tcsend.c application
registers with the SINAP/SS7 system to receive control and
data primitives. The SINAP/SS7 system allows only one
control process per specified subsystem number (SSN);
therefore, running multiple instances of this program (which
would each have the same SSN) will cause problems.

tcrecv.c
The tcrecv.c sample program receives the TCAP messages sent by tcsend.c. To activate
this sample program, issue the command tcrecv from the directory in which tcrecv.c is
located (by default $SINAP_HOME/Samples/<network variant>). To set the debug
mask for the program, enter the command tcrecv 1. Then run tcsend. If you do not execute
tcrecv first, tcsend.c waits for a response from a program (tcrecv.c) that is not yet
running.

You can run multiple instances of the tcrecv.c program, each of which processes an
incoming MSU and sends a response back to the tcsend.c program. You can run up to 16
instances of tcrecv.c.

tcap_2.c
This program contains the function print_comp, which is called by both TCAP sample
programs (tcsend.c and tcrecv.c). To run tcsend.c or tcrecv.c, you must compile
the program with the tcap_2 object file. (For instructions, see the section “Compiling the
Sample Applications,” earlier in this chapter.)

Sample TCAP Applications for the TTC Variant
When invoked in the TTC network variant, the tcsend.c and tcrecv.c sample programs
display a series of prompts you must answer to define the program’s operating characteristics
(for example, local and remote SSNs, the debug mask, and the number of MSUs to send). In
addition, each program displays the TTC Quality of Service (QOS) Main Menu screen, as
shown in Figure 5-1.

The Quality of Service Main Menu Screen (TTC)
The TTC Quality of Service Main Menu screen is included in the series of prompts displayed
by the tcsend.c and tcrecv.c programs. (The menu is included at the beginning of the
tcsend.c prompts, and at the end of the tcrecv.c prompts.) The menu, shown in Figure
Sample Applications 5-5

Sample TCAP Application
5-1, provides a mechanism through which you can specify values for the quality of service
(QOS), priority, and sequence-control parameters.

Figure 5-1. Quality of Service Main Menu Screen

To select an option from the menu, type the number corresponding to that option.

• If you type 1, the program uses default values for the parameters.

• If you type 2, the program prompts for a value for the QOS, priority, and sequence-control
parameters. Figure 5-2 shows the series of prompts that display when you select this option.
(In the figure, user input is shown in bold typeface.)

TTC Quality of Service Main Menu
1. Use Default Values: Class 0 With Return, Priority 1
2. Edit Values
5-6 SINAP/SS7 Programmer’s Guide R8052-17

Sample TCAP Application
Figure 5-2. The TTC Quality of Service Main Menu Screen

After you select an option from the menu and answer any prompts, the tcsend.c or
tcrecv.c program displays a summary of your responses and continues processing.

TTC Quality of Service Main Menu
1. Use Default Values: Class 0 With Return, Priority 1
2. Edit Values

2

Quality of Service. Please Enter 1 - 4
1. Connectionless Class 0 With No Return
2. Connectionless Class 1 With No Return
3. Connectionless Class 0 With Return
4. Connectionless Class 1 With Return

4

Please Enter Priority: A value of 0 - 3
2

Please Enter Sequence Control Value: 0 - 15
2

Quality of Service = 81
Priority = 02
Sequence Control = 02
Sample Applications 5-7

Sample TCAP Application
The tcrecv.c Sample Program (TTC)
The sample program tcrecv.c receives MSUs from the sample program tcsend.c and
echoes them back to the sender, tcsend.c. Figure 5-3 illustrates the series of prompts that
tcrecv.c displays. Answer the prompts to define the program’s operating characteristics and
to select an option from the TTC Quality of Service Main Menu screen. (In the following figure,
user input is shown in bold typeface.)

N O T E
You can run up to 16 instances of the tcrecv.c program, each
of which processes an incoming MSU and sends a response
back to tcsend.c.

Figure 5-3. Prompts for the tcrecv.c Sample Program

$ tcrecv

Enter all values in decimal
local ssn(0): 3

remote ssn(0): 2

set debug mask?(0) 1

debug mask=1 LSSN=3 RSSN=2
Re-enter values? n
TC1-RECV(0010):CASL:RECV, allocating (25) in/out batch buffer
TCAP_RECV: registration is successful

TTC Quality of Service Main Menu
1. Use Default Values: Class 0 With Return, Priority 1
2. Edit Values

1

Quality of Service = 80
Priority = 01
5-8 SINAP/SS7 Programmer’s Guide R8052-17

Sample TCAP Application
Figure 5-4 shows the output generated by tcrecv.c.

N O T E
tcrecv.c does not generate output until it has received and
processed MSUs sent by tcsend.c.

Figure 5-4. Output from the tcrecv.c Sample Program

/********************************RECV *******************************/
TC1-RECV(0010):CASL:RECV, read=1 mblocks
------->1<--------
Prim Code = TC_BEGIN Dial ID = 00 Invk id=25 prblmtype=0xfa code=0xff

------->2<--------
Prim Code = TC_INVOKE Dial ID = 00 Invk id=0 prblmtype=0x0 code=0x0

------->3<--------
Prim Code = TC_INVOKE Dial ID = 00 Invk id=1 prblmtype=0x0 code=0x0

TCAP RECV: ECHO sent(0)
TCAP RECV: ECHO sent(1)
TC1-RECV(0010):CASL:RECV, Putting msu in bb out
TC1-RECV(0010):CASL:RECV, # of outgoing msus in the batch buf=1
TCAP RECV: ECHO sent (TC_END)
TC1-RECV(0010):CASL:RECV, wrote=1 mblks to the driver
TC1-RECV(0010):CASL:RECV, read=1 mblocks
Sample Applications 5-9

Sample TCAP Application
The tcsend.c Sample Program (TTC)
The sample program tcsend.c generates and sends MSUs to the sample program
tcrecv.c. Figure 5-5 illustrates the series of prompts that tcsend.c displays. Answer the
prompts to select an option from the TTC Quality of Service Main Menu screen and to define
the program’s operating characteristics. (In the following figure, user input is shown in bold
typeface.)

N O T E
You cannot run multiple instances of the tcsend.c program
at the same time.

Figure 5-5. Prompts for the tcsend.c Sample Program

$ tcsend

TTC Quality of Service Main Menu
1. Use Default Values: Class 0 With Return, Priority 1
2. Edit Values

1

Quality of Service = 80
Priority = 01

Enter all values in decimal
dpc(0): 65530
local ssn(0): 2
remote ssn(0): 3
MSUs to send before waiting for response(0): 1
Total # of MSUs to send(0)= 1
Set debug mask?(0) 1
Component timer value?(10) 5
Delay between msus?(0) 1

DPC=65530 Load gen. cnt=1 Total MSUs=1 Debug Mask=1 LSSN=2 RSSN=3
comp timer=5 delay cnt=1

Re-enter values? n
5-10 SINAP/SS7 Programmer’s Guide R8052-17

Sample SCCP Applications
Figure 5-6 shows the output generated by tcsend.c. After sending the specified number of
MSUs, tcsend.c asks whether you want to send more MSUs. Specify y to send more MSUs.
Otherwise, specify n to exit the program.

Figure 5-6. Output from the tcsend.c Sample Program

Sample SCCP Applications
The CCITT and China network variants support sample SCCP applications. The following
SCCP sample applications are located in the directory
$SINAP_HOME/Samples/<network variant> :

• scsend.c creates test MSUs and sends them to the screcv.c program if it is running;
otherwise, scsend.c loops the MSUs back to itself.

• screcv.c processes MSUs sent by scsend.c and prints informational messages to the
terminal.

TC2-SEND(0010):CASL:SEND, allocating (25) in/out batch buffer
TCAP SEND: registration is successful
TCAP SEND: Sent comp(0)
TCAP SEND: Sent comp(1)
TC2-SEND(0010):CASL:SEND, Putting msu in bb out
TC2-SEND(0010):CASL:SEND, # of outgoing msus in the batch buf=1
TCAP SEND: Sent comp(2)
TC2-SEND(0010):CASL:SEND, wrote=1 mblks to the driver
TC2-SEND(0010):CASL:SEND, read=1 mblocks
------->1<--------
Prim Code = TC_END Dial ID = 00 Invk id=50 prblmtype=0xfa code=0xff

------->2<--------
Prim Code = TC_RESULT_L Dial ID = 00 Invk id=0 prblmtype=0x82 code=0x0

------->3<--------
Prim Code = TC_RESULT_L Dial ID = 00 Invk id=1 prblmtype=0x82 code=0x0

Send more msus?(N) n
Sample Applications 5-11

Sample MTP Applications
Sample MTP Applications
The CCITT and China network variants support sample MTP applications. The following MTP
sample applications are located in the directory $SINAP_HOME/Samples/<network
variant> :

• mtpsend.c creates test MSUs and sends them to the mtprecv.c program if it is
running; otherwise, mtpsend.c loops the MSUs back to itself.

• mtprecv.c processes MSUs sent by mtpsend.c and prints informational messages to
the terminal.

• mtprx-ctl.c is the control process for a sample application that processes test MSUs
generated by an MGTS traffic generator. (Not supported by the China network variant.)

• mtprx2.c is a data process that mtprx-ctl.c initializes to process the MSUs
generated by an MGTS traffic generator. (Not supported by the China network variant.)
5-12 SINAP/SS7 Programmer’s Guide R8052-17

Chapter 6
CASL Function Calls6-

This chapter documents the Common Application Services Layer (CASL) functions and
explains how the CASL works within the SINAP/SS7 system. It contains the following
sections:

• “Function Call Return Values” describes the types of errors returned by CASL functions.

• “The arch.h Include File” describes the arch.h (architecture) include file, which contains
definitions of the structures, global variables, and enumerated data types that the
SINAP/SS7 system uses for the operating system. This file is required by applications that
interface with the SS7 network.

• “Common Services Functions” describes those CASL functions that are common to all
types of applications (for example, the ca_get_opc() and ca_register()
functions).

• “MTP and SCCP Functions” describes the CASL functions used in applications that
interface with the SINAP/SS7 system at the MTP or SCCP boundary.

• “Connection-Oriented Functions” describes the CASL functions used in applications that
use connection-oriented services to establish and maintain connections with other
applications to exchange data.

• “TCAP Functions” describes the CASL functions used in applications that interface with
the SINAP/SS7 system at the TCAP boundary.

• “IPC Functions” describes the CASL functions used by an application process to
communicate with other application processes or SINAP/SS7 subsystems.

• “Load Control Functions” describes the CASL functions used in applications for
implementing the load control facility.

• “BITE Functions” describes the CASL functions used in applications to implement BITE
monitoring.

• “Miscellaneous Functions” describes CASL functions that can be used in any type of
application.

For ISUP functions, see the SINAP/SS7 ISDN User Part (ISUP) Guide (R8053).
CASL Function Calls 6-1

Function Call Return Values
Function Call Return Values
The value returned by a CASL function call indicates whether the call was successful. To
provide client application programmers with a familiar programming environment, CASL
functions indicate an error condition by using the following UNIX-like methods.

• A function that normally returns a 0 or greater value will return -1 if it is unsuccessful.

• A function that normally returns a pointer will return a NULL if it is unsuccessful.

In addition, the failed CASL function call sets the variable errno to a specific error code to
indicate the reason for the failure. The include file $SINAP_HOME/Include/ca_error.h
defines the possible error codes a CASL function can return. The UNIX file sys/errno.h
defines UNIX error codes and their meaning.

The global memory array CA_ERR[] contains an ASCII string in which the first several bytes
are allocated for the error number, and the remainder of the array contains a description of the
error. This array, which is defined in the $SINAP_HOME/Include/sinapintf.h include
file, is not used by all CASL functions. Note, however, that all CASL functions return errno.

The arch.h Include File
The arch.h include file defines the data types, enumerated types, and structures that CASL
functions use, and is typically included in SINAP/SS7 application programs that interface with
the SS7 network. To avoid issues associated with the length of an integer, the file defines several
integer types. The data types defined in the arch.h include file are shown in the following
example.
6-2 SINAP/SS7 Programmer’s Guide R8052-17

The arch.h Include File
The include files referred to here are located in the $SINAP_HOME/Include directory. You
might want to review these files before reading this section.

Figure 6-1. Data Types

#define CHAR_BITS 8 /* 8 bits in a ’char’ */

#define SHORT_BITS 16 /* 16 bits in a ’short’ */

#ifdef __LP64__
#define LONG_BITS 64 /* 64 bits in a 'long' */
#else
#define LONG_BITS 32 /* 32 bits in a 'long' */
#endif

#define INT_BITS 32 /* 32 bits in an ’int’ */

#define ATOMIC_BITS 16 /* 16 bits in an atomic word update */

#define ARCHITECTURE TRUE /* Architecture defined */

#define FAR
#define NEAR

typedef char S8; /* 8 bit signed integer */
typedef unsigned char U8; /* 8 bit unsigned integer */

typedef short S16; /* 16 bit signed integer */
typedef unsigned short U16; /* 16 bit unsigned integer */

typedef long S32; /* 32 bit signed integer */
typedef unsigned long U32; /* 32 bit unsigned integer */

#ifdef __LP64__
typedef long S64; /* 64 bit signed long */
typedef unsigned long U64; /* 64 bit unsigned long */
#elif defined(_LP_32_64_)
typedef long long S64; /* 64 bit signed long */
typedef unsigned long long U64; /* 64 bit unsigned long */
#endif

typedef float F32; /* 32 bit floating point */

typedef double F64; /* 64 bit floating point */

typedef int BOOL; /* Boolean value TRUE=1 or FALSE=0*/

typedef short ATOMIC; /* Atomic update word */
CASL Function Calls 6-3

Common Services Functions
Common Services Functions
This section contains descriptions of the following CASL functions, which can be used by any
type of application (TCAP, MTP, or SCCP).

• ca_flush_msu()

• ca_get_opc()

• ca_register()

• ca_terminate()

• ca_withdraw()

Descriptions of any structures and fields that these functions contain are also included.
6-4 SINAP/SS7 Programmer’s Guide R8052-17

ca_flush_msu()
ca_flush_msu() 6-

SYNOPSIS
int ca_flush_msu();

DESCRIPTION
The ca_flush_msu() function sends all pending outbound MSUs in the batch buffer to the
SS7 driver. This function does not have any parameters.

When an application calls ca_put_msu() to send an MSU to the SS7 network, the MSU is
placed in an output batch buffer, where it is held until the buffer becomes full. Then, the
SINAP/SS7 system sends all of the MSUs in the batch buffer to the SS7 driver. You can use this
function to send pending outbound MSUs to the SS7 driver without waiting for the buffer to
become full.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_flush_msu() function returns an OPC. If the function returns -1, there is an error.
See ca_error.h for the CASL error number and meaning; see sys/errno.h for UNIX
errors.

Possible UNIX values for errno are as follows.

Value Meaning

0 Successful

-1 Unsuccessful. See errno for error number and description.

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver
that accepts control functions.
CASL Function Calls 6-5

ca_flush_msu()
Possible CASL values for errno are as follows.

This function performs a putmsg() and can also return the errors listed under that function.

SEE ALSO
ca_get_msu(), ca_put_msu()

EFAULT The pointer to the specified message is outside the
address space allocated to the process.

EINTR A signal was caught during the read or system call.

EINVAL Queue ID is not a valid message queue ID. The
value of msg_type is less than 1, or msg_sz is
greater than 0 or the system-imposed limit.

EIO An input/output (I/O) error occurred during a read or
write operation.

ENXIO The requested service cannot be performed on this
particular subdevice.

ENOLINK The link to a requested machine is no longer active.

ENOMEM The kernel queue is full; try again.

Value Meaning

CA_ERR_ACCESS The process calling ca_flush_msu() is not
registered. Call ca_register() before calling
this function

CA_ERR_NO_SS7_SVC SS7 service is not registered. Reregister the
process using
ss7_primitive=SS7_CTRL_PRIMITIVE
and fss7=1.

Value Meaning
6-6 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_opc()
ca_get_opc() 6-

SYNOPSIS
int ca_get_opc();

DESCRIPTION
The ca_get_opc() function returns a 32-bit value containing an origination point code
(OPC). A client application calls this function when it needs to fill its OPC in the T_Block or
M_Block. This function is applicable only to those applications registered for SS7 services.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_get_opc() function returns an OPC.
CASL Function Calls 6-7

ca_register()
ca_register() 6-

SYNOPSIS
int ca_register();

DESCRIPTION
The ca_register() function registers a client application process with the SINAP/SS7
system. If the client application is composed of multiple processes, each process must register
with the SINAP/SS7 system before it can use the services of the SINAP/SS7 platform.

The ca_register() function uses the register_req_t structure, which is defined in
the include file register.h. The register.h include file defines the parameters that
control client process registration.

N O T E S
1. Before calling ca_register(), the client application

process must initialize the global variable CA_REG, which
contains global data used by ca_register().
(CA_REG is defined in the include file sinapintf.h.)

The register_req_t Structure
To register a client application process, you must assign values to the fields in the
register_req_t structure, which is defined in the include file register.h. See the
appropriate SINAP/SS7 include file(s) for definitions of any of the variables used in the
register_req_t structure’s fields (for example, MAX_FILENAME or MAX_VER_SZ).
6-8 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
N O T E
Differences between ANSI and CCITT field names have been
eliminated in the SINAP/SS7 system. For example, the former
ANSI fields have been replaced by the corresponding CCITT
fields, as shown in the following chart.

For backward compatibility, the definitions for the ANSI field
names have been maintained. However, when developing new
ANSI applications, you should use the max_dialogue_id
and max_invoke_id fields.

The following is an example of the register_req_t structure, which is defined in the
include file register.h.

typedef struct register_req_s
{

/********************************
* CASL internal variables*
********************************/
pid_t pid; /* process id - CASL puts the value*/
pid_t ppid; /* parent process pid */
int fildes; /* For CASL/NM use */

/**
 * Client process identification *
 **/
U8 node[MAX_NNAME]; /* Node name - upto 4 bytes*/
int filler;
U32 lpc;
U8 module[MAX_MNAME]; /* Module name - upto 4 bytes*/
int filler1;
U8 appl[MAX_ANAME]; /* application name - upto 4 bytes*/
int filler2;
U8 proc[MAX_PNAME+1]; /* Process name - upto 4 bytes */
U8 appl_version[MAX_VER_SZ]; /* application version in ascii */
U8 proc_version[MAX_VER_SZ]; /* process version in ascii */

/************************
 * IPC parameters *
 ************************/
BOOL cmd_allow; /* Flag for commands allowed from Node Mgmt */

/************************
* SS#7 parameters *
************************/
BOOL fss7; /* Flag for communications with SS#7 io subsystem */
U8 sio_ssn_ind;/* sio, ssn indicator */

#define REG_SIO1 /* next field is sio */
#define REG_SSN2 /* next field is ssn */
#define REG_MULT 3 /* next field is zero */

Former ANSI Field Corresponding CCITT Field

max_trans_id max_dialogue_id

max_ism max_invoke_id
CASL Function Calls 6-9

ca_register()

U8 sio_ssn; /* contains SIO or SSN */
U8 ss7_input_boundary; /* type of boundary */

#define SS7_INPUT_BOUNDARY_MTP 1
#define SS7_INPUT_BOUNDARY_SCCP 2
#define SS7_INPUT_BOUNDARY_TCAP 3
#define SS7_INPUT_BOUNDARY_SCCP23 4
#define SS7_INPUT_BOUNDARY_ISUP 5
#define SS7_INPUT_BOUNDARY_TCAPX 6
#define SS7_INPUT_BOUNDARY_SCCPX 7

U8 fillerx; /* preserve alignment */

 U32 lpc; /* Logical Point Code or
 own Point Code for process

 - zero defaults to own PC */

U16 batch_count; /* Num. of M_Blocks batched in/out */
/*ss7-1482 type of tc_count changed from S16 to S32 */

S32 tc_count; /* Num. of T-Blocks assigned*/
U16 reassembly_count; /* Num of XUDT reassembly bufs */
U8 ss7_primitive;

#define SS7_CTRL_PRIMITIVE 1
#define SS7_DATA_PRIMITIVE 2
#define SS7_CTRL_DATA_PRIMITIVE 3

U8 inbound_load_dist_type; /* Type of load distribution*/

#define ROUND_ROBIN 1
#define LEAST_UTILIZED 2
#define SLS_DISTRIBUTION 3
#define ISUP_REMOTE_SSP 4

S16 max_msu_input_que; /* Maximum MSUs on input queue */
S16 max_msu_out_que; /* Maximum MSUs on output queue */
S16 max_msu_holding_que; /* Maximum MSUs on holding queue */

BOOL fblk_que_overflow; /* Flag - True=Block on holding queue overflow*/
int max_time_on_holding_que; /* Max time in ms. for MSUs on holding queue

/*before discarding*/

/********************************
 * SCCP Class 2 & 3 parameters *
 ********************************/
 U16 max_user_data_size; /* max size of user data block in bytes */
 U16 max_connections; /* max number of connections for this */

 /* process */
 BOOL connections_are_owned; /* all msu's for a connection are */

 /* routed to the same pid */

/********************************
* TCAP parameters*
********************************/
/* CCITT */

/*ss7-1482 type of max_dialogue_id changed from S16 to S32 */
S32 max_dialogue_id;/* maximum number of dialogue id */
S32 max_invoke_id;/* maximum number of invoke id */

/* ANSI */
#define max_trans_id max_dialogue_id /* maximum number of transaction id */
#define max_ism max_invoke_id /* maximum # of Invoke State Machine(ism) */

U32 tsl_timer_value;/* value in seconds, if specified zero,
 no transaction timer started */

/*********************************
* Powerfail parameters *
6-10 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
*********************************/
BOOL fpf_begin; /* Flag - Signal on pf_begin from driver*/
BOOL fpf_ridethru; /* Flag - Signal on pf_ridethru from PF daemon */

/********************************
 * Node Mgmt parameters *
 ********************************/
BOOL fhealth_check_option; /* Flag - To allow health check msgs */

 /* Next two fields define the
 event that will be sent on
 health-check timeout */

U8 health_category; /* Health check category */
U8 health_subcategory; /* Health check sub-category */
BOOL fparent; /* True if the registering process

 is a parent process */
BOOL fpre_reg; /* True - process is preregistered

 do not send any msgs*/

#define IPC_NOTIFY_WITHOUT_SIGNAL2/* This says send no signal
 but notify read() of IPC */

/************************
 * BITE parameters *
 ************************/

BOOL fdebug; /* Flag - allow debug messages */
BOOL fmon_ss7; /* Flag - start process with ss7 monitoring on*/
BOOL fmon_ipc; /* Flag - start process with ipc monitoring on*/
BOOL fintercept; /* Flag - start process with scenario running */
U8 mon_filename[MAX_FILENAME]; /* Log file name including path

 if monitoring is selected*/
U8 intc_filename[MAX_FILENAME];/* Scenario execution program name

 including path if intercept
 is selected */

/******************************
 * Alarm parameters *
 ******************************/
U8 alarm_level; /* Minimum Alarm Level Requested */

#define REG_NONE0
#define REG_NOTICE1
#define REG_MINOR2
#define REG_MAJOR3
#define REG_CRITICAL4

U8 category; /* Category of Alarms Requested */
U8 subcategory; /* Subcategory of Alarms Requested */

/**
 * Application failure/recover parameters *
 **/
U8 failure_option; /* Action on failure */

#define NO_ACTION 1
#define SEND_MESSAGE 2
#define SCRIPT 3

union
{

U8 script[MAX_FILENAME]; /* File name if SCRIPT */
struct
{ /* Msg params if SEND_MESSAGE */

 intmsg_type;
U8 node[MAX_NNAME+1];
U8 module[MAX_MNAME+1];
U8 appl[MAX_ANAME+1];
U8 proc[MAX_PNAME+1];

#define MAX_FDATA 24
 U8data[MAX_FDATA];
} msg;

} fail;
} register_req_t;
CASL Function Calls 6-11

ca_register()
* pid (input)
Specifies the ID of the application process. CASL assigns this value; therefore, you should
not modify this field.

* ppid (input)
Specifies the ID of the parent process. CASL assigns this value; therefore, you should not
modify this field.

* fildes (input)
This value is for internal use (CASL and node management) and should not be modified.

* node (input)
Specifies the name of the SINAP node as an ASCII string, up to four bytes long. An invalid
name in this field causes the ca_register() function to fail. You can determine this
name from the NODE= entry in the /etc/sinap_master configuration file. You must
modify any script files or user-defined programs that contain an invalid, hard-coded value
for the SINAP node name.

* module (input)
Specifies the name of the module or system as an ASCII string, up to four bytes long. An
invalid name in this field causes the ca_register() function to fail. You can determine
this name from the /etc/sinap_master configuration file entry, MODULE=. You must
modify any script files or user-defined programs that contain an invalid, hard-coded value
for the SINAP module name.

* appl (input)
Specifies the name of the application as an ASCII string, up to four bytes long.

N O T E
As part of registration, the application name becomes
associated with a unique specified subsystem number (SSN).
SINAP/SS7 Node Management allows only one registered
application to be associated with an SSN at any time. Thus, it is
important for all processes that are members of the same
application to use the same application name at registration.

* proc (input)
Specifies the name of the process as an ASCII string, up to four bytes long. Note that the
names of an application’s control and data processes must be different.

* appl_version (input)
Specifies the version of the application as an ASCII string.
6-12 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
* proc_version (input)
Specifies the version of the process as an ASCII string.

N O T E
The version information is logged and is used to check
application consistency. All processes registering as members
of the same application must present the same application
version; however, they can present arbitrary process versions.

* cmd_allow (input)
Specifies whether the client application process can receive MML commands through the
IPC queue. Use 1 to allow the process to receive MML commands in this manner;
otherwise, use 0.

* fss7 (input)
Specifies whether the client application process requires SS7 services. Use 1 to indicate
that the client application requires SS7 services. In this case, the remaining SS7 parameters
are evaluated to determine the type of SS7 services that will be supplied. Use 0 to indicate
that the client application does not require SS7 services. In this case, the fields up to
max_time_on_holding_que are ignored.

* sio_ssn_ind (input)
Specifies whether a service information octet (SIO) or SSN is supplied in the sio_ssn
field. Use 1 to supply an SIO; use 2 to supply an SSN; use 3 to implement enhanced
message distribution (see the section “Enhanced Message Distribution” in Chapter 3). The
value you specify for the ss7_input_boundary parameter determines whether an SIO
or SSN is required.

* sio_ssn (input)
Specifies the SIO or SSN that the SINAP/SS7 system is to associate with the process. The
SINAP/SS7 system uses this SIO or SSN to identify the process; therefore, you must
specify a unique value for each process. If you are using an SIO, specify a value in the range
1 to 15; if you are using an SSN, specify a value in the range 2 to 255. If an application
consists of multiple processes, each process must specify the same SIO or SSN.

If you specified 3 for sio_ssn_ind, specify zero for this field and use the
dist_cmd_t structure to define the SSN(s) to be associated with the application process.
CASL Function Calls 6-13

ca_register()
* ss7_input_boundary (input)
Specifies the boundary at which the application receives communication from the SS7
network. To receive input at one of the following boundaries, specify the code associated
with the boundary.

If you specify MTP or ISUP as the input boundary, you must specify an SIO code in the
sio_ssn field. If you specify SCCP or TCAP, you must specify an SSN code in the
sio_ssn field unless you are implementing enhanced message distribution, in which case
the sio_ssn field is zero.

* fillerx (input)
Functions as a filler to preserve the alignment.

* lpc (input)
Specifies the SINAP node’s own signaling point code (OSP) if the field contains a value of
0 (the default value). If the Distributed Logical Point Code (DLPC) feature is configured
on the SINAP node, this field can also specify the logical point code (LPC) of an ISUP
application process. For detailed information on the DLPC feature, see the SINAP/SS7
ISDN User Part (ISUP) Guide (R8053).

* batch_count (input)
Specifies the number of M_Blocks (MSUs) the process will transfer to or from the SS7
driver with a single call. If you specify a large value for this field, you increase the
SINAP/SS7 efficiency; however, if you find that the average processing delay per
M_Block is large, you should specify a smaller value for this field.

All outbound MSUs are held in a batch buffer until the buffer becomes full. Then, the
SINAP/SS7 system flushes all of the MSUs to the SS7 SVR4 driver. For receiving MSUs,
if there are no buffers pending in the batch buffer, the SINAP/SS7 system returns the

To Define SS7 Input Boundary Type Enter

MTP 1

SCCP 2

TCAP 3

SCCP23 (Connection Oriented
Services Classes 2 & 3) 4

ISUP 5

TCAPX (supports XUDT) 6

SCCPX (supports XUDT) 7
6-14 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
M_Block address. Additionally, if there are no inbound MSUs pending on a read, the
SINAP/SS7 system flushes the output batch buffer.

* tc_count (input)
Specifies the number of T_Blocks the CASL will allocate in the T_Block array. This
parameter applies only to client application processes registered to receive input at the
TCAP boundary.

* reassembly_count (input)
Specifies the number of XUDT reassembly buffers allocated.

* ss7_primitive (input)
Specifies whether the client application process receives control or data primitives, or both.

If more than one process is registered for data primitives, the rules for load distribution
apply (see the description of inbound_load_dist_type). For each SSN, only one
process can be registered to receive control primitives and that process must set the fss7
field to FALSE. Each SSN can have up to 16 processes registered to receive data primitives.

* inbound_load_dist_type (input)
Specifies the type of load distribution policy to use.

Specify To Indicate

1 the client application process will receive
control primitives

2 the client application process will receive
data primitives

3 the client application process will receive
both control and data primitives

Specify To Indicate

1 ROUND_ROBIN, which distributes MSUs
evenly across each of the application’s
input queues.

2 LEAST_UTILIZED, which places each
arriving MSU in the queue with the least
backlog.
CASL Function Calls 6-15

ca_register()
* max_msu_input_que (input)
Specifies the maximum number of M_Blocks that the SINAP/SS7 system can store
pending a client application read. If this number is exceeded, the driver discards any
incoming M_Blocks. Select a number that is a small multiple of the blocking factor
(which is the batch_count variable described previously in this section) and that can
account for the way the client application receives several messages and processes them in
one “burst.” The MSU input queue size allows a minimum value of 7000 through a
maximum value of 32000. This value is defined in the sinap.h include file.

* max_msu_out_que (input)
Specifies the maximum number of M_Blocks that the SINAP/SS7 system can store
pending a client application process write. The output limit should complement the input
limit.

* max_msu_holding_que (input)
Specifies the maximum number of M_Blocks that can be stored on a holding queue before
an overflow condition occurs. A holding queue is temporary queue that the SINAP/SS7
system creates when routing to a particular destination (or set of destinations) is
temporarily blocked (for example, during a link changeover). When routing is resolved, the
SINAP/SS7 system takes the M_Blocks from the holding queue and routes them to their
destinations.

* fblk_queue_overflow (input)
Specifies how the SINAP/SS7 system treats a holding queue overflow condition. If set to
1, an M_Block send request exceeding the maximum specified in
max_msu_holding_que causes that call to block pending route resolution. If set to 0,
the sender process is notified of the condition through an error return.

* max_time_on_holding_que (input)
Specifies the length of time (in milliseconds) that M_Blocks remain on the holding queue
before being discarded.

* max_user_data_size (input)
Specifies the maximum size, in bytes, of the user data block.

* max_connections (input)
Specifies the maximum number of connections allowed for this process.

3 SLS_DISTRIBUTION, which places each
MSU in the application queue associated
with the link over which the MSU was
routed.

Specify To Indicate
6-16 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
* connections_are_owned (input)
Specifies that all MSUs for a connection are routed to the same PID.

* max_dialogue_id (input)
(CCITT) Specifies the maximum number of dialogue IDs.

* max_invoke_id (input)
(CCITT) Specifies the maximum number of invoke IDs.

* max_trans_id (input)
(ANSI) Specifies the maximum number of transaction IDs. This field description is
maintained for backward compatibility only. For developing new ANSI applications, use
the max_dialogue_id field instead of this field.

* max_ism (input)
(ANSI) Specifies the maximum number of invoke state machines.This field description is
maintained for backward compatibility only. For developing new ANSI applications, use
the max_invoke_id field instead of this field.

* tsl_timer_value (input)
Specifies the value, in seconds, of the transaction timer. This timer times receipt of a
message. If the transaction timer expires, an alarm is sent to Node Management and the
pending transaction is aborted. The value of this timer should be less than the setting of the
environment variable TCAP_TQ_BINS or the default value of half the sum of
MIN_TQ_BINS and MAX_TQ_BINS which are defined in tcglob.h. For example: (4 +
3601)/2 = 1802. Use 0 to indicate that the transaction timer should not be used.

* fpf_begin (input)
Specifies whether the client application process is signaled when the SINAP/SS7 system
detects a pf_begin (power-fail) event. When this signal occurs, the client application has
five seconds of guaranteed operation before failure. In this interval, the application can
coordinate with its mate or withdraw from the SS7 network. Use 1 to specify that the
process should be signaled; otherwise, use 0.

* fpf_ridethru (input)
Specifies whether the client application process is signaled when the SINAP/SS7 system
detects a pf_ridethru (power-fail ride-through) event.

* fhealth_check_option (input)
Specifies whether Node Management sends periodic health-check messages to the client
application process by means of IPC. Use 1 to specify that node management should send
health-check messages to the application; otherwise, use 0. (The SINAP/SS7 environment
variable SINAP_HEALTH_INTERVAL specifies the frequency with which the
SINAP/SS7 system sends health-check messages; see the SINAP/SS7 User’s Guide
(R8051) for more information.)
CASL Function Calls 6-17

ca_register()
The destination process must respond within the amount of time specified by the
SINAP/SS7 environment variable SINAP_HEALTH_TIMEOUT (see the SINAP/SS7
User’s Guide (R8051) for more information about SINAP/SS7 environment variables). If
two successive health-check requests fail, Node Management declares the process failed
and invokes the actions specified in the health_category and
health_subcategory fields.

* health_category (input)
Specifies the category of actions that Node Management takes when two consecutive
health-check requests fail.

* health_subcategory (input)
Specifies the subcategory of actions that Node Management takes when two consecutive
health-check requests fail.

* fparent (input)
Specifies whether the client application process is a parent process. Use 1 to indicate that
the application process is a parent; otherwise use 0.

* fpre_reg (input)
This field is internal to the SINAP/SS7 system; you should not modify it.

* fsignal (input)
Specifies whether the client application process is signaled for incoming IPC messages.
Use 1 if you want the SINAP/SS7 system to generate a signal when the process receives an
IPC message; otherwise, use 0. If you specify 1, you must also initialize the signal
SIG_S7_IPC with your application’s signal-handler process.

Use 2 (IPC_NOTIFY_WITHOUT_SIGNAL) if you want the SINAP/SS7 system to cause
a blocking-mode call to ca_get_msu() or ca_get_tc() to return with
errno=EINTR when an IPC message arrives for the application process. (For more
information about handling such a return, see the section “Error Handling” in Chapter 3.)

* fdebug (input)
Specifies whether the client application process receives BITE debug messages. Use 1 to
indicate that the application permits debug messages. You may find it useful to set this field
according to a command-line parameter.

* fmon_ss7 (input)
Specifies that when the application process is started, the SINAP/SS7 system is to
automatically initiate a BITE monitor process to monitor and log all of the SS7 activities
for the application process. Use 1 to initiate the BITE monitor process; otherwise, use 0. If
you use 1, be sure to provide a value for the mon_filename field.

* fmon_ipc (input)
Specifies that when the application process is started, the SINAP/SS7 system is to
automatically initiate a BITE monitor process to monitor and log all of the IPC activities
6-18 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
for the application process. Use 1 to initiate the BITE monitor process; otherwise, use 0. If
you use 1, be sure to provide a value for the mon_filename field.

* fintercept (input)
Specifies whether the SINAP/SS7 system intercepts all SS7 traffic and passes it to the BITE
for scenario execution. Use 1 to enable intercept mode; otherwise, use 0. This field allows
an application process to start in intercept mode.

N O T E
You may find it useful to set this field according to a
command-line parameter. You can also enable scenario
execution by using the MML commands START_SCEN and
STOP_SCEN (see Appendix A).

* mon_filename (input)
Specifies the path name of the log file to which BITE monitoring messages are to be
written. This field applies only if you have enabled BITE monitoring by specifying the
value 1 for the fmon_ss7 or fmon_ipc field.

N O T E
If you enable BITE monitoring but do not specify a value for
this field, ca_register() returns an error.

* intc_filename (input)
Specifies the name of the scenario execution program that is to be executed whenever the
SINAP/SS7 system intercepts SS7 traffic.

N O T E
This field applies only if you have specified intercept mode (see
the description of fintercept earlier in this section).

* alarm_level (input)
Specifies the minimum alarm level that will be sent to the client application process. Use 4
to indicate critical alarms, 3 to indicate major alarms, 2 to indicate minor alarms, 1 to
indicate a notice, and 0 to indicate no alarms.

* category (input)
Specifies the classification of a set of alarms. A category can be established for any set of
alarms that share the same subcategories. Categories are defined for the system; each value
for the category parameter has a unique meaning to the system. Use any number from
15 through 30.
CASL Function Calls 6-19

ca_register()
* subcategory (input)
Specifies the classification of an alarm within a category. The client processes sharing the
alarm category must make the subcategory assignments and reservations. You can
specify up to 30 subcategories.

* failure_option (input)
Specifies what action, if any, the SINAP/SS7 system takes if the registering process fails.
Specify 1 if the SINAP/SS7 system should not take action, specify 2 if the SINAP/SS7
system should send a message by means of the IPC, or specify 3 if the SINAP/SS7 system
should execute a script.

If you specify 3 for failure_option, specify the script name in the script field.

• script (input)
Specifies the name of the script file the SINAP/SS7 system will execute if the client
process fails.

If you use 2 as the value for failure_option, specify the message and destination in
the following fields.

• msg_type (input)
Specifies the type of message to send if the client application process fails.

• node (input)
Specifies the name of the node to which the message is being sent. The value of node
can be up to four bytes long.

• module (input)
Specifies the name of the module to which the message is being sent. The value of
module can be up to four bytes long.

• appl (input)
Specifies the name of the application to which the message is being sent. The value of
appl can be up to four bytes long.

• proc (input)
Specifies the name of the process to which the message is being sent. The value of
proc can be up to four bytes long.

• data (input)
Specifies the message to send to the client application process if it fails. The value of
data can be up to 24 bytes long.

FILES
arch.h, ca_error.h, iblock.h, register.h, sinap.h, sinapintf.h,
sysdefs.h
6-20 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
RETURN VALUES
The ca_register() function can return the following values. If ca_register() returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

N O T E
The ca_register() function does not close the SINAP file
descriptor in all cases of an error return. Attempts to retry
ca_register() in such cases, will always fail with errno
16=EBUSY. Before attempting a retry, (void)
close(CA_FD) ignoring any error return.

Possible UNIX values for errno are as follows.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.

Value Meaning

EBADF An invalid open file descriptor was specified.

EBUSY Indicates that the mount device is busy and the system
cannot start the operation.

EEXIST O_CREAT and OEXCL are set and the named device
exists.

EFAULT The specified path name points outside this process’s
allocated address space.

EINTR The signal was caught during the open() system call.

EIO An I/O error occurred during a read or write operation.

EISDIR The named file is a directory and the oflag is write
or read/write.

EMFILE NOFILES file descriptors are currently open.

ENFILE The system table is full.

ENOLINK The link to a requested machine is no longer active.
CASL Function Calls 6-21

ca_register()
Possible CASL errors are as follows.

ENOSPC O_CREAT and OEXCL are set and the file system is out
of I-nodes. The device does not exist; O_CREAT is
specified.

ENOTDIR A component of the path prefix is not a directory.

ENOTTY This fides is not associated with a device driver that
accepts control functions.

EROFS The named file resides on a read-only file system and
oflag is write or read/write.

ENXIO The requested service cannot be performed on this
particular subdevice.

Value Meaning

CA_ERR_ACCESS The process is not registered. Call
ca_register() before calling this function.

CA_ERR_ALREADY_REG The process is registered more than once.

CA_ERR_INT_MML There is an error in a command to the BITE.

CA_ERR_INVALID_PUT_REQ The ss7_input_boundry is invalid for XUDT
message processing.

CA_ERR_REG_BCNT_HIGH The specified value for the batch buffer count is
invalid.

CA_ERR_REG_FAILURE_OPT The specified value for failure options is invalid.

CA_ERR_REG_INTC_FILE The scenario execution file is missing.

CA_ERR_REG_LOAD_DIST The specified value for the load distribution type is
invalid.

CA_ERR_REG_LPC_INVALID The process is not registered at the ISUP
boundary. This error can only occur if the
Distributed Logical Point Code (DLPC) feature is
configured.

CA_ERR_REG_MAX_HOLD The specified value for the maximum hold buffer
count is invalid.

CA_ERR_REG_MAX_INMSU The specified value for the maximum input MSU
count is invalid.

Value Meaning
6-22 SINAP/SS7 Programmer’s Guide R8052-17

ca_register()
If the TCAP returns the error TC_ERR_INV_TCAP_REG_PARAMETERS, correct the TCAP
registration parameters: tc_count, max_trans_id, and max_ism. Then reregister the
application process.

This function performs a ca_put_msg(), a ca_get_msg(), and a ca_get_key(), and
can also return the errors listed under those functions.

SEE ALSO
ca_terminate()

CA_ERR_REG_MAX_OUTMSU The specified value for the maximum output MSU
count is invalid.

CA_ERR_REG_MAX_TIME The maximum time value is missing.

CA_ERR_REG_MON_FILE The monitor log file name is missing.

CA_ERR_REG_NORESP There is no response from client management.

CA_ERR_REG_SCR_FILE The script file name is missing.

CA_ERR_REG_SIO The specified value for the SIO is invalid.

CA_ERR_REG_SIO_SSN_IND The specified value for the SSN/SIO indicator is
invalid.

CA_ERR_REG_SS7_BOUND The specified value for the SS7 input boundary is
invalid.

CA_ERR_REG_SS7_PRIMITIVE The specified value for the SS7 primitive is invalid.

CA_ERR_REG_SSN The specified value for the SSN is invalid.

CA_ERR_REG_TCCOUNT The specified value for the TC count is invalid.

Value Meaning
CASL Function Calls 6-23

ca_terminate()
ca_terminate() 6-

SYNOPSIS
int ca_terminate(
 terminate_t *pterm);

DESCRIPTION
The ca_terminate() function terminates an application process and deallocates its IPC and
SS7 resources (such as table entries, structure entries, and shared memory resources). Any
process registered with the SINAP/SS7 system can call ca_terminate() to terminate itself.
A parent process can also issue this function on behalf of its child processes.

After an application process calls the ca_terminate() function, all actions previously
performed by ca_register() are undone. The application process is no longer registered
with the SINAP/SS7 system and can no longer receive MSUs or IPCs. The application process
is then free to reregister with another call to ca_register() using different parameters, if
required, or to call the exit() function.

PARAMETERS
* pterm (input)

Specifies a pointer to the terminate structure, terminate_t, which is defined in the
include file terminate.h. For more information, see the following section, “The
terminate_t Structure.”

The terminate_t Structure
Before calling the ca_terminate() function, you must assign values to the following fields
in the terminate_t structure.

typedef struct terminate_s
{
 ipc_key_t ipc_key;
 U8 msg_type;
 BOOL fss;
 U8 reason[80];
 int exit_code;
} terminate_t;
6-24 SINAP/SS7 Programmer’s Guide R8052-17

ca_terminate()
* ipc_key (input)
Specifies the IPC key of the process to be terminated. The IPC key is defined by the
ipc_key_t structure, which is described in the following section, “The IPC Key
Structure (ipc_key_t).”

* msg_type (input)
Specifies how the process is to be terminated.

Use the value TERM_COMMANDED (or 1) to specify self-commanded. With this value, the
parent process kills the child process specified by ipc_key.

Use the value TERM_SELF_INITIATED (or 2) to specify self-initiated. This value
disconnects a process from the SINAP/SS7 system, but not exit.

* fss (input)
Specifies whether the SINAP/SS7 system is to terminate the parent process and its child
processes, or just this process. Use the value TRUE (or 1) to terminate the parent process
and all of its child processes; use FALSE (or 0) to terminate this process only.

* reason (input)
Specifies the reason for terminating the process. This field can be up to 80 bytes long.

* exit_code (input)
This field is unused.

The IPC Key Structure (ipc_key_t)
The ipc_key_t structure is defined in the include file sinap.h and has the following
format.

The ca_ascii_u32() function assigns values to the node, module, appl, and proc
fields of the ipc_key_t structure, which is shown below.

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-25

ca_terminate()
* node (input)
Specifies the ID of the SINAP node on which the application is running. You can determine
this value from the NODE= entry in the /etc/sinap_master file. You should modify
any script files or user-defined programs that contain an invalid, hard-coded node name.

* module (input)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined programs that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (a value in the range 1 through 16). A value of 0 indicates that
the field is not used.

* node_index (input)
Specifies the index value (in the range 0 through 3) of the node. This value is equal to the
values of the node ID and the SINAP_INDEX environment variable. This value is internal
and should not be changed.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
arch.h, ca_error.h, sinap.h, terminate.h

RETURN VALUES
The ca_terminate() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.
6-26 SINAP/SS7 Programmer’s Guide R8052-17

ca_terminate()
Possible CASL errors are as follows.

This function performs a ca_get_msg() and a ca_put_msg() and can also return the
errors listed under those functions.

SEE ALSO
ca_register()

Value Meaning

CA_ERR_ACCESS The process calling ca_terminate() is not
registered. Call ca_register() before calling
this function.

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_IBLK_DATA The I_Block data exceeds the maximum limit.

CA_ERR_IBLK_MSGTYPE Invalid message type.
CASL Function Calls 6-27

ca_withdraw()
ca_withdraw() 6-

 SYNOPSIS
int ca_withdraw();

DESCRIPTION
The ca_withdraw() function allows an orderly withdrawal from SS7 service by removing
a client application instance from the SINAP/SS7 input load distribution. This prevents new
messages from being routed to that client application process, while allowing the application
process to continue processing existing messages.

Though transactions that are currently being routed to that application process continue to be
processed, load distribution does not route any new transactions. A withdrawn client application
can initiate transactions. Continuation of these transactions is routed to the withdrawn
application instance. When all transactions are completed, the application instance can perform
a ca_terminate().

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_withdraw() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning. See
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.
6-28 SINAP/SS7 Programmer’s Guide R8052-17

ca_withdraw()
Possible UNIX values for errno are as follows.

A possible CASL error follows.

SEE ALSO
ca_terminate()

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that accepts
control functions.

EFAULT The specified path name points outside this process’s allocated
address space.

EINVAL Queue ID is not a valid message queue ID. The value of
msg_type is less than 1, or msg_sz is less than 0 or greater
than the system-imposed limit.

EINTR The signal was caught during the open() system call.

ENXIO The requested service cannot be performed on this particular
subdevice.

EIO An I/O error occurred during a read or write operation.

ENOLINK The link to a requested machine is no longer active.

Value Meaning

CA_ERR_ACCESS The process calling ca_withdraw() is not
registered. Call ca_register() before calling this
function.
CASL Function Calls 6-29

MTP and SCCP Functions
MTP and SCCP Functions
This section contains an alphabetic reference of the following CASL functions, which are used
in applications that interface to the SS7 network at the MTP or SCCP boundary.

• ca_get_msu()

• ca_get_msu_noxudt()

• ca_lookup_gt()

• ca_put_msu()

The structures and fields for each function are also described in this section. The function
descriptions apply to all network variants of the SINAP/SS7 system; any differences are noted.
6-30 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
ca_get_msu() 6-

SYNOPSIS
m_block_t *ca_get_msu(

BOOL fwait);

DESCRIPTION
The ca_get_msu() function returns a pointer to an inbound MSU. A client application
registered to receive input at the MTP or SCCP boundary can call this function.

The input batch buffer is the first source for inbound M_Block requests. The SINAP/SS7
system queries the SS7 driver for up to the maximum number of M_Blocks the batch buffer
can hold. When the SINAP/SS7 system completes the query, ca_get_msu() returns a
pointer to the first M_Block in the batch buffer. If the batch buffer is not empty,
ca_get_msu() returns a pointer to the next M_Block.

C A U T I O N
The client application must allocate enough inbound and
outbound batch buffer space (by means of the
max_msu_input_que and max_msu_output_que
parameters of the ca_register() function.) If there is not
enough inbound batch buffer space, consecutive calls to
ca_get_msu() can destroy the previous contents of the
M_Block (MSU). The client application should either copy the
MSU or allocate enough buffers during registration.

If the results of the query to the SS7 driver indicate that there are no M_Blocks currently
pending in the SS7 driver for the client process, ca_get_msu() ensures that any partial
outbound batches are cleared.

N O T E
Because of the UNIX signal, it is possible that when this
function is called with the fwait parameter set to 1, the
function might return an error, indicating that the signal was
CASL Function Calls 6-31

ca_get_msu()
invoked. If this happens, the calling process must issue the call
again, or dequeue any IPC messages.

PARAMETERS
* fwait (input)

Specifies whether the function is to wait for an MSU. Use 1 to indicate that the function
is to wait for an MSU; otherwise, use 0. If you use 0, the function returns the error
ENODATA when there are no MSUs.

The Main M_Block Structure (m_block_t)
The following fields make up the m_block_t structure, which is defined in the include file
mblock.h.

* ca_ctrl (output)
Specifies CASL control information. For information about this structure’s fields, see
“The CASL Control Structure (ca_ctrl_t)” later in this section.

* ts (output)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts.
The timestamps aid monitoring and logging and are visible when you run the BITE
log-analysis program. For information about this structure’s fields, see “The Timestamp
Structure (timestamp_t)” later in this section.

 typedef struct m_block_s
{
 ca_ctrl_t ca_ctrl;

timestamp_t ts;
 bi_ctrl_t bi_ctrl;
 tcap_ctrl_t tc_ctrl;
 sccp_ctrl_t sc_ctrl;

sccp_prim_t sc_prim;
tcap_alt_t tc_alt;

 mtp_ctrl_t mtp_ctrl;
union m_block_ud_tag

 {
msu_t msu;
ccitt_msu_t ccitt_msu; /* CCITT MSU Data */
ttc_msu_t ttc_msu; /* TTC and NTT MSU Data */
ansi_msu_t ansi_msu; /* ANSI and China MSU Data */
13_event_t dr_event;

 iblk_t ib;
 } ud;
} m_block_t;
6-32 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
* bi_ctrl (output)
Specifies BITE control information. For information about this structure’s fields, see “The
BITE Control Structure (bi_ctrl_t)” later in this section.

* tc_ctrl (output)
Specifies TCAP control information. For information about this structure’s fields, see “The
TCAP Control Structure (tcap_ctrl_t)” later in this section.

* sc_ctrl (output)
Specifies SCCP control information. For information about this structure’s fields, see “The
SCCP Control Structure (sccp_ctrl_t)” later in this section.

* sc_prim (output)
Specifies the sccp_prim_t structure, which conveys information about large messages.
This structure is defined in the Mblock.h include file. See “The sccp_prim_t Structure”
later in this chapter for more information.

* tc_alt (output)
The SINAP/SS7 system uses this field for specifying the alternative DPC (refer to chapter
3) for the outbound MSU, i.e. refer to ca_put_msu() later in this chapter. You should not
modify it at ca_get_msu(), which is for the inbound MSU.

* mtp_ctrl (output)
Specifies MTP control information. For information about this structure’s fields, see “The
MTP Control Structure (mtp_ctrl_t)” later in this section.

* ud (output)
 Specifies the union of M_Block.

• msu (output)
Specifies user data for the MSU or I_Block information. See “The MSU Data
Structure (msu_t)” later in this section for information about this structure’s fields.

• dr_event (output)
This field is internal to the SINAP/SS7 system; you should not modify it. For
information about this structure’s fields, see “The l3_event_t Structure” later in this
section.

• ib (output)
See “The iblk_t Structure” later in this section for information about this structure’s
fields.

• ccitt_msu (output)
Specifies MSU data for the CCITT network variant.

• ttc_msu (output)
Specifies MSU data for the TTC and NTT network variants.

• ansi_msu (output)
Specifies MSU data for the ANSI and China network variants.
CASL Function Calls 6-33

ca_get_msu()
The CASL Control Structure (ca_ctrl_t)
The following fields make up the ca_ctrl_t structure, which is defined in the include file
blkhdr.h.

* msg_type (output)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (output)
Specifies the total size of the structure, excluding this field.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */
 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
6-34 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
* node_index (output)
This is an internal field that is automatically initialized to the appropriate value for the
SINAP node.

* sinap_variant (output)
This is an internal field that is automatically initialized to the appropriate value for the
network variant being used on the SINAP node.

* lost_cnt (output)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (output)
Specifies the number of MSUs pending.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* pid (output)
* link (output)
* msg_sender (output)
* iblk (output)
* rw (output)
* monitor_id (output)
* ssn_sio (output)
* source (output)
* destination (output)
* mptr (input) Specifies a pointer to m_block_t, Level 3.
* timer_id (output)
* timer_val (output)
* omsg_type (output)

CASL Function Calls 6-35

ca_get_msu()
The Timestamp Structure (timestamp_t)
The following fields make up the timestamp_t structure, which is defined in the include file
timestamp.h.

* index (output)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (output)
Specifies the timestamp slots. For an explanation, see “The stamp_t Structure.”
(MAX_TIME_SLOTS is defined in the SINAP/SS7 timestamp.h include file.)

The stamp_t Structure
The following fields make up the stamp_t structure, which is defined in the include file
timestamp.h.

* secs (output)
Specifies the time (in seconds) since 1/1/70.

* tsid (output)
Specifies the timestamp ID. Definitions for these IDs can be found in the include file
timestamp.h.

* ipcx (output)
Specifies the IPC index, if applicable.

* msec (output)
Specifies the time, in milliseconds.

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
}timestamp_t;

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;
6-36 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
The BITE Control Structure (bi_ctrl_t)
The following fields make up the bi_ctrl_t structure, which is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* command (output)
* qualifier (output)
* link (output) - The UNIX include file sys/types.h defines the dev_t structure.
* pid[2] (output)
* rw (output)
* monitor_id (output)

The TCAP Control Structure (tcap_ctrl_t)
The following fields make up the tcap_ctrl_t structure, which is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* ipc_index (output)
* trans_id (output)
* tcap_msg_type (output)
* abort_type (output)

typedef struct bi_ctrl_s
{
 U8 command; /* Command type */
 U8 qualifier; /* command qualifier*/
 U8 rw; /* monitor read/write/both */
 U8 monitor_id;
 U8 filler[2]; /* For User32/Driver64 compatibility*/
 U16 link; /* link index */
 pid_t pid[2]; /* application and SE process IDs*/
} bi_ctrl_t;

typedef struct tcap_ctrl_s
{
 S16 ipc_index;
 S32 trans_id;
 U8 tcap_msg_type;
 U8 abort_type;
 U8 abort_cause;
 U8 call_disposition; /* fictitious OPC */
} tcap_ctrl_t;
CASL Function Calls 6-37

ca_get_msu()
* abort_cause (output)

The following field must be specified for the ANSI network variant only:

* call_disposition (output)
(ANSI) This field indicates the FOPC feature is to be used in the MTP header. You should
not modify this field.

The SCCP Control Structure (sccp_ctrl_t)
The sccp_ctrl_t structure contains the following fields and is defined in the include file
mblock.h.

* sccp_ctrl (output)
This field is meaningful to the SCCP user. SCCP Management sets this field to
N-UNITDATA or N-NOTICE.

* sccp_source (output)
This field specifies which SCCP function originated the message. You should not modify it.

* sccp_dest (output)
This field specifies the SCCP function for which the message is destined. You should not
modify it.

* ccitt_sls5 (output)
(CCITT) This field specifies the five-bit SLS field, used only in the CCITT network
variant. Bit 4 of the 5-bit SLS is used to randomly choose the route/link set (0 or 1) if the
route set (RSET) is configured with two route/link sets for load sharing and the SLS value
of the MSU label is mapped to a corresponding physical link in that route/link set over
which to send the outbound message. This field is used only to send outbound MSUs for
MTP, SCCP, or TCAP applications. The field is not used to determine the route/link set that

typedef struct sccp_ctrl_s
{
 U8 sccp_ctrl;
 U8 sccp_source;
 U8 sccp_dest;

U8 ccitt_sls5;
 U16 sccp_err_no;
 U8 sccp_msg_priority;
 U8 sccp_seq_control;

U8 sccp_3rd_party_addr[MAX_ADDR_LEN];
U8 importance_parm;
U8 seg_included;
U8 filler1;
U8 filler2;

} sccp_ctrl_t;
6-38 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
is used for inbound SS7 messages or the outbound SLT or SNM messages. You should not
modify this field.

* sccp_err_no (output)
This field indicates the SCCP error. You should not modify it.

* sccp_msg_priority (output)
This field specifies the message priority for the MSU. This priority parameter is valid only
for SCCP Class 0 and Class 1 messages. Valid values are 0 through 3 (lowest to highest
priority, respectively).

* sccp_seq_control (output)
This field specifies the value to use for the signaling link selection (SLS) field of the MTP
routing label of the MSU. This parameter is valid for SCCP protocol Class 1 messages only.
For the TTC network variant, valid values are 0 through 15. For all other variants
excluding ANSI, the valid range is 0 through 31. The SLS field determines the link over
which the MSU is routed. You can route multiple MSUs over the same link by assigning
the same SLS value to each MSU.

In the ANSI network variant, the valid range of values is 0 through 31 if you specified a
five-bit SLS (via selection of the default setting or selection through the
CHANGE-SLSTYPE MML command. However, if you selected an eight-bit SLS using the
CHANGE-SLSTYPE MML command, the valid range is 0-255.

N O T E
If you set an eight-bit SLS in the sccp_seq_control field
and a SINAP user specified use of a five-bit SLS (using the
CHANGE-SLS MML command), the SINAP node masks out
the upper three most significant bits. See “SINAP/SS7
Interaction with the SS7 Network” in Chapter 2 for more
detailed information.

* sccp_3rd_party_addr[MAX_ADDR_LEN] (output)
For a TCP/IP agent (registered at the SCCP boundary) receiving messages from a TCAP
application, this field specifies the original calling party address information. The TCP/IP
agent overwrites the original SCCP called party address information with its own point
code and pseudo SSN to establish a two-way dialogue with an application registered at the
TCAP boundary on the same SINAP node and system. In this case, the TCP/IP agent
requires the original SCCP calling party address to correctly format and route messages
back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for
CCITT variants) or transaction (for ANSI variants), the field specifies the SCCP called
party address of the TCAP application. In this case, the called party address is required
because the original called party address provided in the tblock and mblock is
CASL Function Calls 6-39

ca_get_msu()
configured to address the own signaling point (OSP) code and pseudo SSN of the TCP/IP
agent running on the same SINAP node.

The CASL transparently copies the sccp_3rd_party_addr field between the
tblock and mblock in both directions when sending and receiving tblocks. The
SINAP driver initializes this field in the mblock to zeros when the SINAP node receives
messages from Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the include files
$SINAP_HOME/Include/mblock.h. and
$SINAP_HOME/Include/tblock.h.

* importance_parm (input/output)
For the CCITT (ITU-T) variant, if the environment variable
SCCP_ITU96_IMPORTANCE_PARM is set, and the user registers at the SCCPX
boundary, this field holds the importance parameter (ss7-2392: 1996 ITU-T Q.713 3.19).
The MSB is used as a bit flag to indicate if the SCCP optional Importance parameter is
included in the SCCP XUDT/XUDTS message. If it is, then the 3 LSBs represent
Importance values 0 to 7.

* seg_included (input)
Flag to indicate if the Segmentation parameter was included in the SCCP XUDT message.
Used by SINAP internally.

The MTP Control Structure (mtp_ctrl_t)
The mtp_ctrl_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* msg_id (output)
* seq_number (output)
* msg_type (output)
* sender_id (output)
* user_data (output)

typedef struct mtp_ctrl_s
{

U16 msg_id;
U16 seq_number;
U8 msg_type;
U8 sender_id;
U16 msg_size;
mtp_ud_t user_data;

} mtp_ctrl_t;
6-40 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
The structure also contains this field for which you must specify values:

* msg_size (output)
This field indicates the size of the MSU, including the length of the bib_bsn, fib_fsn,
li, sio, and label fields. The field also indicates the length of MTP user data.

The MTP User Data Structure (mtp_ud_t)
The mtp_ud_t structure contains the following fields and is defined in the include file
mblock.h.

N O T E
All of the structures within mtp_ud_t are defined in
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* byte (output)
* word (output)
* ucomm (output)
* link (output) - See “The user_link_t Structure” later in this section.
* to_l2 (output) - See “The user_l2_t Structure” later in this section.
* tcoc (output) - See “The user_tcoc_t Structure” later in this section.
* chg (output) - See “The user_chg_t Structure” later in this section.
* cong (output) - See “The user_cong_t Structure” later in this section.
* trsh (output) - See “The user_trsh_t Structure” later in this section.

typedef union
{
 U8 byte[8];
 U16 word[4];
 U8 ucomm;
 user_link_t link;
 user_l2_t to_l2;
 user_tcoc_t tcoc;
 user_chg_t chg;
 user_cong_t cong;
 user_trsh_t trsh;
} mtp_ud_t;
CASL Function Calls 6-41

ca_get_msu()
The user_link_t Structure
The user_link_t structure contains the following fields and is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* link_set (output)
* link_no (output)

The user_l2_t Structure
The user_l2_t structure contains the following fields and is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* link_id (output)
* byte[6] (output)

typedef struct USR_LNK
{
 U8 link_set;
 U8 link_no;
} user_link_t;

typedef struct USR_TL2
{
 U16 link_id;
 U8 byte[6];
} user_l2_t;
6-42 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
The user_tcoc_t Structure
The user_tcoc_t structure contains the following fields and is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* link_set (output)
* link_no (output)
* bsnt (output)
* alt_link_set (output)

The user_chg_t Structure
The user_chg_t structure contains the following fields and is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* ref (output)
* status (output)

typedef struct USR_TCOC
{
 U8 link_set;
 U8 link_no;
 U8 bsnt;
 U8 alt_link_set;
}user_tcoc_t;

typedef struct USR_CHG
{
 U8 ref;
 U8 status;
} user_chg_t;
CASL Function Calls 6-43

ca_get_msu()
The user_cong_t Structure
The user_cong_t structure contains the following fields and is defined in the include file
mblock.h.

N O T E
For important information about how the CCITT variant of the
SINAP/SS7 system supports the national option of multiple
link-congestion states without congestion priority, see the
description of this field in the SINAP/SS7 mblock.h include
file.

These fields are internal to the SINAP/SS7 system and you should not modify them:

* link_set (output)
* link_no (output)
* status (output)
* filler (output)

The user_trsh_t Structure
The user_trsh_t structure contains the following fields and is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them:

* value (output)
* level (output)

typedef struct USR_CONG
{
 U8 link_set;
 U8 link_no;
 U8 status;
 U8 filler;
} user_cong_t;

typedef struct USR_TRSH
{
 U16 value;
 U8 level;
} user_trsh_t;
6-44 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
The MSU Data Structure (msu_t)
The msu_t structure is the generic message structure that contains the following fields and is
defined in the include file mblock.h. The following chart lists the versions of this message
structure that are specific to each network variant:

Note that the China variant uses the ANSI message format.

When you develop an application, you can code the application so it uses the generic version of
a CASL structure (for example, msu_t) or a particular variant-specific version (for example,
ttc_msu_t). The global variable, SINAP_VARIANT, which defines the variant being used,
links the generic versions of CASL structures to their corresponding variant-specific versions,
thus making the source code consolidation invisible to programmers.

Network Variant Message Structure

CCITT ccitt_msu_t

ANSI, China ansi_msu_t

TTC, NTT ttc_msu_t

typedef struct msu_s
{
 U8 bib_bsn;

U8 fib_fsn;
U8 li;
U8 sio;
U32 label; /* CCITT only - dpc-opc, sls/slc */
U8 dpc_member; /* ANSI */
U8 dpc_cluster; /* ANSI */
U8 dpc_network; /* ANSI */
U8 opc_member; /* ANSI */
U8 opc_cluster; /* ANSI */
U8 opc_network; /* ANSI */
U8 sls; /* ANSI */
union mtp_ud_tag
{

 U8 msg[SC_USER_MAX + 5];
snm_user_t snm;
slt_user_t slt;
upu_user_t upu;
sccp_user_t sccp;
sccp_xuser_t sccpx; /* sccp data for XUDT */

 } mtp_ud;
 } msu_t;
CASL Function Calls 6-45

ca_get_msu()
* bib_bsn (output)
This field is internal to the SINAP/SS7 system; you should not modify it.

* fib_fsn (output)
This field is internal to the SINAP/SS7 system; you should not modify it.

* li (output)
The two high-order bits (8 and 7) of this field specify the message priority of the MSU. This
parameter is valid only for SCCP Class 0 and Class 1 messages. Valid values are in the
range of 0 through 3 (lowest to highest). The remaining bits (6 through 1) specify the length
of the mtp_ud field. This is the maximum usable data area in the M_Block (specified by
MAX_MBLK_DATA).

* sio (output)
Specifies the service information octet. This field is not set for this function, but for
ca_put_msu().

The following fields are variant-specific. For the CCITT or TTC variant of the SINAP/SS7
system, use the label field. For the ANSI network variant, use the fields: dpc_member,
dpc_cluster, dpc_network, opc_member, opc_cluster, opc_network, and
sls.

Format the fields according to the appropriate recommendations for the network variant of the
SINAP/SS7 system being used. For CCITT, see the ITU-T (CCITT) Q.700 series of
Recommendations. For ANSI, see the ANSI T1.111 Standards series.

* label (output)
(CCITT) Specifies the DPC, OPC, and SLS of the MSU.

(TTC) Defines this field as U8 label [6].

* dpc_member (output)
(ANSI) Specifies the member-address component of the destination point code (DPC).

* dpc_cluster (output)
(ANSI) Specifies the cluster-address component of the DPC.

* dpc_network (output)
(ANSI) Specifies the network-address component of the DPC.

* opc_member (output)
(ANSI) Specifies the member-address component of the originating point code (OPC).

* opc_cluster (output)
(ANSI) Specifies the cluster-address component of the OPC.

* opc_network (output)
(ANSI) Specifies the network-address component of the OPC.
6-46 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
* sls (output)
(ANSI) Specifies the signaling link selection (SLS) field.

N O T E
You can use the macro ANSI_CA_GET_SLS to retrieve the
actual SLS contained in this field. If a SINAP user specified a
five-bit SLS (by using the default configuration or selecting a
five-bit SLS using the CHANGE-SLSTYPE MML command)
the value returned has the top three most significant bits zeroed
(masked out). If a SINAP user specified an eight-bit SLS using
the CHANGE-SLSTYPE MML command, the full eight-bits are
returned. See “SINAP/SS7 Interaction with the SS7 Network”
in Chapter 2 for more information.

These remaining fields apply to all variants of SINAP/SS7 (CCITT, ANSI, China, NTT, and
TTC). Any differences are noted in the descriptions.

* msg[SC_USER_MAX +5] (output)
Specifies the array for the M_Block. This field allows data access on an 8-bit boundary.
(SC_USER_MAX is defined in the SINAP/SS7 mblock.h include file.)

* snm (output)
Specifies an snm_user_t structure that contains the signaling network management data.
For information about this structure, see “The Signaling Network Management Structure
(snm_user_t)” later in this section.

(TTC) The ttc_snm_user_t structure uses the structure, ttc_snm_types_t, in
place of the fields, snm_info_0 and snm_info_1. The ttc_snm_user_t and
ttc_snm_types_t structures and their related structures (ttc_snm_types_t,
ttc_spec_info_t, ttc_snm_tfc_t, and ttc_snm_dpsc_t) contain MTP
management information. These structures are all internal to the SINAP/SS7 system and
should not be modified.

* slt (output)
Specifies an slt_user_t structure that contains the signaling link test data. For
information about this structure, see “The Signaling Link Test Structure (slt_user_t)” later
in this section.

(TTC) Specifies the structure, ttc_srt_user_t, since the TTC variant performs
signaling route testing (SRT) instead of signaling link testing (SLT).

* sccp (output)
Specifies an sccp_user_t structure that contains the SCCP user data. For information
about this structure, see “The SCCP User Data Structure (sccp_user_t)” later in this section.
CASL Function Calls 6-47

ca_get_msu()
(TTC) Defines a different length than the other variants for the ttc_sccp_user_t
structure field, ud[TTC_SC_USER_MAX].

* upu (output)
Specifies the upu_user_t structure that contains the MTP user-part-unavailable (UPU)
information.

(TTC)Does not include the upu_user_t structure because the TTC variant does not
support UPU messages.

The Signaling Network Management Structure (snm_user_t)
The snm_user_t structure contains the following fields and is defined in the include file
mblock.h.

N O T E
The TTC variant uses the ttc_snm_user_t structure instead
of the snm_user_t structure. The ttc_snm_user_t
structure is also defined in the include file mblock.h.

* H0_H1 (output)
This field is internal to the SINAP/SS7 system; you should not modify it.

The following fields are variant-specific. If you are using the CCITT or TTC network variants
of the SINAP/SS7 system, use the fields, snm_info_0 and snm_info_1. If you are using
the ANSI variant, use the field snm_types instead.

* snm_info_0 (output)
(CCITT) This field is internal to the SINAP/SS7 system and you should not modify it.

(TTC) Uses the structure, ttc_snm_types_t, which contains MTP management
information.

* snm_info_1 (output)
(CCITT) This field is internal to the SINAP/SS7 system and you should not modify it.

typedef struct snm_user_s
{
 U8 H0_H1;
 U8 snm_info_0; /* CCITT only */

U8 snm_info_1; /* CCITT only */
snm_types_t snm_types; /* ANSI only */

} snm_user_t;
6-48 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
(TTC) Uses the structure, ttc_snm_types_t, which contains MTP management
information.

* snm_types (output)
(ANSI) Specifies an snm_types_t structure that contains information about the MSU’s
signaling link code (SLC) and signaling point code (SPC), as well as transfer control (TFC)
information for the MSU.

The Signaling Link Test Structure (slt_user_t)
The slt_user_t structure sends signaling link test (SLT) messages to determine whether a
SINAP/SS7 link is operational. The structure contains the following fields and is defined in the
include file mblock.h.

The TTC variant uses the structure, ttc_srt_user_t, since TTC performs signaling route
test (SRT) messages instead of SLT messages.

These fields are internal to the SINAP/SS7 system and you should not modify them.

* H0_H1 (output)

* snm_signal_data[MAX_TEST_PATTERN] (output)
(MAX_TEST_PATTERN is defined in the SINAP/SS7 mblock.h include file.)

The following fields are variant-specific and internal to the SINAP/SS7 system. You should not
modify them. Specify the field that is appropriate for your network variant.

* li_spare (output) (CCITT)
* li_slc (output) (ANSI)

typedef struct slt_user_s
{
 U8 H0_H1;
 U8 li_spare; /* CCITT - li_slc for ANSI */
 U8 snm_signal_data[MAX_TEST_PATTERN];

} slt_user_t;
CASL Function Calls 6-49

ca_get_msu()
The SCCP User Data Structure (sccp_user_t)
The sccp_user_t structure contains the following fields and is defined in the include file
mblock.h.

* msg_type (output)
Specifies the message type for the SCCP message.

* ret_prot (output)
Specifies the protocol class to use when sending the MSU and the return option which
specifies the action to take if an error occurs. You use a single value to define both
parameters, as shown in the following chart:

* cld_off (output)
Specifies the offset to the called address for the SCCP message.

* clg_off (output)
Specifies the offset to the calling address for the SCCP message.

* tcap_off (output)
Specifies the offset to the data portion of the SCCP message.

* ud[SC_USER_MAX] (output)
Specifies the SCCP message.

Value Description

0 Connectionless Class 0, no return on error.

1 Connectionless Class 1, no return on error.

0 x 80 Connectionless Class 0, returns an error.

0 x 81 Connectionless Class 1, returns an error.

typedef struct sccp_user_s
{
 U8 msg_type;
 U8 ret_prot;
 U8 cld_off;
 U8 clg_off;
 U8 tcap_off;
 U8 ud[SC_USER_MAX];
} sccp_user_t;
6-50 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
The sccp_xuser_t Structure
The sccp_xuser_t structure contains the following fields and is defined in the include file
mblock.h.

* msg_type (output)
Specifies the message type for the SCCP message.

* ret_prot (output)
Specifies the protocol class to use when sending the MSU and the return option which
specifies the action to take if an error occurs. You use a single value to define both
parameters, as shown in the following chart:

* hop_counter(output)
The value of the hop counter is decremented on each global title translation and should be
in range 15 to 1.

* cld_off (output)
Specifies the offset to the called address for the SCCP message.

Value Description

0 Connectionless Class 0, no return on error.

1 Connectionless Class 1, no return on error.

0 x 80 Connectionless Class 0, returns an error.

0 x 81 Connectionless Class 1, returns an error.

typedef struct sccp_xuser_s
{ /* partial M_BLOCK def */
 U8 msg_type;
 U8 ret_prot;
 U8 hop_counter;
#define HOPS 10 /* default hop count */
#define MAX_HOPS 15 /* maximum hop count */

 U8 cld_off; /* offset to called add */
 U8 clg_off; /* offset to callng add */
 U8 tcap_off; /* offset to TCAP data */
 U8 op_off; /* offset to optional data field */

 /* for above fields */
 U8 ud[CCITT_SC_USER_MAX - 2]; /* SCCP Header plus */
 /* TCAP Header and data */
} sccp_xuser_t;
CASL Function Calls 6-51

ca_get_msu()
* clg_off (output)
Specifies the offset to the calling address for the SCCP message.

* tcap_off (output)
Specifies the offset to the data portion of the SCCP message.

* ud[SC_USER_MAX] (output)
Specifies the SCCP message.

The l3_event_t Structure
The l3_event_t structure contains the following fields and is defined in the include file
event3.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* dpc (output)
Specifies the destination point code.

* errnum (output)

* label (input)
Specifies the MTP routing label.

* ttc_label[6]
(TTC) Specifies the routing label (ttc_label[6]).

* sio (input)

* link_set (input)

* link_no (input)

* ucomm (input)

 typedef struct l3_event_s
{
 U32 dpc;

U16 errnum;
U32 label;
U8 ttc_label[6];

 U8 sio;
 U8 link_set;
 U8 link_no;
 U8 ucomm;
} l3_event_t;
6-52 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu()
The iblk_t Structure
The iblk_t structure contains the following fields and is defined in the include file
mblock.h.

These fields are internal to the SINAP/SS7 system and you should not modify them:

* iblk (output) - See the include file iblock.h for a description of this structure.

* data[MAX_MBLK_DATA] (output) - (MAX_MBLK_DATA is defined in the mblock.h
include file.)

FILES
arch.h, ca_error.h, iblock.h, mblock.h, SINAP/SS7.h, sysdefs.h,
sys/time.h, timestamp.h, sys/types.h

RETURN VALUES
The ca_get_msu() function returns a pointer to the M_Block. If the function returns -1,
there is an error; see errno for error number and description. See ca_error.h for the CASL
error number and meaning; see sys/errno.h for UNIX errors.

Possible UNIX values for errno are as follows.

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that accepts
control functions.

EFAULT The buffer points outside the process-allocated address space.

EINVAL Queue ID is not a valid message queue ID. The value of
msg_type is less than 1, or msg_sz is less than 0 or greater
than the system-imposed limit.

typedef struct iblk_s
{
 i_block_t iblk; /* iblock header */
 U8 data[MAX_MBLK_DATA - sizeof(i_block_t)];
/* MAX_MBLK_DATA=268 and sizeof(i_block_t)=248 in SINAP11.0 64-bit
*/
#ifdef _LP_32_64_
 U8 filler[4]; /* For User32/Driver64 compatibility */
#endif /* _LP_32_64_ */
} iblk_t;
CASL Function Calls 6-53

ca_get_msu()
Possible CASL values for errno are as follows.

SEE ALSO
 ca_flush_msu(), ca_put_msu()

EIO An I/O error occurred while reading or writing.

EINTR The system call was interrupted by an UNIX signal.

ENODATA There are no MSUs in the batch buffer.

ENXIO The requested service cannot be performed on this particular
subdevice.

ENOLINK The link to a requested machine is no longer active.

Value Meaning

CA_ERR_ACCESS The process calling ca_get_msu() is not registered.
Call ca_register() before calling this function.

CA_ERR_MSU_CALLS The process is not registered at the MTP or SCCP
boundary. Call ca_register() to reregister the
process at one of these boundaries.

CA_ERR_NO_SS7_SVC The process is not registered for SS7 service. Call
ca_register() using
ss7_primitive=SS7_CTRL_PRIMITIVE and
fss7=1 to reregister the process for SS7 service.

Value Meaning
6-54 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msu_noxudt()
ca_get_msu_noxudt() 6-

SYNOPSIS
m_block_t *ca_get_msu_noxudt(

BOOL fwait);

DESCRIPTION
The ca_get_msu_noxudt() function is very similar to the ca_get_msu() function. The
only difference is that the internal function ca_get_msu_int() is invoked with the
NOXUDT option, so no ca_xudt_reassemble reassembly processing is performed.

See the ca_get_msu() function for a detailed description of structures referenced by
m_block_t.

PARAMETERS
* fwait(input)

Specifies whether the function is to wait for an MSU. Use 1 to indicate the function is to
wait, otherwise, use 0. If you use 0, the function returns the error, ENODATA, when there
are no MSUs.

FILES
arch.h, ca_error.h, iblock.h, sinap.h, sysdefs.h, sys/time.h,
timesstamp.h, sys/types.h

RETURN VALUES
The ca_get_msu_noxudt() function returns a pointer to the M_Block. If the function
returns -1, there is an error. See ca_error.h for the CASL error number and meaning. See
sys/errno.h for UNIX errors.

Possible UNIX values for errno are:

Value Meaning

EIO An input/output (I/O) error occurred while reading or writing.

EFAULT The buffer points outside the process-allocated address
space.
CASL Function Calls 6-55

ca_get_msu_noxudt()
Possible CASL values for errno are:

SEE ALSO
ca_flush_msu(), ca_get_msu(), and ca_put_msu().

EINTR The system call was interrupted by a UNIX signal.

ENODATA There are no MSUs in the batch buffer.

Value Meaning

CA_ERR_ACCESS The process calling ca_get_msu() is not
registered. Call ca_register() before calling
this function.

EFAULT The process is not registered at the MTP or SCCP
boundary. Call ca_register() to reregister the
process at one of those boundaries.

Value Meaning
6-56 SINAP/SS7 Programmer’s Guide R8052-17

ca_lookup_gt()
ca_lookup_gt() 6-

SYNOPSIS
#include <ca_gtt.h>

int ca_lookup_gt(gtt_tr_entry_t *tr_entry);

DESCRIPTION
The ca_lookup_gt() function performs a global-title lookup, returning the translation
results for a particular global title. The function’s only parameter, *tr_entry, is a pointer to
a gtt_tr_entry_t structure.

When calling this function, you must initialize the appropriate gtt_tr_entry_t structure
fields to define the global title whose entry you want to look up. If the specified global title
matches a global-title entry, this function fills in the other structure fields with the replacement
DPC, SSN, and/or address information for that global title. If the function does not find a match,
it returns the error GTT_ERR_NO_ENTRY and leaves the other structure fields unchanged.
CASL Function Calls 6-57

ca_lookup_gt()
The gtt_tr_entry_t structure is defined in the ca_gtt.h include file and has the
following format.

PARAMETERS
The following is a list of the gtt_tr_entry_t structure’s fields. (An input field is a field
that you must initialize, and an output field is one that the ca_lookup_gt() function fills in.)

* *next
This field is internal to the SINAP/SS7 system; do not modify it.

* *prev
This field is internal to the SINAP/SS7 system; do not modify it.

* state (output)
This field is internal to the SINAP/SS7 system; do not modify it.

typedef struct gtt_tr_entry {
 struct gtt_tr_entry *next;
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64
compatibility */
#endif /* _LP_32_64_ */
 struct gtt_tr_entry *prev;
#ifdef _LP_32_64_
 U32 filler1; /* For User32/Driver64
compatibility */
#endif /* _LP_32_64_ */
 U8 ssni;
 U8 ssn;
 U8 ssn2; /* ss7-1074. Backup SSN. */
 U8 pci;
 U32 pc;
 U32 dpc2; /* ss7-1074. Backup DPC. */
 U8 state;
 U8 gti;
 U8 tt;
 U8 np;
 U8 es;
 U8 noai;
 char laddr[MAX_GLOBAL_TITLE + 1];
 char haddr[MAX_GLOBAL_TITLE + 1];
 char naddr[MAX_GLOBAL_TITLE + 1];
#if defined(__LP64__) || defined(_LP_32_64_)
 U8 filler2[7]; /* For User32/Driver64
compat.
*/
#endif /* __LP64__ || _LP_32_64_ */
} gtt_tr_entry_t;
6-58 SINAP/SS7 Programmer’s Guide R8052-17

ca_lookup_gt()
* ssni (output)
Indicates whether an SSN is associated with the global title. If an SSN is associated with
the global title, the value of this field is 1; otherwise, it is 0.

* ssn (output)
The SSN associated with the global title.

* ssn2 (output)
The optional backup or secondary subsystem number to which GTT-related messages
should be routed for processing if the primary subsystem number is unavailable.

* pci (output)
Indicates whether a PC is associated with the global title. If a PC is associated with the
global title, the value of this field is 1; otherwise, it is 0.

* pc (output)
The PC associated with the global title.

* dpc2 (output)
The optional backup or secondary destination point code to which GTT-related messages
should be routed for processing if the primary destination point code is unavailable.

* gti (input)
The GTI for the global title. For CCITT and TTC applications, valid values are 1, 2, 3, and
4. For ANSI applications, valid values are 1 and 2.

* tt (input)
The translation type for the global title. Valid values are in the range 0 to 254. CCITT and
TTC applications must specify a value for this field if the gti field is 2, 3, or 4. ANSI
applications must specify a value for this field regardless of the value of the gti field.

* np (input)
The numbering plan for the global title. Valid values are in the range 0 to 14. CCITT and
TTC applications must specify a value for this field if the gti field is 2 or 3. ANSI
applications must specify a value for this field if the gti field is 1.

* es (output)
The encoding scheme for the global title. The encoding scheme is part of the numbering
plan and currently is not implemented.

* noai (input)
The nature-of-address indicator for the global title. Valid values are in the range of 1
through 127 if the environment variable GTT_BYPASS_NOAI_CHECK is defined. If the
environment variable is not defined, the range of values allowed is 1 through 4. CCITT and
TTC applications must specify a value for this field if the gti field is 1 or 4. ANSI
applications should not specify a value for this field.
CASL Function Calls 6-59

ca_lookup_gt()
* laddr[MAX_GLOBAL_TITLE + 1] (input)
The low-address information for the global title.

* haddr[MAX_GLOBAL_TITLE + 1] (output)
The high address of a range of global titles. This field is optional.

* naddr[MAX_GLOBAL_TITLE + 1] (output)
The new address information to substitute for the original address information in the global
title.

FILES
ca_gtt.h

RETURN VALUES
The value RET_OK indicates that a matching global-title entry was found.

If an error occurs the function returns -1 and errno is set to one of the following error codes.

N O T E
When ca_lookup_gt() returns an error, the values in the
gtt_tr_entry_t structure fields remain unchanged.

Error Code
Numeric
Value Description

GTT_ERR_BAD_GTI 1 The specified GTI value is invalid.

GTT_ERR_BAD_TT 2 The specified translation type is invalid.

GTT_ERR_BAD_NP 3 The specified numbering plan is invalid.

GTT_ERR_BAD_NOAI 5 The specified nature-of-address indicator is
invalid.

GTT_ERR_BAD_LADDR 9 The specified low-address information is
invalid.

GTT_BAD_ERR_FAULT 14 The pointer to the gtt_tr_entry_t
structure is invalid.

GTT_ERR_NO_ENTRY 16 None of the global-title entries match the
specified global title.
6-60 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
ca_put_msu() 6-

SYNOPSIS
int ca_put_msu(
 m_block_t *pmblk);

DESCRIPTION
The ca_put_msu() function sends an M_Block containing an MSU. The ca_put_msu()
function accumulates MSUs in an output batch buffer and passes a batch of messages to the SS7
driver when the buffer becomes full. The client batch size is declared at registration (see the
description of ca_register() for more information).

Only those applications registered for MTP or SCCP services should call this function. If the
application is registered to receive input at the SCCP boundary, this function sends the MSU to
the SCCP. If the application is registered to receive input at the MTP boundary, the function
sends the MSU directly to the MTP. Applications registered for TCAP services should not call
this function; instead, they should call ca_put_tc() to send a T_Block.

PARAMETERS
* pmblk (input)

Specifies a pointer to the M_Block that contains the MSU being sent. The M_Block is
defined in the m_block_t structure, which is defined in the include file mblock.h.

The fields in the m_block_t structure must specify either SCCP or MTP routing.
CASL Function Calls 6-61

ca_put_msu()
For SCCP routing, you must specify values for the following fields in the m_block_t
structure.

ts
sc_ctrl.sccp_ctrl (should be set to N-UNITDATA)
ud.msu.mtp_ud.sccp.msg_type
ud.msu.mtp_ud.sccp.ret_prot
ud.msu.mtp_ud.sccp.cld_off
ud.msu.mtp_ud.sccp.clg_off
ud.msu.mtp_ud.sccp.tcap_off
ud.msu.mtp_ud.sccp.ud[SC_USER_MAX]
mtp_ctrl.msg_size

For MTP routing, you must specify values for the following fields in the m_block_t
structure.

ts
ud.msu.sio
ud.msu.label
ud.msu.mtp_ud.msg[MAX_MBLK_DATA]
mtp_ctrl.msg_size

You should specify 0 for any unused fields. For an explanation of these fields and possible
values, see the following section, “The Main M_Block Structure (m_block_t).”
6-62 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The Main M_Block Structure (m_block_t)
The m_block_t structure contains the following fields and is defined in the include file
mblock.h.

* ca_ctrl (output)
Specifies CASL control information. For information about this structure’s fields, see
“The CASL Control Structure (ca_ctrl_t)” later in this section.

* ts (output)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts.
The timestamps aid monitoring and logging, are visible when you run the BITE
log-analysis program. For information about this structure’s fields, see “The Timestamp
Structure (timestamp_t)” later in this section.

* bi_ctrl (output)
Specifies BITE control information. For information about this structure’s fields, see “The
BITE Control Structure (bi_ctrl_t)” later in this section.

* tc_ctrl (output)
Specifies TCAP control information. For information about this structure’s fields, see “The
TCAP Control Structure (tcap_ctrl_t)” later in this section.

 typedef struct m_block_s
{
 ca_ctrl_t ca_ctrl;

timestamp_t ts;
 bi_ctrl_t bi_ctrl;
 tcap_ctrl_t tc_ctrl;
 sccp_ctrl_t sc_ctrl;

sccp_prim_t sc_prim;
tcap_alt_t tc_alt;

 mtp_ctrl_t mtp_ctrl;
 union m_block_ud_tag
 {

msu_t msu;
ccitt_msu_t ccitt_msu; /*CCITT MSU Data */
ttc_msu_t ttc_msu; /*TTC and NTT MSU Data */
ansi_msu_t ansi_msu; /*ANSI and China MSU Data */

13_event_t dr_event;
iblk_t ib;

 } ud;
} m_block_t;
CASL Function Calls 6-63

ca_put_msu()
* sc_ctrl (output)
Specifies SCCP control information. For information about this structure’s fields, see “The
SCCP Control Structure (sccp_ctrl_t)” later in this section.

* sc_prim (input)
Specifies the sccp_prim_t structure which conveys information about large messages.
This structure is defined in the Mblock.h include file. See “The sccp_prim_t
Structure” later in this chapter for more information.

* tc_alt (output)
The SINAP/SS7 system uses this field for specifying the alternative DPC (refer to chapter
3) to be filled at the MTP Routing Label’s DPC field of the outbound MSU. For information
about this structure’s fields, see “The TCAP Alternative DPC Structure (tcap_alt_t)”
later in this section.

* mtp_ctrl (output)
Specifies MTP control information. For information about this structure’s fields, see “The
MTP Control Structure (mtp_ctrl_t)” later in this section.

* ud (output)
 Specifies the union of M_Block.

• msu (output)
Specifies user data for the MSU or I_Block information. See “The MSU Data
Structure (mtp_ud_t)” later in this section for information about this structure’s
fields.

• dr_event (output)
This field is internal to the SINAP/SS7 system; you should not modify it. For
information about this structure’s fields, see “The l3_event_t Structure” later in
this section.

• ib (output)
See “The i_blk_t Structure” later in this section for information about this
structure’s fields.

• ccitt_msu (output)
Specifies MSU data for the CCITT network variant.

• ttc_msu (output)
Specifies MSU data for the TTC and NTT network variants.

• ansi_msu (output)
Specifies MSU data for the ANSI and China network variants.
6-64 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The l3_event_t Structure
The l3_event_t structure contains the following internal fields and is defined in the include
file event3.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* dpc (input)

* errnum (output)

* label (input)
Specifies the MTP routing label.

* ttc_label[6]
(TTC) Specifies the routing label (ttc_label[6]).

* sio (input)

* link_set (input)

* link_no (input)

* ucomm (input)

 typedef struct l3_event_s
{
 U32 dpc;

U16 errnum;
U32 label;
U8 ttc_label[6];

 U8 sio;
 U8 link_set;
 U8 link_no;
 U8 ucomm;
} l3_event_t;
CASL Function Calls 6-65

ca_put_msu()
The CASL Control Structure (ca_ctrl_t)
The following fields make up the ca_ctrl_t structure, which is defined in the include file
blkhdr.h.

* msg_type (output)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (output)
Specifies the total size of the structure, excluding this field.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */
 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
6-66 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
* node_index (output)
This is an internal field that is automatically initialized to the appropriate value for the
SINAP node.

* sinap_variant (output)
This is an internal field that is automatically initialized to the appropriate value for the
network variant being used on the SINAP node.

* lost_cnt (output)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (output)
Specifies the number of MSUs pending.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:
CASL Function Calls 6-67

ca_put_msu()
* pid (output)
* link (output)
* msg_sender (output)
* iblk (output)
* rw (output)
* monitor_id (output)
* ssn_sio (output)
* source (output)
* destination (output)
* mptr (input) Specifies a pointer to m_block_t, Level 3.
* timer_id (output)
* timer_val (output)
* omsg_type (output)

The Timestamp Structure (timestamp_t)
The timestamp_t structure contains the following fields and is defined in the include file
timestamp.h. .

* index (input)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (input)
Specifies the timestamp slots. For an explanation, see “The stamp_t Structure,” which
follows. (MAX_TIME_STAMPS is defined in the SINAP/SS7 timestamp.h include
file.)

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
}timestamp_t;
6-68 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The stamp_t Structure
The stamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* secs (input)
Specifies the time (in seconds) since 1/1/70.

* tsid (input)
Specifies the timestamp ID. Valid values are defined in the include file timestamp.h.

* ipcx (input)
Specifies the IPC index, if applicable.

* msec (input)
Specifies the time, in milliseconds.

The BITE Control Structure (bi_ctrl_t)
The bi_ctrl_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;

typedef struct bi_ctrl_s
{
 U8 command; /* Command type */
 U8 qualifier; /* command qualifier*/
 U8 rw; /* monitor read/write/both */
 U8 monitor_id;
 U8 filler[2]; /* For User32/Driver64 compatibility*/
 U16 link; /* link index */
 pid_t pid[2]; /* application and SE process IDs*/
} bi_ctrl_t;
CASL Function Calls 6-69

ca_put_msu()
* command (input)
* qualifier (input)
* link (input) - The UNIX include file sys/types.h defines the dev_t structure.
* pid[2] (input)
* rw (input)
* monitor_id (input)

The TCAP Control Structure (tcap_ctrl_t)
The tcap_ctrl_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* ipc_index (input)

* trans_id (input)

* tcap_msg_type (input)

* abort_type (input)

* abort_cause (input)

* call_disposition (input)
(ANSI) Specifies that the FOPC will be used in the MTP header. Used in the ANSI network
variant only.

typedef struct tcap_ctrl_s
{
 S16 ipc_index;
 S32 trans_id;
 U8 tcap_msg_type;
 U8 abort_type;

U8 abort_cause;
 U8 call_disposition;
} tcap_ctrl_t;
6-70 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The SCCP Control Structure (sccp_ctrl_t)
The sccp_ctrl_t structure contains the following fields and is defined in the include file
mblock.h.

* sccp_ctrl (input)
This field is meaningful to the SCCP user. SCCP Management sets this field to
N_UNITDATA or N_NOTICE.

* sccp_source (input)
This field specifies which SCCP function originated the message; you should not modify it.

* sccp_dest (input)
This field specifies the SCCP function for which the message is destined; you should not
modify it.

* ccitt_sls5 (output)
(CCITT) This is a five-bit SLS field used only in the CCITT network variant. Bit 4 of the
five-bit SLS is used to randomly choose the route/link set (0 or 1) if the route set (RSET)
is configured with two route/link sets for load sharing. The four-bit SLS value of the MSU
label maps to a corresponding physical link in that route/link set used to send the outbound
message. This field is used only to send outbound MSUs for MTP, SCCP, or TCAP
applications. The field is not used to determine the route/link set that is used for inbound
SS7 messages or the outbound SLT or SNM messages. You should not modify this field.

* sccp_err_no (input)
This field indicates the SCCP error; you should not modify it.

* sccp_msg_priority (input)
This field specifies the message priority for the MSU. This priority parameter is valid only
for SCCP Class 0 and Class 1 messages. Valid values are 0 through 3 (lowest to highest
priority, respectively).

typedef struct sccp_ctrl_s
{
 U8 sccp_ctrl;
 U8 sccp_source;
 U8 sccp_dest;

U8 ccitt_sls5;
 U16 sccp_err_no;
 U8 sccp_msg_priority;
 U8 sccp_seq_control;

U8 sccp_3rd_party_addr[MAX_ADDR_LEN];
U8 importance_parm;
U8 seg_included;
U8 filler1;
U8 filler2;

} sccp_ctrl_t;
CASL Function Calls 6-71

ca_put_msu()
* sccp_seq_control (input)
This field specifies the value to use for the signaling link selection (SLS) field of the MSU’s
MTP routing label. This parameter is valid for SCCP protocol Class 1 messages only. Valid
values for the TTC network variant are 0 through 15. For all other variants excluding ANSI,
the valid range is 0 through 31. The SLS field determines the link over which the MSU is
routed. You can route multiple MSUs over the same link by assigning the same SLS value
to each MSU.

In the ANSI network variant, the valid range of values is 0 through 31 if you specified a
five-bit SLS (via selection of the default setting or selection through the
CHANGE-SLSTYPE MML command. However, if you selected an eight-bit SLS using the
CHANGE-SLSTYPE MML command, the valid range is 0-255.

N O T E
If you set an eight-bit SLS in the SCCP_seq_control field and a
SINAP user specified use of a five-bit SLS (using the
CHANGE-SLS MML command), the SINAP node masks out
the upper three most significant bits. See “SINAP/SS7
Interaction with the SS7 Network” in Chapter 2 for more
detailed information.

* sccp_3rd_party_addr[MAX_ADDR_LEN] (input)
For a TCP/IP agent (registered at the SCCP boundary) receiving messages from a TCAP
application, this field specifies the original calling party address information. The TCP/IP
agent overwrites the original SCCP called party address information with its own point
code and pseudo SSN to establish a two-way dialogue with an application registered at the
TCAP boundary on the same SINAP node and system. In this case, the TCP/IP agent
requires the original SCCP calling party address to correctly format and route messages
back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for
CCITT variants) or transaction (for ANSI variants), the field specifies the SCCP called
party address of the TCAP application. In this case, the called party address is required
because the original called party address provided in the tblock and mblock is configured
to address the own signaling point (OSP) code and pseudo SSN of the TCP/IP agent
running on the same SINAP node.

The CASL transparently copies the sccp_3rd_party_addr field between the
tblock and mblock in both directions when sending and receiving tblocks. The
SINAP driver initializes this field in the mblock to zeros when the SINAP node receives
messages from Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the include files
$SINAP_HOME/Include/mblock.h. and
$SINAP_HOME/Include/tblock.h.
6-72 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
* importance_parm (input/output)
For the CCITT (ITU-T) variant, if the environment variable
SCCP_ITU96_IMPORTANCE_PARM is set, and the user registers at the SCCPX
boundary, this field holds the importance parameter (ss7-2392: 1996 ITU-T Q.713 3.19).
The MSB is used as a bit flag to indicate if the SCCP optional Importance parameter is
included in the SCCP XUDT/XUDTS message. If it is, then the 3 LSBs represent
Importance values 0 to 7.

* seg_included (input)
Flag to indicate if the Segmentation parameter was included in the SCCP XUDT message.
Used by SINAP internally.

The TCAP Alternative DPC Structure (tcap_alt_t)
The tcap_alt_t structure contains the following fields and is defined in the include file
mblock.h.

* alt_dpc (input)
For a SINAP ANSI or China TCAP user application that uses the alternative DPC feature
(see chapter 3), the fields of the m_block_t tc_alt.alt_dpc data structure, i.e.
ANSI or China DPC (member, cluster and network) and status, are copied internally by
SINAP from t_block_t thp.alt_DPC[DPC_LEN] and tb_options
respectively. See “The tc_thp_t Structure” under ca_put_tc() later in this chapter

typedef union
{
#if defined(__LP64__) || defined(_LP_32_64_)
 U64 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

alt_dpc_t alt_dpc; /* For ANSI & China variants */
 alt_ccitt_t alt_ccitt; /* For CCITT variant */
} tcap_alt_t;

typedef struct
{

U8 member; /* ANSI alternative DPC’s member */
U8 cluster;/* ANSI alternative DPC’s cluster */
U8 network;/* ANSI alternative DPC’s network */
U8 status; /* set to 1 to use alternative DPC */

} alt_dpc_t;

typedef struct
{

U16 dpc; /* CCITT alternative DPC */
U8 status; /* set to 1 to use alternative DPC */
U8 filler; /* for alignment purpose */

} alt_ccitt_t;
CASL Function Calls 6-73

ca_put_msu()
for more information. For SINAP ANSI or China MTP and SCCP user applications,
however, these fields of m_block_t tc_alt.alt_dpc data structure are set directly
by the SINAP MTP or SCCP user application in order to use the alternative DPC feature
before invoking the ca_put_msu() API.

* alt_ccitt (input)
For SINAP CCITT TCAP user application using Alternative DPC feature (see chapter 3),
the two fields of m_block_t tc_alt.alt_ccitt data structure, i.e. CCITT dpc and status, are
copied internally by SINAP from t_block_t dhp.alt_DPC and tb_options respectively. See
“The tc_dhp_t Structure” under ca_put_tc() later in this chapter for more information.
However, SINAP CCITT MTP or SCCP user application set these fields of m_block_t
tc_alt.alt_ccitt data structure directly in order to use Alternative DPC feature before
invoking ca_put_msu() API.

The MTP Control Structure (mtp_ctrl_t)
The mtp_ctrl_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* msg_id (input)
* seq_number (input)
* msg_type (input)
* sender_id (input)
* user_data (input)

You must specify information for the following field:

* msg_size (input)
This field indicates the size of the MSU, including the length of the bib_bsn, fib_fsn,
li, sio, and label fields. The field also indicates the length of MTP user data.

typedef struct mtp_ctrl_s
{

U16 msg_id;
U16 seq_number;
U8 msg_type;
U8 sender_id;
U16 msg_size;
mtp_ud_t user_data;

} mtp_ctrl_t;
6-74 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The MTP User Data Structure (mtp_ud_t)
The mtp_ud_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* byte (input)
* word (input)
* ucomm (input)
* link (input) - See “The user_link_t Structure” later in this section.
* to_l2 (input) - See “The user_l2_t Structure” later in this section.
* tcoc (input) - See “The user_tcoc_t Structure” later in this section.
* chg (input) - See “The user_chg_t Structure” later in this section.
* cong (input) - See “The user_cong_t Structure” later in this section.
* trsh (input) - See “The user_trsh_t Structure” later in this section.

The user_link_t Structure
The user_link_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

typedef union
{
 U8 byte[8];
 U16 word[4];
 U8 ucomm;
 user_link_t link;
 user_l2_t to_l2;
 user_tcoc_t tcoc;
 user_chg_t chg;
 user_cong_t cong;
 user_trsh_t trsh;
} mtp_ud_t;

typedef struct USR_LNK
{
 U8 link_set;
 U8 link_no;
} user_link_t;
CASL Function Calls 6-75

ca_put_msu()
* link_set (input)
* link_no (input)

The user_l2_t Structure
The user_l2_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* link_id (input)
* byte[6] (input)

The user_tcoc_t Structure
The user_tcoc_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* link_set (input)
* link_no (input)
* bsnt (input)
* alt_link_set (input)

typedef struct USR_TL2
{
 U16 link_id;
 U8 byte[6];
} user_l2_t;

typedef struct USR_TCOC
{
 U8 link_set;
 U8 link_no;
 U8 bsnt;
 U8 alt_link_set;
}user_tcoc_t;
6-76 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The user_chg_t Structure
The user_chg_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* ref (input)
* status (input)

The user_cong_t Structure
The user_cong_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* link_set (input)
* link_no (input)
* status (input)
* filler (input)

typedef struct USR_CHG
{
 U8 ref;
 U8 status;
} user_chg_t;

typedef struct USR_CONG
{
 U8 link_set;
 U8 link_no;
 U8 status;
 U8 filler;
} user_cong_t;
CASL Function Calls 6-77

ca_put_msu()
The user_trsh_t Structure
The user_trsh_t structure contains the following fields and is defined in the include file
mblock.h.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* value (input)
* level (input)

The MSU Data Structure (msu_t)
The msu_t structure contains the following fields and is defined in the include file
mblock.h.

typedef struct USR_TRSH
{
 U16 value;
 U8 level;
} user_trsh_t;

typedef struct msu_s
{
 U8 bib_bsn;
 U8 fib_fsn;
 U8 li;
 U8 sio;

U32 label; /* CCITT only - dpc-opc, sls/slc */
U8 dpc_member; /* ANSI */

 U8 dpc_cluster; /* ANSI */
 U8 dpc_network; /* ANSI */
 U8 opc_member; /* ANSI */
 U8 opc_cluster; /* ANSI */
 U8 opc_network; /* ANSI */
 U8 sls; /* ANSI */
 union mtp_ud_tag
 {
 U8 msg[SC_USER_MAX + 5];

snm_user_t snm;
slt_user_t slt;
upu_user_t upu;
sccp_user_t sccp;
sccp_xuser_t sccpx; /* sccp data for XUDT */

 } mtp_ud;
 } msu_t;
6-78 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
* bib_bsn (input)
This field is internal to the SINAP/SS7 system; you should not modify it.

* fib_fsn (input)
This field is internal to the SINAP/SS7 system; you should not modify it.

* li (input)
The two high-order bits(8 and 7) specify the message priority of the MSU. This priority
parameter is valid only for SCCP Class 0 and Class 1 messages. The valid range for priority
is 0 (lowest) through 3 (highest). The remaining bits (6 through 1) specify the length of the
mtp_ud field. This is the maximum usable data area in the M_Block, which is specified
by MAX_MBLK_DATA. (MAX_MBLK_DATA is defined in the SINAP/SS7 mblock.h
include file.)

* sio (input)
Specifies the service information octet.

The following fields are variant-specific. If you are using the CCITT, NTT, or TTC network
variant of the SINAP/SS7 system, use the label field. If you are using the ANSI or China
network variant, use the fields: dpc_member, dpc_cluster, dpc_network,
opc_member, opc_cluster, opc_network, and sls.

Code these fields according to the Recommendations for the type of application you are
developing. For CCITT applications, see the ITU-T (CCITT) Q.700 series of
Recommendations. For ANSI applications, see the ANSI T1.111 Standards.

* label (input)
(CCITT) Specifies the destination point code (DPC), originating point code (OPC), and
signaling link selection (SLS) of the MSU.

(TTC) Defines this field as U8 label [5].

* dpc_member (input)
 (ANSI, China) Specifies the member address component of the DPC.

* dpc_cluster (input)
(ANSI, China) Specifies the cluster address component of the DPC.

* dpc_network (input)
(ANSI, China) Specifies the network address component of the DPC.

* opc_member (input)
(ANSI, China) Specifies the member address component of the OPC.

* opc_cluster (input)
(ANSI, China) Specifies the cluster address component of the OPC.
CASL Function Calls 6-79

ca_put_msu()
* opc_network (input)
(ANSI, China) Specifies the network address component of the OPC.

* sls (input)
(ANSI, China) Specifies the SLS field.

N O T E
You can use the macro ANSI_CA_SET_LABEL to set either
five-bit or eight-bit SLS in the MTP routing label. See “Setting
SLS Bits in the MTP Routing Label” in Chapter 3 for more
information.

The following fields apply to all variants. Any differences are noted in the descriptions:

* msg[SC_USER_MAX +5] (input)
Specifies the array for the M_Block; SC_USER_MAX +5 specifies the size of the array.
This field allows data access on an 8-bit boundary. (SC_USER_MAX is defined in the
SINAP/SS7 mblock.h include file.)

* snm (input)
Specifies an snm_user_t structure that contains the signaling network management data.
For information about this structure, see “The Signaling Network Management Data
Structure (snm_user_t)” later in this section.

(TTC and NTT) Specifies the ttc_snm_user_t structure.

* slt (input)
Specifies an slt_user_t structure that contains the signaling link test data. For
information about this structure, see “The Signaling Link Test Structure (slt_user_t)”
later in this section.

(TTC and NTT) Specifies the ttc_srt_user_t structure since TTC performs signaling
route tests (SRTs) instead of signaling link tests (SLTs).

* upu (output)
Specifies the upu_user_t structure that contains the MTP user-part-unavailable (UPU)
information.

(TTC and NTT) Does not include the upu_user_t structure because the TTC and NTT
variants do not support user part unavailable (UPU) messages.

* sccp (input)
Specifies an sccp_user_t structure that contains the SCCP user data. For information
about this structure, see “The SCCP User Data Structure (sccp_user_t)” later in this
section.
6-80 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
(TTC and NTT) Defines a different length than the other variants for the
ttc_sccp_user_t structure field, ud[TTC_SC_USER_MAX].

The Signaling Network Management Structure (snm_user_t)
The snm_user_t structure contains the following fields and is defined in the include file
mblock.h.

* H0_H1 (input)
This field is internal to the SINAP/SS7 system and you should not modify it.

The following fields are variant-specific. If you are using the CCITT, NTT, or TTC network
variants of the SINAP/SS7 system, use the fields, snm_info_0 and snm_info_1. If you are
using the ANSI variant, use the field, snm_types, instead.

* snm_info_0 (output)
(CCITT) This field is internal to the SINAP/SS7 system and you should not modify it.

(TTC) Uses the structure, ttc_snm_types_t, which contains MTP management
information.

* snm_info_1 (output)
(CCITT) This field is internal to the SINAP/SS7 system and you should not modify it.

(TTC) Uses the structure, ttc_snm_types_t, which contains MTP management
information.

* snm_types (output)
(ANSI) Specifies an snm_types_t structure that contains information about the MSU’s
signaling link code (SLC) and signaling point code (SPC), as well as transfer control (TFC)
information for the MSU.

The Signaling Link Test Structure (slt_user_t)
The slt_user_t structure is used for sending signaling link test (SLT) messages to
determine whether a SINAP/SS7 link is operational. The structure contains the following fields
and is defined in the include file mblock.h.

typedef struct snm_user_s
{
 U8 H0_H1;
 U8 snm_info_0; /* CCITT, NTT, and TTC */
 U8 snm_info_1; /* CCITT, NTT, and TTC */

snm_types_t snm_types; /* ANSI/only */

} snm_user_t;
CASL Function Calls 6-81

ca_put_msu()
The TTC variant uses the ttc_srt_user_t structure since TTC performs signaling route
testing (SRT) instead of SLT.

* H0_H1 (input)
Specifies the header code for the signaling link test control (SLTC) message. The lower
four bits specify the message group (H0) and the upper four bits specify the signal code
(H1).

* snm_signal_data[MAX_TEST_PATTERN] (input)
Specifies the data you want to include in the signaling link test (SLT) message.
(MAX_TEST_PATTERN is defined in the mblock.h include file.)

The following fields are specific to the network variant you are using. Use the one appropriate
for your variant and specify the required information:

* li_spare (input)
(CCITT) Specifies the length of the data in the test message (upper four bits); the lower four
bits are spare.

* li_slc (input)
(ANSI) Specifies the length of the data in the test message (upper four bits) and the SLC
code of the link being tested (lower four bits).

typedef struct slt_user_s
{
 U8 H0_H1;
 U8 li_spare; /* CCITT - li_slc for ANSI*/
 U8 snm_signal_data[MAX_TEST_PATTERN];

} slt_user_t;
6-82 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
The SCCP User Data Structure (sccp_user_t)
The sccp_user_t structure contains the following fields and is defined in the include file
mblock.h.

* msg_type (input)
Specifies the message type for the SCCP message.

* ret_prot (input)
Specifies the return protection for the SCCP message. Valid values are in the range 0
through 3.

* cld_off (input)
Specifies the offset to the called address for the SCCP message.

* clg_off (input)
Specifies the offset to the calling address for the SCCP message.

* tcap_off (input)
Specifies the offset to the data portion of the SCCP message.

* ud[SC_USER_MAX] (input)
Specifies the SCCP message. (SC_USER_MAX is defined in the SINAP/SS7 mblock.h
include file.)

(TTC) Defines a different length than the other variants for the ttc_sccp_user_t
structure field, ud[TTC_SC_USER_MAX] in the mblock.h include file.

typedef struct sccp_user_s
{
 U8 msg_type;
 U8 ret_prot;
 U8 cld_off;
 U8 clg_off;
 U8 tcap_off;
 U8 ud[SC_USER_MAX];
} sccp_user_t;
CASL Function Calls 6-83

ca_put_msu()
The sccp_xuser_t Structure
The sccp_xuser_t structure contains the following fields and is defined in the include file
mblock.h.

* msg_type (output)
Specifies the message type for the SCCP message.

* ret_prot (output)
Specifies the protocol class to use when sending the MSU and the return option which
specifies the action to take if an error occurs. You use a single value to define both
parameters, as shown in the following chart:

* hop_counter(output)
The value of the hop counter is decremented on each global title translation and should be
in range 15 to 1.

* cld_off (output)
Specifies the offset to the called address for the SCCP message.

Value Description

0 Connectionless Class 0, no return on error.

1 Connectionless Class 1, no return on error.

0 x 80 Connectionless Class 0, returns an error.

0 x 81 Connectionless Class 1, returns an error.

typedef struct sccp_xuser_s
{ /* partial M_BLOCK def */
 U8 msg_type;
 U8 ret_prot;
 U8 hop_counter;
#define HOPS 10 /* default hop count */
#define MAX_HOPS 15 /* maximum hop count */

 U8 cld_off; /* offset to called add */
 U8 clg_off; /* offset to callng add */
 U8 tcap_off; /* offset to TCAP data */
 U8 op_off; /* offset to optional data field */

 /* for above fields */
 U8 ud[CCITT_SC_USER_MAX - 2]; /* SCCP Header plus */
 /* TCAP Header and data */
} sccp_xuser_t;
6-84 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msu()
* clg_off (output)
Specifies the offset to the calling address for the SCCP message.

* tcap_off (output)
Specifies the offset to the data portion of the SCCP message.

* ud[SC_USER_MAX] (output)
Specifies the SCCP message.

The iblk_t Structure
The iblk_t structure contains the following fields and is defined in the include file
mblock.h.

* iblk (input)
This field (which specifies the I_Block structure) is internal to the SINAP/SS7 system
and you should not modify it. See the include file iblock.h for a description of the
i_block_t structure.

* data (input)
This field is internal to the SINAP/SS7 system and you should not modify it.

FILES
arch.h, ca_error.h, iblock.h, mblock.h, sinap.h, sysdefs.h, sys/time.h,
timestamp.h

RETURN VALUES
The ca_put_msu() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful.

typedef struct iblk_s
{
 i_block_t iblk;
 U8 data[MAX_MBLK_DATA - sizeof(i_block_t)];
} iblk_t;
CASL Function Calls 6-85

ca_put_msu()
Possible UNIX values for errno are as follows.

Possible CASL values for errno are as follows.

SEE ALSO
ca_flush_msu(), ca_get_msu()

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that
accepts control functions.

EIO An I/O error occurred during a read or write operation.

EFAULT The pointer to the specified message is outside the
address space allocated to the process.

EINTR A signal was caught during the read or system call.

ENOMEM Kernel queue is full; try again.

Value Meaning

CA_ERR_ACCESS The process calling ca_put_msu() is not registered.
Call ca_register() before calling this function.

CA_ERR_MSU_CALLS The process calling ca_put_msu() is not registered
for this service, or the service is not allowed.

CA_ERR_NO_SS7_SVC The process calling ca_put_msu() is not registered
for SS7 service. Reregister the process using
ss7_primitive=SS7_CTRL_PRIMITIVE and
fss7=1.
6-86 SINAP/SS7 Programmer’s Guide R8052-17

Connection-Oriented Functions
Connection-Oriented Functions
The CCITT and the China network variants support connection-oriented services. The
SINAP/SS7 system uses the following CASL functions for implementing connection-oriented
services.

• The ca_get_sc() function retrieves a connection-oriented message from a remote
application.

• The ca_put_sc() function sends a connection-oriented message to a remote
application.

This section also contains detailed information on the structures an application must initialize
when sending either an IPC message to the SCCP-SCOC process or a data MSU to another
application. The following structures are described:

• sccp_ipc_t - Passes IPC messages between the local application and the SCCP-SCOC
process. This structure contains several structures, each of which passes a particular type
of message.

• sccp_prim_t - An internal structure that conveys information about large messages,
such as the message size and buffer location.

• sccp_cldclg_t - Contains information about the SCCP called- or calling-party address
for a connection-oriented message.

• sccp_dt1_t - Transports a data-form-1 message.

• sccp_dt2_t - Transports a data-form-2 message.

• sccp_expdata_t - Transports a message containing expedited data.

When sending either an IPC message to the SCCP-SCOC process or a data MSU to another
application, your application must initialize the appropriate structures. When your application
is processing an incoming MSU or IPC message, the structures will have been initialized by the
other application, the SCCP-SCOC process, or the SINAP/SS7 system.
CASL Function Calls 6-87

ca_get_sc()
ca_get_sc() 6-

SYNOPSIS
m_block_t *ca_get_sc(

BOOL fwait);

DESCRIPTION
The ca_get_sc() function, used in connection-oriented services, retrieves an incoming
message from the remote application with which a connection has been established. The
function retrieves the next available message from the application’s inbound queue and returns
a pointer to the message.

The ca_get_sc() function automatically reassembles large messages (that is, messages that
are 257 to 8192 bytes in length). The function retrieves the user data from all of the MSUs in
the message, stores the data in one of the memory buffers allocated to handle large messages,
and returns a pointer to that memory buffer.

See “Connection-Oriented Services” in Chapter 3 for detailed descriptions of the structures used
in connection-oriented messages.

PARAMETERS
* fwait (input)

Specifies whether the function call should wait for an MSU before returning.
Specify 1 if you want the function to wait for an MSU. The function will not return until it
reads an MSU from the queue. Specify 0 if you want the function to return if there are no
MSUs. The function returns the error ENODATA when there are no MSUs.

RETURN VALUES
If successful, the function call returns either of the following, depending on the message’s size.

• For messages of 256 bytes or less, the function returns a pointer to an m_block_t
structure that contains the message.

• For messages that are 257 to 8192 bytes in length, the function returns a pointer to the
memory buffer containing the message.
6-88 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_sc()
If an error occurs, the function call returns the value -1 and errno is set to one of the following
messages.

Error Message Description

CA_ERR_REG_NSCCP23 The application did not register for connection-oriented
services; therefore, it cannot call ca_get_sc().

CA_ERR_GETSC_BUSY No more connection IDs are available.

CA_ERR_GETSC_SIZE The incoming MSU’s user data is larger than the size of the
memory buffer used for storing the data. Note that the
function call returns the portion of the MSU user data that fits
in the memory buffer and discards the rest of the user data.
CASL Function Calls 6-89

ca_put_sc()
ca_put_sc() 6-

SYNOPSIS
int ca_put_sc(

m_block_t *p_m);

DESCRIPTION
The ca_put_sc() function, used in connection-oriented services, sends an outgoing message
to the remote application with which a connection has been established.

The ca_put_sc() function automatically performs message segmentation for large
messages (that is, messages that are 257 to 8192 bytes in length). To send a large message, the
application must write the message to a memory buffer and then pass ca_put_sc() a pointer
to this buffer. The ca_put_sc() function then performs the necessary message
segmentation, writing the message to several MSUs for transmission over the SS7 network.

The application must allocate memory for the buffer and then deallocate the memory.

See “Connection-Oriented Services” in Chapter 3 for detailed descriptions of the structures used
in connection-oriented messages.

PARAMETERS
* *p_m (input)

Specifies a pointer to the message to be sent to the remote application.

• For messages of 256 bytes or less, this parameter is a pointer to the m_block_t
structure that contains the message.

• For messages that are 257 to 8192 bytes in length, this parameter is a pointer to the
memory buffer that contains the message. The application must allocate memory and
initialize the buffer.
6-90 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_sc()
RETURN VALUES
If successful, the function call returns 0.

If an error occurs, the function call returns the value -1 and errno is set to one of the following
messages.

Connection-Oriented Structures
This section contains detailed information on the structures an application must initialize when
sending either an IPC message to the SCCP-SCOC process or a data MSU to another
application.

In the descriptions of structure fields in the following sections, input indicates a field (and
possibly a corresponding structure) that your application must initialize, and output indicates a
field (and possibly a corresponding structure) that will have been initialized by the other
application, SCCP-SCOC, or the SINAP/SS7 system.

The sccp_ipc_t Structure
The sccp_ipc_t structure passes IPC messages between a local application and the
SCCP-SCOC process. The sccp_ipc_t structure is composed of several substructures, each
of which passes a particular type of IPC message.

The local application and the SCCP-SCOC process each initiate different types of IPC
messages. For example, it is the local application that issues a connection-request message

Error Message Description

CA_ERR_REG_NSCCP23 The application did not register for connection-oriented
services; therefore, it cannot call ca_put_sc().

CA_ERR_PUTSC_NG The specified message type is invalid (for example, you
attempted to send expedited data over a class-2
connection).

CA_ERR_PUTSC_BAD The data in the m_block_t.sccp_ctrl structure is
invalid.

CA_ERR_PUTSC_SIZE The size of the MSU user data is invalid.

CA_ERR_PUTSC_BUSY No more connection IDs are available.

CA_ERR_PUTSC_CID The specified connection ID in the MSU is invalid.

CA_ERR_PUTSC_MSG The application process is not registered as a control
process; therefore, it cannot handle large messages.

CA_ERR_PUTSC_CONN The connection ID has been lost; therefore, the SINAP/SS7
system cannot send the MSU.
CASL Function Calls 6-91

ca_put_sc()
(I_N_CONNECT_REQ); therefore, the application is responsible for initializing the
sccp_ipc_t.scoc_con_req_t structure and setting the sccp_ipc_t structure’s
n_connect_req field to point to the initialized scoc_con_req_t structure.

Likewise, it is the SCCP-SCOC process that issues an I_SCOC_CID_RESULT message in
response to the local application’s request for a connection ID. Therefore, SCCP-SCOC must
initialize the sccp_ipc_t.scoc_cid_result_t structure to define the connection ID.
SCCP-SCOC must also initialize the sccp_ipc_t structure’s cid_result field to point to
the initialized scoc_cid_result_t structure.

The following sample shows the format of the sccp_ipc_t structure. The sccp_ipc_t
structure and all of the structures within it are defined in the scoc-prims.h include file.

The following list describes the fields in the sccp_ipc_t structure. For more information
about the IPC message to which each structure corresponds, see “Connection-Oriented Control
Primitives Used in IPC Messages” and “Connection-Oriented Data Primitives Used in Data
MSUs” in Chapter 2.

* iblock (input-output)
The name of an i_block_t structure that contains information for the IPC message.

typedef struct sccp_ipc_s
{
iblock_t iblock;

union {
scoc_con_req_t n_connect_req;
scoc_con_ind_t n_connect_ind;
scoc_con_res_t n_connect_res;
scoc_con_con_t n_connect_con;
scoc_res_req_t n_reset_req;
scoc_res_ind_t n_reset_ind;
scoc_res_res_t n_reset_res;
scoc_res_con_t n_reset_con;
scoc_dis_req_t n_disconnect_req;
scoc_dis_ind_t n_disconnect_ind;
scoc_inf_req_t n_inform_req;
scoc_inf_ind_t n_inform_ind;
scoc_get_connid_t get_connid;
scoc_cid_result_t cid_result;
scoc_rel_lrn_t n_rel_lrn_req;
scoc_timer_t timer;
scoc_change_t change;
scoc_change_ack_t chgack;

} primitives;
} sccp_ipc_t;
6-92 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_sc()
* n_connect_req (input)
The name of an scoc_con_req_t structure that contains the connection request.

* n_connect_ind (output)
The name of an scoc_con_ind_t structure that contains the connection-request
indication.

* n_connect_res (input)
The name of an scoc_con_res_t structure that contains the connection-request
response.

* n_connect_con (output)
The name of an scoc_con_con_t structure that contains the connection-request
confirmation.

* n_reset_req (input)
The name of an scoc_res_req_t structure that contains the connection-reset request.

* n_reset_ind (output)
The name of an scoc_res_ind_t structure that contains the connection-reset
indication.

* n_reset_res (input)
The name of an scoc_res_res_t structure that contains the connection-reset response.

* n_reset_con (output)
The name of an scoc_res_con_t structure that contains the connection-reset
confirmation.

* n_disconnect_req (input)
The name of an scoc_dis_req_t structure that contains the disconnect request.

* n_disconnect_ind (output)
The name of an scoc_dis_ind_t structure that contains the disconnect-request
indication.

* n_inform_req (input)
The name of an scoc_inf_req_t structure that contains the information request. This
message type currently is not supported; therefore, you should not modify this field.

* n_inform_ind (output)
The name of an scoc_inf_ind_t structure that contains the information-request
indication. This message type currently is not supported; therefore, you should not modify
this field.

* get_connid (input)
The name of an scoc_get_connid_t structure that contains the connection ID request.
CASL Function Calls 6-93

ca_put_sc()
* cid_result (output)
The name of an scoc_cid_result_t structure that contains a connection ID.
SCCP-SCOC provides this information in response to the local application’s request for a
connection ID.

* n_rel_lrn_req
The name of an scoc_rel_lrn_t structure that contains a request to release LRNs. This
message type currently is not supported; therefore, you should not modify this field.

* timer
The name of an scoc_timer_t structure that contains a request to access a
connection-oriented-services timer. This message type currently is not supported;
therefore, you should not modify this field.

* change
The name of an scoc_change_t structure that contains a change request. This message
type currently is not supported; therefore, you should not modify this field.

* chgack
The name of an scoc_change_ack_t structure that contains an acknowledgment for a
change request. This message type currently is not supported; therefore, you should not
modify this field.
6-94 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_sc()
The sccp_prim_t Structure
The sccp_prim_t structure conveys information about large messages. The structure is
defined in the mblock.h include file. The following sample shows the structure’s format.

The following list describes the fields in the sccp_prim_t structure.

N O T E
The sccp_prim_t structure’s *p_user_data and
user_data_size fields are used for processing large
messages. All other fields are internal to the SINAP/SS7 system
and should not be modified.

* conn_id (input-output)
The connection ID for the message.

* more_data_ind (output)
Indicates whether the message contains more data than can fit in a single MSU. If the
message has additional data, the value of this field is 1; otherwise, it is 0.

* flow_control (input-output)
Indicates whether the application is implementing flow control. If flow control is being
implemented, the value of this field is 1; otherwise, it is 0.

typedef struct sccp_prim_s
{
 U16 conn_id; /* sccp connection id */
 U8 more_data_ind; /* sccp class 2 & 3 msgs, 0= no */

/* more data, 1 = more data */
 U8 flow_control; /* flow control inform indication */
 U16 user_data_size; /* size of user data */
 U8 copy_to_scoc; /* set to indicate this msu should */
 /* copied to SCOC as well as sent */
 /* to the user */

 U8 grey_book; /* NEC grey book connection */
 U8 *p_user_data; /* ptr to user data buffer */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility */
#endif /* _LP_32_64_ */

} sccp_prim_t;
CASL Function Calls 6-95

ca_put_sc()
* *p_user_data (input-output)
A pointer to a memory buffer that contains the message data. To send a large message, your
application must set this field to point to a memory buffer in which the data is stored. The
application must also allocate memory for the buffer and initialize it.

* user_data_size (input-output)
The size of the message data. To send a large message, your application must set this field
to indicate the data’s length.

* copy_to_scoc (output)
Indicates whether the message (SC_EXPEDITED_DATA, SC_RESET_REQUEST, or
SC_RELEASED) must be copied to SCCP-SCOC so that SCCP-SCOC can respond to the
remote application with an acknowledgment. If the message must be copied to
SCCP-SCOC, the value of this field is 1; otherwise, it is 0.

* grey_book (output)
Indicates whether the application is implementing the NEC grey-book feature. If the
application is implementing the NEC grey-book feature, the value of this field is 1;
otherwise, it is 0.

The sccp_cldclg_t Structure
The sccp_cldclg_t structure defines SCCP called- or calling-party address information for
an MSU passed between local and remote applications. The structure is defined in the
mblock.h include file. The following sample shows the structure’s format.

2

The following list describes the fields in the sccp_cldclg_t structure.

* pc (input-output)
The point code of the remote (called) application or the local (calling) application.

typedef struct sccp_cldclg_s
{
 U32 pc;
 U8 pc_ind;
 U8 ssn;
 U8 ssn_ind;
 U8 gti_len;
 U8 gti_ind;
 U8 rtg_ind;
 U8 national;
 U8 gti[MAX_GTI_LEN];
} sccp_cldclg_t;
6-96 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_sc()
* pc_ind (input-output)
Indicates whether the SCCP called- or calling-party address contains a point code. The
value 1 indicates the presence of a point code; otherwise, the value of this field is 0.

* ssn (input-output)
The SSN of the remote (called) application or the local (calling) application.

* ssn_ind (input-output)
Indicates whether an SSN is included in the SCCP called- or calling-party address. The
value 1 indicates the presence of an SSN; otherwise, the value of this field is 0.

* gti_len (input-output)
The length of the global title defined in the gti field. The value 0 indicates that the SCCP
called- or calling-party address does not contain a global title. (See Chapter 3 for more
information about global titles.)

* gti_ind (input-output)
The format of the global title included in the SCCP called- or calling-party address. This
field defines bits 6 through 3 of the address indicator. This field is blank if the SCCP called-
or calling-party address does not contain a global title. (See Chapter 3 for more information
about global titles.)

* rtg_ind (input-output)
The routing-indicator bit of the address-indicator portion of the SCCP called- or
calling-party address. The routing-indicator bit specifies the type of routing used to route
the MSU to its destination: the value 0 indicates routing on global title, and the value 1
indicates routing on DPC and SSN.

* national (input-output)
This field is used for national networks. It is always set to 0.

* gti[MAX_GTI_LEN] (input-output)
The global title included in the SCCP called- or calling-party address. This field is blank if
the SCCP called- or calling-party address does not contain a global title. (See Chapter 3 for
more information about global titles.)
CASL Function Calls 6-97

ca_put_sc()
The sccp_dt1_t Structure
The sccp_dt1_t structure defines a data-form-1 message. The structure is defined in the
sccphdrs.h include file. The following sample shows the structure’s format.

The following list describes the fields in the sccp_dt1_t structure.

* msg_type (input-output)
The MSU’s message type. The only valid value for this field is SC_DATA_FORM1.

* dest_lrn[3] (input-output)
The destination LRN for the MSU. This field is internal to the SINAP/SS7 system; you
should not modify it.

* seg_reass (input-output)
Indicates whether the message requires segmentation and reassembly. This field is internal
to the SINAP/SS7 system; you should not modify it.

* var_ptr (input-output)
This field is internal to the SINAP/SS7 system; you should not modify it.

* ud_len (input-output)
The length of the MSU user data defined in the ud field. The value 0 indicates that the
MSU does not contain user data.

* ud[256] (input-output)
MSU user data, which can be up to 256 bytes in length. This field is blank if the MSU
contains no user data.

The sccp_dt2_t Structure
The sccp_dt2_t structure defines a data-form-2 message. The structure is defined in the
sccphdrs.h include file. The following sample shows the structure’s format.

typedef struct sccp_dt1_s
{

U8 msg_type;
U8 dest_lrn[3];
U8 seg_reass;
U8 var_ptr;
U8 ud_len;
U8 ud[256]; /* data is 2 to 256 bytes */

} sccp_dt1_t;
6-98 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_sc()
The following list describes the fields in the sccp_dt2_t structure.

* msg_type (input-output)
The MSU’s message type. The only valid value for this field is SC_DATA_FORM2.

* dest_lrn[3] (input-output)
The destination LRN for the MSU. This field is internal to the SINAP/SS7 system; you
should not modify it.

* seq_seg[2] (input-output)
This field is internal to the SINAP/SS7 system; you should not modify it.

* var_ptr (input-output)
This field is internal to the SINAP/SS7 system; you should not modify it.

* ud_len (input-output)
The length of the MSU user data defined in the ud field. The value 0 indicates that the
MSU does not contain user data.

* ud[256] (input-output)
MSU user data, which can be up to 256 bytes in length. This field is blank if the MSU
contains no user data.

typedef struct sccp_dt2_s
{

U8 msg_type;
U8 dest_lrn[3];
U8 seq_seg[2];
U8 var_ptr;
U8 ud_len;
U8 ud[256]; /* data is 2 to 256 bytes */

} sccp_dt2_t;
CASL Function Calls 6-99

ca_put_sc()
The sccp_expdata_t Structure
The sccp_expdata_t structure defines a message containing expedited data. The structure
is defined in the sccphdrs.h include file. The following sample shows the structure’s format.

The following list describes the fields in the sccp_expdata_t structure.

* msg_type (input-output)
The MSU’s message type. The only valid value for this field is SC_EXPEDITED_DATA.

* dest_lrn[3] (input-output)
The destination LRN for the MSU. This field is internal to the SINAP/SS7 system; you
should not modify it.

* var_ptr (input-output)
This field is internal to the SINAP/SS7 system; you should not modify it.

* ud_len (input-output)
The length of the MSU user data defined in the ud field. The value 0 indicates that the
MSU does not contain user data.

* ud[32] (input-output)
MSU user data, which can be up to 32 bytes in length. This field is blank if the MSU
contains no user data.

typedef struct sccp_expdata_s
{

U8 msg_type;
U8 dest_lrn[3];
U8 var_ptr;
U8 ud_len;
U8 ud[32]; /* data is 2 to 32 bytes */

} sccp_expdata_t;
6-100 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Functions
TCAP Functions
This section contains an alphabetic reference of the following CASL functions, which are used
in applications that interface to the SS7 network at the TCAP boundary.

• ca_alloc_tc()

• ca_cust_dist_cmd() (CCITT/ANSI)

• ca_dealloc_tc()

• ca_dec_cs1_corrid() (CCITT/ANSI)

• ca_dist_cmd()

• ca_enc_cs1_corrid() (CCITT/ANSI)

• ca_get_dial_id() (CCITT/China)

• ca_get_tc()

• ca_get_trans_id() (ANSI)

• ca_process_tc()

• ca_put_tc()

• ca_rel_dial_id() (CCITT/China)

• ca_rel_trans_id() (ANSI)
CASL Function Calls 6-101

ca_alloc_tc()
ca_alloc_tc() 6-

 SYNOPSIS
int ca_alloc_tc();

DESCRIPTION
The ca_alloc_tc() function allocates a T_Block for the client application process. The
ca_alloc_tc() function returns an index into the T_Block array for the next available
T_Block entry. If no entries are available, ca_alloc_tc() returns an error indication.

T_Blocks communicate TCAP components between the CASL functions and client
application processes. When a client application process registers, an array of a specified
number of T_Blocks is created in the client process’s data space. The T_Block array is a
working area for both the CASL and the client application.

As MSUs are received and decoded, individual TCAP components are placed in a T_Block,
and the index into the T_Block array is returned in response to each ca_get_tc() function
call that the client process requests. The client can modify a specified T_Block and pass it
back, or make it available for use again (deallocate it). The ca_alloc_tc() function gets the
next available entry from the T_Block free pool, inserts the value of owner_id in the
T_Block owner ID table, and returns the index of T_Block to the user. If the application is
not registered at the TCAP boundary, ca_alloc_tc() returns an error.

The client can also allocate one or more T_Block entries for its own use. If the client passes
these entries to the other TCAP functions, it assumes the TCAP will deallocate them. If the
client does not pass these entries for output, it must return them to the available pool by calling
ca_dealloc_tc().

FILES
$SINAP_HOME/Include/ca_error.h

RETURN VALUES
The ca_alloc_tc() function returns an index to the next available T_Block. If there is an
error, the function returns a -1. CASL values for errno are defined in ca_error.h. UNIX
values are defined in sys/errno.h.
6-102 SINAP/SS7 Programmer’s Guide R8052-17

ca_alloc_tc()
The TCAP can return the following values.

SEE ALSO
ca_dealloc_tc(), ca_get_tc(), ca_get_trans_id(), ca_process_tc(),
ca_put_tc(), ca_rel_trans_id()

Value Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the
TCAP boundary using
SS7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP.

TC_ERR_T_BLOCK_CAPACITY_EXHAUSTED Reregister the application with a
greater number of T_BLOCKs.
CASL Function Calls 6-103

ca_dealloc_tc()
ca_dealloc_tc() 6-

SYNOPSIS
int ca_dealloc_tc(

 S32 tb_index);

DESCRIPTION
The ca_dealloc_tc() function deallocates a T_Block and returns it to the free pool for
reallocation. If a client application process is not registered at the TCAP boundary,
ca_dealloc_tc() returns an error.

For incoming messages, the application calls ca_dealloc_tc() to deallocate the
T_Block after calling the ca_get_tc() function. For outgoing messages, the CASL calls
ca_dealloc_tc() after extracting information from the T_Block.

PARAMETERS
* tb_index (input)

Specifies an index into the T_Block array for the T_Block being deallocated.

FILES
 $SINAP_HOME/arch.h, ca_error.h

RETURN VALUES
The ca_dealloc_tc() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.
6-104 SINAP/SS7 Programmer’s Guide R8052-17

ca_dealloc_tc()
The TCAP can return the following errors.

SEE ALSO
ca_alloc_tc(), ca_get_trans_id(), ca_get_tc(), ca_process_tc(),
ca_put_tc(), ca_rel_trans_id()

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the TCAP
boundary using
ss7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP.

TC_ERR_INV_T_BLOCK_INDEX The T_Block index is out of range.
Make sure the application is using the
correct T_Block index.

TC_ERR_T_BLOCK_NOT_ALLOCATED The T_Block has already been
deallocated.

TC_ERR_TCAP_OWN_T_BLOCK The T_Block is under the TCAP’s
control and no further action required. If
this T_Block must be released, the
application can issue a TC_U_CANCEL
with the appropriate transaction and
invoke IDs.
CASL Function Calls 6-105

ca_dist_cmd()
ca_dist_cmd() 6-

SYNOPSIS
int ca_dist_cmd (dist_cmd_t *ssn_opc_table);

DESCRIPTION
The ca_dist_cmd() function defines message-distribution information for an application,
or it modifies or deletes an application’s existing message-distribution information. This
function has one parameter, *ssn_opc_table, which is a pointer to a dist_cmd_t
structure that defines such information as the application’s message-distribution information
(ssn_count, opc_count, ssn, and opc) and the type of action the function is to perform
(cmd).

The dist_cmd_t structure’s ssn and opc fields are arrays in which you define the
discrimination rules that you want the SINAP/SS7 system to use to route incoming MSUs to the
application. the SINAP/SS7 system compares an incoming MSU with the application’s
message-distribution information. If the characteristics of the MSU match the application’s
message-distribution information, the SINAP/SS7 system passes the MSU to the application;
otherwise, the SINAP/SS7 system discards the MSU.

N O T E
If you are using the custom application distribution (CAD)
feature which extends the capabilities of the enhanced message
distribution feature, call the ca_cust_dist_cmd()
function to define message distribution criteria for an
application.

PARAMETERS
The ca_dist_cmd() function has a single parameter, a pointer to the structure
dist_cmd_t (defined in the include file register.h), which you must initialize before
calling ca_dist_cmd(). The structure has the following format. (See the register.h
include file for the definitions of MAX_APPL_SSN and MAX_APPL_OPC.)
6-106 SINAP/SS7 Programmer’s Guide R8052-17

ca_dist_cmd()
The dist_cmd_t Structure
The dist_cmd_t structure defines an application’s message distribution information.

typedef struct dist_cmd_s
{

U32 appl; /* APPL_THIS -1 */
U8 cmd; /* DIST_SET 1 */

/* DIST_DEL 2 */
/* DIST_INQ 3 */

U8 boundary; /* SS7_INPUT_BOUNDARY_NA 0 */
/* SS7_INPUT_BOUNDARY_SCCP23 4 */

S8 ssn_count; /* DIST_ALL 0 */
U8 opc_count; /* DIST_ALL_OTHER 0 */
U8 ssn[MAX_APPL_SSN]; /* 32 */
U32 opc[MAX_APPL_OPC]; /* 256 */

} dist_cmd_t;

The dist_cmd_t structure contains the following fields:

* appl (input)
Specifies specifies the name of the application whose message-distribution information
you want to define or retrieve.

N O T E
In the appl field of the register_req_t (CA_REG)
structure, the application name is specified as an ASCII
character string of up to four bytes. However, in the appl field
of the dist_cmd_t structure, the application name must be
specified as a zero-filled, right-justified U32 word. To convert
an application name to this format, code the application so that
it calls the function ca_pack(), passing the character string
that defines the application name; the function returns the
application name as a zero-filled, right-justified U32 word. To
convert the application name back to a character string, code the
application so that it calls the function ca_unpack(), passing
the U32 word and a pointer to a character string; the function
converts the application name to a character string.

* cmd (input)
Specifies the task to perform on the application’s message-distribution information. Valid
values are as follows:

• DIST_SET uses the information in the ssn and opc fields to define the
message-distribution information for an application or to modify an application’s
existing message-distribution information.
CASL Function Calls 6-107

ca_dist_cmd()
• DIST_DELETE deletes an application’s message-distribution information, which
means that the application no longer supports enhanced message distribution.

• DIST_INQ retrieves an application’s message-distribution information.

* boundary (input)
Specifies the application boundary, either SS7_INPUT_BOUNDARY_NA for a non-COF
application or SS7_INPUT_BOUNDARY_SCCP23 for a COF application. Only required
for a DIST_INQ command with the appl field = 0.

* ssn_count (input)
Specifies the number of entries in the application’s SSN array (ssn). The value you specify
cannot exceed the value of MAX_APPL_SSN, which is defined in the include file
$SINAP_HOME/Include/register.h.

If you do not want the SINAP/SS7 system to perform message discrimination based on an
incoming MSU’s SSN, specify the value 0 for ssn_count and leave the ssn field empty.

* opc_count (input)
Specifies the number of entries in the application’s OPC array (opc). The value you specify
cannot exceed the value of MAX_APPL_OPC, which is defined in the include file
$SINAP_HOME/Include/register.h.

If you do not want the SINAP/SS7 system to perform message discrimination based on an
incoming MSU’s OPC, specify 0 for opc_count and leave the opc field empty. In this
case, the SINAP/SS7 system sends the application all incoming MSUs destined for it
regardless of the MSU’s OPC, provided that no other application is registered for the
MSU’s OPC.

* ssn[MAX_APPL_SSN] (input)
Is an array of SSNs to be associated with the application. The number of entries in this array
must match the value defined by ssn_count. If you specified 0 for ssn_count, make
sure that the array is empty. (MAX_APPL_SSN is defined in the register.h include
file.)

When the SINAP/SS7 system receives an incoming MSU, it examines the MSU’s SSN; if
the SSN is listed in this array, the SINAP/SS7 system sends the MSU to the application.
(For example, if you associate the SSNs 220, 230, and 240 with the application, the
SINAP/SS7 system sends the application all of the MSUs addressed to SSNs 220, 230,
and 240.)

* opc[MAX_APPL_OPC] (input)
An array of originating point codes (OPCs) from which the application can accept
incoming MSUs. The number of entries in this array must match the value defined by
opc_count. If you specified 0 for opc_count, make sure that this array is empty.
(MAX_APPL_OPC is defined in the SINAP/SS7 register.h include file.)
6-108 SINAP/SS7 Programmer’s Guide R8052-17

ca_dist_cmd()
When the SINAP/SS7 system receives an incoming MSU destined for the application, it
examines the MSU’s OPC; if the OPC is listed in this array, the SINAP/SS7 system sends
the MSU to the application; otherwise, it discards the MSU. Note, however, that if you
defined the environment variable UDTS_NO_OPC, the SINAP/SS7 system does not discard
the MSU, but instead sends a UDTS message to the OPC.

INCLUDE FILES
$SINAP_HOME/Include/ca_glob.h,ca_error.h,arch.h

RETURN VALUES
The ca_dist_cmd function can return the following values. If the function returns -1, there
is an error. See ca_error.h for the CASL error number and meaning; see sys/errno.h
for UNIX errors.

The CASL can return the following errors:

NOTES
The man page format of this command is ca_dist_cmd.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Error Action
CA_ERR_ACCESS Register the application with CASL.

CA_ERR_NULL_DIST Call the function with a non-NULL pointer.

CA_ERR_NULL_APPL Use a nonzero application ID.

CA_ERR_DIST_CMD Use a valid command code.or boundary

CA_ERR_NEG_COUNT Use a non-negative ssn_count or opc_count.

CA_ERR_MAX_COUNT Use a value lower than the maximum for ssn_count or
opc_count.
CASL Function Calls 6-109

ca_cust_dist_cmd()
ca_cust_dist_cmd() 6-

SYNOPSIS
int ca_cust_dist_cmd (cust_dist_cmd_t *custom_table);

DESCRIPTION
The ca_cust_dist_cmd() function is an extended version of the ca_dist_cmd()
function used in enhanced distribution. This function defines message-distribution information
for an application, or it modifies or deletes an application’s existing message-distribution
information. In addition to specifying the application name, command, SSN, and OPC criteria,
the function also specifies the ID of the type of custom distribution being implemented and the
type-specific structure used to define the custom distribution criteria. The type-specific criteria
structure is specified as an abstract (void *) pointer. The actual structure type is determined
by the custom type ID parameter.

The cust_dist_cmd_t structure’s ssn and opc fields are arrays in which you define the
discrimination rules that you want the SINAP/SS7 system to use to route incoming MSUs to the
application. The SINAP/SS7 system compares an incoming MSU with the application’s
message-distribution information. If the characteristics of the MSU match the application’s
message-distribution information, the SINAP/SS7 system passes the MSU to the application;
otherwise, the SINAP/SS7 system discards the MSU.

PARAMETERS
The ca_cust_dist_cmd() function has a single parameter, an abstract (void*) pointer
to the structure cust_dist_cmd_t, which you must initialize before calling
ca_cust_dist_cmd(). This structure is defined in the include file cust_dist.h and has
the following format. (See the register.h include file for the definitions of
MAX_APPL_SSN and MAX_APPL_OPC.)

The cust_dist_cmd_t Structure
The cust_dist_cmd_t structure is used to specify the application name, SSN, OPC, and the
ID of the type of custom distribution being implemented as well as a type specific structure to
6-110 SINAP/SS7 Programmer’s Guide R8052-17

ca_cust_dist_cmd()
specify the custom distribution criteria. The cust_dist_cmd_t is composed of three
substructures that are described in the sections following the cust_dist_cmd_t structure.

typedef struct cust_dist_cmd_s
{

dist_cmd_t ssn_opc_table;
cust_dist_id_t custom_id;
union
{

cs1_inap_v01_tbl_t cs1_inap_v01;
} cust_dist_cmd_t;

The dist_cmd_t Structure
The dist_cmd_t structure defines an application’s message distribution information.

typedef struct dist_cmd_s
{

U32 appl; /* APPL_THIS -1 */
U8 cmd; /* DIST_SET 1 */

/* DIST_DEL 2 */
/* DIST_INQ 3 */

U8 boundary; /* SS7_INPUT_BOUNDARY_NA 0 */
/* SS7_INPUT_BOUNDARY_SCCP23 4 */

S8 ssn_count; /* DIST_ALL 0 */
U8 opc_count; /* DIST_ALL_OTHER 0 */
U8 ssn[MAX_APPL_SSN]; /* 32 */
U32 opc[MAX_APPL_OPC]; /* 128 */

} dist_cmd_t;

The dist_cmd_t structure contains the following fields:

* appl (input)
Specifies specifies the name of the application containing the message-distribution
information to be defined or retrieved.

N O T E
In the appl field of the register_req_t (CA_REG)
structure, the application name is specified as an ASCII
character string of up to four bytes. However, in the appl field
of the dist_cmd_t structure, you must specify the
application name as a zero-filled, right-justified U32 word. To
convert an application name to this format, code the application
so that it calls the function ca_pack(), passing the character
string that defines the application name; the function returns the
application name as a zero-filled, right-justified U32 word. To
CASL Function Calls 6-111

ca_cust_dist_cmd()
convert the application name back to a character string, code the
application so that it calls the function ca_unpack(), passing
the U32 word and a pointer to a character string; the function
converts the application name to a character string.

* cmd (input)
Specifies the task to perform on the application’s message-distribution information. Valid
values are as follows:

• DIST_SET uses the information in the ssn and opc fields to define the
message-distribution information for an application or to modify an application’s
existing message-distribution information.

• DIST_DELETE deletes an application’s message-distribution information, which
means that the application no longer supports enhanced message distribution.

• DIST_INQ retrieves an application’s message-distribution information.

* boundary (input)
Specifies the application boundary, either SS7_INPUT_BOUNDARY_NA for a non-COF
application or SS7_INPUT_BOUNDARY_SCCP23 for a COF application. The latter is
not supported for Custom Distribution. Only required for a DIST_INQ command with
the appl field = 0.

* ssn_count (input)
Specifies the number of entries in the application’s SSN array (ssn). The value you specify
cannot exceed the value of MAX_APPL_SSN, which is defined in the include file
$SINAP_HOME/Include/register.h.

If you do not want the SINAP/SS7 system to perform message discrimination based on an
incoming MSU’s SSN, specify the value 0 for ssn_count and leave the ssn field empty.

* opc_count (input)
Specifies the number of entries in the application’s OPC array (opc). The value you specify
cannot exceed the value of MAX_APPL_OPC, which is defined in the include file
$SINAP_HOME/Include/register.h.

If you do not want the SINAP/SS7 system to perform message discrimination based on an
incoming MSU’s OPC, specify 0 for opc_count and leave the opc field empty. In this
case, the SINAP/SS7 system sends the application all incoming MSUs destined for it
regardless of the MSU’s OPC, provided that no other application is registered for the
MSU’s OPC.

* ssn[MAX_APPL_SSN] (input)
Is an array of SSNs to associate with the application. The number of entries in this array
must match the value defined by ssn_count. If you specified 0 for ssn_count, make
sure that the array is empty. MAX_APPL_SSN is defined in the register.h include file.
6-112 SINAP/SS7 Programmer’s Guide R8052-17

ca_cust_dist_cmd()
When the SINAP/SS7SINAP/SS7 system receives an incoming MSU, it examines the
MSU’s SSN. If the SSN is listed in this array, the SINAP/SS7 system sends the MSU to the
application. For example, if you associate the SSNs 220, 230, and 240 with the application,
the SINAP/SS7 system sends the application all of the MSUs addressed to SSNs 220, 230,
and 240.

* opc[MAX_APPL_OPC] (input)
An array of originating point codes (OPCs) from which the application can accept
incoming MSUs. The number of entries in this array must match the value defined by
opc_count. If you specified 0 for opc_count, make sure that this array is empty.
MAX_APPL_OPC is defined in the SINAP/SS7 register.h include file.

When the SINAP/SS7 system receives an incoming MSU destined for the application, it
examines the MSU’s OPC. If the OPC is listed in this array, the SINAP/SS7 system sends
the MSU to the application, otherwise, it discards the MSU. Note, however, that if you
defined the environment variable UDTS_NO_OPC, the SINAP/SS7 system does not discard
the MSU, but instead sends a UDTS message to the OPC.

The cust_dist_id_t Structure
The cust_dist_id_t structure specifies the ID of the type of custom distribution being
implemented.

typedef enum
{

CS1_INAP_V01 = 1/* Only value currently supported */
} cust_dist_id_t;

The cs1_inap_v01_tbl_t Structure
The cs1_inap_v01_tbl_t structure specifies all ServiceKey parameters.

typedef struct cs1_inap_v01_tbl_s
{

int svc_key_count;
int svc_key [MAX_APPL_SVC_KEY];/*[64]*/

} cs1_inap_v01_tbl_t;

* svc_key_count (input)
Specifies the number of ServiceKey services to be used. The value you specify cannot
exceed the value of MAX_APPL_SVC_KEY defined in the include file
$SINAP_HOME/Include/cust_dist.h.

Note that a value of 0 specifies the application as the fallback (or default) application. All
message traffic that passes the SSN and OPC criteria specified for this application, but
cannot be sent to any other application registered for the same SSN/OPC with specific
ServiceKey criteria, will be sent to this fallback application.
CASL Function Calls 6-113

ca_cust_dist_cmd()
* svc_key (input)
An array of up to 64 individual ServiceKeys. The number of entries must match the number
defined in svc_key_count. If you specified 0 for svc_key_count, make sure that
this array is empty. MAX_APPL_SVC_KEY is defined in the SINAP/SS7 cust_dist.h
include file.

INCLUDE FILES
$SINAP_HOME/Include/ca_glob.h,ca_error.h,arch.h,register.h,
cust_dist.h

RETURN VALUES
The ca_cust_dist_cmd function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning. See
sys/errno.h for UNIX errors.

The CASL can return the following errors:

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Error Action
CA_ERR_ACCESS Register the application with CASL.
CA_ERR_NULL_DIST Call the function with a non-NULL pointer.
CA_ERR_NULL_APPL Use a nonzero application ID.
CA_ERR_DIST_CMD Use a valid command code.or boundary
CA_ERR_NEG_COUNT Use a non-negative ssn_count or

opc_count.
CA_ERR_MAX_COUNT Use a value lower than the maximum for

ssn_count or opc_count.
CA_ERR_CUST_APPL_INQ Use the function ca_appl_name_lkup() for

custom application distribution.
CA_ERR_NULL_APPL_LKUP Use a non-NULL appl_name_table.
CA_ERR_CUST_DIST_ID Use a valid custom_id.
CA_ERR_CS1INAP_SVCKEY_CNT Use a valid svc_key_count.
CA_ERR_CS1INAP_MAX_ENTRYS Use a value lower than the maximum for

SSN_OPC or svc_key.
6-114 SINAP/SS7 Programmer’s Guide R8052-17

ca_cust_dist_cmd()
NOTES
The man page format of this command is ca_cust_dist_cmd.

SEE ALSO
ca_enc_cs1_corrid()

ca_dec_cs1_corrid()

CA_ERR_CS1INAP_SET_FAILED The maximum number of ServiceKeys
specified for the specified SSN/OPC criteria
was exceeded.

1. Use a lower value, or
2. Reduce the number of SSN/OPC criteria.

CA_ERR_CS1INAP_NO_ENTRY Use a valid DIST_INQ value.
(No entry matching criteria specified was
found.)

CA_ERR_CS1INAP_INCONSISTENT Restart the SINAP/SS7 system. If the error
persists, reboot the system. (DIST_INQ - Table
inconsistency found.)

Error Action
CASL Function Calls 6-115

ca_enc_cs1_corrid()
ca_enc_cs1_corrid() 6-

SYNOPSIS
int ca_enc_cs1_corrid(char *param, int tid);

DESCRIPTION
The ca_enc_cs1_corrid() function encodes the ETSI/ITU-T CS-1 INAP
CorrelationID digits in a format compatible with CS-1 INAP Custom Application
Distribution AssistRequestInstructions (ARI) processing. This is intended for use in
encoding CorrelationID parameters in the EstablishTemporaryConnection
(ETC) operation.

The SINAP/SS7 implementation encodes the digits to include the Interprocess Communications
(IPC) index of the process and the Transaction or Dialogue ID of the transaction sending the
ETC. This allows the SINAP node to route the ARI to the appropriate process, and the process
to correlate the ARI to the appropriate original transaction. The IPC index is encoded as fixed
length, five-digit, zero filled string, and the Transaction ID is encoded as fixed length, 10-digit,
zero filled string for a combined total of 15 digits. In the ETC Operation, the CorrelationID
parameter is encoded in the ITU-T Q.763 Generic Digits parameter format.

Table 6-1. Map of Encoding CorrelationID to Generic Digits Parameter Format

Octet 8 7 6 5 4 3 2 1

1 Encoding Type of Digits

2 IPC Index BCD digit 2 IPC Index BCD digit 1

3 IPC Index BCD digit 4 IPC Index BCD digit 3

4 Transaction ID BCD digit 1 IPC Index BCD digit 5

5 Transaction ID BCD digit 3 Transaction ID BCD digit 2

6 Transaction ID BCD digit 5 Transaction ID BCD digit 4

7 Transaction ID BCD digit 7 IPC Index BCD digit 6

8 Transaction ID BCD digit 9 Transaction ID BCD digit 8

9 Spare filler Transaction ID BCD digit 10
6-116 SINAP/SS7 Programmer’s Guide R8052-17

ca_enc_cs1_corrid()
N O T E
This function does not perform the BCD encoding of the digit
string. The application must perform final encoding of the
CorrelationID Generic Digits parameter.

PARAMETERS
* *param (input)

Specifies a pointer to a buffer that contains the CorrelationID digit string to be
encoded. The digit string contains the IPC index of the process and the transaction/dialogue
ID of the transaction sending the ETC. Addresses a buffer sized for [10] ASCII characters
plus a NULL terminator (11).

* tid (input)
Specifies the transaction/dialogue ID of the originator of the ETC, and the SINAP/SS7 IPC
index of the process.

RETURN VALUES
This function returns the encoded CorrelationID digit string or -1 on failure.

SEE ALSO
ca_dec_cs1_corrid()

Value Meaning

Encoded
Digits

Successful.

-1 Unsuccessful. See errno for error number and description.
CASL Function Calls 6-117

ca_dec_cs1_corrid()
ca_dec_cs1_corrid() 6-

SYNOPSIS
int ca_dec_cs1_corrid(char *param, int *tid, int *ipc_index);

DESCRIPTION
The ca_dec_cs1_corrid() function decodes the ETSI/ITU-T CS-1 INAP
CorrelationID digits encoded in a format compatible with CS-1 INAP Custom Application
Distribution AssistRequestInstructions (ARI) processing. This is intended for use in
decoding CorrelationID parameters received in the ARI operation. The digits portion of
the parameter are echoed from those originally encoded in the
EstablishTemporaryConnection (ETC) operation. This allows the ARI to be
correlated to the ETC.

The SINAP/SS7 implementation encodes the digits to include the IPC index of the process and
the transaction/dialogue ID of the transaction sending the ETC. This allows the SINAP node to
route the ARI to the appropriate process, and the process to correlate the ARI to the appropriate
original transaction. The IPC index is encoded as fixed length, five-digit, zero filled string, and
the Transaction ID is encoded as fixed length, 10-digit, zero filled string for a combined total of
15 digits. In the ARI operation, the CorrelationID parameter is encoded in the ITU-T
Q.763 Generic Digits parameter format.
6-118 SINAP/SS7 Programmer’s Guide R8052-17

ca_dec_cs1_corrid()
Table 6-2. Map of Decoding CorrelationID to Generic Digits Parameter Format

N O T E
This function does not perform the BCD decoding of the digit
string. The CorrelationID Generic Digits parameter must
first be decoded by the application. It is assumed that the digits
have been converted to ASCII format.

PARAMETERS
* *param (input)

Specifies a pointer to a buffer that contains the ASCII string of digits extracted from ITU-T
Q.763 Generic Number parameter.

* *tid (output)
Specifies a pointer to a buffer that contains the transaction/dialogue ID of the originator of
the ETC.

* *ipc_index (output)
Specifies a pointer to a buffer that contains the IPC index of the originator.

Octet 8 7 6 5 4 3 2 1

1 Number Qualifier Indicator

2 odd Nature of Address Indicator

3 Numbering Plan Pres Ind Scrn Ind

4 IPC Index BCD digit 2 IPC Index BCD digit 1

5 IPC Index BCD digit 4 IPC Index BCD digit 3

6 Transaction ID BCD digit 1 IPC Index BCD digit 5

7 Transaction ID BCD digit 3 Transaction ID BCD digit 2

8 Transaction ID BCD digit 5 Transaction ID BCD digit 4

9 Transaction ID BCD digit 7 IPC Index BCD digit 6

10 Transaction ID BCD digit 9 Transaction ID BCD digit 8

11 Spare filler Transaction ID BCD digit 10
CASL Function Calls 6-119

ca_dec_cs1_corrid()
RETURN VALUES
This function returns the decoded CorrelationID digit string or -1 on failure.

SEE ALSO
ca_enc_cs1_corrid()

Value Meaning

Decoded
Digits

Successful.

-1 Unsuccessful. See errno for error number and description.
6-120 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_dial_id()
ca_get_dial_id() 6-

SYNOPSIS
int ca_get_dial_id();

DESCRIPTION
The ca_get_dial_id() function gets a unique dialogue ID for an application process
before the process begins a dialogue. This function is used by the CCITT, TTC, NTT, and China
network variants of the SINAP/SS7 system. The ANSI variant uses the function
ca_get_trans_id(). For the SINAP/SS7 system to properly route the TCAP components
that belong to a specific dialogue, the TCAP and TCAP user must adhere to the following
dialogue assignments.

Per ITU-T (CCITT) Recommendations, the TCAP user assigns a dialogue ID when it initiates
a new dialogue. The SINAP/SS7 TCAP assigns internal dialogue IDs (visible only to
SINAP/SS7 processes and the SINAP/SS7 TCAP user) when a remote node initiates a dialogue
via a TR-UNI or TR-BEGIN dialogue primitive. Because the TCAP uses dialogue IDs to
access, store, and retrieve TCAP components, there is a potential problem when two separate
functions assign dialogue IDs from the same pool of values. To accommodate dialogue ID
assignment from the TCAP and TCAP user, there are two assigning paths: one for input and one
for output.

On input, the TCAP user must issue a ca_get_tc() function call to receive the next available
primitive (either dialogue or component). To support the need for dialogue IDs for itself and the
TCAP user, the TCAP extends the dialogue ID in the T_Block to 32 bits and adds a parameter
to the ca_get_tc() function call. Thus, the extended dialogue ID contains 16 bits for the
TCAP and TCAP dialogue ID, and 16 bits for the TCAP user and TCAP user dialogue ID.

An additional ca_get_tc() parameter (pfunc) contains the address of the function the
TCAP user wants TCAP to call when the remote node starts a new dialogue; the address must
exist in each ca_get_tc() function call. TCAP calls this function only when a new dialogue
is started. The TCAP call to the TCAP user’s function provides an index parameter to the
T_Block containing the TC_BEGIN or TC_UNI dialogue primitive and allows the TCAP
user to examine the new dialogue primitive. The TCAP user updates its portion of the dialogue
ID in the T_Block and returns control to the TCAP. The TCAP then assigns its own dialogue
ID and returns it to the TCAP user. (This return is from the original ca_get_tc() call.)
CASL Function Calls 6-121

ca_get_dial_id()
The T_Block that ca_get_tc() returns has both the TCAP user and the TCAP dialogue
ID, which the TCAP retains for future calls to ca_get_tc().

When a new dialogue begins on output, the TCAP user obtains a TCAP dialogue ID by calling
ca_get_dial_id(). This TCAP user owns the dialogue ID and is the only user that can
release it via a call to ca_rel_dial_id().

Once the TCAP user gets a dialogue ID, it obtains a T_Block by calling the
ca_alloc_tc() function, and creates the TC_BEGIN or TC_UNI primitive in the
T_Block. The TCAP user inserts the TCAP user and TCAP dialogue IDs in the T_Block
dialogue ID field, so when the user issues the ca_put_tc() function call, both the TCAP and
TCAP user recognize both parts of the dialogue ID.

All subsequent calls to ca_put_tc() must reference T_Blocks containing the TCAP
dialogue ID. For debugging, the TCAP user should also place its dialogue ID in the field
allocated for that purpose. The TC_REPLY and TC_CONTINUE primitives to a local TCAP
user’s dialogues from a remote node contain the TCAP user’s dialogue ID.

The function does not have any parameters.

FILES
$SINAP_HOME/Include/ca_error.h

DIAGNOSTICS AND WARNINGS
The ca_get_dial_id() function returns a dialogue ID. If the function returns -1, there is
an error. CASL values for errno are defined in ca_error.h; UNIX values are defined in
sys/errno.h.

The TCAP can return the following errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
meaning.

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the TCAP
boundary using
ss7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP.
6-122 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_dial_id()
SEE ALSO
ca_alloc_tc(), ca_dealloc_tc(), ca_get_tc(), ca_process_tc(),
ca_put_tc(), ca_rel_dial_id()

TC_ERR_OUT_OF_DIAL_ID There are problems with the dialogue IDs.
Either close dialogues with END, release
dialogue IDs, or allocate more dialogue
IDs and reregister.

Error Action
CASL Function Calls 6-123

ca_get_tc()
ca_get_tc() 6-

SYNOPSIS
int ca_get_tc(
 BOOL fwait,
 int (*pfunc)(S32));

DESCRIPTION
The ca_get_tc() function returns an index to an inbound T_Block, which contains a
TCAP component. This function is called whenever the application needs to receive a
TC_BEGIN (CCITT), TC_QRY_W_PERM (ANSI), TC_QRY_WO_PERM (ANSI), or TC_UNI
primitive. For information about the T_Block, see “The T_Block Structure (t_block_t)”
later in this description.

To use this function, a client application must be registered to receive input at the TCAP
boundary.

To control how TCAP assigns internal transaction IDs, you can create a user-defined function
that assigns a unique transaction ID to a TCAP transaction. To do this, specify a pointer to a
user-defined function in the pfunc parameter and pass it the T_Block index as an input
parameter. Note that the user-defined function must assign a unique transaction ID to the
tc_user_id field of the T_Block.

The TCAP starts a transaction timer before it allocates resources (such as the T_Block).

PARAMETERS
* fwait (input)

Specifies whether the function waits for a TCAP component. Specify a value of 1 if you
want the function call to execute in blocking mode (wait for input); otherwise, specify 0. If
you specify 0, the function returns the error CA_ERR_NO_MSUS when there is no input.

* pfunc (input)
Specifies a pointer to a user-supplied function. The pfunc parameter is typically used to
set a tc_user_id in the T_Block. Specify 0 (or greater) for the return value if you want
TCAP to retrieve an index to the next available T_Block. Values less than 1 for the return
value from pfunc cause the error TC_ERR_OUT_OF_TC_USER_ID to be returned by
ca_get_tc after T_Block deallocation.
6-124 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
If you want TCAP to call a user-defined function to assign transaction IDs to TCAP
transactions, specify a pointer to that user-defined function as the value of this parameter.
The input parameter to the user-defined function is the index of the T_Block.

The T_Block Structure (t_block_t)
For the ca_get_tc() function to work, you must set the following fields in the t_block_t
structure, which is defined in the include file tblock.h.

* primitive_type (input/output)
Specifies the TCAP component’s origin. The value TC_REQUEST (or 1) indicates that the
TCAP component is a request; the value TC_INDICATION (or 2) indicates that the TCAP
component is a response. These values refer to constants defined in the include file
$SINAP_HOME/Include/tblock.h.

 typedef struct t_block_s
{
 U8 primitive_type;

U8 primitive_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U16 filler1; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

Insert the following after "U32 buffer_type;" of t_block_t typedef:
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler2; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

S32 tc_user_id; /* CSL->TCU communication */
/* CCITT */

U32 mtp_opc;
 S32 dialogue_id; /* TCU->CSL communication */

/* ANSI */
S32 trans_id; /* TCU->CSL communication */

S32 fwdlnk; /* used by TCAP to link t_block to
the Dialogue/Transaction ID Table */

union
{

tc_chp_t chp;
 tc_dhp_t dhp;

tc_thp_t thp;
 }tc_user;

U32 buffer_type; /* set to ‘TBLK’ at
 initialization time */
} t_block_t;
CASL Function Calls 6-125

ca_get_tc()
* primitive_code (input/output)
Specifies a code for the primitive. (These codes refer to constants defined in the include file
$SINAP_HOME/Include/tblock.h.) The input parameter to the user-defined
function is the index of the T_Block.

If you are using the CCITT/TTC/NTT/China variants of the SINAP/SS7 system, the
following codes indicate the type of primitive received:

TC_UNI TC_RESULT_L
TC_BEGIN TC_RESULT_NL
TC_CONTINUE TC_U_ERROR
TC_END TC_L_CANCEL
TC_U_ABORT TC_U_CANCEL
TC_P_ABORT TC_R_REJECT
TC_NOTICE TC_L_REJECT
TC_INVOKE TC_U_REJECT

For applications based on 1993 TCAP standards, the following types of messages allow
inclusion of a dialogue portion:

TC_BEGIN
TC_CONTINUE
TC_END
TC_U_ABORT

The applications must contain the programming logic to process MSUs that contain a
dialogue portion. Applications based on 1988 TCAP standards are not required to contain
this programming logic. See Chapter 3 for more information on handling MSUs that
contain dialogue portions. For examples of how to code an application to process MSUs
containing dialogue portions, see the sample programs, dials.c and dialr.c, in the
directory, $SINAP_HOME/Samples/ccitt.

If you are using the ANSI variant of the SINAP/SS7 system, the following codes specify
the type of primitive received:

TC_UNI TC_INVOKE_NL
TC_QRY_W_PERM TC_INVOKE_L
TC_QRY_WO_PERM TC_RESULT_NL
TC_CONV_W_PERM TC_RESULT_L
TC_CONV_WO_PERM TC_U_ERROR
TC_RESPONSE TC_L_CANCEL
TC_NO_RESPONSE TC_U_CANCEL
TC_U_ABORT TC_R_REJECT
TC_P_ABORT TC_L_REJECT
TC_NOTICE TC_U_REJECT
6-126 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
* tc_user_id (input/output)
Specifies the TCAP user ID.

* mtp_opc (input/output)
Specifies the originating point code of the node that initiated the message.

Depending on which variant of the SINAP/SS7 system you are using, only one of the following
two fields is applicable. Select the one for your network variant and specify the appropriate
information.

* dialogue_id (input/output)
(CCITT/TTC/NTT/China) Specifies the dialogue ID for this dialogue.

* trans_id (input/output)
(ANSI) Specifies the transaction ID for this transaction.

The following fields are required for all network variants:

* fwdlnk (output)
This field is used by TCAP to link the T_Block to an entry in the transaction ID table.
You should not modify this field.

* chp (input/output)
Specifies the tc_chp_t structure that contains the component-handling primitive being
used. (For more information about the tc_chp_t structure, see “The
Component-Handling Primitive Structure (tc_chp_t)” later in this section.)

Depending on which variant of the SINAP/SS7 system you are using, only one of the following
two fields is applicable. Select the one for your network variant and specify the appropriate
information.

* dhp (input/output)
(CCITT/TTC/NTT/China) Specifies a tc_dhp_t structure that contains
dialogue-handling information for the TCAP component. (For more information about the
tc_dhp_t structure, see “The Dialogue-Handling Primitive Structure (tc_dhp_t)”
later in this section.)

* thp (input/output)
(ANSI) Specifies a tc_thp_t structure that contains transaction-handling information
for the TCAP component. (For more information about the tc_thp_t structure, see “The
Transaction-Handling Primitive Structure (tc_thp_t)” later in this section.)

The following field is required for all network variants. It is internal to the SINAP/SS7 system
and should not be modified.

* buffer_type (output)
CASL Function Calls 6-127

ca_get_tc()
The Component-Handling Primitive Structure (tc_chp_t)
The tc_chp_t structure, which is used for all SINAP/SS7 variants, defines
component-handling information. This structure is defined in the tblock.h include file and
has the following format.

* linked_id (input/output)
Links an operation invocation to a previous operation invocation.

* corr_id (input/output)
Correlates an operation invocation to a previous operation invocation. The value of this
field is in the range 0 to 255. A value of -1 indicates that the field is not applicable.

* invoke_id (input/output)
Identifies an operation invocation. This field is used to indicate the MSU to which this
TCAP component belongs. The value of this field is in the range 0 to 255. A value of -1
indicates that the field is not applicable.

* invoke_id_ind (output)
Indicates whether invoke_id is valid. If this field is reset, invoke_id is valid;
otherwise, it is not. A value of INVALID_INVOKE_ID indicates an invalid invoke_id.

* comp_type (output)
Specifies the component type. A value of HAND_OVER_COMP indicates that the
component is a handover component.

typedef struct tc_chp_s
{
 S16 linked_id;

S16 corr_id;
S16 invoke_id;
U8 invoke_id_ind;
U8 comp_type;

 U32 timer_value;
U8 oper_class;
U8 problem_type;

 U8 problem_code;
U8 problem_specifier;
BOOL last_comp_ind;
U16 extnd_data_size; /* contains data size in extended buffer */
U8 dummy[1];
U8 tot_data_len;
U8 *extnd_data_ptr;/* When registered for XUDT/XUDTS */

 /* points to extended data buffer */
#ifdef _LP_32_64_

U32 filler; /* For User32/Driver64 compatibility */
#endif /* _LP_32_64_ */

U8 data[MAX_DATA_SIZE_C]; /* data based on the primitive code*/
} tc_chp_t;
6-128 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
* timer_value (input/output)
Specifies the maximum lifetime of invoke_id. This field is applicable only when the
value of primitive_code is TC_INVOKE (CCITT), TC_INVOKE_L (ANSI), or
TC_INVOKE_NL (ANSI). The value of this timer should be less than the setting of the
environment variable TCAP_TQ_BINS or the default value of half the sum of
MIN_TQ_BINS and MAX_TQ_BINS which are defined in tcglob.h. For example: (4 +
3601)/2 = 1802.

* oper_class (input/output)
Identifies the type of operating class. Valid values, which refer to constants defined in
tblock.h, are as follows:

1 – Report both success and failure
2 – Report only failure
3 – Report only success
4 – Report neither success nor failure

The TC user should specify OPER_CLASS_1 (report both success and failure) while
preparing a component for a TCAP message to be sent to TCAP, unless the application
specifically requires the use of Class 2, 3, or 4.

* problem_type (output)
Indicates a problem-type tags. This field is valid only if the value of primitive_code
is TC_U_REJECT or TC_L_REJECT. (See tblock.h for a list of valid problem-type
tags).

* problem_code (output)
Indicates the problem code. This field is valid only if the value of primitive_code is
TC_U_REJECT or TC_L_REJECT. (For a list of valid problem codes, see the SINAP/SS7
tblock.h include file.)

* problem_specifier (output)
Indicates the problem specifier. This field is valid only if the value of primitive_code
is TC_U_REJECT or TC_L_REJECT.

* last_comp_ind (output)
TCAP sets this field to indicate whether this is the last TCAP component of the MSU. This
field is applicable only if the value of primitive_code is TC_INVOKE (CCITT),
TC_INVOKE_L (ANSI), or TC_INVOKE_NL (ANSI).

* *extnd_data_ptr (output)
When the application is registered at the TCAPX boundary, this field points to the extended
data buffer (XUDT and XUDTS only).

* extnd_data_size (output)
When the application is registered at the TCAPX boundary, this parameter contains the size
of the data in the extended data buffer (XUDT/XUDTS only).
CASL Function Calls 6-129

ca_get_tc()
* dummy (output)
This field is used as filler.

* tot_data_len (input/output)
Specifies the total length of data in the data field.

* data[MAX_DATA_SIZE] (input/output)
Provides the user data for the TCAP component, based on the value of
primitive_code. As defined in the SINAP/SS7 tblock.h include file, this field
provides up to 240 bytes of data for CCITT or 238 bytes of data for ANSI. For the
CCITT/TTC/NTT/China variants of the SINAP/SS7 system, this field is formatted
according to ITU-T (CCITT) Q.773 Recommendations. For the ANSI variant of the
SINAP/SS7 system, this field is formatted according to ANSI T1.114.3 and T1.114.5
Recommendations. (MAX_DATA_SIZE is defined in the SINAP/SS7 tblock.h include
file.)
6-130 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
Dialogue-Handling Primitive Structure (tc_dhp_t)
The tc_dhp_t structure, used for the CCITT, TTC, and China variants of the SINAP/SS7
system, defines dialogue-handling information. This structure is defined in the tblock.h
include file and has the following format. See the ITU-T (CCITT) Q.771 Recommendations for
a description of the non-SINAP-specific structure’s fields.

typedef struc tc_dhp_s
{

S16 msu_lost_count; /* # of MSU lost by the driver */
S16 write_free_mblk_count; /* # of free M_Block, write queue */
S16 read_free_mblk_count; /* # of free M_Block, read queue */
S16 read_queue_mblk_count; /* # of M_Block in the read queue

pending read */
/***/
/* SCCP Called (destination address)/ Calling (origination address)*/
/* Party Address should be formatted as per the CCITT - Q713 */
/**/

U8 dest_addr[MAX_ADDR_LEN];/* destination TC-user */
U8 orig_addr[MAX_ADDR_LEN];/* origination TC-user */
U8 sccp_3rd_party_addr[MAX_ADDR_LEN];
BOOL comp_present_ind; /* used in primitives of indication */

/* type only */
/* This field is set by the TCAP to */
/* indicate that no component exist */

; /* for the dialogue */
U32 alt_DPC /* alternate DPC for routing label */
U8 tb_options; /* bit-masked tblock options */

#define USE_ALT_DPC 0x01 /* use alt_DPC in MTP routing label */
/* else use DPC from dest_addr */

#define USE_DEST_ORIG_ADDR 0x02 /* use dest-addr and orig_addr in */
/* SCCP header of the TCAP message */

#define use_alt_DPC tb_options /* backward compatibility */
U8 qlty_of_svc; /* acceptable quality of service */
U8 dialogue_end_type;

/* if dialogue is aborted by the transaction Sub Layer (Local or Remote),
then following field contain P Abort Cause or for TC_NOTICE, it contains
information indicating the reason for the exception report, for example that
the message was returned by the SCCP with the reason as specified in Q.711. */

U8 pa_report_cause; /* P Abort Cause or Report Cause */
/* if dialogue is aborted by TC-user, then following field contains
cause of abort and diagnostic information */

U8 tot_ua_info_len; /* user abort info length */
#define MAX_UA_INFO_LEN_C 200

U8 ua_info[MAX_UA_INFO_LEN_C]; /* user abort information */
tc_association_t ahp; ?* association handling part */
U8 priority; /* 0-3 priority values */
U8 hop_count; /* Hop count value to be inserted */

/* into Extended Unit data */
/* 0 = use default hop counter */
/* >0 = insert this value in the

hop counter parameter */
U8 seq_control; /* 0-31 slc values */
U8 importance_parm; /* ss7-2392: 1996 ITU-T Q.713 3.19 */

/* The MSB is a flag to indicate if */
/* SCCP Importance parm exists, if */
/* it does, the 3 LSBs represents */
/* the Importance values 0 to 7. */

} tc_dhp_t;
CASL Function Calls 6-131

ca_get_tc()
* msu_lost_count (output)
Indicates the number of MSUs the driver has lost. This field is not used for sending TCAP
components. The user application should initially set this to zero.

* write_free_mblk_count (output)
Indicates the number of free M_Blocks in the write queue. This field is not used for
sending TCAP components.

* read_free_mblk_count (output)
Indicates the number of free M_Blocks in the read queue. This field is not used for sending
TCAP components.

* read_queue_mblk_count (output)
Indicates the number of M_Blocks in the read queue that are awaiting a read operation.
This field is not used for sending TCAP components.

* dest_addr[MAX_ADDR_LEN] (output)
Indicates the SCCP called-party address (the address of the destination TCAP user), which
is formatted according to ITU-T (CCITT) Q.713 Recommendations. This field is
applicable if the value of primitive_code is TC_UNI or TC_BEGIN.
(MAX_ADDR_LEN is defined in the tblock.h include file.)

* orig_addr[MAX_ADDR_LEN] (output)
Indicates the SCCP calling-party address (the address of the originating TCAP user), which
is formatted according to ITU-T (CCITT) Q.713 Recommendations. This field is
applicable if the value of primitive_code is TC_UNI or TC_BEGIN.
(MAX_ADDR_LEN is defined in the tblock.h include file.)

* sccp_3rd_party_addr[MAX_ADDR_LEN] (output)
For a TCP/IP agent (registered at the SCCP boundary) receiving messages from a TCAP
application, this field specifies the original calling party address information. The TCP/IP
agent overwrites the original SCCP called party address information with its own point
code and pseudo SSN to establish a two-way dialogue with an application registered at the
TCAP boundary on the same SINAP node and system. In this case, the TCP/IP agent
requires the original SCCP calling party address to correctly format and route messages
back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for
CCITT variants) or transaction (for ANSI variants), the field specifies the SCCP called
party address of the TCAP application. In this case, the called party address is required
because the original called party address provided in the tblock and mblock is configured
to address the own signaling point (OSP) code and pseudo SSN of the TCP/IP agent
running on the same SINAP node.

The CASL transparently copies the sccp_3rd_party_addr field between the
tblock and mblock in both directions when sending and receiving tblocks. The
6-132 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
SINAP driver initializes this field in the mblock to zeros when the SINAP node receives
messages from Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the include files
$SINAP_HOME/Include/mblock.h. and
$SINAP_HOME/Include/tblock.h.

* comp_present_ind (output)
TCAP sets this field to indicate whether a component exists for the dialogue. This field is
used only for INDICATION type primitives.

* alt_DPC (output)
Indicates the alternate DPC that is used in the MTP routing label in place of the DPC of the
destination address.

* tb_options (input)
Indicates the bit-masked tblock options. See tblock.h for values of this field, such as
USE_ALT_DPC.

* qlty_of_svc (output)
Indicates the protocol class of service for handling this primitive and the return-on-error
indicator. This field is applicable only if the value of primitive_code is TC_UNI or
TC_BEGIN. Valid values are as follows:

* dialogue_end_type (output)
Indicates the way the dialogue is to end: PREARRANGED_END (1) indicates a
prearranged end and BASIC_END (2) indicates a basic end. This field is applicable only
if the value of primitive_code is TC_END.

* pa_report_cause (output)
Indicates the P_ABORT or REPORT cause. See tblock.h for values of this field, such as
TSL_PA_TIMEOUT.

* tot_ua_info_len (output)
Indicates the length of the ua_info field. This field is applicable only if the value of
primitive_code is TC_U_ABORT.

 Value Description

CONN_LESS_SVC_CLASS_0(0) Connectionless Class 0, no return on error

CONN_LESS_SVC_CLASS_1(1) Connectionless Class 1, no return on error

0x80 Connectionless Class 0, return on error

0x81 Connectionless Class 1, return on error
CASL Function Calls 6-133

ca_get_tc()
* ua_info[MAX_UA_INFO_LEN_C] (output)
Indicates the reason for the abort; this field is applicable only if the value of
primitive_code is TC_U_ABORT. If the dialogue was aborted by the TCAP user, this
field contains the cause of the abort along with diagnostic information.
(MAX_UA_INFO_LEN is defined in the tblock.h include file.)

* ahp (output)
Specifies the tc_association_t structure that contains the application-context
information for the MSU.

* priority (output)
Indicates the message priority for the MSU. This parameter is valid only for SCCP Class 0
and Class 1 messages. The priority value can be in the range of 0 through 3 (lowest to
highest).

* hop_count (output)
Specifies the hop count value to be inserted into the MSU. (XUDT only) The mandatory
hop counter limits the number of global title translations (GTTs) that can be performed on
the message. If the hop_count value is less than 1 or greater than 15, the SINAP/SS7
software defaults to the value 10. Any hop_count value between 1 and 15 is inserted into
the MSU.

* seq_control (output)
Indicates the value to use for the signaling link selection (SLS) field of the MSU’s MTP
routing label. This parameter is valid for SCCP Protocol Class 1 messages only. The valid
value range for the TTC variant is 0 through 15. For all other variants excluding ANSI, the
valid value range is 0 through 31.

For the ANSI network variant, seq_control can have a value in the range of 0 through
255 if the SINAP user specified an eight-bit SLS through the CHANGE-SLSTYPE MML
command. In all other cases the seq_control field can have a value in the range 0-31
(a five-bit SLS). See “SINAP/SS7 Interaction with the SS7 Network” in Chapter 2 for more
information.

* importance_parm (input/output)
For the CCITT (ITU-T) variant, if the environment variable
SCCP_ITU96_IMPORTANCE_PARM is set, and the user registers at the TCAPX
boundary, this field holds the importance parameter (ss7-2392: 1996 ITU-T Q.713 3.19).
The MSB is used as a bit flag to indicate if the SCCP optional Importance parameter is
included in the SCCP XUDT/XUDTS message. If it is, then the 3 LSBs represent
Importance values 0 to 7.

The tc_association_t Structure
The tc_association_t structure contains the dialogue portion of the MSU. The dialogue
portion defines the application-context name and optional user information to be used for the
6-134 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
application-context dialogue. The format of the tc_association_t structure is defined in
the include file $SINAP_HOME/Include/tblock.h and has the following format.

3

* dlgInfoPresent (input)
The TC user initializes this field to one of the following values to indicate whether the
TCAP component contains a dialogue portion:

• TRUE (1) indicates the presence of a dialogue portion.

• FALSE (0) indicates that no dialogue portion is present.

* pduType (output)
TCAP initializes this field to indicate the type of ACSE APDU present in the dialogue
portion of the TCAP component. Possible values are AARQ, AUDT, ABRT, and AARE; see
tcap.h.

* applicationContextName (input)
The TC user initializes this field to the name of an acn_t structure that contains the
application-context name for the dialogue. For more information, see “The acn_t Structure”
later in this chapter.

* userInformation (input)
The TC user initializes this field to the name of a tc_user_data_t structure that
contains optional user information for the dialogue. For more information, see “The
tc_user_data_t Structure” later in this chapter.

* abortSource (output)
When an error occurs, TCAP initializes this field to one of the following values to indicate
who aborted the dialogue:

typedef struct assoc
{

int dlgInfoPresent;
int pduType;

acn_t *applicationContextName;
#ifdef _LP_32_64_

U32 filler; /* For User32/Driver64 compatibility */
#endif /* _LP_32_64_ */

tc_user_data_t userInformation;
int abortSource;
int result;
int resultSourceDiag;

int resultSourceDiagValue;
}tc_association_t;
CASL Function Calls 6-135

ca_get_tc()
• dialogue-service-provider (0) indicates that the service provider aborted
the dialogue, possibly due to a syntax error.

• dialogue-service-user (1) indicates that the TC user aborted the dialogue,
possibly because the specified application-context name is not supported.

* result (output)
TCAP initializes this field to one of the following values to indicate the status of the
association request:

• accepted (0) indicates that the association request has been accepted.

• reject-permanent (1) indicates that the association request has been denied.

* resultSourceDiag (output)
When an error occurs, TCAP initializes this field to a particular type of source diagnostic.
Possible values are TC_SERVICE_USER and TC_SERVICE_PROVIDER.

* resultSourceDiagValue (input)
When aborting a request, the service provider initializes this field to one of the following
values:

• NULL (0)

• no-reason-given (1) can indicate a syntax error

• no-common-dialogue-portion (2)

When aborting a request, the TC user initializes this field to one of the following values:

• NULL (0)

• no-reason-given (1)

• application-context-name-not-supported (2)
6-136 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
The acn_t Structure
The acn_t structure contains the application-context name for the application-context
dialogue. The acn_t structure is defined in the include file
$SINAP_HOME/Include/tblock.h and has the following format.

4

When you design an application to initiate an application-context dialogue or respond to a
TC_BEGIN message that contains a dialogue portion, make sure the application initializes the
acn_t structure to the appropriate application-context name by using either of the following
methods:

• The application can call the function, tc_objmk(), to create the OID, then cast the
results to an acn_t structure pointer, as shown in the following example. (Note that the
acn_t structure stores the object identifier.)

N O T E
objmk() is a utility supplied with the ASN.1 compiler.

• The application can initialize the fields of the acn_t structure to the application-context
name. Note that you must define the application-context name as a properly formatted ASE
OID, encoded according to the rules documented in ITU-T Recommendation X.690, Basic
Encoding Rules.

typedef struct
{

long length;
union {
char *long_buf;
char short_buf[MAX_ACN_SIZE];
} b;

} acn_t;

ptblk->tc_user.dhp.ahp.applicationContextName =
(acn_t *) tc_objmk(0x02, 0x04, 0x01, 0x01, 0x08,
0x03, END_OF_OID);
CASL Function Calls 6-137

ca_get_tc()
The tc_user_data_t Structure
The tc_user_data_t structure contains optional user information for the
application-context dialogue (such as a password, application-initialization data,
protocol-version information, and so on). This user information is exchanged independently of
the remote-service operation and is transparent to TCAP. The tc_user_data_t structure is
defined in the $SINAP_HOME/Include/tblock.h include file and has the following
format.

The fields of the tc_user_data_t structure are as follows:

* size
The TC user initializes this field to the length of the userInfo field.

* userInfo[MAX_USER_INFO]
The TC user initializes this field to define optional user information for the
application-context dialogue. Format this field according to Section 4.2.3 of the 1993
edition of ITU-T Recommendation Q.773. According to Table 49 of the recommendation,
this field must be defined as an ASN.1-encoded sequence of externals. (MAX_USER_INFO
is defined in the $SINAP_HOME/Include/tblock.h include file.)

You can use the ASN.1 compiler to properly format the value of this field. The compiler
creates an ASN.1-encoded sequence of externals from the user information that you
provide. You can then write the compilation results to the userInfo field.

typedef struct tc_user_data_s
{

int size;
#if defined(__LP64__) || defined(_LP_32_64_)

U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

char userInfo[MAX_USER_INFO];
}tc_user_data_t;
6-138 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
The Transaction-Handling Primitive Structure (tc_thp_t)
The tc_thp_t structure, which is used for the ANSI variant of the SINAP/SS7 system,
defines transaction-handling information. This structure is defined in the tblock.h include
file and has the following format. See the ANSI T1.114.1 Recommendations for generic
descriptions of this structure’s fields.

* msu_lost_count (input/output)
Indicates the number of MSUs the SINAP driver has lost. The user application should set
this field to zero initially.

* write_free_mblk_count (output)
Indicates the number of free M_Blocks in the SINAP driver write queue.

* read_free_mblk_count (output)
Indicates the number of free M_Blocks in the read queue.

* read_queue_mblk_count (output)
Indicates the number of M_Blocks in the read queue that are awaiting a SINAP driver
read operation.

typedef struct tc_thp_s
{
 S16 msu_lost_count;
 S16 write_free_mblk_count;
 S16 read_free_mblk_count;
 S16 read_queue_mblk_count;
 U8 dest_addr[MAX_ADDR_LEN];
 U8 orig_addr[MAX_ADDR_LEN];

U8 sccp_3rd_party_addr[MAX_ADDR_LEN];
U8 dest_tid[MAX_TID_SIZE];
U8 orig_tid[MAX_TID_SIZE];
U8 orig_tid_len;
U8 local_tid[MAX_TID_SIZE];
U8 local_tid_len;
U8 packet_type;

 U8 qlty_of_svc;
U8 seq_control;
U8 hop_count;
U8 priority;
BOOL comp_present_ind;
U8 tb_options;
U8 alt_DPC[DPC_LEN];
U8 fictitious_OPC;
U8 trans_end_type;

 U8 pa_report_cause;
 U8 tot_ua_info_len;
 U8 ua_info[MAX_UA_INFO_LEN];
} tc_thp_t;
CASL Function Calls 6-139

ca_get_tc()
* dest_addr[MAX_ADDR_LEN] (input/output)
Indicates the SCCP called-party address (the address of the destination TCAP user), which
is formatted according to ANSI T1.113.3 Recommendations. This field is applicable only
if the value of primitive_code is TC_UNI, TC_QRY_W_PERM, or
TC_QRY_WO_PERM. (MAX_ADDR_LEN is defined in the SINAP/SS7 tblock.h include
file.)

* orig_addr[MAX_ADDR_LEN] (input/output)
Indicates the SCCP calling-party address (the address of the origination TCAP user), which
is formatted according to ANSI T1.113.3 Recommendations. This field is applicable only
if the value of the primitive_code parameter is TC_UNI, TC_QRY_W_PERM, or
TC_QRY_WO_PERM. (MAX_ADDR_LEN is defined in the SINAP/SS7 tblock.h include
file.)

* sccp_3rd_party_addr[MAX_ADDR_LEN] (input/output)
For a TCP/IP agent (registered at the SCCP boundary) receiving messages from a TCAP
application, this field specifies the original calling party address information. The TCP/IP
agent overwrites the original SCCP called party address information with its own point
code and pseudo SSN to establish a two-way dialogue with an application registered at the
TCAP boundary on the same SINAP node and system. In this case, the TCP/IP agent
requires the original SCCP calling party address to correctly format and route messages
back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for
CCITT variants) or transaction (for ANSI variants), the field specifies the SCCP called
party address of the TCAP application. In this case, the called party address is required
because the original called party address provided in the tblock and mblock is configured
to address the own signaling point (OSP) code and pseudo SSN of the TCP/IP agent
running on the same SINAP node.

The CASL transparently copies the sccp_3rd_party_addr field between the
tblock and mblock in both directions when sending and receiving tblocks. The
SINAP driver initializes this field in the mblock to zeros when the SINAP node receives
messages from Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the include files
$SINAP_HOME/Include/mblock.h. and
$SINAP_HOME/Include/tblock.h.

* dest_tid[MAX_TID_SIZE] (input/output)
Indicates the destination transaction ID. For a particular transaction ID, the TC user should
save the destination address, the origination address, and this value. (MAX_TID_SIZE is
defined in the SINAP/SS7 tblock.h include file.)

* orig_tid[MAX_TID_SIZE] (input/output)
Indicates the origination transaction ID. (MAX_TID_SIZE is defined in the SINAP/SS7
tblock.h include file.)
6-140 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
* orig_tid_len (input/output)
Indicates the length of the origination transaction ID. Valid values are 0 or 4.

* local_tid[MAX_TID_SIZE] (output)
Indicates the local transaction ID. (MAX_TID_SIZE is defined in the SINAP/SS7
tblock.h include file.)

* local_tid_len (output)
Indicates the length of the local transaction ID. Valid values are 0 or 4.

* packet_type (output)
Indicates the TCAP packet type. A value of zero indicates that TCAP will translate the TC
primitive to a TCAP packet type. A non-zero value indicates that the SINAP/SS7 system
will use this field directly as a TCAP packet. See tcap.h for a list of nonzero packet types,
such as TSL_PT_UNI.

* qlty_of_svc (input/output)
Indicates the protocol class of service to use when sending this MSU and the
return-on-error indicator. This field is applicable only if the value of primitive_code
is TC_UNI or TC_BEGIN. Valid values are as follows:

* seq_control (input/output)
Indicates the signaling link selection (SLS) code of the link over which messages are sent.

For quality of service requiring Class 0 (CONN_LESS_SVC_CLASS_0), set the
seq_control field to 0. For quality of service requiring Class 1
(CONN_LESS_SVC_CLASS_1), set the seq_control field to the appropriate service
link selection (SLS) value (0 through 31).

* hop_count (output)
Specifies the hop count value to be inserted into the MSU. (XUDT only) The mandatory
hop counter limits the number of global title translations (GTTs) that can be performed on
the message. The valid range of values for the hop count is 1 through 15. The default count
is 12.

 Value Description

CONN_LESS_SVC_CLASS_0(0) Connectionless Class 0, no return on error

CONN_LESS_SVC_CLASS_1(1) Connectionless Class 1, no return on error

0x80 Connectionless Class 0, return on error

0x81 Connectionless Class 1, return on error
CASL Function Calls 6-141

ca_get_tc()
* priority (input/output)
Indicates the transaction priority (in the range 0 to 3) for each transaction-handling
primitive. The priority of the MSU’s SIO octet is based on this value.

* tb_options (input)
Indicates one of the following bit-masked tblock option codes to use for message
routing.

* comp_present_ind (output)
Indicates whether the transaction contains a component: 0 indicates that there is no
component present; 1 indicates that there is a component present. This field is used for
INDICATION type primitives only.

* alt_DPC[DPC_LEN] (output)
Indicates the alternate DPC that is used in the MTP routing label in place of the DPC of the
destination address. (DPC_LEN is defined in the SINAP/SS7 tblock.h include file.)

* fictitious_OPC (input/output)
Indicates whether the MTP routing label contains the point code of the originating address
or a fictitious OPC. A value of 1 indicates the MTP routing label contains a fictitious OPC.
Otherwise, the MTP routing label uses the OPC in orig_addr.

* trans_end_type (input/output)
Indicates how the transaction is to be ended: PREARRANGED_END(1) indicates a
prearranged end and BASIC_END(2) indicates a basic end. This field is applicable if the
value of primitive_code is TC_QRY_W_PERM.

* pa_report_cause (output)
Indicates the P_ABORT or REPORT cause. If the user aborts the transaction, this field
contains the cause of the abort, along with diagnostic information. See tcap.h for
possible values of this field, such as TSL_PA_TIMEOUT.

* tot_ua_info_len (output)
Indicates the length of the ua_info field. This field is applicable only if the value of
primitive_code is TC_U_ABORT.

Code Description

0x01 Use the alt_DPC in the MTP routing label if set. Otherwise,
use the DPC specified in the dest_addr field.

0x02 Use the destination address specified in the dest_addr
field and the origination address specified in the orig_addr
field of the SCCP header of the TCAP message. (Used for
backward compatibility.)
6-142 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
* ua_info [MAX_UA_INFO_LEN_A] (output)
Indicates the reason for the abort. If the user aborts the transaction, this field contains the
cause of the abort along with diagnostic information. This field is applicable only if the
value of primitive_code is TC_U_ABORT.

FILES
 $SINAP_HOME/Include/arch.h, ca_error.h

RETURN VALUES
The ca_get_tc() function returns an index to the next available T_Block. If the function
returns -1, there is an error; see errno for error number and description. See ca_error.h
for the CASL error number and meaning; see sys/errno.h for UNIX errors.

A possible CASL value for errno follows.

The TCAP can return the following errors.

Value Meaning

CA_ERR_NO_MSUS There are no MSUs in the batch buffer.

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the TCAP
boundary using
ss7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP. The
SINAP/SS7 system provides an immediate
return; ca_get_tc() is not executed.

TC_ERR_OUT_OF_TRANS_ID Increase the value of the max_trans_id
parameter of the ca_register()
function to reregister the application with a
greater number of transaction IDs. The
SINAP/SS7 system deallocates the
T_Block; ca_get_tc() is not
executed. TC_CONTINUE (CCITT) or
TC_CONV_W_PERM and
TC_CONV_WO_PERM (ANSI); TC_END
(CCITT) or TC_RESPONSE (ANSI); and
TC_P_ABORT and TC_U_ABORT
primitives do not return this error.
CASL Function Calls 6-143

ca_get_tc()
TC_ERR_T_BLOCK_CAPACITY_EXHAUSTED Increase the value of the tc_count
parameter of the ca_register()
function to reregister the application with a
greater number of T_BLOCKs. The
SINAP/SS7 system deallocates the
T_Block; ca_get_tc() is not
executed.

TC_ERR_INV_TSL_STATE Report this error, along with all debug
information, to the Customer Assistance
Center (CAC). The SINAP/SS7 system
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_INV_TSL_EVENT Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_INV_ISM_STATE Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_INV_ISM_EVENT Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_TSL_TEQ_OVERFLOW Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_ISM_TEQ_OVERFLOW Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_PTR_TO_USF_NOT_SET No user-defined pointer.

TC_ERR_OUT_OF_TC_USER_ID A user-supplied function has exhausted its
supply of user IDs. Check to ensure that the
supply of IDs is large enough.

TC_ERR_TRANS_ID_NOT_ASSIGNED Before calling ca_get_tc(), the process
must call the ca_get_trans_id()
function to obtain a transaction ID for the
transaction.

Error Action
6-144 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc()
The ca_get_tc() function calls the ca_alloc_tc() function and can also return the
errors listed under that function. Under certain circumstances ca_get_tc() may call
ca_dealloc_tc(); therefore, it may return the errors listed under ca_dealloc_tc().

SEE ALSO
ca_alloc_tc(), ca_dealloc_tc(), ca_process_tc(), ca_put_tc()

TC_ERR_TCAP_OWN_TRANS_ID The transaction is not under application
control. A TC_RESPONSE primitive will
release this transaction. (As per ANSI
Recommendations, a TC_NO_RESPONSE
primitive, which is prearranged by both TC
users, causes messages to be discarded
rather than being sent to the network.) No
further action is required.

Error Action
CASL Function Calls 6-145

ca_get_tc_ref()
ca_get_tc_ref() 6-

SYNOPSIS
int ca_get_tc_ref(

BOOL *prefwait,
int (*pfunc)(S32));

{
}

DESCRIPTION
The ca_get_tc_ref() function returns an index to an incoming T_Block, which contains
a TCAP component. The ca_get_tc_ref() function is almost identical to the
ca_get_tc() function; however, in place of the fwait parameter (which is passed by
value), ca_get_tc_ref() uses the parameter *prefwait.

The *prefwait parameter points to the global variable REFWAIT, whose value is a Boolean
indicator that specifies whether the ca_get_tc_ref() function call is to execute in blocking
or nonblocking mode: 1 specifies blocking mode and 0 specifies nonblocking mode. REFWAIT
is defined in the include file sinapintf.h.

In blocking mode, ca_get_tc_ref() will not return until it reads a T_Block from the
queue; if there are none, normal application processing is suspended until one arrives. In
nonblocking mode, ca_get_tc_ref() returns an error message if there is nothing on the
queue; normal application processing is not suspended as it is when the function is called in
blocking mode.

Since *prefwait is a pointer to the variable REFWAIT, it is possible for the calling process,
an interrupt-handler function, or another application process to dynamically change the
execution mode of the ca_get_tc_ref() function call by changing the value of REFWAIT
(for example, from blocking to nonblocking mode).

N O T E
The CASL function ca_get_tc() calls the
ca_get_tc_ref() function and initializes REFWAIT to the
value of its fwait parameter. The ca_get_tc() function
also passes a pointer to REFWAIT to the ca_get_tc_ref()
function’s *prefwait parameter, thus enabling the calling
6-146 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc_ref()
process, an interrupt-handler function, or another application
process to dynamically change the execution mode of the
ca_get_tc() function call.

PARAMETERS
* *prefwait (input)

Specifies a pointer to the REFWAIT global variable, which is a Boolean indicator that
defines whether to execute the ca_get_tc_ref() function call in blocking or
nonblocking mode. Set REFWAIT to 1 to execute the ca_get_tc_ref() function call
in blocking mode (no return until a T_Block is read from the queue); set REFWAIT to 0
for nonblocking mode (return an error if there is nothing on the queue).

* *pfunc (input)
Specifies a pointer to a user-supplied function that returns a TCAP user
dialogue/transaction ID. Specify 0 if you want TCAP to retrieve an index to the next
available T_Block.

To control the way TCAP user IDs are assigned to TCAP dialogues/transactions, use this
parameter to specify a pointer to a user-supplied function that returns a unique TCAP user
ID in the tc_user_id field of the T_Block.

FILES
arch.h, ca_error.h

RETURN VALUES
The ca_get_tc_ref() function returns an index to the next available T_Block. If the
function returns -1, there is an error; see errno for the error number and meaning. See
ca_error.h for the CASL error number and meaning; see sys/errno.h for UNIX errors.

A possible CASL value for errno is as follows:

Error Meaning

CA_ERR_NO_MSUS There are no MSUs on the queue.
CASL Function Calls 6-147

ca_get_tc_ref()
The TCAP can return the following errors.

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Re-register the application with the
registration parameter
ss7_input_boundary set to
SS7_INPUT_BOUNDARY_TCAP.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_ERR_OUT_OF_TRANS_ID Re-register the application and
increase the value of the
max_dialogue_id registration
parameter. The SINAP/SS7 system
deallocates the T_Block and does
not execute ca_get_tc_ref().
CONTINUE, END, and ABORT
primitive code messages do not
return this error.

TC_ERR_OUT_OF_DIAL_ID Close open dialogues with END,
release dialogue IDs, or allocate
more dialogue IDs and re-register the
application. If the primitive code is
TC_BEGIN, the SINAP/SS7 system
stops the transaction timer, releases
the transaction ID, and deallocates
the T_Block. CONTINUE, END,
and ABORT primitive code messages
do not return this error.

TC_ERR_TRANS_ID_ALREADY_RELEASED Use a BEGIN message to initiate a
dialogue in TCAP. The SINAP/SS7
system provides an immediate return;
ca_get_tc_ref() is not
executed.

TC_ERR_T_BLOCK_CAPACITY_EXHAUSTED Re-register the application with a
greater number of T_Blocks. The
SINAP/SS7 system deallocates the
T_Block and does not execute
ca_get_tc_ref().
6-148 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_tc_ref()
TC_ERR_INV_TSL_STATE Report this error to the CAC, along
with all relevant debug information.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_ERR_INV_TSL_EVENT Report this error to the CAC, along
with all relevant debug information.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_INV_ISM_STATE Report this error to the CAC, along
with all relevant debug information.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_INV_ISM_EVENT Report this error to the CAC, along
with all relevant debug information.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_ERR_INV_TEQM_OVERFLOW Report this error to the CAC, along
with all relevant debug information.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_ERR_TSL_TEQ_OVERFLOW Report this error to the CAC, along
with all relevant debug information.
The SINAP/SS7 system provides an
immediate return;
ca_get_tc_ref() is not
executed.

TC_ERR_ISM_TEQ_OVERFLOW Report this error to the CAC, along
with all relevant debug information.

TC_ERR_PTR_TO_USF_NOT_SET No user-defined pointer.

Error Action
CASL Function Calls 6-149

ca_get_tc_ref()
TC_ERR_OUT_OF_DIAL_ID There is a problem with dialogue IDs.
Either close open dialogues with
END, release dialogue IDs, or
allocate more dialogue IDs and
re-register the application.

TC_ERR_OUT_OF_TC_USER_ID A user-supplied function has
exhausted its supply of user IDs.
Make sure that the supply of IDs is
large enough.

TC_ERR_DIAL_ID_ALREADY_RELEASED The application must obtain a
dialogue ID before starting the
dialogue.

TC_ERR_TCAP_OWN_DIAL_ID The dialogue is not under application
control. An END message will release
this dialogue. (As defined in ITU-T
(CCITT) Recommendation Q.775 and
ANSI Recommendation T1.114.5, a
prearranged END will not cause
messages to be sent to the network.)
No further action is required.

Error Action
6-150 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_trans_id()
ca_get_trans_id() 6-

SYNOPSIS
int ca_get_trans_id();

DESCRIPTION
The ca_get_trans_id() function returns a unique transaction ID for a TCAP transaction.
The calling process uses this transaction ID to identify multiple TCAP components that belong
to a single transaction. This function is used in the ANSI variant of the SINAP/SS7 system. The
CCITT/TTC/NTT/China variants of the SINAP/SS7 system uses the function:
ca_get_dial_id().

This transaction ID remains in effect for the duration of the transaction. The calling process can
call the ca_rel_trans_id() function to explicitly release the transaction ID, or it can do
nothing. If the calling process does not call ca_rel_trans_id(), TCAP will release the
transaction ID when it detects that the transaction has terminated. To effectively manage the
supply and use of transaction IDs, the calling process should call ca_rel_trans_id() after
terminating the transaction.

For the SINAP/SS7 system to route TCAP components belonging to a specific transaction, the
TCAP and TCAP user must assign a transaction ID locally. ANSI Recommendations specify
that the TCAP user must assign a transaction ID when it initiates a new transaction. To manage
TCAP transactions, TCAP assigns internal transaction IDs (IDs that are visible only to
SINAP/SS7 processes and the SINAP/SS7 TCAP user) whenever a remote TC-user issues a
TC_UNI, TC_QRY_W_PERM, or TC_QRY_WO_PERM primitive.

Because the TCAP component sublayer uses the transaction ID as the key to access, store, and
retrieve TCAP components, there is a potential problem when two different functions assign
transaction IDs from the same pool of values. To accommodate the transaction ID assignment
by both the TCAP user and TCAP, the SINAP/SS7 system provides two assignment paths: one
for input and one for output.

On input, the TCAP user must issue a ca_get_tc() function call to receive the next available
primitive (transaction or component). The trans_id parameter in the ca_get_tc()
function contains the address of the function that the TCAP user wants TCAP to call when a
remote node starts a new transaction; TCAP calls this function only when a new transaction is
started.
CASL Function Calls 6-151

ca_get_trans_id()
On output, the TCAP user obtains a TCAP transaction ID by calling ca_get_trans_id(),
then obtains a T_Block by calling ca_alloc_tc(). The TCAP user creates the TC_UNI,
TC_QRY_W_PERM, or TC_QRY_WO_PERM primitive in the T_Block and inserts the TCAP
user and TCAP IDs in the T_Block trans_id parameter. When ca_put_tc() is called,
the TCAP and TCAP user are aware of both parts of the transaction ID. All subsequent calls to
ca_put_tc() must refer to T_Blocks that contain this transaction ID. For debugging, the
TCAP user should also place its transaction ID in the field allocated for that purpose.

FILES
 arch.h, ca_error.h, tblock.h

RETURN VALUES
The ca_get_trans_id() function returns a unique transaction ID. If the function returns
-1, there is an error; see errno for error number and description. See ca_error.h for the
CASL error number and meaning; see sys/errno.h for UNIX errors.

The TCAP can return the following error.

SEE ALSO
ca_get_tc(), ca_rel_trans_id()

Error Action

TC_ERR_OUT_OF_TRANS_ID Do one of the following:
• Issue a TC_RESPONSE primitive.
• Call the ca_rel_trans_id() function

to release transaction IDs that are no
longer being used.

• Call the ca_register() function and
increase the value of the
max_trans_id parameter.
6-152 SINAP/SS7 Programmer’s Guide R8052-17

ca_process_tc()
ca_process_tc() 6-

SYNOPSIS
int ca_process_tc(

 proc_tc_t *pstev,
 int (*pfunc)(S32));

DESCRIPTION
An application process calls ca_process_tc() to take control of TCAP component
processing. This function simplifies service creation by accessing inbound TCAP components
and distributing them to client-specified processing functions that are based on a finite state
machine operation model. In this manner, the ca_process_tc() function acts as a main
program for a server process and is thus suitable for cloned operation.

To use ca_process_tc(), you must construct a state/event table that describes how the
function is to process components. The table must take the format of the structure proc_tc_t,
which is defined in the include file proc_tc.h. You must also construct a series of functions
that process individual TCAP components under specific constraints. After you create these
items, you can create the main program of the client application, using the basic flow shown
here.

main()
{
ca_register();
ca_process_tc();
ca_terminate();
}

PARAMETERS
* pstev (input)

Specifies a pointer to a proc_tc_t structure that contains the address of each function
for each state and event listed in a state/event table you provide. For more information, see
“The proc_tc_t Structure” later in this section.

* pfunc (input)
Specifies a pointer to a user-supplied function.
CASL Function Calls 6-153

ca_process_tc()
The proc_tc_t Structure
To construct a state/event table, use the proc_tc_t structure, which is shown here. The
structure is defined in the include file proc_tc.h.

* entry[MAX_EVENTS] (input)
Specifies the next entry to process. For more information, see “The entry_t Structure,”
which follows. (MAX_EVENTS is defined in the SINAP/SS7 proc_tc.h include file.)

N O T E
You should declare the state/event table as follows:

proc_tc_t tc_state_tbl[MAX_STATES];

The entry_t Structure
The entry_t structure contains the following fields and is defined in the include file
proc_tc.h.

* event_type (input)
Specifies the type of event to process. Possible values are 1 for IPC events and 2 for TCAP
events.

* event (input)
Specifies the event to process. See the include file iblock.h for a list of possible IPC
events and messages. See the include file tblock.h for a list of TCAP primitive types.

* pfunction (input)
Specifies a pointer to a user-supplied function that performs state-event processing.

typedef struct proc_tc_s
{

entry_t entry[MAX_EVENTS];
} proc_tc_t;

typedef struct entry_s
{
 U8 event_type;
 int event;
 void (*pfunction)();
} entry_t;
6-154 SINAP/SS7 Programmer’s Guide R8052-17

ca_process_tc()
FILES
arch.h, ca_error.h, iblock.h, tblock.h, proc_tc.h

 RETURN VALUES
The ca_process_tc() function returns -1 if there is an error; see errno for error number
and description. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

The TCAP can return the following error.

This function performs a ca_get_msg() and can also return the errors listed under that
function.

SEE ALSO
ca_alloc_tc(), ca_dealloc_tc(), ca_get_msg(), ca_get_tc(),
ca_get_trans_id(), ca_put_tc(), ca_rel_trans_id()

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the
TCAP boundary using
ss7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP.
The SINAP/SS7 system provides an
immediate return;
ca_process_tc() is not
executed.
CASL Function Calls 6-155

ca_put_tc()
ca_put_tc() 6-

SYNOPSIS
int ca_put_tc(
 S32 tb_index);

DESCRIPTION
The TCAP client application calls the ca_put_tc() function to deliver a TCAP component
to another TCAP application. When this function is called, TCAP packages the TCAP
component in an MSU and calls the ca_put_msu_int() function to deliver the MSU to the
SCCP. The SCCP then takes over processing, calling the ca_put_msu() function to deliver
the MSU to the MTP for transmission to its destination.

PARAMETERS
* tb_index (input)

Specifies the index to the T_Block array returned by the client’s primitive request. The
structure of the T_Block is defined in the include file tblock.h. For a description of
this structure’s fields, see the following section, “The T_Block Structure
(t_block_t).”
6-156 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
The T_Block Structure (t_block_t)
For the ca_put_tc() function to work, you must set the following fields in t_block_t
structure, which is defined in the include file tblock.h.

* primitive_type (input/output)
Specifies the TCAP component’s origin as shown in the following chart.

Value Origin

TC_REQUEST (1) Request

TC_INDICATION (2) Response

 typedef struct t_block_s
{
 U8 primitive_type;

U8 primitive_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U16 filler1; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

Insert the following after "U32 buffer_type;" of t_block_t typedef:
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler2; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

S32 tc_user_id; /* CSL->TCU communication */
/* CCITT */

U32 mtp_opc;
 S32 dialogue_id; /* TCU->CSL communication */

/* ANSI */
S32 trans_id; /* TCU->CSL communication */

S32 fwdlnk; /* used by TCAP to link t_block to
the Dialogue/Transaction ID Table */

union
{

tc_chp_t chp;
 tc_dhp_t dhp;

tc_thp_t thp;
 }tc_user;

U32 buffer_type; /* set to ‘TBLK’ at
 initialization time */
} t_block_t;
CASL Function Calls 6-157

ca_put_tc()
These values refer to constants defined in the include file
$SINAP_HOME/Include/tblock.h.

* primitive_code (input/output)
Specifies a code for the primitive. (These codes refer to constants defined in the include file
$SINAP_HOME/Include/tblock.h.) The input parameter to the user-defined
function is the index of the T_Block.

If you are using the CCITT/TTC/NTT/China variants of the SINAP/SS7 system, specify
one of the following codes to indicate the type of primitive being used:

TC_UNI TC_RESULT_L
TC_BEGIN TC_RESULT_NL
TC_CONTINUE TC_U_ERROR
TC_END TC_L_CANCEL
TC_U_ABORT TC_U_CANCEL
TC_P_ABORT TC_R_REJECT
TC_NOTICE TC_L_REJECT
TC_INVOKE TC_U_REJECT

If you are using the ANSI variant of the SINAP/SS7 system, specify one of the following
codes to indicate the type of primitive being used:

TC_UNI TC_INVOKE_NL
TC_QRY_W_PERM TC_INVOKE_L
TC_QRY_WO_PERM TC_RESULT_NL
TC_CONV_W_PERM TC_RESULT_L
TC_CONV_WO_PERM TC_U_ERROR
TC_RESPONSE TC_L_CANCEL
TC_NO_RESPONSE TC_U_CANCEL
TC_U_ABORT TC_R_REJECT
TC_P_ABORT TC_L_REJECT
TC_NOTICE TC_U_REJECT

* tc_user_id (input)
Specifies the TCAP user ID. This field is not used for sending TCAP components.

The following fields are variant-specific. Specify the appropriate field, depending on the variant
of the SINAP/SS7 system you are using.

TC_REQUESTX (3) Request. Ensures components are carried in an XUDT
message. This primitive is valid only if the application is
registered with CASL at the input boundary
SS7_INPUT_BOUNDARY_TCAPX.

Value Origin
6-158 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* mtp_opc (input)
Specifies the originating point code of the node that initiated the message.

* dialogue_id (input/output)
(CCITT/TTC/NTT/China) Specifies the dialogue ID for this dialogue. Use the dialogue ID
returned from the call to ca_get_dial_id() or from within the T_Block returned by
ca_get_tc(). If a single dialogue consists of multiple TCAP components, assign the
same dialogue ID to each component.

* trans_id (input/output)
(ANSI) Specifies the transaction ID for this transaction. Use the transaction ID returned
from the call to ca_get_trans_id() or from within the T_Block returned by
ca_get_tc(). If a single transaction consists of multiple TCAP components, assign the
same transaction ID to each component.

The following fields are applicable to all network variants of the SINAP/SS7 system:

* fwdlnk (input)
This field is used by TCAP to link the T_Block to an entry in the Dialogue or the
Transaction ID table. You should not modify this field.

* chp (input/output)
Specifies the tc_chp_t structure that contains component-handling information for the
TCAP component. (For more information about the tc_chp_t structure, see “The
Component-Handling Primitive Structure (tc_chp_t)” later in this section.)

The following fields are variant-specific. Specify the appropriate field, depending on the variant
of the SINAP/SS7 system you are using.

* dhp (input/output)
(CCITT/TTC/NTT/China) Specifies a tc_dhp_t structure that contains
dialogue-handling information for the TCAP component. (For more information about the
tc_dhp_t structure, see “The Dialogue-Handling Primitive Structure (tc_dhp_t)”
later in this section.)

* thp (input/output)
(ANSI) Specifies a tc_thp_t structure that contains transaction-handling information
for the TCAP component. (For more information about this structure, see “The
Transaction-Handling Primitive Structure (tc_thp_t)” later in this section.)

The following fields are applicable to all network variants of the SINAP/SS7 system:

* buffer_type (input)
This field is set to TBLK at initialization. The field is internal to the SINAP/SS7 system and
you should not modify it.
CASL Function Calls 6-159

ca_put_tc()
The Component-Handling Primitive Structure (tc_chp_t)
The tc_chp_t structure, which is used for all SINAP/SS7 variants, defines
component-handling information. This structure is defined in the tblock.h include file and
has the following format.

* linked_id (input/output)
Links an operation invocation to a previous operation invocation.

* corr_id (input/output)
Correlates an operation invocation to a previous operation invocation. The value of this
field is in the range 0 through 255. A value of -1 indicates that the field is not applicable.

* invoke_id (input)
Identifies an operation invocation. This field is used to indicate the MSU to which this
TCAP component belongs. The value of this field is in the range 0 through 255. A value
of -1 indicates that the field is not applicable.

* invoke_id_ind (output)
Indicates whether invoke_id is valid. If this field is reset, the invoke_id is valid;
otherwise, it is not. This field is used only in indication type primitives. A value of
INVALID_INVOKE_ID indicates an invalid invoke_id.

* comp_type (output)
Specifies the component type. A value of HAND_OVER_COMP indicates that the
component is a handover component.

typedef struct tc_chp_s
{
 S16 linked_id;

S16 corr_id;
S16 invoke_id;
U8 invoke_id_ind;
U8 comp_type;

 U32 timer_value;
U8 oper_class;
U8 problem_type;

 U8 problem_code;
U8 problem_specifier;
BOOL last_comp_ind;
U16 extnd_data_size; /* contains data size in extended buffer */
U8 dummy[1];
U8 tot_data_len;
U8 *extnd_data_ptr;/* When registered for XUDT/XUDTS */

 /* points to extended data buffer */
#ifdef _LP_32_64_

U32 filler; /* For User32/Driver64 compatibility */
#endif /* _LP_32_64_ */

U8 data[MAX_DATA_SIZE_C]; /* data based on the primitive code*/
} tc_chp_t;
6-160 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* timer_value (input/output)
Specifies the maximum lifetime of the invoke_id. This field is applicable only when the
value of primitive_code is TC_INVOKE (CCITT), TC_INVOKE_L (ANSI), or
TC_INVOKE_NL (ANSI). The value of this timer should be less than the setting of the
environment variable TCAP_TQ_BINS or the default value of half the sum of
MIN_TQ_BINS and MAX_TQ_BINS which are defined in tcglob.h. For example: (4 +
3601)/2 = 1802.

* oper_class (input/output)
Identifies the type of operating class. Valid values, which refer to constants defined in
tblock.h, are as follows:

1 – Report both success and failure
2 – Report only failure
3 – Report only success
4 – Report neither success nor failure

The TC user should specify OPER_CLASS_1 (report both success and failure) while
preparing a component for a TCAP message to be sent to TCAP, unless the application
specifically requires the use of Class 2, 3, or 4.

* problem_type (input)
Specifies a problem type tag. This field is valid only if the value of primitive_code is
TC_U_REJECT or TC_L_REJECT.

For the CCITT network variant, valid codes are:

For the ANSI network variant, valid codes are:

Code Problem Type Indicated

0x80 General

0x81 Invoke

0x82 Return result

0x83 Return error

Code Problem Type Indicated

0x1 General

0x2 Invoke

0x3 Return result

0x4 Return error
CASL Function Calls 6-161

ca_put_tc()
* problem_code (input)
Specifies a code associated with the problem type.

* problem_specifier (input)
Specifies the value associated with the specified problem type. (See the problem_type
parameter.) The appropriate values for the network variant being used and the problem type
specified are listed in the following chart.

Problem Type Value Description

General Problem (GP)
CCITT

ANSI

0x00
0x01
0x02

0x01
0x02
0x03

Unrecognized component
Mistyped component
Badly structured component

Unrecognized component
Incorrect component portion
Badly structured component portion

Invoke Problem (IP)
CCITT

ANSI

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x01
0x02
0x03
0x04

Duplicate invoke ID
Unrecognized operation
Mistyped parameter
Resource limitation
Initiating release
Unrecognized linked ID
Linked response unexpected
Unexpected linked operation

Duplicate invoke ID
Unrecognized operation
Incorrect parameter
Unrecognized correlation ID

Return Result Problem (RRP)
CCITT

ANSI

0x00
0x01
0x02

0x01
0x02
0x03

Unrecognized invoke ID
Returned result unexpected
Mistyped parameter

Unrecognized correlation ID
Unexpected returned result
Incorrect parameter
6-162 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* last_comp_ind (output)
TCAP sets this field to indicate whether this is the last TCAP component of the MSU. This
field is applicable only if the value of primitive_code is TC_INVOKE (CCITT),
TC_INVOKE_L (ANSI), or TC_INVOKE_NL (ANSI).

* *extnd_data_ptr (input)
This field points to the extended data buffer only if the TC user application is registered at
the input boundary SS7_INPUT_BOUNDARY_TCAPX. For applications registered at the
at the TCAPX boundary, CASL allocates 2048-byte component buffers (one per tblock). If
your application is not registered at the TPACX boundary, set this field to 0.

* extnd_data_size (input)
This field contains the data size in the extended buffer. This field is valid only if the
application is registered at the input boundary SS7_INPUT_BOUNDARY_TCAPX. If your
application is not registered at the input boundary, set this field to 0.

* dummy (output)
This field is used as filler.

* tot_data_len (input/output)
Specifies the total length of data in the data field.

* data[MAX_DATA_SIZE] (input/output)
Provides the user data for the TCAP component, based on the value of
primitive_code. As defined in the SINAP/SS7 tblock.h include file, this field
provides up to 240 bytes of data for CCITT or 238 bytes of data for ANSI. For the
CCITT/TTC/NTT/China variants of the SINAP/SS7 system, this field is formatted
according to ITU-T (CCITT) Q.773 Recommendations. For the ANSI variant of the
SINAP/SS7 system, this field is formatted according to ANSI T1.114.3 and T1.114.5
Recommendations. (MAX_DATA_SIZE is defined in the SINAP/SS7 tblock.h include
file.)

Return Error Problem (REP)
CCITT

ANSI

0x00
0x01
0x02
0x03
0x04

0x01
0x02
0x03
0x04
0x05

Unrecognized invoke ID
Returned error unexpected
Unrecognized error
Unexpected error
Mistyped parameter

Unrecognized correlation ID
Unexpected returned error
Unrecognized error
Unexpected error
Incorrect parameter

Problem Type Value Description
CASL Function Calls 6-163

ca_put_tc()
Dialogue-Handling Primitive Structure (tc_dhp_t)
The tc_dhp_t structure, which is used for the CCITT/TTC/NTT/China variants of the
SINAP/SS7 system, defines dialogue-handling information. This structure is defined in the
tblock.h include file and has the following format. See the ITU-T (CCITT) Q.771
Recommendations for a description of the structure’s fields.

typedef struc tc_dhp_s
{

S16 msu_lost_count; /* # of MSU lost by the driver */
S16 write_free_mblk_count; /* # of free M_Block, write queue */
S16 read_free_mblk_count; /* # of free M_Block, read queue */
S16 read_queue_mblk_count; /* # of M_Block in the read queue

pending read */
/***/
/* SCCP Called (destination address)/ Calling (origination address)*/
/* Party Address should be formatted as per the CCITT - Q713 */
/**/

U8 dest_addr[MAX_ADDR_LEN];/* destination TC-user */
U8 orig_addr[MAX_ADDR_LEN];/* origination TC-user */
U8 sccp_3rd_party_addr[MAX_ADDR_LEN];
BOOL comp_present_ind; /* used in primitives of indication */

/* type only */
/* This field is set by the TCAP to */
/* indicate that no component exist */
/* for the dialogue */

U32 alt_DPC; /* alternate DPC for routing label */
U8 tb_options; /* bit-masked tblock options */

#define USE_ALT_DPC 0x01 /* use alt_DPC in MTP routing label */
/* else use DPC from dest_addr */

#define USE_DEST_ORIG_ADDR 0x02 /* use dest-addr and orig_addr in */
/* SCCP header of the TCAP message */

#define use_alt_DPC tb_options /* backward compatibility */
U8 qlty_of_svc; /* acceptable quality of service */
U8 dialogue_end_type;

/* if dialogue is aborted by the transaction Sub Layer (Local or Remote),
then following field contain P Abort Cause or for TC_NOTICE, it contains
information indicating the reason for the exception report, for example that
the message was returned by the SCCP with the reason as specified in Q.711. */

U8 pa_report_cause;/* P Abort Cause or Report Cause */
/* if dialogue is aborted by TC-user, then following field contains
cause of abort and diagnostic information */

U8 tot_ua_info_len; /* user abort info length */
#define MAX_UA_INFO_LEN_C 200

U8 ua_info[MAX_UA_INFO_LEN_C]; /* user abort information */
tc_association_tahp; /* association handling part */
U8 priority; /* 0-3 priority values */
U8 hop_count; /* Hop count value to be inserted */

/* into Extended Unit data */
/* 0 = use default hop counter */
/* >0 = insert this value in the
 hop counter parameter */

U8 seq_control; /* 0-31 slc values */
U8 importance_parm; /* ss7-2392: 1996 ITU-T Q.713 3.19 */

/* The MSB is a flag to indicate if */
/* SCCP Importance parm exists, if */
/* it does, the 3 LSBs represents */
/* the Importance values 0 to 7. */

} tc_dhp_t;
6-164 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* msu_lost_count (input)
Indicates the number of MSUs the driver has lost. This field is not used for sending TCAP
components. The user application should initially set this to zero.

* write_free_mblk_count (input)
Indicates the number of free M_Blocks in the write queue. This field is not used for
sending TCAP components.

* read_free_mblk_count (input)
Indicates the number of free M_Blocks in the read queue. This field is not used for sending
TCAP components.

* read_queue_mblk_count (input)
Indicates the number of M_Blocks in the read queue that are awaiting a read operation.
This field is not used for sending TCAP components.

* dest_addr[MAX_ADDR_LEN] (input)
Indicates the SCCP called-party address (the address of the destination TCAP user), which
is formatted according to ITU-T (CCITT) Q.713 Recommendations. This field is
applicable if the value of primitive_code is TC_UNI or TC_BEGIN.
(MAX_ADDR_LEN is defined in the tblock.h include file.)

* orig_addr[MAX_ADDR_LEN] (input)
Indicates the SCCP calling-party address (the address of the originating TCAP user), which
is formatted according to ITU-T (CCITT) Q.713 Recommendations. This field is
applicable if the value of primitive_code is TC_UNI or TC_BEGIN.
(MAX_ADDR_LEN is defined in the tblock.h include file.)

* sccp_3rd_party_addr[MAX_ADDR_LEN] (input)
For a TCP/IP agent (registered at the SCCP boundary) receiving messages from a TCAP
application, this field specifies the original calling party address information. The TCP/IP
agent overwrites the original SCCP called party address information with its own point
code and pseudo SSN to establish a two-way dialogue with an application registered at the
TCAP boundary on the same SINAP node and system. In this case, the TCP/IP agent
requires the original SCCP calling party address to correctly format and route messages
back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for
CCITT variants) or transaction (for ANSI variants), the field specifies the SCCP called
party address of the TCAP application. In this case, the called party address is required
because the original called party address provided in the tblock and mblock is configured
to address the own signaling point (OSP) code and pseudo SSN of the TCP/IP agent
running on the same SINAP node.

The CASL transparently copies the sccp_3rd_party_addr field between the
tblock and mblock in both directions when sending and receiving tblocks. The
CASL Function Calls 6-165

ca_put_tc()
SINAP driver initializes this field in the mblock to zeros when the SINAP node receives
messages from Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the include files
$SINAP_HOME/Include/mblock.h. and
$SINAP_HOME/Include/tblock.h.

* comp_present_ind (input)
TCAP sets this field to indicate whether a component exists for the dialogue. This field is
used only for INDICATION type primitives.

* alt_DPC (input)
Indicates the alternate DPC that is used in the MTP routing label in place of the DPC of the
destination address.

* tb_options (input)
Indicates the bit-masked tblock options. See tblock.h for values of this field, such as
USE_ALT_DPC.

* qlty_of_svc (input)
Indicates the protocol class of service for handling this primitive and the return-on-error
indicator. This field is applicable only if the value of primitive_code is TC_UNI or
TC_BEGIN. Valid values are as follows:

* dialogue_end_type (input)
Indicates the way the dialogue is to end: PREARRANGED_END (1) indicates a
prearranged end and BASIC_END (2) indicates a basic end. This field is applicable only
if the value of primitive_code is TC_END.

* pa_report_cause (input)
Indicates the P_ABORT or REPORT cause. See tblock.h for values of this field, such as
TSL_PA_TIMEOUT.

* tot_ua_info_len (input)
Indicates the length of the ua_info field. This field is applicable only if the value of
primitive_code is TC_U_ABORT.

 Value Description

CONN_LESS_SVC_CLASS_0(0) Connectionless Class 0, no return on error

CONN_LESS_SVC_CLASS_1(1) Connectionless Class 1, no turn on error

0x80 Connectionless Class 0, return on error

0x81 Connectionless Class 1, return on error
6-166 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* ua_info[MAX_UA_INFO_LEN_C] (input)
Indicates the reason for the abort; this field is applicable only if the value of
primitive_code is TC_U_ABORT. If the dialogue was aborted by the TCAP user, this
field contains the cause of the abort along with diagnostic information.
(MAX_UA_INFO_LEN is defined in the tblock.h include file.)

* ahp (input)
Specifies the tc_association_t structure that contains the application-context
information for the MSU.

* priority (input)
Indicates the message priority for the MSU. This parameter is valid only for SCCP Class 0
and Class 1 messages. The priority value can be in the range of 0 through 3 (lowest to
highest).

* hop_count (input)
Specifies the hop count value to be inserted into the MSU (XUDT only). The mandatory
hop counter limits the number of global title translations (GTTs) that can be performed on
the message. If the hop_count value is less than 1 or greater than 15, the SINAP/SS7
software defaults to the value 10. Any hop_count value between 1 and 15 is inserted into
the MSU.

* seq_control (input)
Indicates the value to use for the signaling link selection (SLS) field of the MSU’s MTP
routing label. This parameter is valid for SCCP Protocol Class 1 messages only. The valid
value range for the TTC and NTT variants is 0 through 15. For all other variants excluding
ANSI, the valid value range is 0 through 31.

For the ANSI network variant, seq_control can have a value in the range of 0 through
255 if the SINAP user specified an eight-bit SLS through the CHANGE-SLSTYPE MML
command. In all other cases the seq_control field can have a value in the range 0-31
(a five-bit SLS). See “SINAP/SS7 Interaction with the SS7 Network” in Chapter 2 for more
information.

* importance_parm (input/output)
For the CCITT (ITU-T) variant, if the environment variable
SCCP_ITU96_IMPORTANCE_PARM is set, and the user registers at the TCAPX
boundary, this field holds the importance parameter (ss7-2392: 1996 ITU-T Q.713 3.19).
The MSB is used as a bit flag to indicate if the SCCP optional Importance parameter is
included in the SCCP XUDT/XUDTS message. If it is, then the 3 LSBs represent
Importance values 0 to 7.

The tc_association_t Structure
The tc_association_t structure contains the dialogue portion of the MSU. The dialogue
portion defines the application-context name and optional user information to be used for the
CASL Function Calls 6-167

ca_put_tc()
application-context dialogue. The format of the tc_association_t structure is defined in
the include file $SINAP_HOME/Include/tblock.h and has the following format.

5

* dlgInfoPresent (input)
The TC user initializes this field to one of the following values to indicate whether the
TCAP component contains a dialogue portion:

• TRUE (1) indicates the presence of a dialogue portion.

• FALSE (0) indicates that no dialogue portion is present.

* pduType (output)
TCAP initializes this field to indicate the type of ACSE APDU present in the dialogue
portion of the TCAP component. Possible values are AARQ, AUDT, ABRT, and AARE; see
tcap.h.

* applicationContextName (input)
The TC user initializes this field to the name of an acn_t structure that contains the
application-context name for the dialogue. For more information, see “The acn_t Structure”
later in this chapter.

* userInformation (input)
The TC user initializes this field to the name of a tc_user_data_t structure that
contains optional user information for the dialogue. For more information, see “The
tc_user_data_t Structure” later in this chapter.

* abortSource (output)
When an error occurs, TCAP initializes this field to one of the following values to indicate
who aborted the dialogue:

• dialogue-service-provider (0) indicates that the service provider aborted
the dialogue, possibly due to a syntax error.

typedef struct assoc
{

int dlgInfoPresent;
int pduType;

acn_t *applicationContextName;
#ifdef _LP_32_64_

U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */

tc_user_data_t userInformation;
int abortSource;
int result;
int resultSourceDiag;

int resultSourceDiagValue;
}tc_association_t;
6-168 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
• dialogue-service-user (1) indicates that the TC user aborted the dialogue,
possibly because the specified application-context name is not supported.

* result (output)
TCAP initializes this field to one of the following values to indicate the status of the
association request:

• accepted (0) indicates that the association request has been accepted.

• reject-permanent (1) indicates that the association request has been denied.

* resultSourceDiag (output)
When an error occurs, TCAP initializes this field to a particular type of source diagnostic.
Possible values are TC_SERVICE_USER and TC_SERVICE_PROVIDER.

* resultSourceDiagValue (input)
When aborting a request, the service provider initializes this field to one of the following
values:

• NULL (0)

• no-reason-given (1) can indicate a syntax error

• no-common-dialogue-portion (2)

When aborting a request, the TC user initializes this field to one of the following values:

• NULL (0)

• no-reason-given (1)

• application-context-name-not-supported (2)
CASL Function Calls 6-169

ca_put_tc()
The acn_t Structure
The acn_t structure is the object identifier structure for the application context name of the
application-context dialogue. The acn_t structure is defined in the include file
$SINAP_HOME/Include/tblock.h and has the following format.

6

When you design an application to initiate an application-context dialogue or respond to a
TC-BEGIN message that contains a dialogue portion, make sure the application initializes the
acn_t structure to the appropriate application-context name by using either of the following
methods:

• The application can call the function tc_objmk(), a utility supplied with the CASL
library, to create the object identifier (OID), then cast the results to an acn_t structure
pointer, as shown in the following example. (Note that the acn_t structure stores the
object identifier.)

• The application can initialize the fields of the acn_t structure to the application-context
name. You must define the application-context name as a properly formatted ASE OID,
encoded according to the rules documented in ITU-T Recommendation X.690, Basic
Encoding Rules.

The tc_user_data_t Structure
The tc_user_data_t structure contains optional user information for the
application-context dialogue (such as a password, application-initialization data,
protocol-version information, and so on). This user information is exchanged independently of
the remote-service operation and is transparent to TCAP. The tc_user_data_t structure is

typedef struct
{

long length;
union {

char *long_buf;
char short_buf[MAX_ACN_SIZE];

} b;
} acn_t;

ptblk->tc_user.dhp.ahp.applicationContextName =
(acn_t *) tc_objmk(0x02, 0x04, 0x01, 0x01, 0x08,
0x03, END_OF_OID);
6-170 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
defined in the $SINAP_HOME/Include/tblock.h include file and has the following
format.

The fields in the tc_user_data_t structure are as follows:

* size
The TC user initializes this field to the length of the userInfo field.

* userInfo[MAX_USER_INFO]
The TC user initializes this field to define optional user information for the
application-context dialogue. Format this field according to Section 4.2.3 of the 1993
edition of ITU-T Recommendation Q.773. According to Table 49 of the recommendation,
this field must be defined as an ASN.1-encoded sequence of externals. (MAX_USER_INFO
is defined in the $SINAP_HOME/Include/tblock.h include file.)

You can use the ASN.1 compiler to properly format the value of this field. The compiler
creates an ASN.1-encoded sequence of externals from the user information that you
provide. You can then write the compilation results to the userInfo field.

typedef struct tc_user_data_s
{

int size;
#if defined(__LP64__) || defined(_LP_32_64_)

U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */

char userInfo[MAX_USER_INFO];
}tc_user_data_t;
CASL Function Calls 6-171

ca_put_tc()
The Transaction-Handling Primitive Structure (tc_thp_t)
The tc_thp_t structure, which is used for the ANSI variant of the SINAP/SS7 system,
defines transaction-handling information. This structure is defined in the tblock.h include
file and has the following format. See the ANSI T1.114.1 Recommendations for generic
descriptions of this structure’s fields.

* msu_lost_count (input/output)
Indicates the number of MSUs the SINAP driver has lost. The user application should set
this field to zero initially.

* write_free_mblk_count (output)
Indicates the number of free M_Blocks in the SINAP driver write queue.

* read_free_mblk_count (output)
Indicates the number of free M_Blocks in the read queue.

* read_queue_mblk_count (output)
Indicates the number of M_Blocks in the read queue that are awaiting a SINAP driver
read operation.

typedef struct tc_thp_s
{
 S16 msu_lost_count;
 S16 write_free_mblk_count;
 S16 read_free_mblk_count;
 S16 read_queue_mblk_count;
 U8 dest_addr[MAX_ADDR_LEN];
 U8 orig_addr[MAX_ADDR_LEN];

U8 sccp_3rd_party_addr[MAX_ADDR_LEN];
U8 dest_tid[MAX_TID_SIZE];
U8 orig_tid[MAX_TID_SIZE];
U8 orig_tid_len;
U8 local_tid[MAX_TID_SIZE];
U8 local_tid_len;
U8 packet_type;

 U8 qlty_of_svc;
U8 seq_control;
U8 hop_count;
U8 priority;
BOOL comp_present_ind;
U8 tb_options;
U8 alt_DPC[DPC_LEN];
U8 fictitious_OPC;
U8 trans_end_type;

 U8 pa_report_cause;
 U8 tot_ua_info_len;
 U8 ua_info[MAX_UA_INFO_LEN];
} tc_thp_t;
6-172 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* dest_addr[MAX_ADDR_LEN] (input/output)
Indicates the SCCP called-party address (the address of the destination TCAP user), which
is formatted according to ANSI T1.113.3 Recommendations. This field is applicable only
if the value of primitive_code is TC_UNI, TC_QRY_W_PERM, or
TC_QRY_WO_PERM. (MAX_ADDR_LEN is defined in the SINAP/SS7 tblock.h include
file.)

* orig_addr[MAX_ADDR_LEN] (input/output)
Indicates the SCCP calling-party address (the address of the origination TCAP user), which
is formatted according to ANSI T1.113.3 Recommendations. This field is applicable only
if the value of the primitive_code parameter is TC_UNI, TC_QRY_W_PERM, or
TC_QRY_WO_PERM. (MAX_ADDR_LEN is defined in the SINAP/SS7 tblock.h include
file.)

* sccp_3rd_party_addr[MAX_ADDR_LEN] (input/output)
For a TCP/IP agent (registered at the SCCP boundary) receiving messages from a TCAP
application, this field specifies the original calling party address information. The TCP/IP
agent overwrites the original SCCP called party address information with its own point
code and pseudo SSN to establish a two-way dialogue with an application registered at the
TCAP boundary on the same SINAP node and system. In this case, the TCP/IP agent
requires the original SCCP calling party address to correctly format and route messages
back to the originating node over TCP/IP.

For a TCAP application (accessed through the TCP/IP agent) originating a dialogue (for
CCITT variants) or transaction (for ANSI variants), the field specifies the SCCP called
party address of the TCAP application. In this case, the called party address is required
because the original called party address provided in the tblock and mblock is configured
to address the own signaling point (OSP) code and pseudo SSN of the TCP/IP agent
running on the same SINAP node.

The CASL transparently copies the sccp_3rd_party_addr field between the
tblock and mblock in both directions when sending and receiving tblocks. The
SINAP driver initializes this field in the mblock to zeros when the SINAP node receives
messages from Level 2 of the SS7 network.

The constant specified in the MAX_ADDR_LEN parameter is defined in the include files
$SINAP_HOME/Include/mblock.h. and
$SINAP_HOME/Include/tblock.h.

* dest_tid[MAX_TID_SIZE] (input/output)
Indicates the destination transaction ID. For a particular transaction ID, the TC user should
save the destination address, the origination address, and this value. (MAX_TID_SIZE is
defined in the SINAP/SS7 tblock.h include file.)

* orig_tid[MAX_TID_SIZE] (input/output)
Indicates the origination transaction ID. (MAX_TID_SIZE is defined in the SINAP/SS7
tblock.h include file.)
CASL Function Calls 6-173

ca_put_tc()
* orig_tid_len (input/output)
Indicates the length of the origination transaction ID. Valid values are 0 or 4.

* local_tid[MAX_TID_SIZE] (output)
Indicates the local transaction ID. (MAX_TID_SIZE is defined in the SINAP/SS7
tblock.h include file.)

* local_tid_len (output)
Indicates the length of the local transaction ID. Valid values are 0 or 4.

* packet_type (output)
Indicates the TCAP packet type. A value of zero indicates that TCAP will translate the TC
primitive to a TCAP packet type. A non-zero value indicates that the SINAP/SS7 system
will use this field directly as a TCAP packet. See tcap.h for a list of nonzero packet types,
such as TSL_PT_UNI.

* qlty_of_svc (input/output)
Indicates the protocol class of service to use when sending this MSU and the
return-on-error indicator. This field is applicable only if the value of primitive_code
is TC_UNI or TC_BEGIN. Valid values are as follows:

* seq_control (input/output)
Indicates the signaling link selection (SLS) code of the link over which messages are sent.

For quality of service requiring Class 0 (CONN_LESS_SVC_CLASS_0), set the
seq_control field to 0. For quality of service requiring Class 1
(CONN_LESS_SVC_CLASS_1), set the seq_control field to the appropriate service
link selection (SLS) value (0 through 31).

* hop_count (output)
Specifies the hop count value to be inserted into the MSU. (XUDT only) The mandatory
hop counter limits the number of global title translations (GTTs) that can be performed on
the message. The valid range of values for the hop count is 1 through 15. The default count
is 12.

 Value Description

CONN_LESS_SVC_CLASS_0(0) Connectionless Class 0, no return on error

CONN_LESS_SVC_CLASS_1(1) Connectionless Class 1, no return on error

0x80 Connectionless Class 0, return on error

0x81 Connectionless Class 1, return on error
6-174 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
* priority (input/output)
Indicates the transaction priority (in the range 0 to 3) for each transaction-handling
primitive. The priority of the MSU’s SIO octet is based on this value.

* tb_options (input)
Indicates one of the following bit-masked tblock option codes to use for message
routing.

* comp_present_ind (output)
Indicates whether the transaction contains a component: 0 indicates that there is no
component present; 1 indicates that there is a component present. This field is used for
INDICATION type primitives only.

* alt_DPC[DPC_LEN] (output)
Indicates the alternate DPC that is used in the MTP routing label in place of the DPC of the
destination address. (DPC_LEN is defined in the SINAP/SS7 tblock.h include file.)

* fictitious_OPC (input/output)
Indicates whether the MTP routing label contains the point code of the originating address
or a fictitious OPC. A value of 1 indicates the MTP routing label contains a fictitious OPC.
Otherwise, the MTP routing label uses the OPC in orig_addr.

* trans_end_type (input/output)
Indicates how the transaction is to be ended: PREARRANGED_END(1) indicates a
prearranged end and BASIC_END(2) indicates a basic end. This field is applicable if the
value of primitive_code is TC_QRY_W_PERM.

* pa_report_cause (output)
Indicates the P_ABORT or REPORT cause. If the user aborts the transaction, this field
contains the cause of the abort, along with diagnostic information. See tcap.h for
possible values of this field, such as TSL_PA_TIMEOUT.

* tot_ua_info_len (output)
Indicates the length of the ua_info field. This field is applicable only if the value of
primitive_code is TC_U_ABORT.

Code Description

0x01 Use the alt_DPC in the MTP routing label if set. Otherwise,
use the DPC specified in the dest_addr field.

0x02 Use the destination address specified in the dest_addr
field and the origination address specified in the orig_addr
field of the SCCP header of the TCAP message. (Used for
backward compatibility.)
CASL Function Calls 6-175

ca_put_tc()
* ua_info [MAX_UA_INFO_LEN_A] (output)
Indicates the reason for the abort. If the user aborts the transaction, this field contains the
cause of the abort along with diagnostic information. This field is applicable only if the
value of primitive_code is TC_U_ABORT.

FILES
 $SINAP_HOME/Include/arch.h, ca_error.h

RETURN VALUES
The ca_get_tc() function returns an index to the next available T_Block. If the function
returns -1, there is an error; see errno for error number and description. See ca_error.h
for the CASL error number and meaning; see sys/errno.h for UNIX errors.

A possible CASL value for errno follows.

The TCAP can return the following errors.

Value Meaning

CA_ERR_NO_MSUS There are no MSUs in the batch buffer.

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the TCAP
boundary using
ss7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP. The
SINAP/SS7 system provides an immediate
return; ca_get_tc() is not executed.

TC_ERR_OUT_OF_TRANS_ID Increase the value of the max_trans_id
parameter of the ca_register()
function to reregister the application with a
greater number of transaction IDs. The
SINAP/SS7 system deallocates the
T_Block; ca_get_tc() is not
executed. TC_CONTINUE (CCITT) or
TC_CONV_W_PERM and
TC_CONV_WO_PERM (ANSI); TC_END
(CCITT) or TC_RESPONSE (ANSI); and
TC_P_ABORT and TC_U_ABORT
primitives do not return this error.
6-176 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_tc()
TC_ERR_T_BLOCK_CAPACITY_EXHAUSTED Increase the value of the tc_count
parameter of the ca_register()
function to reregister the application with a
greater number of T_BLOCKs. The
SINAP/SS7 system deallocates the
T_Block; ca_get_tc() is not
executed.

TC_ERR_INV_TSL_STATE Report this error, along with all debug
information, to the Customer Assistance
Center (CAC). The SINAP/SS7 system
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_INV_TSL_EVENT Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_INV_ISM_STATE Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_INV_ISM_EVENT Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_TSL_TEQ_OVERFLOW Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_ISM_TEQ_OVERFLOW Report this error, along with all debug
information, to the CAC. SINAP/SS7
provides an immediate return;
ca_get_tc() is not executed.

TC_ERR_PTR_TO_USF_NOT_SET No user-defined pointer.

TC_ERR_OUT_OF_TC_USER_ID A user-supplied function has exhausted its
supply of user IDs. Check to ensure that the
supply of IDs is large enough.

TC_ERR_TRANS_ID_NOT_ASSIGNED Before calling ca_get_tc(), the process
must call the ca_get_trans_id()
function to obtain a transaction ID for the
transaction.

Error Action
CASL Function Calls 6-177

ca_put_tc()
The ca_get_tc() function calls the ca_alloc_tc() function and can also return the
errors listed under that function. Under certain circumstances ca_get_tc() may call
ca_dealloc_tc(); therefore, it may return the errors listed under ca_dealloc_tc().

SEE ALSO
ca_alloc_tc(), ca_dealloc_tc(), ca_process_tc(), ca_put_tc()

TC_ERR_TCAP_OWN_TRANS_ID The transaction is not under application
control. A TC_RESPONSE primitive will
release this transaction. (As per ANSI
Recommendations, a TC_NO_RESPONSE
primitive, which is prearranged by both TC
users, causes messages to be discarded
rather than being sent to the network.) No
further action is required.

Error Action
6-178 SINAP/SS7 Programmer’s Guide R8052-17

ca_rel_dial_id()
ca_rel_dial_id() 6-

SYNOPSIS
S32 ca_rel_dial_id(

S32 dial_id);

DESCRIPTION
The ca_rel_dial_id() function lets a user release an allocated dialogue ID after the
dialogue session is over. This function is for CCITT, TTC, NTT, and China applications; for
ANSI applications, use the ca_rel_trans_id() function instead.

PARAMETERS
* dial_id (input)

Specifies the dialogue ID to be released.

FILES
 arch.h, ca_error.h

DIAGNOSTICS AND WARNINGS
The ca_rel_dial_id() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning. See
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and meaning.
CASL Function Calls 6-179

ca_rel_dial_id()
The TCAP can return the following errors.

SEE ALSO
ca_alloc_tc(), ca_dealloc_tc(), ca_get_dial_id(), ca_get_tc(),
ca_process_tc(), ca_put_tc()

Error Action

TC_ERR_NOT_REG_AT_TCAP_BOUNDARY Reregister the application at the TCAP
boundary using
ss7_input_boundary=
SS7_INPUT_BOUNDARY_TCAP.

TC_ERR_DIAL_ID_ALREADY_RELEASED This is an informational message. No
action is required.

TC_ERR_TCAP_OWN_DIAL_ID The dialogue is not under application
control. An END message will release this
dialogue. (As per Q.775 a prearranged
END will not cause messages to be sent to
the network.) No further action required.

TC_ERR_INV_DIAL_ID The dialogue ID is less than 0 or greater
than the max_dialogue_id minus 1.
The application should use an ID in the
correct range.

TC_ERR_DIAL_ID_NOT_ASSIGNED This is an informational message. No
action is required.
6-180 SINAP/SS7 Programmer’s Guide R8052-17

ca_rel_trans_id()
ca_rel_trans_id() 6-

SYNOPSIS
int ca_rel_trans_id(
 S32 trans_id);

DESCRIPTION
The ca_rel_trans_id() function releases a transaction ID and returns it to the pool of
available transaction IDs, from which it can be assigned to another transaction. This function is
for ANSI applications; for CCITT, TTC, NTT, and China applications, use the
ca_rel_dial_id() function instead.

To effectively manage the supply of transaction IDs, the calling process should call
ca_rel_trans_id() after terminating the transaction to which the transaction ID was
assigned.

PARAMETERS
* trans_id (input)

Specifies the transaction ID to be released.

FILES
 arch.h, ca_error.h, tblock.h

RETURN VALUES
The ca_rel_trans_id() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.
CASL Function Calls 6-181

ca_rel_trans_id()
The TCAP can return the following error.

SEE ALSO
ca_get_tc(), ca_get_trans_id(), ca_put_tc()

Error Action

TC_ERR_TRANS_ID_ALREADY_RELEASED Use a TC_QRY_W_PERM or
TC_QRY_W_PERM primitive to initiate a
transaction in TCAP. The SINAP/SS7
system provides an immediate return;
ca_rel_trans_id() is not executed.
6-182 SINAP/SS7 Programmer’s Guide R8052-17

IPC Functions
IPC Functions
This section contains an alphabetic reference of the following CASL functions, which an
application uses to perform interprocess communications (IPC) with other applications or
SINAP/SS7 processes.

• ca_ascii_u32()

• ca_cancel_def()

• ca_check_key()

• ca_get_key()

• ca_get_msg()

• ca_put_cmd()

• ca_put_msg()

• ca_put_msg_def()

• ca_put_reply()

• ca_restart_timer()

• ca_swap_keys()

• ca_u32_ascii()
CASL Function Calls 6-183

ca_ascii_u32()
ca_ascii_u32() 6-

SYNOPSIS
int ca_ascii_u32(
 char *pnode,
 char *pmod,
 char *papp,
 char *pproc,
 ipc_key_t *pipc_key);

DESCRIPTION
The ca_ascii_u32() function converts the ASCII representations of node, module,
application, and process names to 32-bit, unsigned integers. The function then assigns these
integers to the node, module, appl, and proc fields of the ipc_key_t structure. (The
ipc_key_t structure, also called the IPC key, is defined in the sinap.h include file.)

PARAMETERS
* pnode (input)

Specifies a pointer to the node name of the calling process. The name can be up to four
bytes long in an ASCII string. Currently, the SINAP/SS7 system does not use this
parameter.

* pmod (input)
Specifies a pointer to the module name of the calling process. The name can be up to four
bytes long in an ASCII string. Currently, the SINAP/SS7 system does not use this
parameter.

* papp (input)
Specifies a pointer to the application name of the calling process. This name can be up to
four bytes long in an ASCII string.

* pproc (input)
Specifies a pointer to the process name of the calling process. This name can be up to four
bytes long in an ASCII string.

* pipc_key (output)
Specifies a pointer to the process’s IPC key. (The IPC key is defined by the ipc_key_t
structure, which is described in the following section.)
6-184 SINAP/SS7 Programmer’s Guide R8052-17

ca_ascii_u32()
IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h. (The ca_ascii_u32() function assigns values to the node, module, appl,
and proc fields.)

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module (system). You can determine this value from the
MODULE= entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name. For this
version of the SINAP/SS7 system, the default name of the module is M1 and its value is 0.

* appl (output)
Specifies the compressed application ID.

* proc (output)
Specifies the compressed process ID.

* instance (output)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (output)
Specifies the index (0 through 3) of the node.

* ipc_index (output)
Specifies the index ID of the IPC process table.

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-185

ca_ascii_u32()
FILES
arch.h, ca_error.h, sinap.h

RETURN VALUES
The ca_ascii_u32() function can return the following value.

SEE ALSO
 ca_check_key(), ca_get_key(), ca_swap_keys(), ca_u32_ascii()

Value Meaning

0 Successful.
6-186 SINAP/SS7 Programmer’s Guide R8052-17

ca_cancel_def()
ca_cancel_def() 6-

SYNOPSIS
int ca_cancel_def(
 U32 timer_id);

DESCRIPTION
The ca_cancel_def() function cancels the timer specified by the parameter timer_id.
All pending deferred messages that have this timer ID are also discarded.

After a call to this function, timeout messages might still appear because of a race condition.

PARAMETERS
* timer_id (input)

Specifies the 32-bit ID of the timer to be cancelled. This is the same value that you assigned
to the timer_id parameter of the ca_put_msg_def() function.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_cancel_def() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

SEE ALSO
ca_get_msg(), ca_put_msg(), ca_put_msg_def(), ca_restart_timer()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.
CASL Function Calls 6-187

ca_check_key()
ca_check_key() 6-

SYNOPSIS
int ca_check_key(
 ipc_key_t destn_key);

DESCRIPTION
The ca_check_key() function checks whether an IPC key is valid. If the IPC key is not
valid, the function returns an error.

PARAMETERS
* destn_key (input)

Specifies the ipc_key_t structure that contains the IPC key of the destination process.
Before calling ca_check_key(), verify values have been assigned to the fields in the
ipc_key_t structure, which is described in the following section.

IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. Modify
any script files or user-defined program files that contain an invalid, hard-coded node
name.

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
6-188 SINAP/SS7 Programmer’s Guide R8052-17

ca_check_key()
* module (output)
Specifies the name or ID of the module (system). You can determine this value from the
MODULE= entry in the /etc/sinap_master file. Modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (1 to 8). A value of 0 indicates the field is unused.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
 arch.h, ca_error.h, sinap.h

RETURN VALUES
The ca_check_key() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

The CASL value for errno is as follows.

SEE ALSO
 ca_ascii_u32(), ca_get_key(), ca_swap_keys(), ca_u32_ascii()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

CA_ERR_DESTN_KEY Destination process key not found or invalid.
CASL Function Calls 6-189

ca_get_key()
ca_get_key() 6-

SYNOPSIS
int ca_get_key(

char *pnode,
char *pmodule,
char *pappl,
char *pproc,
U32 inst,
ipc_key_t *pipc_key);

DESCRIPTION
The ca_get_key() function retrieves the IPC key of an process. At registration, each client
application process declares itself as part of some application and as an instance of some
process. This information is stored in an ipc_key_t structure (or IPC key). The SINAP/SS7
system uses the information in the IPC key to identify the process and to direct messages to it.
Therefore, when an application process wants to initiate interprocess communications with
another process, it must call this function to obtain the IPC key of that process.

N O T E
Interprocess communications do not use the SS7 network, as do
communications initiated by the ca_put_msu() or
ca_put_tc() function.

PARAMETERS
* pnode (input)

Specifies a pointer to the node name of the process to be called. Valid values are N1
and 0. If you specify a value of 0, the value of the environment variable SINAP_NODE is
used.

* pmodule (input)
Specifies a pointer to the module name of the process to be called. Valid values are M1 and
0. If you specify a value of 0, the value of the environment variable SINAP_MODULE is
used.
6-190 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_key()
* pappl (input)
Specifies a pointer to the application name of the process to be called. This name can be up
to four bytes long in an ASCII string.

* pproc (input)
Specifies a pointer to the process name of the process to be called. This name can be up to
four bytes long in an ASCII string.

* inst (input)
Specifies a pointer to the logical instance ID of the process to be called. The value of this
parameter can be from 0 (if not used) to 16. If the value of inst is 0, the IPC key of the
first instance is returned.

* pipc_key (output)
A pointer to the ipc_key_t structure for the specified application process. This structure
contains the IPC key of that process. (The ipc_key_t structure is described in the
following section.)

IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name. For this
release of the SINAP/SS7 system, the default module name is M1.

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-191

ca_get_key()
* appl (output)
Specifies the compressed application ID.

* proc (output)
Specifies the compressed process ID.

* instance (output)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (output)
Specifies the index (0 through 3) of the node.

* ipc_index (output)
Specifies the index ID of the IPC process table.

FILES
arch.h, ca_error.h, sinap.h

RETURN VALUES
The ca_get_key() function can return the following values. If the function returns -1, there
is an error. See ca_error.h for the CASL error number and meaning; see sys/errno.h
for UNIX errors.

Possible UNIX values for errno are as follows.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that
accepts control functions.

EFAULT The pointer to the specified message is outside the
address space allocated to the process.

EINVAL Queue ID is not a valid message queue ID. The value of
msg_type is less than 1, or msg_sz is greater than 0
or the system-imposed limit.
6-192 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_key()
Possible CASL values for errno are as follows.

SEE ALSO
ca_ascii_u32(), ca_check_key(), ca_swap_keys(), ca_u32_ascii()

EIO An I/O error occurred during a read or write operation.

ENXIO The requested service cannot be performed on this
particular subdevice.

ENOLINK The link to a requested machine is no longer active.

Value Meaning

CA_ERR_APPL Application name invalid.

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_INST Instance out of range.

CA_ERR_PROC Process name invalid.

Value Meaning
CASL Function Calls 6-193

ca_get_msg()
ca_get_msg() 6-

SYNOPSIS
 int ca_get_msg(
 long msg_type,
 i_block_t *piblk,
 U16 max_sz,

 BOOL fwait);

DESCRIPTION
The ca_get_msg() function receives a message from the client process’s IPC queue. If there
are no messages, the function returns an error.

PARAMETERS
* msg_type (input)

Specifies the type of message being received from the IPC queue of the client process. If
the value of this parameter is 0, the IPC queue is treated as a first-in first-out (FIFO) queue.
If the value of this parameter is greater than 0, the oldest message on the queue of that type
is returned.

* piblk (output)
Specifies a pointer to the I_Block, if a message exists. For a description of the I_Block,
see the following section, “The Main I_Block Structure (i_block_t).”

* max_sz (input)
Specifies the maximum size of the data to be received from the IPC queue. If the incoming
message is larger than this value, ca_get_msg() truncates the message and returns 0.
Thus, the calling process should check the length of the field in the I_Block header and
the total size of the buffer to determine whether the incoming message is truncated.

* fwait (input)
Specifies whether ca_get_msg() is to wait for a message. Specify a 1 to execute the call
in blocking-mode (wait for a message); otherwise, specify 0 to execute the call in
non-blocking mode (return if no message).

Main I_Block Structure (i_block_t)
The following fields are set in the i_block_t structure, which is defined in the include file
iblock.h. The iblock.h include file defines the structure of messages (I_Blocks) sent
6-194 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msg()
by means of IPC. An I_Block is composed of a CASL control part, a transaction part, a
timestamp, a node ID, an originator key, a destination key, and a message body.

* ca_ctrl (output)
Specifies the CASL control structure for this I_Block. For information about this
structure, see “The CASL Control Structure (ca_ctrl_t)” later in this section.

* trans (output)
Specifies the transaction ID structure. For information about this structure, see
“The IPC Transaction ID Structure (ipc_trans_t)” later in this section.

* ts (output)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts. The
timestamps aid monitoring and logging, and are visible when you run the BITE log-analysis
program. (For a description of timestamp_t structure, see “The Timestamp Structure
(timestamp_t)” later in this section.

* node (output)
Specifies the ID of the SINAP node. This structure is internal to the SINAP/SS7 system and
should not be modified.

* orig_id (output)
Specifies the ipc_key_t structure that contains the IPC key for a sender application
process. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

typedef struct i_block_s
{
 ca_ctrl_t ca_ctrl;
 ipc_trans_t trans;
 timestamp_t ts;
 node_id_t node;
 ipc_key_t orig_id;
 ipc_key_t dest_id;
 ipc_data_t msg;
} i_block_t;
CASL Function Calls 6-195

ca_get_msg()
* dest_id (output)
Specifies the ipc_key_t structure that contains the IPC key for the intended destination
process of the I_Block. You can obtain this IPC key by calling the ca_get_key()
function. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* msg (output)
Specifies the ipc_data_t structure that contains the IPC user data. For information
about the ipc_data_t structure, see “The IPC Data Structure (ipc_data_t)” later in
this section.
6-196 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msg()
CASL Control Structure (ca_ctrl_t)
The following fields make up the ca_ctrl_t structure, which is defined in the include file
blkhdr.h.

* msg_type (output)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (output)
Specifies the total size of the structure, excluding this field.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */
 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
CASL Function Calls 6-197

ca_get_msg()
* node_index (output)
This is an internal field that is automatically initialized to the appropriate value for the
SINAP node.

* sinap_variant (output)
This is an internal field that is automatically initialized to the appropriate value for the
network variant being used on the SINAP node.

* lost_cnt (output)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (output)
Specifies the number of MSUs pending.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* pid (output)
* link (output)
* msg_sender (output)
* iblk (output)
* rw (output)
* monitor_id (output)
* ssn_sio (output)
* source (output)
* destination (output)
* mptr (input) Specifies a pointer to m_block_t, Level 3.
* timer_id (output)
* timer_val (output)
* omsg_type (output)
6-198 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msg()
IPC Transaction ID Structure (ipc_trans_t)
The ipc_trans_t structure contains the following fields and is defined in the include file
iblock.h.

* msg_type (output)
Specifies the basic message function identifier that the SINAP/SS7 system and client
applications use to identify a message. When defining client application messages, you
should specify message types within the range of CL_IPC_MIN and CL_IPC_MAX (see
the include file iblock.h for more information).

* ref_nbr (output)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

* rw_ind (output)
Specifies a read or write indicator for the monitor. This field is internal to the SINAP/SS7
system; you should not modify it.

* monitor_id (output)
Associates the IPC message with a particular BITE monitor session. This field is internal
to the SINAP/SS7 system; you should not modify it.

* scenario_id (output)
Associates the IPC message with a particular BITE scenario execution session. This field
is internal to the SINAP/SS7 system; you should not modify it.

typedef struct ipc_trans_s
{
 int msg_type;
 U32 ref_nbr;
 U16 rw_ind;
 U8 monitor_id;
 U8 scenario_id;
} ipc_trans_t;
CASL Function Calls 6-199

ca_get_msg()
Timestamp Structure (timestamp_t)
The timestamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* index (output)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (output)
Specifies the timestamp slots. For a description of the structure in which these timestamps
are stored, see “The stamp_t Structure” below. (MAX_TIME_STAMPS is defined in the
SINAP/SS7 timestamp.h include file.)

The stamp_t Structure
The stamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* secs (output)
Specifies the time (in seconds) since 1/1/70.

* tsid (output)
Specifies the timestamp ID. These IDs are defined in the include file timestamp.h.

* ipcx (output)
Specifies the IPC index, if applicable.

* msec (output)
Specifies the time, in milliseconds.

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
} timestamp_t;

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;
6-200 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msg()
Node ID Structure (node_id_t)
The node_id_t structure contains the following fields and is defined in the include file
iblock.h.

* ni (output)
Specifies the network indicator.

* spc (output)
Specifies the signaling point code.

IPC Key Structure (ipc_key_t)
The following fields make up the ipc_key_t structure, which is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

 typedef struct node_id_s
{

U8 ni;
U32 spc;

} node_id_t;

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-201

ca_get_msg()
* appl (output)
Specifies the compressed application ID.

* proc (output)
Specifies the compressed process ID.

* instance (output)
Specifies the instance ID (in the range 1 through 8). A value of 0 indicates that the field is
not used.

* node_index (output)
Specifies the index (0 through 3) of the node.

* ipc_index (output)
Specifies the index ID of the IPC process table.

IPC Data Structure (ipc_data_t)
The following fields make up the ipc_data_t structure, which is defined in the include file
iblock.h.

* more_ind (output)
Specifies whether an IPC message is the last in a sequence. This field is useful if the data
portion of a message exceeds the maximum amount of data that UNIX can send in a single
data packet. Note that the limit is an UNIX configuration parameter, initially set to 4096
octets. The SINAP/SS7 system also uses more_ind when a command reply exceeds the
response timeout. In this case, a command reply could consist of an arbitrary number of
messages and a final reply; the more_ind field would be set to 1 to indicate that the
receiving process is working on the reply. The final reply would indicate the result of the
command.

* len (output)
Specifies the length (in octets) of the data portion of the message body.

* ret_code (output)
Specifies a return code value. By returning a user-defined value, a client application can use
this field to indicate success or failure.

typedef struct ipc_data_s
{
 U8 more_ind;
 U32 len;
 U32 ret_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */
} ipc_data_t;
6-202 SINAP/SS7 Programmer’s Guide R8052-17

ca_get_msg()
N O T E
The data portion of a message should follow the message field
of i_block_t. The structure of the data portion is dependent
on the msg_type field. The following use of i_block_t is
recommended.

typedef struct user_struc_s
{
 i_block_t iblk_hdr;
 char user_data[MAX_IBLK_DATA_SZ];
} user_struc_t;

FILES
arch.h, ca_error.h, iblock.h, sinap.h, sysdefs.h, sys/time.h,
timestamp.h

RETURN VALUES
The ca_get_msg() function can return the following values. If the function returns -1, there
is an error. See ca_error.h for the CASL error number and meaning; see sys/errno.h
for UNIX errors.

Possible UNIX values for errno are as follows.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that accepts
control functions.

EINVAL Queue ID is not a valid message queue ID. The value of
msg_type is less than 1, or msg_sz is less than 0 or greater
than the system-imposed limit.

EACCES Operation permission is denied to the calling process.

E2BIG The message text is greater than the maximum size allowed.
CASL Function Calls 6-203

ca_get_msg()
Possible CASL values for errno are as follows.

SEE ALSO
ca_cancel_def(), ca_put_msg(), ca_put_msg_def(),
ca_restart_timer(),ca_get_msu_noxudt_t()

ENOMSG The queue does not contain a message of the desired type.

EFAULT The pointer to the message is outside the process-allocated
address space.

EINTR The system call was interrupted by an UNIX signal.

EIO An I/O error occurred during a read or write operation

ENXIO The requested service cannot be performed on this particular
subdevice.

ENOLINK The link to a requested machine is no longer active.

ESRCH No process or process group can be found corresponding to the
specified PID.

EPERM The user ID of the sending process is not privileged, and its real or
effective user ID does not match the real or saved user ID of the
receiving process. The calling process is not sending SIGCONT to
a process that shares the same session ID.

Value Meaning

CA_ERR_ACCESS The process calling ca_get_msg() is not
registered. Call ca_register() before calling
this function.

CA_ERR_IBLK_PTR The pointer to the I_Block is 0 or -1.

CA_ERR_INVALID_MAXSZ The maximum size specified is too large or is 0.

Value Meaning
6-204 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_cmd()
ca_put_cmd() 6-

SYNOPSIS
int ca_put_cmd(
 ipc_key_t destn_key,
 U32 ref_nbr,
 U16 len,
 U8 *pcmd);

DESCRIPTION
The ca_put_cmd() function sends an MML command to a specified destination process via
the destination’s IPC. To receive commands in this manner, the destination process must have
registered with the cmd_allow parameter set to 1. This function also sets up the I_Block
and determines whether the command is longer than the maximum length allowed.

PARAMETERS
* destn_key (input)

Specifies an IPC key that indicates the destination process to which the command is being
sent. To use the ca_put_cmd() function, you must assign values to the fields in the
ipc_key_t structure, which is described in the following section, “The IPC Key
Structure (ipc_key_t).”

* ref_nbr (input)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

* len (input)
Specifies the length of the command to be sent.

* pcmd (input)
Specifies a pointer to the command to be sent.
CASL Function Calls 6-205

ca_put_cmd()
IPC Key Structure (ipc_key_t)
The following fields make up the ipc_key_t structure, which is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
arch.h, ca_error.h, sinap.h

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
6-206 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_cmd()
RETURN VALUES
The ca_put_cmd() function can return the following values. If the function returns -1, there
is an error. See ca_error.h for the CASL error number and meaning; see sys/errno.h
for UNIX errors.

Possible CASL values for errno are as follows.

This function performs a ca_put_msg() and can also return the errors listed under that
function.

SEE ALSO
 ca_put_reply()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

CA_ERR_ACCESS The calling process is not registered. Call
ca_register() before calling this function.

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_CMDS Destination process is not registered to receive IPC
commands.

CA_ERR_IBLK_DATA The I_Block data exceeds the maximum limit.
CASL Function Calls 6-207

ca_put_msg()
ca_put_msg() 6-

SYNOPSIS
int ca_put_msg(
 i_block_t *piblk,
 S8 retry_count);

DESCRIPTION
The ca_put_msg() function sends a message to a specified destination by means of the IPC
queue. If the queue is full, the function returns an error containing the UNIX value EAGAIN.

To help prevent messages from being lost when a queue overflows, the failure of a call to
ca_put_msg() triggers the event CA_IPC_FAILED. This event causes the SINAP/SS7
system to generate an alarm and to then call the function ca_ipc_failed_event() in
order to deliver the alarm to trouble management. By default, the event CA_IPC_FAILED
causes the SINAP/SS7 system to generate a critical alarm; however, in the trouble-treatment
table (treat.tab), you can change the alarm’s status to minor or you can change the alarm
to a notification. (For information on how to do this, see the SINAP/SS7 User’s Guide (R8051).)

The alarm that the SINAP/SS7 system sends to trouble management contains the following
information.

• The type of IPC message that could not be delivered, along with the process that sent the
message (the source) and the process to which the message was destined (the destination).

• The value of errno returned by the ca_put_msg() function call that failed.

• The number of times that ca_ipc_fail_event() was called by the process attempting
to send the IPC message. (This count is important because critical alarms may be lost when
a queue overflows.)

PARAMETERS
* piblk (input)

Specifies a pointer to a particular I_Block. For the ca_put_msg() function to work,
you must set the following fields in the i_block_t, ipc_trans_t, and ipc_data_t
structures, which are described in the sections that follow.

i_block_t:dest_id
ipc_trans_t:msg_type
6-208 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg()
ipc_trans_t:ref_nbr
ipc_data_t:more_ind
ipc_data_t:len
ipc_data_t:ret_code

N O T E
It is assumed that the data portion follows the message field of
i_block_t. The structure of the data portion is dependent on
the value specified in the msg_type field.

* retry_count (input)
Specifies the number of times ca_put_msg() is to resend the message when it
encounters a full IPC queue or a system interrupt (signal).

To ensure IPC message delivery during periods of heavy system load, you can define the
environment variable, GUARANTEED_IPC (no value need be assigned). Defining this
variable changes the retry_count parameter as follows:

• If retry_count is 0, the IPC message is considered to be non-critical and the
SINAP/SS7 system does not generate a critical alarm if it cannot deliver the message.
Instead, the SINAP/SS7 system returns an error to the user with errno typically set
to EAGAIN.

• If retry_count is any value greater than 0, the IPC message is considered critical
and every attempt is made to deliver the message, including restarting the SINAP node
if necessary. The ca_put_msg() function call generates a critical alarm and returns
an error only if the message cannot be delivered because of an error condition other
than EAGAIN (for example, if the called process no longer exists).
CASL Function Calls 6-209

ca_put_msg()
Main I_Block Structure (i_block_t)
The following fields are set in the i_block_t structure, which is defined in the include file
iblock.h. The iblock.h include file defines the structure of messages (I_Blocks) sent
by means of IPC. An I_Block is composed of a CASL control part, a transaction part, a
timestamp, a node ID, an originator key, a destination key, and a message body.

* ca_ctrl (input)
Specifies the CASL control structure for this I_Block. For information about this
structure, see “The CASL Control Structure (ca_ctrl_t)” later in this section.

* trans (input)
Specifies the transaction ID structure. For information about this structure, see
“The I_Block Transaction ID Structure (ipc_trans_t)” later in this section.

* ts (input)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts. The
timestamps aid monitoring and logging, and are visible when you run the BITE log-analysis
program. For information about this structure’s fields, see “The Timestamp Structure
(timestamp_t)” later in this section.

* node (input)
Specifies the SINAP node ID. This structure is internal to the SINAP/SS7 system and
should not be modified.

* orig_id (input)
Specifies the ipc_key_t structure that contains the IPC key for a sender application
process. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

typedef struct i_block_s
{
 ca_ctrl_t ca_ctrl;
 ipc_trans_t trans;
 timestamp_t ts;
 node_id_t node;
 ipc_key_t orig_id;
 ipc_key_t dest_id;
 ipc_data_t msg;
} i_block_t;
6-210 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg()
* dest_id (input)
Specifies the ipc_key_t structure that contains the IPC key for the intended destination
process of the I_Block. You can obtain this IPC key by calling the ca_get_key()
function. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* msg (input)
Specifies the ipc_data_t structure that contains the IPC user data. (For information
about the ipc_data_t structure, see “The IPC Data Structure (ipc_data_t)” later in
this section.)
CASL Function Calls 6-211

ca_put_msg()
CASL Control Structure (ca_ctrl_t)
The following fields make up the ca_ctrl_t structure, which is defined in the include file
blkhdr.h.

* msg_type (output)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (output)
Specifies the total size of the structure, excluding this field.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */
 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
6-212 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg()
* node_index (output)
This is an internal field that is automatically initialized to the appropriate value for the
SINAP node.

* sinap_variant (output)
This is an internal field that is automatically initialized to the appropriate value for the
network variant being used on the SINAP node.

* lost_cnt (output)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (output)
Specifies the number of MSUs pending.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* pid (output)
* link (output)
* msg_sender (output)
* iblk (output)
* rw (output)
* monitor_id (output)
* ssn_sio (output)
* source (output)
* destination (output)
* mptr (input) Specifies a pointer to m_block_t, Level 3.
* timer_id (output)
* timer_val (output)
* omsg_type (output)
CASL Function Calls 6-213

ca_put_msg()
IPC Transaction ID Structure (ipc_trans_t)
The following fields make up the ipc_trans_t structure, which is defined in the include file
iblock.h.

* msg_type (input)
Specifies the basic message function identifier that the SINAP/SS7 system and client
applications use to identify a message. When defining client application messages, you
should specify message types within the range of CL_IPC_MIN and CL_IPC_MAX (see
the include file iblock.h for more information).

* ref_nbr (input)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

* rw_ind (input)
Specifies a read or write indicator for the monitor. This field is internal to the SINAP/SS7
system; you should not modify it.

* monitor_id (input)
Associates the IPC message with a particular BITE monitor session. This field is internal
to the SINAP/SS7 system; you should not modify it.

* scenario_id (input)
Associates the IPC message with a particular BITE scenario execution session. This field
is internal to the SINAP/SS7 system; you should not modify it.

typedef struct ipc_trans_s
{
 int msg_type;
 U32 ref_nbr;
 U16 rw_ind;
 U8 monitor_id;
 U8 scenario_id;
} ipc_trans_t;
6-214 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg()
Timestamp Structure (timestamp_t)
The timestamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* index (input)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (input)
Specifies the timestamp slots. See “The stamp_t Structure” below for an explanation.
(MAX_TIME_STAMPS is defined in the SINAP/SS7 timestamp.h include file.)

The stamp_t Structure
The stamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* secs (input)
Specifies the time (in seconds) since 1/1/70.

* tsid (input)
Specifies the timestamp ID. Valid values are defined in the include file timestamp.h.

* ipcx (input)
Specifies the IPC index, if applicable.

* msec (input)
Specifies the time, in milliseconds.

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
}timestamp_t;

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;
CASL Function Calls 6-215

ca_put_msg()
The node_id_t Structure
The node_id_t structure contains the following fields and is defined in the include file
iblock.h.

* ni (input)
Specifies the network indicator of the node. This field is internal to the SINAP/SS7 system
and should not be modified.

* spc (input)
Specifies the signaling point code of the node. This field is internal to the SINAP/SS7
system and should not be modified.

IPC Key Structure (ipc_key_t)
The following fields make up the ipc_key_t structure, which is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

typedef struct node_id_s
{
 U8 ni;
 U32 spc;
} node_id_t;

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
6-216 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg()
* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

IPC Data Structure (ipc_data_t)
The following fields make up the ipc_data_t structure, which is defined in the include file
iblock.h.

* more_ind (input)
Specifies whether an IPC message is the last in a sequence. This field is useful if the data
portion of a message exceeds the maximum amount of data that UNIX can send in a single
data packet. Note that the limit is an UNIX configuration parameter, initially set to 4096
octets. The SINAP/SS7 system also uses more_ind when a command reply exceeds the
response timeout. In this case, a command reply could consist of an arbitrary number of
messages and a final reply; the more_ind field would be set to 1 to indicate that the
receiving process is working on the reply. The final reply would indicate the result of the
command.

typedef struct ipc_data_s
{
 U8 more_ind;
 U32 len;
 U32 ret_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */
} ipc_data_t;
CASL Function Calls 6-217

ca_put_msg()
* len (input)
Specifies the length (in octets) of the data portion of the message body.

* ret_code (input)
Specifies a return code value. By returning a user-defined value, a client application can use
this field to indicate success or failure.

N O T E
The data portion of a message should follow the message field
of i_block_t. The structure of the data portion is dependent
on the msg_type field. The following use of i_block_t is
recommended.

typedef struct user_struc_s
{
 i_block_t iblk_hdr;
 char user_data[MAX_IBLK_DATA_SZ];
} user_struc_t;

FILES
arch.h, ca_error.h, iblock.h, sinap.h, sysdefs.h, sys/time.h,
timestamp.h

RETURN VALUES
The ca_put_msg() function can return the following values. If the function returns -1, there
is an error. See ca_error.h for the CASL error number and meaning; see sys/errno.h
for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.
6-218 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg()
Possible UNIX values for errno are as follows.

Possible CASL values for errno are as follows.

This function performs a ca_get_key() and can also return the errors listed under that
function.

SEE ALSO
ca_get_msg(), ca_put_msg_def()

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that accepts
control functions.

EINVAL Queue ID is not a valid message queue ID. The value of
msg_type is less than 1, or msg_sz is greater than 0 or the
system-imposed limit.

EACCES Operation permission is denied to the calling process.

EAGAIN The queue is full.

EFAULT The pointer to the specified message is outside the address
space allocated to the process.

EINTR The system call was interrupted by an UNIX signal.

Value Meaning

CA_ERR_ACCESS The process calling ca_put_msg() is not
registered. Call ca_register() before calling
this function.

CA_ERR_DESTN_KEY The IPC key specified in the dest_id field of the
i_block_t structure could not be found.

CA_ERR_IBLK_DATA The I_Block data exceeds the maximum limit.

CA_ERR_IBLK_MSGTYPE Invalid message type.
CASL Function Calls 6-219

ca_put_msg_def()
ca_put_msg_def() 6-

SYNOPSIS
int ca_put_msg_def(
 U32 timer_id,
 int timer_val,
 i_block_t *piblk);

DESCRIPTION
The ca_put_msg_def() function sends a deferred message to a specified destination by
means of the IPC queue.

To help prevent messages from being lost when a queue overflows, the failure of a call to
ca_put_msg_def() triggers the event CA_IPC_FAILED. This event causes the
SINAP/SS7 system to generate an alarm and to then call the function
ca_ipc_failed_event() in order to deliver the alarm to trouble management. By default,
the event CA_IPC_FAILED causes the SINAP/SS7 system to generate a critical alarm;
however, in the trouble-treatment table (treat.tab), you can change the alarm’s status to
minor or you can change the alarm to a notification. (For information on how to do this, see the
SINAP/SS7 User’s Guide (R8051).)

The alarm that the SINAP/SS7 system sends to trouble management contains the following
information.

• The type of IPC message that could not be delivered, along with the process that sent the
message (the source) and the process to which the message was destined (the destination).

• The value of errno returned by the ca_put_msg_def() function call that failed.

• The number of times that ca_ipc_fail_event() was called by the process attempting
to send the IPC message. (This count is important because critical alarms may be lost when
a queue overflows.)

N O T E S
1. Deferred messages are handled by the SINAP Management

process Deferred Message Handler (NMDM), which can
store up to 4096 deferred IPC messages, each to be
delivered when its timeout occurs after timer_val
6-220 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg_def()
milliseconds. The resolution of NMDM is 100
milliseconds (1/10 second).

2. A CA_IPC_FAILED_EVENT alarm can happen in one of
three ways:

• NMDM IPC input queue is full. Call to
ca_put_msg_def() returns error with errno of
EAGAIN (11), and an alarm is sent with the above
information, where the source process is the caller of
ca_put_msg_def(), the destination process is
NMDM, and errno is EAGAIN.

• The deferred message's destination process IPC input
queue is full. Call to ca_put_msg_def() will have
already succeeded. An alarm is sent with the above
information, where the source process is NMDM, the
destination process is that which was specified by the
i_block_tdest_id field, the errno is EAGAIN.

• The deferred message could not be stored by NMDM
as its limit of 4096 deferred messages has been
reached. Call to ca_put_msg_def() will have
already succeeded. An alarm is sent with the above
information, where the source process is NMDM, the
destination process is that which was specified by the
i_block_t dest_id field, and errno is ENOMEM
(12).

PARAMETERS
* timer_id (input)

Specifies a unique value that identifies the message. A process other than the originating
process within the same application may cancel deferred message delivery. Timer IDs must
be unique to each client application. However, different applications can use the same timer
ID.

To have the ca_put_msg_def() function create a unique timer ID, specify a value of
0 for this parameter. In this case, the function creates a unique timer ID and returns it. This
is useful when a client process requires a unique timer ID for a particular instance of a
process.

* timer_val (input)
Specifies the time (in milliseconds) to delay the message.

* piblk (input)
Specifies a pointer to a particular I_Block. For the ca_put_msg_def() function to
work, you must set the following fields in the i_block_t, ipc_trans_t, and
CASL Function Calls 6-221

ca_put_msg_def()
ipc_data_t structures. For an explanation of these fields and possible values, see the
following section, “The Main I_Block Structure (i_block_t).”

i_block_t:dest_id
ipc_trans_t:msg_type
ipc_trans_t:ref_nbr
ipc_data_t:more_ind
ipc_data_t:len
ipc_data_t:ret_code

Main I_Block Structure (i_block_t)
The following fields are set in the i_block_t structure, which is defined in the include file
iblock.h. The iblock.h include file defines the structure of messages (I_Blocks) sent
via IPC. An I_Block is composed of a CASL control part, a transaction part, a timestamp, a
node ID, an originator key, a destination key, and a message body.

* ca_ctrl (input)
Specifies the CASL control structure for this I_Block. For more information about this
structure, see “The CASL Control Structure (ca_ctrl_t)” later in this section.

* trans (input)
Specifies the transaction ID structure. For information about this structure, see
“The I_Block Transaction ID Structure (ipc_trans_t)” later in this section.

* ts (input)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts. The
timestamps aid monitoring and logging, and are visible when you run the BITE log-analysis
program. For information about this structure’s fields, see “The Timestamp Structure
(timestamp_t)” later in this section.

* node (input)
Specifies the node ID. This structure is internal to the SINAP/SS7 system and should not
be modified.

typedef struct i_block_s
{
 ca_ctrl_t ca_ctrl;
 ipc_trans_t trans;
 timestamp_t ts;
 node_id_t node;
 ipc_key_t orig_id;
 ipc_key_t dest_id;
 ipc_data_t msg;
} i_block_t;
6-222 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg_def()
* orig_id (input)
Specifies the ipc_key_t structure that contains the IPC key for a sender application
process. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* dest_id (input)
Specifies the ipc_key_t structure that contains the IPC key for the intended destination
process of the I_Block. You can obtain this IPC key by calling the ca_get_key()
function. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* msg (input)
Specifies the ipc_data_t structure that contains the IPC user data. For information
about the ipc_data_t structure, see “The IPC Data Structure (ipc_data_t)” later in
this section.
CASL Function Calls 6-223

ca_put_msg_def()
CASL Control Structure (ca_ctrl_t)
The following fields make up the ca_ctrl_t structure, which is defined in the include file
blkhdr.h.

* msg_type (output)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (output)
Specifies the total size of the structure, excluding this field.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */
 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
6-224 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg_def()
* node_index (output)
This is an internal field that is automatically initialized to the appropriate value for the
SINAP node.

* sinap_variant (output)
This is an internal field that is automatically initialized to the appropriate value for the
network variant being used on the SINAP node.

* lost_cnt (output)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (output)
Specifies the number of MSUs pending.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:
CASL Function Calls 6-225

ca_put_msg_def()
* pid (output)
* link (output)
* msg_sender (output)
* iblk (output)
* rw (output)
* monitor_id (output)
* ssn_sio (output)
* source (output)
* destination (output)
* mptr (input) Specifies a pointer to m_block_t, Level 3.
* timer_id (output)
* timer_val (output)
* omsg_type (output)

IPC Transaction ID Structure (ipc_trans_t)
The following fields make up the ipc_trans_t structure, which is defined in the include file
iblock.h.

* msg_type (input)
Specifies the basic message function identifier that the SINAP/SS7 system and client
applications use to identify a message. When defining client application messages, you
should specify message types within the range of CL_IPC_MIN and CL_IPC_MAX (see
the include file iblock.h for more information).

* ref_nbr (input)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

* rw_ind (input)
Specifies a read or write indicator for the monitor. This field is internal to the SINAP/SS7
system; you should not modify it.

* monitor_id (input)
Associates the IPC message with a particular BITE monitor session. This field is internal
to the SINAP/SS7 system; you should not modify it.

typedef struct ipc_trans_s
{
 int msg_type;
 U32 ref_nbr;
 U16 rw_ind;
 U8 monitor_id;
 U8 scenario_id;
} ipc_trans_t;
6-226 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg_def()
* scenario_id (input)
Associates the IPC message with a particular BITE scenario execution session. This field
is internal to the SINAP/SS7 system; you should not modify it.

Timestamp Structure (timestamp_t)
The timestamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* index (input)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (input)
Specifies the timestamp slots. See “The stamp_t Structure” below for an explanation.
(MAX_TIME_STAMPS is defined in the SINAP/SS7 timestamp.h include file.)

The stamp_t Structure
The stamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* secs (input)
Specifies the time (in seconds) since 1/1/70.

* tsid (input)
Specifies the timestamp ID. Valid values are defined in the include file timestamp.h.

* ipcx (input)
Specifies the IPC index, if applicable.

* msec (input)
Specifies the time, in milliseconds.

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
}timestamp_t;

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;
CASL Function Calls 6-227

ca_put_msg_def()
The node_id_t Structure
The node_id_t structure contains the following fields and is defined in the include file
iblock.h.

* ni (input)
Specifies the network indicator of the node. This field is internal to the SINAP/SS7 system
and should not be modified.

* spc (input)
Specifies the signaling point code of the node. This field is internal to the SINAP/SS7
system and should not be modified.

IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

typedef struct node_id_s
{
 U8 ni;
 U32 spc;
} node_id_t;

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
6-228 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg_def()
* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

IPC Data Structure (ipc_data_t)
The following fields make up the ipc_data_t structure, which is defined in the include file
iblock.h.

* more_ind (input)
Specifies whether an IPC message is the last in a sequence. This field is useful if the data
portion of a message exceeds the maximum amount of data that the UNIX operating system
can send in a single data packet. Note that the limit is a UNIX configuration parameter,
initially set to 4096 octets. The SINAP/SS7 system also uses more_ind when a command
reply exceeds the response timeout. In this case, a command reply could consist of an
arbitrary number of messages and a final reply; the more_ind field would be set to 1 to
indicate that the receiving process is working on the reply. The final reply would indicate
the result of the command.

typedef struct ipc_data_s
{
 U8 more_ind;
 U32 len;
 U32 ret_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */
} ipc_data_t;
CASL Function Calls 6-229

ca_put_msg_def()
* len (input)
Specifies the length (in octets) of the data portion of the message body.

* ret_code (input)
Specifies a return code value. By returning a user-defined value, a client application can use
this field to indicate success or failure.

N O T E
The data portion of a message should follow the message field
of i_block_t. The structure of the data portion is dependent
on the msg_type field. The following use of i_block_t is
recommended.

typedef struct user_struc_s
{
 i_block_t iblk_hdr;
 char user_data[MAX_IBLK_DATA_SZ];
} user_struc_t;

FILES
arch.h, ca_error.h, iblock.h, sinap.h, sysdefs.h, sys/time.h,
timestamp.h

RETURN VALUES
The ca_put_msg_def() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful.

timer ID CASL or user-provided timer ID.
6-230 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_msg_def()
Possible CASL values for errno are as follows.

This function performs a ca_get_key() and can also return the errors listed under that
function.

SEE ALSO
ca_cancel_def(), ca_get_msg(), ca_put_msg(), ca_restart_timer()

Value Meaning

CA_ERR_ACCESS The process calling ca_put_msg_def() is not
registered. Call ca_register() before calling this
function.

CA_ERR_DESTN_KEY The IPC key specified in the dest_id field of the
i_block_t structure could not be found.

CA_ERR_IBLK_DATA The I_Block data exceeds the maximum limit.

CA_ERR_IBLK_MSGTYPE Invalid message type.
CASL Function Calls 6-231

ca_put_reply()
ca_put_reply() 6-

SYNOPSIS
int ca_put_reply(
 ipc_key_t destn_key,
 U32 ref_nbr,
 BOOL fmore,
 U16 len,
 U8 *preply);

DESCRIPTION
The ca_put_reply() function sends an IPC message reply to the specified destination. This
function is used to respond to a command sent by the ca_put_cmd() function.

PARAMETERS
* destn_key (input)

Specifies the IPC key of the reply’s destination. Use the value of orig_id returned by the
call to ca_get_msg(). (The IPC key is defined by the ipc_key_t structure, which is
defined in the include file sinap.h. For an explanation of this structure’s fields, see the
following section, “The IPC Key Structure (ipc_key_t).”)

* ref_nbr (input)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

* fmore (input)
Specifies whether there are more replies. Use 1 to indicate that there are more replies;
otherwise, use 0.

* len (input)
Specifies the length of the reply.

* preply (input)
Specifies a pointer to the reply.
6-232 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_reply()
IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
arch.h, ca_error.h, sinap.h,

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-233

ca_put_reply()
RETURN VALUES
The ca_put_reply() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible CASL values for errno are as follows.

This function performs a ca_put_msg() and can also return the errors listed under that
function.

SEE ALSO
ca_put_cmd()

Value Meaning

0 Successful.

-1 Unsuccessful.

Value Meaning

CA_ERR_ACCESS The process is not registered. Call ca_register()
before calling this function.

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_IBLK_DATA The I_Block data exceeds the maximum limit.
6-234 SINAP/SS7 Programmer’s Guide R8052-17

ca_restart_timer()
ca_restart_timer() 6-

SYNOPSIS
int restart_timer(
 U32 timer_id,
 int timer_val);

DESCRIPTION
The ca_restart_timer() function restarts the timer for all deferred messages associated
with the specified timer ID.

PARAMETERS
* timer_id (input)

Specifies a 32-bit timer ID. Use the timer ID returned by the ca_put_msg_def()
function.

* timer_val (input)
Specifies the time (in milliseconds) to restart the timer that delays the message.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_restart_timer() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.
CASL Function Calls 6-235

ca_restart_timer()
Possible CASL values for errno are as follows.

This function performs a ca_put_msg() and a ca_get_msg() and can also return the
errors listed under those functions.

SEE ALSO
 ca_cancel_def(), ca_get_msg(), ca_put_msg(), ca_put_msg_def()

Value Meaning

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_ACCESS The process is not registered.
6-236 SINAP/SS7 Programmer’s Guide R8052-17

ca_swap_keys()
ca_swap_keys() 6-

SYNOPSIS
int ca_swap_keys(
 i_block_t *piblk);

DESCRIPTION
The ca_swap_keys() function swaps the origination (orig_id) and destination
(dest_id) key portions of an I_Block.

PARAMETERS
* piblk (input)

Specifies a pointer to the i_block_t structure containing the I_Block. For a
description of this structure’s fields, see the following section, “The Main I_Block
Structure (i_block_t).”

Main I_Block Structure (i_block_t)
The following fields are set in the i_block_t structure, which is defined in the include file
iblock.h. The iblock.h include file defines the structure of messages (I_Blocks) sent
by means of IPC. An I_Block is composed of a CASL control part, a transaction part, a
timestamp, a node ID, an originator key, a destination key, and a message body.

typedef struct i_block_s
{
 ca_ctrl_t ca_ctrl;
 ipc_trans_t trans;
 timestamp_t ts;
 node_id_t node;
 ipc_key_t orig_id;
 ipc_key_t dest_id;
 ipc_data_t msg;
} i_block_t;
CASL Function Calls 6-237

ca_swap_keys()
* ca_ctrl (input)
Specifies the CASL control structure for this I_Block. For more information about this
structure, see “The CASL Control Structure (ca_ctrl_t)” later in this section.

* trans (input)
Specifies the transaction ID structure. For information about this structure, see
“The I_Block Transaction ID Structure (ipc_trans_t)” later in this section.

* ts (input)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts. The
timestamps aid monitoring and logging, and are visible when you run the BITE log-analysis
program. For information about this structure’s fields, see “The Timestamp Structure
(timestamp_t)” later in this section.

* node (input)
Specifies the node ID. This structure is internal to the SINAP/SS7 system and should not
be modified.

* orig_id (input)
Specifies the ipc_key_t structure that contains the IPC key for a sender application
process. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* dest_id (input)
Specifies the ipc_key_t structure that contains the IPC key for the intended destination
process of the I_Block. You can obtain this IPC key by calling the ca_get_key()
function. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* msg (input)
Specifies the ipc_data_t structure that contains the IPC user data. For information
about the ipc_data_t structure, see “The IPC Data Structure (ipc_data_t)” later in
this section.
6-238 SINAP/SS7 Programmer’s Guide R8052-17

ca_swap_keys()
CASL Control Structure (ca_ctrl_t)
The following fields make up the ca_ctrl_t structure, which is defined in the include file
blkhdr.h.

* msg_type (output)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (output)
Specifies the total size of the structure, excluding this field.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */
 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
CASL Function Calls 6-239

ca_swap_keys()
* node_index (output)
This is an internal field that is automatically initialized to the appropriate value for the
SINAP node.

* sinap_variant (output)
This is an internal field that is automatically initialized to the appropriate value for the
network variant being used on the SINAP node.

* lost_cnt (output)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (output)
Specifies the number of MSUs pending.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:
6-240 SINAP/SS7 Programmer’s Guide R8052-17

ca_swap_keys()
* pid (output)
* link (output)
* msg_sender (output)
* iblk (output)
* rw (output)
* monitor_id (output)
* ssn_sio (output)
* source (output)
* destination (output)
* mptr (input) Specifies a pointer to m_block_t, Level 3.
* timer_id (output)
* timer_val (output)
* omsg_type (output)

IPC Transaction ID Structure (ipc_trans_t)
The following fields make up the ipc_trans_t structure, which is defined in the include file
iblock.h.

* msg_type (input)
Specifies the basic message function identifier that the SINAP/SS7 system and client
applications use to identify a message. When defining client application messages, you
should specify message types within the range of CL_IPC_MIN and CL_IPC_MAX (see
the include file iblock.h for more information).

* ref_nbr (input)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

* rw_ind (input)
Specifies a read or write indicator for the monitor. This field is internal to the SINAP/SS7
system; you should not modify it.

typedef struct ipc_trans_s
{
 long msg_type;
 U32 ref_nbr;
 U16 rw_ind;
 U8 monitor_id;
 U8 scenario_id;
} ipc_trans_t;
CASL Function Calls 6-241

ca_swap_keys()
* monitor_id (input)
Associates the IPC message with a particular BITE monitor session. This field is internal
to the SINAP/SS7 system; you should not modify it.

* scenario_id (input)
Associates the IPC message with a particular BITE scenario execution session. This field
is internal to the SINAP/SS7 system; you should not modify it.

Timestamp Structure (timestamp_t)
The timestamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* index (input)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (input)
Specifies the timestamp slots. See “The stamp_t Structure” below for an explanation.
(MAX_TIME_STAMPS is defined in the SINAP/SS7 timestamp.h include file.)

The stamp_t Structure
The stamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* secs (input)
Specifies the time (in seconds) since 1/1/70.

* tsid (input)
Specifies the timestamp ID. Valid values are defined in the include file timestamp.h.

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
}timestamp_t;

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;
6-242 SINAP/SS7 Programmer’s Guide R8052-17

ca_swap_keys()
* ipcx (input)
Specifies the IPC index, if applicable.

* msec (input)
Specifies the time, in milliseconds.

The node_id_t Structure
The node_id_t structure contains the following fields and is defined in the include file
iblock.h.

* ni (input)
Specifies the network indicator of the node. This field is internal to the SINAP/SS7 system
and should not be modified.

* spc (input)
Specifies the signaling point code of the node. This field is internal to the SINAP/SS7
system and should not be modified.

IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You

typedef struct node_id_s
{
 U8 ni;
 U32 spc;
} node_id_t;

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-243

ca_swap_keys()
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through 3) for the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

IPC Data Structure (ipc_data_t)
The following fields make up the ipc_data_t structure, which is defined in the include file
iblock.h.

* more_ind (input)
Specifies whether an IPC message is the last in a sequence. This field is useful if the data
portion of a message exceeds the maximum amount of data that UNIX can send in a single
data packet. Note that the limit is an UNIX configuration parameter, initially set to 4096
octets. The SINAP/SS7 system also uses more_ind when a command reply exceeds the
response timeout. In this case, a command reply could consist of an arbitrary number of
messages and a final reply; the more_ind field would be set to 1 to indicate that the

typedef struct ipc_data_s
{
 U8 more_ind;
 U32 len;
 U32 ret_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */
} ipc_data_t;
6-244 SINAP/SS7 Programmer’s Guide R8052-17

ca_swap_keys()
receiving process is working on the reply. The final reply would indicate the result of the
command.

* len (input)
Specifies the length (in octets) of the data portion of the message body.

* ret_code (input)
Specifies a return code value. By returning a user-defined value, a client application can use
this field to indicate success or failure.

N O T E
The data portion of a message should follow the message field
of i_block_t. The structure of the data portion is dependent
on the msg_type field. The following use of i_block_t is
recommended.

typedef struct user_struc_s
{
 i_block_t iblk_hdr;
 char user_data[MAX_IBLK_DATA_SZ];
} user_struc_t;

FILES
arch.h, ca_error.h, iblock.h, sinap.h, sysdefs.h, sys/time.h,
timestamp.h

RETURN VALUES
The ca_swap_keys() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors

A possible CASL error follows.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

CA_ERR_IPC_KEY IPC key is 0.
CASL Function Calls 6-245

ca_swap_keys()
SEE ALSO
ca_ascii_u32(), ca_check_key(), ca_get_key(), ca_u32_ascii()
6-246 SINAP/SS7 Programmer’s Guide R8052-17

ca_u32_ascii()
ca_u32_ascii() 6-

SYNOPSIS
int ca_u32_ascii(
 ipc_key_t *pipc_key,
 char *pn_ret,
 char *pm_ret,
 char *pa_ret,
 char *pp_ret);

DESCRIPTION
The ca_u32_ascii() function converts an IPC key’s node, module, application, and
process names from U32 words to ASCII strings. The function returns five pointers, all of which
contain four-byte ASCII values.

PARAMETERS
* pipc_key (input)

Specifies a pointer to the ipc_key_t structure that contains the IPC key whose node,
module, application (appl), and process (proc) names you want to convert from U32
words to ASCII strings. For a description of this structure’s fields, see “The IPC Key
Structure (ipc_key_t)” later in this section.

* pn_ret (output)
Specifies a pointer to the node name of the calling process. The name can be up to four
bytes long in an ASCII string.

* pm_ret (output)
Specifies a pointer to the module name of the calling process. The name can be up to four
bytes long in an ASCII string.

* pa_ret (output)
Specifies a pointer to the application name of the calling process. This name can be up to
four bytes long in an ASCII string.

* pp_ret (output)
Specifies a pointer to the process name of the calling process. This name can be up to four
bytes long in an ASCII string.
CASL Function Calls 6-247

ca_u32_ascii()
IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
 arch.h, ca_error.h, sinap.h

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
6-248 SINAP/SS7 Programmer’s Guide R8052-17

ca_u32_ascii()
RETURN VALUES
The ca_u32_ascii() function returns 0 if successful.

SEE ALSO
ca_ascii_u32(), ca_check_key(), ca_get_key(), ca_swap_keys()
CASL Function Calls 6-249

Load Control Functions
Load Control Functions
This section contains an alphabetic reference of the following CASL functions, which you can
include in an application in order to implement the load control facility.

• ca_disable_locon() terminates load control operation.

• ca_enable_locon() initiates load control operation.

• ca_exit_locon() deactivates load control processing.

• ca_inquire_locon() retrieves load control statistics.

• ca_invoke_locon() causes the SINAP/SS7 system to begin performing load control
processing.

• ca_setup_locon() configures an application for load control and defines load control
operating characteristics.

N O T E
The include file $SINAP_HOME/Include/locon.h
contains definitions for the load control functions.

The following two sections provide instructions for implementing load control in an
application. See the section “Load Control” in Chapter 3 for information on items you should
be aware of as you implement load control for an application.
6-250 SINAP/SS7 Programmer’s Guide R8052-17

Load Control Functions
Implementing Load Control in an Application
Only applications that register with the SINAP/SS7 system at the TCAP boundary can
implement load control functionality. For information about how an application registers with
the SINAP/SS7 system, see the description of the ca_register() function earlier in this
chapter.

Typically, an application’s control process implements the functions for enabling, disabling,
initiating, and terminating load control; however, you can develop a SINAP/SS7 application in
which individual application instances implement these functions. To do this, the application
must be configured for load control individual-type operation. (For more information about load
control individual-type operation, see the description of the setup_req_t structure’s type
field, which is described in ca_setup_locon() later in this chapter.)

N O T E
Load control cannot be implemented by an application that has
one process performing both control and data processing, and
another process with one or more instances also performing
data processing at the same time. To implement load control, an
application must have a separate control process, or it must have
a process with several instances, one of which performs control
processing.

Unless otherwise noted, the term application is used to refer to the application or application
instance for which load control functionality is being implemented. The term current
application refers to the application from which the load control function is being called. The
term current application instance refers to the application instance from which the load control
function is being called.

To implement load control functionality for an application, an application must call load control
functions in the following order.

1. Call the ca_register() function to register with the SINAP/SS7 system.

2. Call the ca_setup_locon() function to configure the application for load control and
to define load control operating characteristics.

3. Call the ca_enable_locon() function to initiate load control operation. This function
causes the SINAP/SS7 system to begin monitoring the application for overload conditions.

4. Optionally, call the ca_inquire_locon() function to retrieve load control statistics.

5. Call the ca_disable_locon() function to terminate load control operation. the
SINAP/SS7 system does not return to load control monitoring stage.
CASL Function Calls 6-251

Load Control Functions
Using Load Control Keywords
Most load control functions contain the parameters ssn and instance, which specify the
application and application instance, respectively, on which the function is to execute. For
example, to indicate that a function call is to execute on the application whose SSN is 254, you
specify the value 254 for the function’s ssn parameter.

N O T E
If the application uses enhanced message distribution, the
application name is used instead of an SSN.

Many load control functions also allow you to define the value of the ssn or instance
parameter by using a keyword, which represents a particular entity or group of entities. Each
function description in this chapter indicates whether the ssn and instance parameters
support the use of these keywords.

The following two keywords can be used to define the value of the ssn parameter.

• SSN_THIS specifies the current application. This value is typically used by an application
that is implementing load control functionality for itself.

• SSN_ALL specifies all applications configured for load control. This value is typically
used when a control program is being used to control load control operation across all
SINAP/SS7 applications running on the module (system).

The following two keywords can be used to define the value of the instance parameter.

• INST_THIS specifies the current application instance. This value is typically used by an
application instance that is implementing load control functionality for itself. To use this
keyword, the application must be configured for load control individual-type operation.
(For more information about individual-type operation, see the description of the
setup_req_t structure’s type field, which is described in ca_setup_locon()
later in this chapter.)

• INST_ALL specifies all instances of the current application. To use this keyword, the
application can be configured for either load control group- or individual-type operation.
(For more information about load control group- and individual-type operation, see the
description of the setup_req_t structure’s type field, which is described in
ca_setup_locon() later in this chapter.)

To execute a load control function on specific application instances, call the function once for
each instance. For example, to disable load control for instances 1, 3, and 5 of the current
application, call ca_disable_locon() three times, as shown in the following example.

ca_disable_locon(SSN_THIS, 1);
ca_disable_locon(SSN_THIS, 3);
ca_disable_locon(SSN_THIS, 5);
6-252 SINAP/SS7 Programmer’s Guide R8052-17

ca_disable_locon()
ca_disable_locon() 6-

SYNOPSIS
int ca_disable_locon(int ssn, int instance);

INCLUDE FILE
$SINAP_HOME/Include/locon.h

DESCRIPTION
Load control is persistent and, once set up for an SSN or application, it remains set up even when
the application is terminated or the SINAP/SS7 system is restarted. To remove the load control
setting for an application, use the ca_disable_locon() function.

The ca_disable_locon() function terminates load control operation at the system,
application, or instance level.

• Disabling load control at the system level terminates load control operation for all
applications configured for load control. To disable load control at the system level, call
ca_disable_locon() and specify the value SSN_ALL for the ssn parameter and
INST_ALL for the instance parameter. The intention is that in a critical situation a
control program can disable load control for all applications using a single function call.

N O T E
After disabling load control at the system level, you must
re-enable load control at the same level before you can enable
load control for an individual application. (You re-enable load
control at the system level by calling ca_enable_locon()
and specifying the value SSN_ALL for the ssn parameter and
INST_ALL for the instance parameter.)

• Disabling load control at the application level terminates load control operation for all
instances of a specific application. To disable load control at the application level, call
ca_disable_locon(), specifying the application’s SSN for the ssn parameter and
INST_ALL for the instance parameter.

• Disabling load control at the instance level terminates load control operation for one or
more instances of an application. To disable load control at the instance level, call
CASL Function Calls 6-253

ca_disable_locon()
ca_disable_locon(), specifying the application’s SSN for the ssn parameter and
the number of the application instance for the instance parameter.

If the application uses enhanced message distribution, specify the name of the application
instead of the SSN for the SSN parameter. To disable load control at the instance level, you
must have specified the value LC_INDIV for the setup_req_t structure’s type field.
(For more information about this structure, see the description of ca_setup_locon()
later in this chapter.)

N O T E S
1. When an application stops running, load control cancels

the disablement settings of individual application
instances.

2. After disabling load control for specific application
instances, you must re-enable load control for those same
instances. Enabling load control at the application level
does not override the enablement settings for individual
application instances.

For example, if you disable load control for instance 3 of
the application whose SSN is 254, you cannot re-enable
load control for that instance by calling
ca_enable_locon() and specifying the value
INST_ALL for the instance parameter. To re-enable
load control for instance 3, you must call
ca_enable_locon() and specify the value 3 for the
instance parameter.

3. Load control for an instance is enabled only if all three
levels are enabled. Therefore, disabling at any level
disables load control for that instance.

4. Instance-level enablement is ON initially by default, and is
always ON for group-type load control. The intention is to
allow selective disablement for individual load control.

If you call this function while the SINAP/SS7 system is performing load control processing for
an application, the SINAP/SS7 system extracts MSUs from the application’s LIFO queue in
FIFO fashion and appends them to the application’s input queue. the SINAP/SS7 system
discards MSUs that have been on the application’s LIFO queue longer than the time defined in
the setup_req_t structure’s delay field (see the description of ca_setup_locon()
later in this chapter for more information). The SINAP/SS7 system also discards any MSUs that
would cause the application’s input queue to overflow.
6-254 SINAP/SS7 Programmer’s Guide R8052-17

ca_disable_locon()
PARAMETERS
* ssn

Specifies the SSN of the application for which you want to disable load control. Specify
one of the following values.

• Use a decimal number (in the range 2 through 255) to specify a particular application
by using an SSN. If the application is registered for enhanced message distribution,
enter the 2- to 4-character application name instead of the SSN in the SSN field. The
ca_pack() CASL function encodes the application name as a zero-filled,
right-justified, U32 integer with a value greater than 255. If you specify INST_ALL
for the instance parameter, the application need not be running.

• Use the keyword SSN_THIS to specify the current application. If you specify
INST_ALL for the instance parameter, you disable load control for all instances of
the current application.

• Use the keyword SSN_ALL to specify all applications that are configured for load
control. You must specify INST_ALL for the instance parameter.

* instance
Specifies the number of the application instance for which you want to disable load control.
Specify one of the following values. If you specify SSN_ALL for the ssn parameter, you
must specify INST_ALL for the instance parameter.

• Use a decimal number (in the range 1 to 16) to specify a particular application
instance. You must have specified LC_INDIV for the setup_req_t structure’s
type field, and the instance must be running. (For more information about this
structure, see the description of ca_setup_locon() later in this chapter.)

• Use the keyword INST_THIS to specify the current application instance. You must
have specified LC_INDIV for the type field of the setup_req_t structure. (For
more information about this structure, see the description of ca_setup_locon()
later in this chapter.)

N O T E
Use INST_THIS only if it is appropriate for this application
instance to be implementing load control rather than the
application’s control process.

• Use the keyword INST_ALL to specify all instances of the application.

RETURN VALUES
The ca_disable_locon() function returns the following values. The return value -1
indicates an error. See Appendix C for information about load control errors.

VALUE MEANING
CASL Function Calls 6-255

ca_disable_locon()

0 Successful.

-1 Unsuccessful, errno indicates the error code. (The include file
$SINAP_HOME/Include/ca_error.h contains CASL error
codes and messages; /sys/errno.h contains UNIX error codes and
messages.)
6-256 SINAP/SS7 Programmer’s Guide R8052-17

ca_enable_locon()
ca_enable_locon() 6-

SYNOPSIS
int ca_enable_locon(int ssn, int instance);

INCLUDE FILE
$SINAP_HOME/Include/locon.h

DESCRIPTION
The ca_enable_locon() function initiates load control operation for the specified
application. Calling this function causes the SINAP/SS7 system to begin monitoring the
specified application for overload conditions. During this monitoring stage, load control is
active; however, the SINAP/SS7 system does not actively perform load control processing until
overload conditions occur.

For the SINAP/SS7 system to perform load control processing, load control must be enabled at
the system, application, and instance levels (see the following list). By default, the
ca_enable_locon() function automatically enables load control at the system and
instance levels. You call ca_enable_locon() to complete the enablement process and
enable load control at the application level (i.e., you enable load control for a specific
application). However, if you disable load control at the system or instance level, you cannot
complete the enablement process by simply enabling load control at the application level;
instead, you must first re-enable load control at the level for which it was disabled (system or
instance). (For more information, see the description of ca_disable_locon() earlier in
this chapter.)

• Enabling load control at the system level initiates load control operation for all applications
configured for load control. To enable load control at the system level, call
ca_enable_locon() and specify the value SSN_ALL for the ssn parameter and
INST_ALL for the instance parameter.

• Enabling load control at the application level initiates load control operation for all
instances of a specific application. To enable load control at the application level, call
ca_enable_locon(), specifying the application’s SSN for the ssn parameter and
INST_ALL for the instance parameter. If the application is registered for enhanced
message distribution, enter the 2- to 4-character application name instead of the SSN in the
SSN field. The ca_pack() CASL function encodes the application name as a zero-filled,
right-justified, U32 integer with a value greater than 255.
CASL Function Calls 6-257

ca_enable_locon()
• Enabling load control at the instance level initiates load control operation for one or more
instances of a specific application. To enable load control at the instance level, call
ca_enable_locon(), specifying the application’s SSN for the ssn parameter and the
number of the application instance for the instance parameter. To use this form of the
ca_enable_locon() function, you must have specified the value LC_INDIV for the
setup_req_t structure’s type field. (For more information about this structure, see the
description of ca_setup_locon() later in this chapter.)

N O T E
Load control for an instance is enabled only if all three levels
are enabled.

You cannot configure individual application instances for load control. However, you can
enable load control for a subset of the application’s instances, thereby selectively implementing
load control processing for specific application instances. For example, suppose you configure
an application for load control and then enable load control for instances 1, 3, and 5 only. If all
of the application’s instances begin experiencing overload conditions, the SINAP/SS7 system
is able to perform load control processing for instance 1, 3, and 5 only.

PARAMETERS
* ssn

Specifies the SSN of the application for which you want to enable load control. The
application must be configured for load control. If you specify INST_ALL for the
instance parameter, the application need not be running. Specify one of the following
values.

• Use a decimal number (in the range 2 to 255) to specify a particular application using
an SSN value.

• If the application is registered for enhanced message distribution, enter the 2- to
4-character application name instead of the SSN in the SSN field. The ca_pack()
CASL function encodes the application name as a zero-filled, right-justified, U32
integer with a value greater than 255.

• Use the keyword SSN_THIS to specify the current application.

• Use the keyword SSN_ALL to specify all applications configured for load control. You
must specify INST_ALL for the instance parameter.

* instance
Specifies the instance number of the application instance for which you want to enable load
control. Specify one of the following values. If you specify SSN_ALL for the ssn
parameter, you must also specify INST_ALL for the instance parameter.

• Use a decimal number (in the range 1 to 16) to specify a particular application
instance. You must have specified the value LC_INDIV for the setup_req_t
6-258 SINAP/SS7 Programmer’s Guide R8052-17

ca_enable_locon()
structure’s type field, and the instance must be running. (For more information about
this structure, see the description of ca_setup_locon() later in this chapter.)

• Use the keyword INST_THIS to specify the current application instance. You must
have specified the value LC_INDIV for the setup_req_t structure’s type field.
(For more information about this structure, see the description of
ca_setup_locon() later in this chapter.)

N O T E
Use the keyword INST_THIS only if it is appropriate for this
application instance to be implementing load control rather than
the application’s control process.

• Use the keyword INST_ALL to specify all instances of the application.

RETURN VALUES
The ca_enable_locon() function returns the following values. The return value -1
indicates an error. See Appendix C for information about load control errors.

VALUE MEANING

0 Successful.

-1 Unsuccessful, errno indicates the error code. (The include file
$SINAP_HOME/Include/ca_error.h contains CASL error
codes and messages; /sys/errno.h contains UNIX error codes and
messages.)
CASL Function Calls 6-259

ca_exit_locon()
ca_exit_locon() 6-

SYNOPSIS
int ca_exit_locon(int ssn, int instance);

INCLUDE FILE
$SINAP_HOME/Include/locon.h

DESCRIPTION
The ca_exit_locon() function deactivates load control processing for the specified
application. You can call this function only if you called the ca_invoke_locon() function
to invoke load control processing for the application; otherwise, an error occurs.

After this function executes, load control is still enabled; therefore, the SINAP/SS7 system
returns to monitoring the application for overload conditions. To completely terminate load
control operation, you must call the ca_disable_locon() function.

Calling the ca_exit_locon() function while the SINAP/SS7 system is performing load
control processing for the application causes the SINAP/SS7 system to extract MSUs from the
application’s LIFO queue in FIFO fashion and append them to the application’s input queue.
The SINAP/SS7 system discards MSUs that have been on the application’s LIFO queue longer
than the time defined in the setup_req_t structure’s abate_delay field (see the
description of ca_setup_locon() later in this chapter). The SINAP/SS7 system also
discards any MSUs that would cause the application’s input queue to overflow.

N O T E
When you call ca_exit_locon() to deactivate load control
processing, the SINAP/SS7 system does not check for overload
conditions until it processes the next incoming MSU. If this
functionality is unacceptable for your application, then do not
call ca_invoke_locon() to activate load control
processing for the application.
6-260 SINAP/SS7 Programmer’s Guide R8052-17

ca_exit_locon()
PARAMETERS
* ssn

Specifies the SSN of the application for which you want to deactivate load control
processing. The application must be running. Specify one of the following values.

• Use a decimal number (in the range 2 through 255) to specify a particular application using
an SSN.

• If the application is registered for enhanced message distribution, enter the 2- to 4-character
application name instead of the SSN in the SSN field. The ca_pack() CASL function
encodes the application name as a zero-filled, right-justified, U32 integer with a value
greater than 255.

• Use the keyword SSN_THIS to specify the current application.

* instance
Specifies the number of the application instance for which you want to deactivate load
control processing. Specify one of the following values.

• Use a decimal number (in the range 1 through 16) to specify a particular application
instance. You must have specified the value LC_INDIV for the setup_req_t
structure’s type field, and the instance must be running. (For more information about
this structure, see the description of ca_setup_locon() later in this chapter.)

• Use the keyword INST_THIS to specify the current application instance. You must
have specified the value LC_INDIV for the setup_req_t structure’s type field.
(For more information about this structure, see the description of
ca_setup_locon() later in this chapter.)

N O T E
Use the keyword INST_THIS only if it is appropriate for this
application instance to be implementing load control rather than
the application’s control process.

• Use the keyword INST_ALL to specify all instances of the application. You can use
this keyword whether you specified the value LC_INDIV or LC_GROUP for the
setup_req_t structure’s type field. (For more information about this structure,
see the description of ca_setup_locon() later in this chapter.)
CASL Function Calls 6-261

ca_exit_locon()
RETURN VALUES
The ca_exit_locon() function returns the following values. The return value -1 indicates
an error. See Appendix C for information about load control errors.

VALUE MEANING

0 Successful.

-1 Unsuccessful, errno indicates the error code. (The include file
$SINAP_HOME/Include/ca_error.h contains CASL error
codes and messages; /sys/errno.h contains UNIX error codes and
messages.)
6-262 SINAP/SS7 Programmer’s Guide R8052-17

ca_inquire_locon()
ca_inquire_locon() 6-

SYNOPSIS
int ca_inquire_locon(inquire_req_t *p_inquire);

INCLUDE FILE
$SINAP_HOME/Include/locon.h

DESCRIPTION
The ca_inquire_locon() function retrieves load control statistics for the specified
application. The ca_inquire_locon() function returns information about the specified
application in the fields of the inquire_req_t structure. If the application is configured for
load control individual-type operation (that is, you specified the value LC_INDIV for the
setup_req_t structure’s type field), ca_inquire_locon() returns information about
application instances in the instance_state_t structure.

Before calling ca_inquire_locon(), initialize the ssn field of the inquire_req_t
structure to the SSN of the application whose load control statistics you want to retrieve.

PARAMETERS
* p_inquire (input)

Specifies a pointer to a data structure of the following type.

typedef struct inquire_req_s
{

S32 ssn;
U8 type;
U8 notify;
S16 threshold;
S16 delay;
S16 count;
S16 abate_delay;
U8 enabled;
U8 state;
U8 system_enabled;
U8 instance_count;
instance_state_t instance[MAX_INSTANCES];
CASL Function Calls 6-263

ca_inquire_locon()
} inquire_req_t;

* ssn (input)
Specifies the SSN of the application whose load control statistics you want to retrieve.

• Initialize this field to a decimal number (in the range 2 through 255) to specify a
particular application using an SSN value. The application need not be running.

• If the application is registered for enhanced message distribution, enter the 2- to
4-character application name instead of the SSN in the SSN field. The ca_pack()
CASL function encodes the application name as a zero-filled, right-justified, U32
integer with a value greater than 255.

• Initialize this field to the value SSN_THIS to specify the current application. The
ca_inquire_locon() function replaces SSN_THIS with the actual SSN of the
current application.

If the call is successful, ca_inquire_locon() fills in the fields of the inquire_req_t
structure, as follows.

* type (output)
Indicates the type of load control operation currently in effect. (For detailed explanations
of these values, see the description of the setup_req_t structure’s type field, which is
described in ca_setup_locon() later in this chapter.)

• LC_GROUP indicates that the application is configured for load control group-type
operation, which means that load control treats all instances of the application as a
single entity.

• LC_INDIV indicates that the application is configured for load control
individual-type operation, which means that load control treats each application
instance as a separate entity.

• LC_DELETE indicates that load control functionality has been removed from the
application.

* notify (output)
Indicates whether the application is to be notified when load control is initiated and
terminated and load control processing is activated and deactivated. (For detailed
explanations of these values, see the description of the setup_req_t structure’s
notify field, which is described in ca_setup_locon() later in this chapter.)

• LC_NOTIFY indicates that the application is configured to receive notification when
one of these actions occurs.

• LC_NONOTIFY indicates that the application is not configured to receive notification
when one of these actions occurs.

The following fields indicate the values of the setup_req_t structure’s threshold,
delay, count, and abate_delay fields. For more information about this structure, see
ca_setup_locon() later in this chapter.
6-264 SINAP/SS7 Programmer’s Guide R8052-17

ca_inquire_locon()
* threshold (output)
Indicates the maximum number of MSUs allowed on the application’s input queue at any
one time.

* delay (output)
Indicates the maximum amount of time (in milliseconds) within which the application must
process an incoming MSU. To disable the MSU delay count and not use it as a
consideration for determining load control onset, set delay to zero. If delay equals zero,
count must also be set to zero, or an error occurs. The abate_delay parameter must
be set to a positive value.

* count (output)
Indicates the maximum number of consecutive outbound MSUs that the application is
allowed before the SINAP/SS7 system activates load control processing.

To disable the MSU delay count and not use it as a consideration for determining load
control onset, set count to zero. If count is set to zero, delay must also be set to zero
or an error occurs. The abate_delay parameter must be set to a positive value.

* abate_delay (output)
Indicates the maximum amount of time (in milliseconds) that an MSU can spend on the
application’s LIFO queue during load control processing.

* enabled (output)
Indicates whether load control is enabled for the application.

• LC_ENABLED indicates that load control is enabled.

• LC_DISABLED indicates that load control is disabled.

* state (output)
Indicates the application’s current load control status.

• LC_NOTRUN indicates that the application is not currently running.

• LC_RUN indicates that the application is currently running and that the SINAP/SS7
system is not currently performing load control processing for the application.

• LC_AUTO indicates that the application is running and has called
ca_enable_locon(), which allows the SINAP/SS7 system to activate load
control processing automatically when the application experiences overload
conditions. (This value applies only if load control is configured for group-type
operation. See the description of the type field.)

• LC_FORCE indicates that the application is running and has called
ca_invoke_locon(), which causes the SINAP/SS7 system to begin performing
load control processing, even if the application is not experiencing overload
conditions. (This value applies only if load control is configured for group-type
operation. See the description of the type field.)
CASL Function Calls 6-265

ca_inquire_locon()
* system_enabled (output)
Indicates whether load control is enabled at the system level. (For information about the
levels at which load control can be enabled, see ca_enable_locon() earlier in this
chapter.)

• LC_ENABLED indicates that load control is enabled at the system level.

• LC_DISABLED indicates that load control is disabled at the system level.

* instance_count (output)
Indicates the number of application instances currently running. If the type field of the
inquire_req_t structure is set to LC_INDIV (which indicates that the application is
configured for load control individual-type operation), ca_inquire_locon() returns
the following additional information.

* instance[MAX_INSTANCES] (output)
An array of instance_state_t structures that the SINAP/SS7 system obtains, where
the index
x < MAX_INSTANCES (16) and instance number = x + 1.
(MAX_INSTANCES is defined in the sinap.h include file.)

typedef struct instance_state_s
{

U8 enabled;
U8 state;
U16 filler;
pid_t pid;

} instance_state_t;

* enabled (output)
Indicates whether load control is enabled at the instance level. (For information about the
levels at which load control can be enabled, see ca_enable_locon() earlier in this
chapter.)

• LC_ENABLED indicates that load control is enabled for this application instance.

• LC_DISABLED indicates that load control is disabled for this application instance.

* state (output)
Indicates the application instance’s current load control status.

• LC_NOTRUN indicates that the application instance is not currently running.

• LC_RUN indicates that the application instance is currently running and that the
SINAP/SS7 system is not currently performing load control processing for the
application instance.

• LC_AUTO indicates that the application instance is running and has called
ca_enable_locon(), which allows the SINAP/SS7 system to activate load
6-266 SINAP/SS7 Programmer’s Guide R8052-17

ca_inquire_locon()
control processing automatically when the application instance experiences overload
conditions.

• LC_FORCE indicates that the application instance is running and has called
ca_invoke_locon(), which causes the SINAP/SS7 system to begin performing
load control processing, even if the application is not experiencing overload
conditions.

* filler (output)
This field is used internally by the SINAP/SS7 system. Do not modify it.

* pid (output)
 Indicates the process ID (PID) that the SINAP/SS7 system assigned to the application
instance.

RETURN VALUES
The ca_inquire_locon() function returns the following values. The return value -1
indicates an error. See Appendix C, ‘‘CASL Error Messages,” for information about load
control errors.

VALUE MEANING

0 Successful.

-1 Unsuccessful, errno indicates the error code. (The include file
$SINAP_HOME/Include/ca_error.h contains CASL error
codes and messages; /sys/errno.h contains UNIX error codes and
messages.)
CASL Function Calls 6-267

ca_invoke_locon()
ca_invoke_locon() 6-

SYNOPSIS
int ca_invoke_locon(int ssn, int instance);

INCLUDE FILE
$SINAP_HOME/Include/locon.h

DESCRIPTION
The ca_invoke_locon() function causes the SINAP/SS7 system to begin performing load
control processing for the specified application, even if the application is not experiencing
overload conditions. The SINAP/SS7 system continues to perform load control processing for
the application until you call the ca_disable_locon() or ca_exit_locon() function,
issue the DISABLE-LOAD-CONTROL or EXIT-LOAD-CONTROL command, or terminate the
application. (See Appendix A, ‘‘SINAP/SS7 MML Command Summary,” of this manual or see
the SINAP/SS7 User’s Guide (R8051) for information about these MML commands.)

Stratus does not recommend using the ca_invoke_locon() function for normal operation.
Instead, use the ca_enable_locon() function, which allows the SINAP/SS7 system to
activate load control processing automatically when the application experiences overload
conditions.

PARAMETERS
* ssn (input)

Specifies the SSN of the application for which you want the SINAP/SS7 system to begin
performing load control processing. The application must be running. Specify one of the
following values.

• Use a decimal number (in the range 2 through 255) to specify a particular application
by using an SSN value.

• If the application is registered for enhanced message distribution, enter the 2- to
4-character application name instead of the SSN in the SSN field. The ca_pack()
CASL function encodes the application name as a zero-filled, right-justified, U32
integer with a value greater than 255.

• Use the keyword SSN_THIS to specify the current application.
6-268 SINAP/SS7 Programmer’s Guide R8052-17

ca_invoke_locon()
* instance (input)
Specifies the number of the application instance for which you want the SINAP/SS7 system
to begin performing load control processing. Specify one of the following values.

• Use a decimal number (in the range 1 through 16) to specify a particular application
instance. You must have specified the value LC_INDIV for the setup_req_t
structure’s type field, and the instance must be running. (For more information about
this structure, see the description of ca_setup_locon() later in this chapter.)

• Use the keyword INST_THIS to specify the current application instance. You must
have specified the value LC_INDIV for the setup_req_t structure’s type field.
(For more information about this structure, see the description of
ca_setup_locon() later in this chapter.)

N O T E
Use the keyword INST_THIS only if it is appropriate for this
application instance to be implementing load control rather than
the application’s control process.

• Use the keyword INST_ALL to specify all instances of the application. You can use
this keyword whether you specified the value LC_INDIV or LC_GROUP for the
setup_req_t structure’s type field. (For more information about this structure,
see the description of ca_setup_locon() later in this chapter.)

RETURN VALUES
The ca_invoke_locon() function returns the following values. The return value -1
indicates an error. See Appendix C for information about load control errors.

VALUE MEANING

0 Successful.

-1 Unsuccessful, errno indicates the error code. (The include file
$SINAP_HOME/Include/ca_error.h contains CASL error
codes and messages; /sys/errno.h contains UNIX error codes and
messages.)
CASL Function Calls 6-269

ca_setup_locon()
ca_setup_locon() 6-

SYNOPSIS
int ca_setup_locon(setup_req_t *p_setup);

INCLUDE FILE
$SINAP_HOME/Include/locon.h

DESCRIPTION
The ca_setup_locon() function configures an application for load control and defines
load control operating characteristics. You must issue a separate ca_setup_locon()
function call for each application that you want to configure for load control. After calling
ca_setup_locon(), you must either call ca_enable_locon() or issue the MML
command ENABLE-LOAD-CONTROL to initiate load control operation for the application.
(See Appendix A of this manual or see the SINAP/SS7 User’s Guide (R8051) for information
about the MML command ENABLE-LOAD-CONTROL.)

To define load control operating characteristics for the application, you must initialize the fields
in the setup_req_t structure before calling ca_setup_locon(). To modify an
application’s existing load control operating characteristics, call ca_setup_locon() with
the fields of the setup_req_t structure initialized to the desired new values. To remove load
control functionality from an application, call ca_setup_locon() with the type field of
setup_req_t initialized to the value LC_DELETE.

The application’s load control operating characteristics are stored in a static database and they
remain in effect until you change them, or until you reinitialize the system. The fields
threshold, delay, and count define the application’s acceptable level of network
congestion. The default criteria for determining load control onset is to evaluate both the MSU
delay count and the length of the input queue versus the threshold. To disable the MSU delay
count and use the input queue length as the sole determining factor, set both count and delay
to zero and set abate_delay to a positive value.

N O T E
If the application used enhanced message distribution, use the
2- to 4-character application name instead of the SSN in the
SSN field. The ca_pack() CASL function encodes the
6-270 SINAP/SS7 Programmer’s Guide R8052-17

ca_setup_locon()
application name as a zero-filled, right-justified, U32 integer
with a value greater than 255.

The LIFO queue that the SINAP/SS7 system creates for load control processing is the same size
as the application’s input queue, which is defined by the register_req_t structure’s
max_msu_input_que field.

The application’s current state has the following effects on the load control operating
characteristics defined by the ca_setup_locon() function call.

• If you are configuring an application for load control and the application is active when you
call this function, load control operating characteristics take effect when the function call
has finished executing. The SINAP/SS7 system implements load control for the specified
application without disrupting the application’s normal processing.

• If you are configuring the application for load control individual-type operation, load
control operating characteristics take effect when an application instance calls the
ca_register() function to register with the SINAP/SS7 system.

• If you are calling this function to modify load control characteristics for an application, the
new characteristics take effect when the function call has finished executing. If the
SINAP/SS7 system is currently performing load control processing for the application, the
SINAP/SS7 system validates the new characteristics without disrupting active load control
processing.

• If you remove load control from an application for which the SINAP/SS7 system is
currently performing load control processing, the SINAP/SS7 system extracts MSUs from
the application’s LIFO queue in FIFO fashion and appends them to the application’s input
queue. The SINAP/SS7 system discards MSUs that have been on the application’s LIFO
queue longer than the time defined by the ca_setup_locon() function’s
abate_delay parameter. The SINAP/SS7 system also discards any MSUs that would
cause the application’s input queue to overflow.

PARAMETERS
* p_setup (input)

Specifies a pointer to a data structure of the following type. Before calling
ca_setup_locon(), initialize this structure’s fields to appropriate values.

N O T E
Specifying values that are too low can cause unpredictable load
control behavior.
CASL Function Calls 6-271

ca_setup_locon()
The setup_req_t structure is as follows:

typedef struct setup_req_s
{

S32 ssn;
U8 type;
U8 notify;
S16 threshold;
S16 delay;
S16 count;
S16 abate_delay;

} setup_req_t;

* ssn (input)
Specifies the SSN of the application being configured for load control.

• Use a decimal number (in the range 2 through 255) to specify a particular application
using the SSN. The application need not be running.

• If the application is registered for enhanced message distribution, enter the 2- to
4-character application name instead of the SSN in the SSN field. The ca_pack()
CASL function encodes the application name as a zero-filled, right-justified, U32
integer with a value greater than 255.

• Use the keyword SSN_THIS to specify the current application. The
ca_setup_locon() function replaces SSN_THIS with the actual SSN of the
current application.

* type (input)
Specifies how the SINAP/SS7 system evaluates the network congestion levels of individual
application instances to determine if the application is experiencing overload conditions.
Initialize this field to one of the following values.

N O T E
Stratus recommends specifying LC_GROUP, which causes the
SINAP/SS7 system to evaluate the application’s network
congestion based on the combined congestion levels of each of
the application’s instances. If you plan to allow individual
application instances to enable, disable, invoke, and exit load
control, you must initialize this field to LC_INDIV.

• LC_GROUP (load control group-type operation) specifies that the SINAP/SS7 system
is to treat all of the application’s instances as a single entity. The SINAP/SS7 system
activates load control processing only when all of the application’s instances are
experiencing overload conditions. For example, if an application has 10 instances, and
only 3 of the 10 are experiencing overload conditions, the SINAP/SS7 system does not
6-272 SINAP/SS7 Programmer’s Guide R8052-17

ca_setup_locon()
activate load control processing for any of the instances; all 10 instances must be
experiencing overload conditions.

You can use the value LC_GROUP whether the inbound_load_dist_type field
of the register_req_t structure is set to a value of 1 or 2. (The value 1 specifies
round-robin load distribution; the value 2 specifies least-utilized load distribution. For
more information about this structure, see the description of ca_register() earlier
in this chapter.)

• LC_INDIV (load control individual-type operation) specifies that the SINAP/SS7
system is to treat each of the application’s instances as a separate entity. The
SINAP/SS7 system activates load control processing for an application instance
whenever that instance experiences overload conditions.

To use LC_INDIV, the inbound_load_dist_type field of the
register_req_t structure must be set to a value of 1, which specifies round-robin
load distribution. (For more information about this structure, see the description of
ca_register() earlier in this chapter.)

• LC_DELETE removes load control functionality from the application. You cannot
remove load control functionality from individual application instances.

* notify (input)
Specifies whether the SINAP/SS7 system notifies the application when load control is
initiated and terminated and when load control processing is activated and deactivated.
Initialize this field to one of the following values.

• LC_NOTIFY specifies that the application should be notified. The SINAP/SS7 system
uses an IPC message to notify the application. (For more information about IPC
messages, see the section “Interprocess Communications (IPC)” in Chapter 2.) The
IPC message type is I_NOTIFICATION and its data format is shown below. (Note
that the data format is defined in $SINAP_HOME/Include/locon.h.)

typedef struct lc_notify_s
{

U8 ssn;
U8 instance; /* 0 for type LC_GROUP */
U8 state; /* LC_AUTO/LC_FORCE */
U8 action; /* LC_INIT/LC_ABATE */

} lc_notify_t

• LC_NONOTIFY specifies that the application should not be notified.

* threshold (input)
Specifies the maximum number of MSUs allowed on the application’s input queue.
Initialize this field to a decimal number in the range 1 to the value of the
register_req_t structure’s max_msu_input_que field (not to exceed 10000).
(For more information about this structure, see the description of ca_register()
earlier in this chapter.)
CASL Function Calls 6-273

ca_setup_locon()
The SINAP/SS7 system activates load control processing when the number of MSUs on the
input queue meet or exceed this value, and the values of the delay and count fields
are met or exceeded.

* delay (input)
Specifies the amount of time (in milliseconds) within which the application must process
an incoming MSU. Initialize this field to a decimal number in the range
1 through 10000.

The SINAP/SS7 system activates load control processing when the number of incoming
MSUs defined by the count field have not been processed within this amount of time, and
the number of MSUs on the application’s input queue meet or exceed the value defined in
the threshold field. Note that MSU processing time is measured from the time an
incoming MSU arrives on the input queue to the time the application places a response on
the output queue.

N O T E
To make use of the timestamp applied to incoming MSUs
(which the SINAP/SS7 system uses to monitor an application
for overload conditions), an application must use the same
t_block_t structure for the response as was used by the
incoming MSU; otherwise, the timestamp is rendered useless.

To disable the MSU delay count and not use it as a criteria for determining load control
onset, set delay to zero. The count parameter must also be set to zero or an error occurs,
specifying the nonzero field. The abate_delay parameter must be set to a positive
value.

* count (input)
Specifies the maximum number of consecutive outbound MSUs that the application is
allowed. Initialize this field to a decimal number in the range 1 through 10000.

The SINAP/SS7 system activates load control processing when the number of MSUs on the
application’s output queue meet or exceed this value, and the number of incoming MSUs
on the application’s input queue meet or exceed the value defined in the threshold field.

To disable the MSU delay count and not use it as a criteria for determining load control
onset, set count to zero. The delay parameter must also be set to zero or an error occurs,
specifying the nonzero field. The abate_delay parameter must be set to a positive
value.

* abate_delay (input)
Specifies the maximum amount of time (in milliseconds) that an MSU can spend on the
application’s LIFO queue during load control processing. Initialize this field to a decimal
number in the range 1 through 10000.
6-274 SINAP/SS7 Programmer’s Guide R8052-17

ca_setup_locon()
When the SINAP/SS7 system extracts an MSU from the LIFO queue, it compares the
length of time that the MSU has been on the queue to the value defined by this field. If the
MSU’s time on the queue meets or exceeds this value, the SINAP/SS7 system discards all
of the MSUs on the LIFO queue, since they have been on the queue too long.

RETURN VALUES
The ca_setup_locon() function returns the following values. The return value -1
indicates an error. See Appendix C for information about load control errors.

VALUE MEANING

0 Successful.

-1 Unsuccessful, errno indicates the error code. (The include file
$SINAP_HOME/Include/ca_error.h contains CASL error
codes and messages; /sys/errno.h contains UNIX error codes and
messages.)
CASL Function Calls 6-275

BITE Functions
BITE Functions
This section contains an alphabetic reference of the following CASL functions, which can be
used in any type of application in order to implement testing options.

• ca_dbg_display()

• ca_dbg_dump()

• ca_disable_intc()

• ca_disable_mon()

• ca_enable_intc()

• ca_enable_mon()
6-276 SINAP/SS7 Programmer’s Guide R8052-17

ca_dbg_display()
ca_dbg_display() 6-

SYNOPSIS
int ca_dbg_display(

char *pstring);

DESCRIPTION
The ca_dbg_display() function sends debug messages as ASCII strings to the BITE for
logging. If the Terminal Handler is currently monitoring the process, ca_dbg_display()
also sends the messages to the terminal to aid in problem solving.

If monitoring is enabled, the ca_dbg_display() function sends debug messages as ASCII
strings to the process’s log file. If monitoring is not enabled, the process sends the ASCII strings
to the BITE’s default log file. If a string is longer than 255 bytes, a null is inserted after the 255th
byte and the remaining bytes are discarded.

The debug message does not cause an event that is visible to Node Management, and is not
recorded in the Trouble Management log or in the Stratus console/system log.

PARAMETERS
* pstring (input)

Specifies a pointer to the null-terminated ASCII string being logged. The string should not
exceed 255 bytes.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_dbg_display() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.
CASL Function Calls 6-277

ca_dbg_display()
Possible CASL values for errno are as follows.

This function performs a ca_put_msg() and can also return the errors listed under that
function.

SEE ALSO
 ca_dbg_dump()

Value Meaning

CA_ERR_ACCESS The process is not registered. Call
ca_register() before calling this function.

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_MSG_TRUNCATED String is truncated to 255 bytes.
6-278 SINAP/SS7 Programmer’s Guide R8052-17

ca_dbg_dump()
ca_dbg_dump() 6-

SYNOPSIS
int ca_dbg_dump(
 U8 *pdump,
 U16 size);

DESCRIPTION
The ca_dbg_dump() function sends the specified portion of memory to the BITE for log file
recording. If the Terminal Handler is currently monitoring the process, messages also appear at
the terminal.

If monitoring is enabled, the function sends the data as ASCII strings to the process’s log file.
If monitoring is not enabled, the process sends the ASCII strings to the BITE’s default log file.

PARAMETERS
* pdump (input)

Specifies a pointer to the requested area of memory.

* size (input)
Specifies the size of the requested area of memory.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_dbg_dump() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for
error number and description.
CASL Function Calls 6-279

ca_dbg_dump()
Possible CASL values for errno are as follows.

This function performs a ca_put_msg() and can also return the errors listed under that
function.

SEE ALSO
 ca_dbg_display()

Value Meaning

CA_ERR_ACCESS The process is not registered. Call
ca_register() before calling this function.

CA_ERR_DESTN_KEY Destination process key not found.
6-280 SINAP/SS7 Programmer’s Guide R8052-17

ca_disable_intc()
ca_disable_intc() 6-

SYNOPSIS
int ca_disable_intc();

DESCRIPTION
The ca_disable_intc() function instructs the BITE to discontinue scenario execution
(known as intercept mode) and return the calling process to normal network communications
activity. To stop scenario execution, a process must call this function. The function does not
have any parameters.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_disable_intc() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible CASL values for errno are as follows.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.

Value Meaning

CA_ERR_ACCESS The process calling ca_disable_intc() is not
registered. Call ca_register() before calling this
function

CA_ERR_DESTN_KEY Destination process key not found.
CASL Function Calls 6-281

ca_disable_intc()
This function calls ca_get_msg() and ca_put_msg() and can return the errors listed
under those functions.

SEE ALSO
ca_enable_intc()
6-282 SINAP/SS7 Programmer’s Guide R8052-17

ca_disable_mon()
ca_disable_mon() 6-

SYNOPSIS
int ca_disable_mon();

DESCRIPTION
The ca_disable_mon() function instructs the BITE to discontinue monitoring activity for
the calling process. The function does not have any parameters.

FILES
 arch.h, ca_error.h

RETURN VALUES
The ca_disable_mon() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible CASL values for errno are as follows.

This function performs a ca_put_msg()and a ca_get_msg() and can also return the
errors listed under those functions.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

CA_ERR_ACCESS The process calling ca_disable_mon() is not
registered. Call ca_register() before calling this
function

CA_ERR_DESTN_KEY Destination process key not found.
CASL Function Calls 6-283

ca_disable_mon()
SEE ALSO
 ca_enable_mon()
6-284 SINAP/SS7 Programmer’s Guide R8052-17

ca_enable_intc()
ca_enable_intc() 6-

SYNOPSIS
int ca_enable_intc(

 char *ps);

DESCRIPTION
The ca_enable_intc() function enables scenario execution (intercept mode). The
function instructs the BITE to place the SS7 communication path to the calling process in
intercept mode, and then simulates network activity by starting a scenario execution program
under the BITE’s control.

The calling process provides the fully qualified file name of the desired scenario execution
program. If the calling process had previously enabled monitoring, the result of the scenario
execution is logged.

N O T E
You can also enable scenario execution by specifying intercept
mode in the ca_register() function or by issuing the
MML command START-SCEN.

PARAMETERS
* ps (input)

Specifies a pointer to the path name of the desired scenario execution program.

FILES
 arch.h, ca_error.h
CASL Function Calls 6-285

ca_enable_intc()
RETURN VALUES
The ca_enable_intc() function can return the following values. If the function returns
-1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible CASL values for errno are as follows.

This function calls ca_get_msg() and ca_put_msg() and can return the errors listed
under those functions.

SEE ALSO
ca_disable_intc()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.

Value Meaning

CA_ERR_ACCESS The process calling ca_enable_intc() is not
registered. Call ca_register() before calling this
function

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_INT_MML Error in command to BITE.
6-286 SINAP/SS7 Programmer’s Guide R8052-17

ca_enable_mon()
ca_enable_mon() 6-

SYNOPSIS
int ca_enable_mon(

 BOOL ipc,
 BOOL ss7,

 U8 *pfn);

DESCRIPTION
To enable monitoring, a process calls the ca_enable_mon() function. This function
activates BITE monitoring of IPC or SS7 activity.

You can also enable monitoring by specifying fmon_ipc and/or fmon_ss7 in the
ca_register() function or by issuing the MML command START-MON.

PARAMETERS
* ipc (input)

Specifies whether IPC activities are to be monitored. Specify a 1 to monitor IPC activities;
otherwise, specify 0.

* ss7 (input)
Specifies whether SS7 activities are to be monitored. Specify a 1 to monitor SS7 activities;
otherwise, specify 0.

* pfn (input)
Specifies a pointer to the path name of the log file to which monitoring results are to be
written.

FILES
 arch.h, ca_error.h
CASL Function Calls 6-287

ca_enable_mon()
RETURN VALUES
The ca_enable_mon() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible CASL values for errno are as follows.

This function calls ca_get_msg() and ca_put_msg() and can return the errors listed
under those functions.

SEE ALSO
ca_disable_mon()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.

Value Meaning

CA_ERR_ACCESS The process is not registered. Call ca_register()
before calling this function

CA_ERR_DESTN_KEY Destination process key not found.

CA_ERR_INT_MML Error in command to BITE.
6-288 SINAP/SS7 Programmer’s Guide R8052-17

Miscellaneous Functions
Miscellaneous Functions
This section contains an alphabetic reference of the following CASL functions, which can be
used in any type of application.

• ca_health_chk_req()

• ca_health_chk_resp()

• ca_pack()

• ca_put_event()

• ca_unpack()
CASL Function Calls 6-289

ca_health_chk_req()
ca_health_chk_req() 6-

SYNOPSIS
int ca_health_chk_req(
 ipc_key_t destn_key);

DESCRIPTION
The ca_health_chk_req() function sends a health-check request to the specified
destination, using the specified IPC key. The destination must respond to this request within the
amount of time specified by the SINAP/SS7 environment variable
SINAP_HEALTH_TIMEOUT. Otherwise, the health-check request fails, prompting trouble
management to perform the procedure defined in the trouble treatment table (see the SINAP/SS7
User’s Guide (R8051) for more information).

To receive health-check requests, the destination must be registered to receive them (i.e., it must
have called the ca_register() function with the fhealth_check_option parameter
set to 1).

N O T E
Application processes can use health-check messages to poll
one another.

PARAMETERS
* destn_key (input)

Specifies the ipc_key_t structure that contains the IPC key of the destination process.
To use ca_health_chk_req(), you must assign values to the fields in the
ipc_key_t structure, which is described in the following section “The IPC Key Structure
(ipc_key_t).”

N O T E
The SINAP/SS7 system returns an error if the specified IPC key
is invalid.
6-290 SINAP/SS7 Programmer’s Guide R8052-17

ca_health_chk_req()
IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 through 8). A value of 0 indicates that the field is
not used.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
 arch.h, ca_error.h, sinap.h

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-291

ca_health_chk_req()
RETURN VALUES
The ca_health_chk_req() function can return the following values. If the function
returns -1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

A possible CASL value for errno is as follows.

This function performs a ca_put_msg() and can also return the errors listed under that
function.

SEE ALSO
ca_put_msg(), ca_health_chk_resp(), ca_register()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

CA_ERR_ACCESS The process calling ca_health_chk_req() is not registered.
The process must call ca_register() before calling this function.
6-292 SINAP/SS7 Programmer’s Guide R8052-17

ca_health_chk_resp()
ca_health_chk_resp() 6-

SYNOPSIS
int ca_health_chk_resp(
 i_block_t *piblk);

DESCRIPTION
The ca_health_chk_resp() function is used to respond to a health-check request. When
a process receives a health-check request, it must call this function within the amount of time
specified in the SINAP/SS7 environment variable SINAP_HEALTH_TIMEOUT. Otherwise,
the health-check request fails, prompting trouble management to perform the procedure defined
in the trouble treatment table. (For more information about the trouble treatment table, see the
SINAP/SS7 User’s Guide (R8051).)

PARAMETERS
* piblk (input)

Specifies a pointer to the I_Block that contains the health-check request. Use the
I_Block pointed to by the ca_get_msg function’s piblk parameter. The I_Block
is stored in the i_block_t structure, which is described in the following section “The
Main I_Block Structure (i_block_t).”

The I_Block retrieved by ca_get_msg() is the I_Block that actually contains the
health-check request.

Main I_Block Structure (i_block_t)
The following fields are set in the i_block_t structure, which is defined in the include file
iblock.h. The iblock.h include file defines the structure of messages (I_Blocks) sent
CASL Function Calls 6-293

ca_health_chk_resp()
via IPC. An I_Block is composed of a CASL control part, a transaction part, a timestamp, a
node ID, an originator key, a destination key, and a message body.

* ca_ctrl (input)
Specifies the CASL control structure for this I_Block. For more information about this
structure, see “The CASL Control Structure (ca_ctrl_t)” later in this section.

* trans (input)
Specifies the transaction ID structure. For information about this structure, see
“The I_Block Transaction ID Structure (ipc_trans_t)” later in this section.

* ts (input)
Specifies a collection of timestamps that the SINAP/SS7 system automatically inserts. The
timestamps aid monitoring and logging, and are visible when you run the BITE log-analysis
program. For information about this structure’s fields, see “The Timestamp Structure
(timestamp_t)” later in this section.

* node (input)
Specifies the node ID. This structure is internal to the SINAP/SS7 system and should not
be modified.

* orig_id (input)
Specifies the ipc_key_t structure that contains the IPC key for a sender application
process. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

* dest_id (input)
Specifies the ipc_key_t structure that contains the IPC key for the intended destination
process of the I_Block. You can obtain this IPC key by calling the ca_get_key()
function. For information about the ipc_key_t structure, see “The IPC Key Structure
(ipc_key_t)” later in this section.

typedef struct i_block_s
{
 ca_ctrl_t ca_ctrl;
 ipc_trans_t trans;
 timestamp_t ts;
 node_id_t node;
 ipc_key_t orig_id;
 ipc_key_t dest_id;
 ipc_data_t msg;
} i_block_t;
6-294 SINAP/SS7 Programmer’s Guide R8052-17

ca_health_chk_resp()
* msg (input)
Specifies the ipc_data_t structure that contains the IPC user data. For information
about the ipc_data_t structure, see “The IPC Data Structure (ipc_data_t)” later in
this section.

CASL Control Structure (ca_ctrl_t)
The ca_ctrl_t structure contains the following fields and is defined in the include file
blkhdr.h.

typedef struct ca_ctrl_s
{
 int msg_type; /* For compatibility with the existing UNIX IPC

mechanism. */

 int msu_cnt; /* # of MSUs pending */
 int free_cnt; /* # of free MSUs in read queue */
 int wfree_cnt; /* # of free MSUs in write queue */
 S16 lost_cnt; /* # of MSUs lost due to insuff. resources */
 S16 data_size; /* Total size of structure excluding this
 structure. */
 U8 node_index; /* index (0 - 3) of current node */
 U8 sinap_variant; /* V_CCITT, V_ANSI, V_HYBRID, V_TTC */
 U16 link; /* index of the origination link */
 pid_t pid; /* Process ID of a specific process or 0
 for load distribution */
 int msg_sender; /* Set to 0 if from link otherwise contains
 the process ID */
 U8 iblk; /* TRUE if data contains I_Block */
 /* Not used anywhere!!!!! */
 U8 rw; /* Flag for monitor message only */
 U8 monitor_id; /* monitor ID for monitored MSU */
 U8 ssn_sio; /* SSN or SIO ID for load distribution. */
 struct {
 U32 timer_id; /* For CASL internal use only */
 U32 timer_val; /* For CASL internal use only */
 int omsg_type; /* For CASL internal use only */
 } timr;
 struct { /* For internal use only */
 int source; /* For distribution managment. */
 int destination; /* For protocol processing. */
#ifdef _KERNEL
 mblk_t *mptr; /* Back pointer to mblk_t. L3 only.*/
#else
 void *mptr; /* ss7-1102 - dummy back pointer. */
#ifdef _LP_32_64_
 U32 filler; /* For User32/Driver64 compatibility*/
#endif /* _LP_32_64_ */
#endif /* _KERNEL */
 } internal;
} ca_ctrl_t;
CASL Function Calls 6-295

ca_health_chk_resp()
* msg_type (input)
Specifies the type of MSU being sent. This field is compatible with the existing UNIX IPC
mechanism.

* data_size (input)
Specifies the total size of the structure, excluding this field.

* node_index (input)
This field is internal to the SINAP/SS7 system and is automatically initialized to the
appropriate value for the SINAP node being used.

* sinap_variant (input)
This field is internal to the SINAP/SS7 system and is automatically initialized to the
appropriate value for the network variant being used on the SINAP node.

* lost_cnt (input)
Specifies the number of M_Blocks lost due to insufficient resources within the SS7 driver.

* msu_cnt (input)
Specifies the number of MSUs pending in the READ queue.

* free_cnt (output)
Specifies the number of free MSUs pending in the read queue.

* wfree_cnt (output)
Specifies the number of free MSUs pending in the write queue.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* pid (input)
* link (input)
* msg_sender (input)
* iblk (input)
* rw (input)
* monitor_id (input)
* ssn_sio (input)
* source (input)
* destination (input)
* mptr (output) - Specifies a pointer to m_block_t, level 3.
* timer_id (input)
* timer_val (input)
* omsg_type (input)
6-296 SINAP/SS7 Programmer’s Guide R8052-17

ca_health_chk_resp()
IPC Transaction ID Structure (ipc_trans_t)
The following fields make up the ipc_trans_t structure, which is defined in the include file
iblock.h.

* msg_type (input)
Specifies the basic message function identifier that the SINAP/SS7 system and client
applications use to identify a message. When defining client application messages, you
should specify message types within the range of CL_IPC_MIN and CL_IPC_MAX (see
the include file iblock.h for more information).

* ref_nbr (input)
Specifies a reference number that allows the sending and receiving processes to keep track
of messages that are of the same type. The reference number lets the receiving process
associate a reply with an instance of a command.

The following fields are internal to the SINAP/SS7 system and you should not modify them:

* rw_ind (input) - Specifies a read or write indicator for the monitor.

* monitor_id (input) -Associates the IPC message with a particular BITE monitor session.

* scenario_id (input) - Associates the IPC message with a particular BITE scenario
execution session.

Timestamp Structure (timestamp_t)
The timestamp_t structure contains the following fields and is defined in the include file
timestamp.h.

typedef struct ipc_trans_s
{
 int msg_type;
 U32 ref_nbr;
 U16 rw_ind;
 U8 monitor_id;
 U8 scenario_id;
} ipc_trans_t;

typedef struct timestamp_s
{
 U16 index;
 stamp_t stamp[MAX_TIME_STAMPS];
}timestamp_t;
CASL Function Calls 6-297

ca_health_chk_resp()
* index (input)
Specifies the next slot to stamp the time.

* stamp[MAX_TIME_STAMPS] (input)
Specifies the timestamp slots. See “The stamp_t Structure” below for an explanation.
(MAX_TIME_STAMPS is defined in the SINAP/SS7 timestamp.h include file.)

The stamp_t Structure
The stamp_t structure contains the following fields and is defined in the include file
timestamp.h.

* secs (input)
Specifies the time (in seconds) since 1/1/70.

* tsid (input)
Specifies the timestamp ID. Valid values are defined in the include file timestamp.h.

* ipcx (input)
Specifies the IPC index, if applicable.

* msec (input)
Specifies the time, in milliseconds.

The node_id_t Structure
The node_id_t structure contains the following fields and is defined in the include file
iblock.h.

typedef struct stamp_s
{
 U32 secs; /* time in seconds since 1/1/70 */
 U8 tsid; /* timestamp id */
 U8 ipcx; /* ipc index if applicable */
 U16 msec; /* time in milliseconds */
} stamp_t;

typedef struct node_id_s
{
 U8 ni;
 U32 spc;
} node_id_t;
6-298 SINAP/SS7 Programmer’s Guide R8052-17

ca_health_chk_resp()
* ni (input)
Specifies the network indicator of the node. This field is internal to the SINAP/SS7 system
and should not be modified.

* spc (input)
Specifies the signaling point code of the node. This field is internal to the SINAP/SS7
system and should not be modified.

IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 through 8). A value of 0 indicates that the field is
not used.

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
CASL Function Calls 6-299

ca_health_chk_resp()
* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

IPC Data Structure (ipc_data_t)
The following fields make up the ipc_data_t structure, which is defined in the include file
iblock.h.

* more_ind (input)
Specifies whether an IPC message is the last in a sequence. This field is useful if the data
portion of a message exceeds the maximum amount of data that UNIX can send in a single
data packet. Note that the limit is an UNIX configuration parameter, initially set to 4096
octets. The SINAP/SS7 system also uses more_ind when a command reply exceeds the
response timeout. In this case, a command reply could consist of an arbitrary number of
messages and a final reply; the more_ind field would be set to 1 to indicate that the
receiving process is working on the reply. The final reply would indicate the result of the
command.

* len (input)
Specifies the length (in octets) of the data portion of the message body.

* ret_code (input)
Specifies a return code value. By returning a user-defined value, a client application can use
this field to indicate success or failure.

N O T E
The data portion of a message should follow the message field
of i_block_t. The structure of the data portion is dependent

typedef struct ipc_data_s
{
 U8 more_ind;
 U32 len;
 U32 ret_code;
#if defined(__LP64__) || defined(_LP_32_64_)
 U32 filler; /* For User32/Driver64 compatibility */
#endif /* __LP64__ || _LP_32_64_ */
} ipc_data_t;
6-300 SINAP/SS7 Programmer’s Guide R8052-17

ca_health_chk_resp()
on the msg_type field. The following use of i_block_t is
recommended.

typedef struct user_struc_s
{
 i_block_t iblk_hdr;
 char user_data[MAX_IBLK_DATA_SZ];
} user_struc_t;

FILES
arch.h, ca_error.h, iblock.h, sinap.h, sysdefs.h, sys/time.h,
timestamp.h

RETURN VALUES
The ca_health_chk_resp() function can return the following values. If the function
returns -1, there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible CASL values for errno are as follows.

This function performs a ca_put_msg() and can also return the errors listed under that
function.

SEE ALSO
ca_health_chk_req(), ca_put_msg(), ca_register()

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and description.

Value Meaning

CA_ERR_ACCESS The calling process is not registered. Call
ca_register() before calling this function.

CA_ERR_IPC_KEY Invalid IPC key.
CASL Function Calls 6-301

ca_pack()
ca_pack() 6-

SYNOPSIS
U32 ca_pack(char s[])

INCLUDE FILES
$SINAP_HOME/Include/caslinc.h
$SINAP_HOME/Include/ca_glob.h

DESCRIPTION
The ca_pack() function converts a character string to a zero-filled, right-justified U32 word
and returns the results. Typically, an application’s name is defined as a character string;
however, it must be defined as a zero-filled, right-justified U32 word in the appl field of the
dist_cmd_t structure, which an application uses to implement enhanced message
distribution. To convert the application name to the proper format, pass the ca_pack()
function the character string that defines the application name. The function converts the string
to a zero-filled, right-justified U32 word and returns the results, which can then be used in the
dist_cmd_t structure’s appl field.

RETURN VALUES
The ca_pack() function returns the application name as a zero-filled, right-justified U32
word.

NOTES
The man page format of this command is ca_pack.
6-302 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_event()
ca_put_event() 6-

SYNOPSIS
int ca_put_event(
 U8 category,
 U8 subcategory,
 U8 type,
 int state;
 int code,
 ipc_key_t *pipckey,
 char *ptext);

DESCRIPTION
The ca_put_event() function sends an alarm or event to the Node Management
subsystem.

PARAMETERS
* category (input)

Specifies the classification of the set of events. A category can be established for any set of
events sharing the same subcategories. Categories are defined on a system-wide basis; each
value for the category parameter has a unique meaning to the system. Use any number
in the range 15 through 30 for events that the client process generates. The values for this
parameter are defined as constants in the include file event.h. (See the SINAP/SS7 User’s
Guide (R8051) for information about possible values for this parameter.)

* subcategory (input)
Specifies the classification of an event within a category. The client processes sharing the
event category must make the subcategory assignments and reservations. You can
specify up to 30 subcategories. The values for this parameter are defined as constants in the
include file event.h. (See the SINAP/SS7 User’s Guide (R8051) for information about
possible values for this parameter.)

* type (input)
Specifies the classification of a particular event. Use 1 for a hardware event, 2 for a
software event, and 3 for a network event. Hardware and network events are logged to the
Alarm History log file. Software events are logged to the Software Notebook. The values
for this parameter are defined as constants in the include file event.h.
CASL Function Calls 6-303

ca_put_event()
* state (input)
Specifies the state of the process at the time an error is detected.

* code (input)
Specifies process-dependent code that provides additional information about the process at
the time an event was detected.

* pipckey (input)
Specifies a pointer to the ipc_key_t structure that contains the culprit IPC key. The IPC
key’s structure is defined in the include file sinap.h. For an explanation of the structure’s
fields and possible values, see “The IPC Key Structure (ipc_key_t),” which follows.

* ptext (input)
Specifies a pointer to text associated with a particular event. The value of ptext can be
up to 76 characters in length.

IPC Key Structure (ipc_key_t)
The ipc_key_t structure contains the following fields and is defined in the include file
sinap.h.

* node (output)
Specifies the ID of the SINAP node on which your application is running. You can
determine this value from the NODE= entry in the /etc/sinap_master file. You
should modify any script files or user-defined program files that contain an invalid,
hard-coded node name.

* module (output)
Specifies the name or ID of the module. You can determine this value from the MODULE=
entry in the /etc/sinap_master file. You should modify any script files or
user-defined program files that contain an invalid, hard-coded module name.

* appl (input)
Specifies the compressed application ID.

typedef struct ipc_key_s
{

U32 node;
U32 module;
U32 appl;
U32 proc;
U8 instance;
U8 node_index;
U16 ipc_index;

} ipc_key_t;
6-304 SINAP/SS7 Programmer’s Guide R8052-17

ca_put_event()
* proc (input)
Specifies the compressed process ID.

* instance (input)
Specifies the instance ID (in the range 1 to 8). A value of 0 indicates that the field is not
used.

* node_index (input)
Specifies the index (0 through 3) of the node.

* ipc_index (input)
Specifies the index ID of the IPC process table.

FILES
 arch.h, ca_error.h, event.h

RETURN VALUES
The ca_put_event() function can return the following values. If the function returns -1,
there is an error. See ca_error.h for the CASL error number and meaning; see
sys/errno.h for UNIX errors.

Possible UNIX values for errno are as follows.

Value Meaning

0 Successful.

-1 Unsuccessful. See errno for error number and
description.

Value Meaning

EBADF An invalid open file descriptor was specified.

ENOTTY This fides is not associated with a device driver that
accepts control functions.

EFAULT The pointer to the specified message is outside the
address space allocated to the process.

EINVAL Queue ID is not a valid message queue ID. The value of
msg_type is less than 1, or msg_sz is greater than 0
or the system-imposed limit.

EIO An I/O error occurred during a read or write operation.
CASL Function Calls 6-305

ca_put_event()
A possible CASL value for errno follows.

This function performs a ca_get_key() and can also return the errors listed under that
function.

ENXIO The requested service cannot be performed on this
particular subdevice.

ENOLINK The link to a requested machine is no longer active.

Value Meaning

CA_ERR_ACCESS The process calling ca_put_event() is not
registered. Call ca_register() before calling this
function.

Value Meaning
6-306 SINAP/SS7 Programmer’s Guide R8052-17

ca_unpack()
ca_unpack() 6-

SYNOPSIS
void from U32 ca_unpack(U32 value, char *ps);

INCLUDE FILES
$SINAP_HOME/Include/caslinc.h
$SINAP_HOME/Include/ca_glob.h

DESCRIPTION
The ca_unpack() function converts a zero-filled, right-justified U32 word to a character
string. Typically, an application’s name is defined as a character string; however, it must be
defined as a zero-filled, right-justified U32 word in the appl field of the dist_cmd_t
structure, which an application uses to implement enhanced message distribution. To convert
the U32-word format of the application name back to a character string, call ca_unpack(),
passing it the application name in the value parameter. The function writes the converted
application name to the character string pointed to by the *ps parameter.

PARAMETERS
* value (input)

Specifies the zero-filled, right-justified U32 word to be converted to a character string.

* *ps (input)
Specifies a pointer to the character string in which ca_unpack() writes the results of the
convariant.

NOTES
The man page format of this command is ca_unpack.
CASL Function Calls 6-307

ca_unpack()
6-308 SINAP/SS7 Programmer’s Guide R8052-17

Appendix A
SINAP/SS7 MML

Command SummaryA-

The following chart lists and describes the SINAP/SS7 Man Machine Language (MML)
commands and includes the alternate and UNIX online manual page (man page) command
format for each command, if applicable. This chart is intended to serve as a quick reference
guide to the MML commands. For detailed descriptions of how to execute commands using the
Terminal Handler menus and/or the command line, and for descriptions of how to use the BITE
subsystem, see the SINAP/SS7 User’s Guide (R8051).

The offline Built-In Test Environment (BITE) Log Analysis commands and sy utility
commands are listed at the end of the chart. These commands can only be run from the
command line, not from the Terminal Handler.

Table A-1. MML Command Summary (Page 1 of 29)

MML Command Description

Alternate/
Man Page
Command

BACKUP-APPL Backup the application (copy from the source to the
destination storage device).

Terminal Handler menu: Application Commands

Format: BACKUP-APPL:SOURCE=source,
DESTINATION=Destination;

BKUP-APPL

BACKUP-NODE Backup the node (backup the existing node static
database to disk).

Terminal Handler menu: System Commands

Format: BACKUP-NODE;

BKUP-NODE

CHANGE-BKUPDAY Change the backup day (change the number of days for
automatic node backup).

Terminal Handler menu: System Commands

Format: CHANGE-BKUPDAY:DAYS=days;

CHG-BKDAY
SINAP/SS7 MML Command Summary A-1

SINAP/SS7 MML Command Summary
CHANGE-CLSET Change the combined link set.

Terminal Handler menu: CHANGE command on Network
Commands menu

Format:
CHANGE-CLSET:LINKSET=linkset,EMERGENCY
=yes;

CHG-CLSET

CHANGE-CPC Change the concerned point code (CPC) (add or delete
an individual remote point code).

Terminal Handler menu: CHANGE command on Network
Commands menu

Format: CHANGE-CPC:LSSN=ssn,ADDRPC=pc[&pc];
CHANGE-CPC:LSSN=ssn,DELRPC=pc[&pc];

CHG-CPC

CHANGE-DUCPC
(Not supported in TTC
network variant)

Change the duplicate concerned point code (DUCPC).

Terminal Handler menu: CHANGE command on Network
Commands menu

Format: CHANGE DUCPC:LSSN=ssn,NEWRPC=pc;

CHG-DUCPC

CHANGE-GTT Change the global title (replace an existing global title
entry with a new one). The user must select at least one
of the three fields. The number of fields in this command
changes with the values entered. (The HADDR field is
optional.) Refer to the section on global title format in
Chapter 3 for more information on global title values.)

Terminal Handler menu: CHANGE command on Network
Commands menu

Format:
CHANGE-GTT:OLD_GTI=gti,OLD_TT=tt,OLD_NP=np
,OLD_NOAI=noai,
OLD_LADDR=laddr,GTI=gti,TT=tt, NP=
np,NOAI=noai,LADDR=laddr [,HADDR=haddr]
{,DPC=dpc | ,SSN=ssn|
,NADDR=naddr}[SSN2=ssn2][DPC2=dpc2];

CHG-GTT

Table A-1. MML Command Summary (Page 2 of 29)

MML Command Description

Alternate/
Man Page
Command
A-2 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
CHANGE-LINK Change a link.

Terminal Handler menu: CHANGE command on Network
Commands menu

Format:
CHANGE-LINK:LINK=pc,PERIODIC_SLT= slt;

For the TTC network variant, use the command format:
CHANGE-LINK:LINK=pc, PERIODIC_SLT=
srt;

CHG-LINK

CHANGE-LSET Change the link set (emergency alignment flag).

Terminal Handler menu: CHANGE command on Network
Commands menu

Format: CHANGE-LSET:LINKSET=linkset,
EMERGENCY=emergency;

CHG-LSET

CHANGE-PURGEDAY Change the purgeday (the number of days the log file
remains on disk before it is deleted).

Terminal Handler menu: System Commands

Format:
CHANGE-PURGEDAY:LOG=logfile,DAYS=days;

CHG-PDAY

CHANGE-REMSSN Change the remote subsystem number (SSN) (add or
delete remote SSNs for a specified point code).

Terminal Handler menu: CHANGE command on Network
Commands menu

Format: CHANGE-REMSSN:PC=pc,ADDSSN=ssn;
CHANGE-REMSSN:PC=pc,DELSSN=ssn;

CHG-REMSSN

Table A-1. MML Command Summary (Page 3 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-3

SINAP/SS7 MML Command Summary
CHANGE-RSET Change the route set (add, delete, or exchange the
priority of a route; enable or disable load sharing between
two route sets).

Terminal Handler menu: CHANGE command on Network
Commands menu

Format:
CHANGE-RSET:ROUTESET=routeset,ADDROUTE=rou
te,PRIORITY=priority;
CHANGE-RSET:ROUTESET=routeset,DELROUTE=rou
te;CHANGE-RSET:ROUTESET=routeset,XROUTE1=r
oute,XROUTE2=route;
CHANGE-RSET:ROUTESET=routeset,LOADSHR=load
shr;

CHG-RST

CHANGE-SYSTAB Change the system table timers and thresholds.

Terminal Handler menu: CHANGE command on Network
Commands menu

Format:
CHANGE-SYSTAB:TABID=tabid,TIMER=timer,NEWT
IME=time;
CHANGE-SYSTAB:TABID=tabid,THRESHOLD=
threshold,NEWLEVEL=level;

CHG-SYSTAB

CONFIGURE-LINK Configure a link (activate or deactivate a link state).

Terminal Handler menu: CONFIGURE command on
Network Commands menu

Format:
CONFIGURE-LINK;LINK=link,STATE=state;

CFR-LINK

CONFIGURE-LSET Configure a link set (activate or deactivate a link set).

Terminal Handler menu: CONFIGURE command on
Network Commands menu

Format:
CONFIGURE-LSET:LINKSET=linkset,STATE=
state;

CFR-LSET

Table A-1. MML Command Summary (Page 4 of 29)

MML Command Description

Alternate/
Man Page
Command
A-4 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
CONFIGURE-RSET Configure the route set (activate/deactivate a route set).

Terminal Handler menu: CONFIGURE command on
Network Commands menu

Format: CONFIGURE-RSET:ROUTESET=routeset,
STATE=state;

CFR-RSET

CHANGE-SLSTYPE
(ANSI network variant
only)

Change the Signaling Link Selection (SLS) type (5-bit or
8-bit) used for all incoming and outgoing traffic.

Terminal Handler menu: CHANGE command on Network
Commands menu

Format:CHANGE-SLSTYPE:TYPE=numeric_slstype;

Were numeric_slstype is 8 or 5.

CHG-SLSTYPE

CREATE-CLSET
(ANSI network variant
only)

Create a combined link set (that is, two link sets that
communicate with a mated pair of signaling transfer
points [STPs]).

Terminal Handler menu: CREATE command on Network
Commands menu

Format:CREATE-CLSET:CLSET=clset,LSET1=
linkset1,LSET2=linkset2;

CRTE-CLSET

CREATE-CPC Create Concerned Point Code (associate a remote point
code with a local subsystem).

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-CPC:LSSN=ssn,RPC=pc[&pc];

CRTE-CPC

CREATE-DUCPC
(Not supported in TTC
network variant)

Create a duplicate concerned point code (assign one of
the concerned point codes as the replicate for a specified
local subsystem).

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-DUCPC:LSSN=ssn, RPC=pc;

CRTE-DUCPC

Table A-1. MML Command Summary (Page 5 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-5

SINAP/SS7 MML Command Summary
CREATE-FOPC
(ANSI network variant
only)

Create a fictitious originating point code to be used in
place of the calling party’s originating point code [OPC].

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-FOPC:FOPC=network-
cluster-member;

CRTE-FOPC

CREATE-GTT Create a global title translation (define a duplicate point
code [DPC], subsystem number [SSN], and/or address
information that replaces the original global title entry.)

Terminal Handler menu: CREATE command on Network
Commands menu

Format:
CREATE-GTT:GTI=1,NOAI=noai,LADDR=laddr
[,HADDR=haddr]{,DPC=dpc|,SSN=ssn|,
NADDR=naddr};

CREATE-GTT:GTI=2,TT=tt, LADDR=laddr,
[, HADDR=haddr]{,DPC=dpc|,SSN=ssn|,
NADDR=naddr};

CRTE-GTT

CREATE-GTT
(cont.)

CREATE-GTT:GTI=3, TT=tt,NP=np,
LADDR=laddr,[,HADDR=haddr]
{,DPC=dpc|,SSN=ssn|,NADDR=naddr};

CREATE-GTT:GTI=4, TT=tt,
NP=np,NOAI=noai,LADDR=laddr,
[,HADDR=haddr]{,DPC=dpc|,SSN=ssn|,
NADDR=naddr};

CREATE-LINK Create a link.

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-LINK:LINK=link,PORTNUM=
portnum,LINKSET=linkset,
SLC=slc,PRIORITY=priority,SPEED=speed;

CRTE-LINK

Table A-1. MML Command Summary (Page 6 of 29)

MML Command Description

Alternate/
Man Page
Command
A-6 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
CREATE-LSET Create a link set.

Terminal Handler menu: CREATE command on Network
Commands menu

Format for the CCITT network variant:
CREATE-LSET:LINKSET=linkset,ADPC=adpc,
LOADLINK=loadlink, ACTLINK=actlink;

Format for the ANSI network variant:
CREATE-LSET:LINKSET=linkset,ADPC=adpc,
TYPE=type,LOADLINK=loadlink,ACTLINK=
actlink;

CRTE-LSET

CREATE-OSP Create the own signaling point code (for specified
network).

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-OSP:NETWORK=network,SPC=spc;

CRTE-OSP

CREATE-REMSSN Create Remote Subsystem.

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-REMSSN:PC=pc,SSN=ssn[&ssn];

CRTE-REMSSN

CREATE-RSET Create a route set.

Terminal Handler menu: CREATE command on Network
Commands menu

Format: CREATE-RSET:ROUTESET=routeset,
DPC=dpc,ROUTES=routes[&routes],LOADSHR=
loadshr;

CRTE-RSET

DELETE-CLSET
(ANSI network variant
only)

Delete the combined link set.

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-CLSET:CLSET=clset;

DLT-CLSET

Table A-1. MML Command Summary (Page 7 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-7

SINAP/SS7 MML Command Summary
DELETE-CPC Delete the concerned point code (CPC) (delete all remote
point codes for specified local subsystem). Use
CHANGE-CPC to delete an individual concerned point
code (CPC).

Terminal Handler menu: DELETE command on Network
Commands menu.

Format: DELETE-CPC:LSSN=ssn;

DLT-CPC

DELETE-DUCPC
(Not supported in TTC
network variant)

Delete the duplicate concerned point code (DUCPC).

Terminal Handler menu: DELETE command on Network
Commands menu.

Format: DELETE-DUCPC:LSSN=ssn;

DLT-DUCPC

DELETE-FILE Delete a file from disk.

Terminal Handler menu: System Commands.

Format: DELETE-FILE:FILE=filename;

DLT-FILE

DELETE-FOPC
(ANSI network variant
only)

Delete a fictitious originating point code.

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-FOPC:FOPC=network-
cluster-member;

DLT-FOPC

Table A-1. MML Command Summary (Page 8 of 29)

MML Command Description

Alternate/
Man Page
Command
A-8 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
DELETE-GTT Delete a global title translation (GTT). See “Global Title
Formats” in Chapter 3 for an explanation of the values for
this command.

Terminal Handler menu: DELETE command on Network
Commands menu

Format for the CCITT, China, and TTC variants:
DELETE-GTT:GTI=1,NOAI=noai,LADDR=
laddr;
DELETE-GTT:GTI=2,TT=tt,LADDR=laddr;
DELETE-GTT:GTI=3,TT=tt,NP=np,LADDR= laddr;
DELETE-GTT:GTI=4,TT=tt,NP=np,NOAI=
noai,LADDR=laddr;

Format for the ANSI variant:
DELETE-GTT:GTI=1,TT=tt,NP=np,LADDR= laddr;
DELETE-GTT:GTI=2,TT=tt,LADDR=laddr;

DLT-GTT

DELETE-LINK Delete a link.

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-LINK: LINK=link;

DLT-LINK

DELETE-LSET Delete a link set.

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-LINK: LINK=link;

DLT-LSET

DELETE-OSP Delete an own signaling point code (OSP) from the
network (all other network elements must already be
deleted).

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-OSP;

DLT-OSP

Table A-1. MML Command Summary (Page 9 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-9

SINAP/SS7 MML Command Summary
DELETE-REMSSN Delete a remote subsystem number (SSN) (stop
monitoring for all subsystems at a specified remote
node).

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-REMSSN:RPC=pc;

DLT-REMSSN

DELETE-RSET Delete a route set.

Terminal Handler menu: DELETE command on Network
Commands menu

Format: DELETE-RSET:ROUTESET=routeset;

DLT-RSET

DISABLE-LOAD-
CONTROL

Disable load control (deactivate load control processing).

Terminal Handler menu: DELETE command on Load
Control menu

Format: DISABLE-LOAD-CONTROL:SSN=ssn
[,INSTANCE=[&instance]];

DISABLE-LC

DISPLAY-BKUPDAY Display the backup day (number of days in node
database backup cycle).

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-BKUPDAY;

DISPL-BKDAY

DISPLAY-CLSET
(ANSI network variant
only)

Display the combined link set.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-CLSET:CLSET=clset[,PRINT=print];

DISPL-CLSET

Table A-1. MML Command Summary (Page 10 of 29)

MML Command Description

Alternate/
Man Page
Command
A-10 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
DISPLAY-CPC Display the concerned point code (CPC) for a local
subsystem.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-CPC:SSN=ssn[,PRINT=print];

DISPL-CPC

DISPLAY-FOPC
(ANSI network variant
only)

Display the fictitious originating point code.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-FOPC:FOPC=network-
cluster-member;

DISPL-FOPC

DISPLAY-GTT Display the global titles.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-GTT;

DISPL-GTT

DISPLAY-LINK Display a link.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format:
DISPLAY-LINK:LINK=link[,PRINT=print];

DISPL-LINK

DISPLAY-LSET DIsplay a link set.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-LSET:LINKSET=linkset
[,PRINT=print];

DISPL-LSET

Table A-1. MML Command Summary (Page 11 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-11

SINAP/SS7 MML Command Summary
DISPLAY-LOAD-
CONTROL

Display load control statistics for a specified application.

Terminal Handler menu: DISPLAY command on Load
Control menu

Format: DISPLAY-LOAD-CONTROL:SSN=ssn
[,PRINT=print];

DISPLAY-MON Display active BITE monitor IDs.

Terminal Handler menu: BITE Commands

Format: DISPLAY-MON;

DISPL-MON

DISPLAY-OSP Display the own signaling point code (OSP).

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-OSP:[PRINT=print];

DISPL-OSP

DISPLAY-PROCESS-
VERSION

Display the version of a process.

This command is available only through the Terminal
Handler BITE COMMANDS menu.

DISPL-PVERS

DISPLAY-PURGEDAY Display the purgeday (the number of days a log file
remains on disk before it is deleted).

Terminal Handler menu: System Commands

Format: DISPLAY-PURGEDAY:LOG=logfile;

DISPL-PDAY

DISPLAY-REMSSN Display the remote subsystem numbers (SSN) for a
specified remote point code).

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-REMSSN:PC=pc[,PRINT=print];

DISPL-REMSSN

Table A-1. MML Command Summary (Page 12 of 29)

MML Command Description

Alternate/
Man Page
Command
A-12 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
DISPLAY-RSET Display the route set.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format: DISPLAY-RSET:DPC=dpc[,PRINT=print];
DISPLAY-RSET:ROUTESET=routeset[,PRINT=
print];

DISPL-RSET

DISPLAY-SCEN Display the scenario (that is, the current active scenario
with scenario ID BITE assigned to it).

Terminal Handler menu: SCENARIO command on the
BITE Commands menu.

Format: DISPLAY-SCEN;

DISPL-SCEN

DISPLAY-SUBSYSTEM Display the current status of the subsystem.

Terminal Handler menu: Application Commands

Format: DISPLAY-SUBSYSTEM:SSN=ssn;

DISPL-SUBSYS

DISPLAY-SYSTAB Display the system table for Message Transfer Part
[MTP] and Signaling Connection Control Point [SCCP]
timer values and MTP threshold values.

Terminal Handler menu: DISPLAY command on System
Commands menu

Format:DISPLAY-SYSTAB;TABID=tabid,
TIMER=timer[,PRINT=print];
DISPLAY-SYSTAB;TABID=tabid,THRESHOLD=
threshold[,PRINT=print];

DISPL-SYSTAB

DUMP-TABLE Dump the contents of the MTP routing and management
tables to the static table file in binary format.

Terminal Handler menu: Network Commands

Format: DUMP-TABLE;

DUMP-TABLE

Table A-1. MML Command Summary (Page 13 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-13

SINAP/SS7 MML Command Summary
ENABLE-LOAD-
CONTROL

Enable load control (automatically activate load control
processing for specified application when overload
conditions occur).

Terminal Handler menu: DISPLAY command on Load
Control menu

Format: ENABLE-LOAD-CONTROL:SSN=ssn
[,INSTANCE=[&instance]];

EXIT-LOAD-CONTROL Exit load control (deactivate load control processing for
specified application). This command can be used only if
load control processing was initiated using
INVOKE-LOAD-CONTROL.

Terminal Handler menu: EXIT option on the Load Control
menu

Format:EXIT-LOAD-CONTROl:SSN=ssn
[,INSTANCE=[&instance]];

INVOKE-LOAD-
CONTROL

Invoke load control processing for a specified application
even if no overload condition exists.

Terminal Handler menu: INVOKE command on the Load
Control menu

Format: INVOKE-LOAD-CONTROL:SSN=ssn
[,INSTANCE=[&instance]];

LPCR_cmd When the DLPC feature is configured on the SINAP
node, this command manipulates a specified remote
point code to change its status from active to standby (or
from standby to active), reset its circuit status, or dump
the circuit states to a file.

Issue the command from a SINAP login window.

Format:
LPCR_cmd -r <pc> [-asRDV -i instance]

LPC_cmd

Table A-1. MML Command Summary (Page 14 of 29)

MML Command Description

Alternate/
Man Page
Command
A-14 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
READ-TREAT Read the file containing the trouble Treatment Table.

Terminal Handler menu: System Commands

Format: READ-TREAT;

READ-TREAT

REPORT-ALARM Report the contents of the Alarm History file.

Terminal Handler menu: System Commands

Format:
REPORT-ALARM:DATE=date[,PRINT=print];

RPT-ALARM

REPORT-MALL Report MTP, SCCP, and TCAP subsystem
measurements for a specified time period.

Terminal Handler menu:
1. MEASUREMENTS command on Network Commands
menu
2. REPORT MEASUREMENTS command on Measurement
Commands menu

Format:
REPORT-MALL: DATE=CCYY-MM-DD,TIME=HH:MM,
DATE=CCYY-MM-DD,TIME=HH:MM,FILE=file
[,PRINT=print];

Note: For CCYY-MM-DD, CC=century (19 or 20), YY=year
(38 through 99), MM=month (1 through 12), DD=day (1
through 31). For HH:MM, HH=hour (1 through 24),
MM=minutes (00 through 59).

RPT-MALL

Table A-1. MML Command Summary (Page 15 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-15

SINAP/SS7 MML Command Summary
REPORT-MMTP Report MTP measurements for a specified time period.

Terminal Handler menu:
1. MEASUREMENTS command on Network Commands
menu
2. REPORT MEASUREMENTS command on Measurement
Commands menu

Format:
REPORT-MMTP:DATE=CCYY-MM-DD,TIME=HH:MM,
DATE=CCYY-MM-DD,TIME=HH:MM,FILE=file
[,PRINT=print];

Note: For CCYY-MM-DD, CC=century (19 or 20), YY=year
(38 through 99), MM=month (1 through 12), DD=day (1
through 31). For HH:MM, HH=hour (1 through 24),
MM=minutes (00 through 59).

RPT-MMTP

REPORT-MSCCP Report SCCP subsystem measurements for a specified
time period.

Terminal Handler menu:
1. MEASUREMENTS command on Network Commands
menu
2. REPORT MEASUREMENTS command on Measurement
Commands menu

Format:
REPORT-MSCCP:DATE=CCYY-MM-DD,TIME=HH:MM,
DATE=CCYY-MM-DD,TIME=HH:MM,FILE=file
[,PRINT=print];

Note: For CCYY-MM-DD, CC=century (19 or 20), YY=year
(38 through 99), MM=month (1 through 12), DD=day (1
through 31). For HH:MM, HH=hour (1 through 24),
MM=minutes (00 through 59).

RPT-MSCCP

Table A-1. MML Command Summary (Page 16 of 29)

MML Command Description

Alternate/
Man Page
Command
A-16 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
REPORT-MTCAP Report TCAP subsystem measurements for a specified
time period time.

Terminal Handler menu:
1. MEASUREMENTS command on Network Commands
menu
2. REPORT MEASUREMENTS command on
Measurements Commands menu.

Format:
REPORT-MTCAP:DATE=CCYY-MM-DD,TIME=HH:MM,DA
TE=CCYY-MM-DD,TIME=HH:MM,FILE=file
[,PRINT=print];

Note: For CCYY-MM-DD, CC=century (19 or 20), YY=year
(38 through 99), MM=month (1 through 12), DD=day (1
through 31). For HH:MM, HH=hour (1 through 24),
MM=minutes (00 through 59).

RPT-MTCAP

REPORT-NBOOK Report the contents of the Software Notebook.

Terminal Handler menu: System Commands

Format:
REPORT-NBOOK:DATE=date,[,PRINT=print];

RPT-NBOOK

RESTORE-APPL Restore an application database from disk or tape.

Terminal Handler menu: Application Commands

Format: RESTORE-APPL:SOURCE=source,
DESTINATION=destination;

RST-APPL

RESTORE-NODE Restore node static database (primary or secondary
copy) from disk.

Terminal Handler menu: System Commands

Format: RESTORE-NODE:
FROM=source,RCLOG=rclog;

RST-NODE

Table A-1. MML Command Summary (Page 17 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-17

SINAP/SS7 MML Command Summary
RETRIEVE-NOM Retrieve and display the oldest 30-minute Node Network
Management Measurement report.

Terminal Handler menu:
1. MEASUREMENTS command on Network Commands
menu
2. RETRIEVE MEASUREMENTS command on
Measurement Commands menu.

Format: RETRIEVE-NOM;

RTRV-NOM

RETRIEVE-SMR Retrieve and display the most recent 5-minute Node
Network Management Measurement report.

Terminal Handler menu:
1. MEASUREMENTS command on Network Commands
menu
2. RETRIEVE MEASUREMENTS command on
Measurement Commands menu

Format: RETRIEVE-SMR;

RTRV-SMR

SETUP-LOAD-CONTROL Set up load control (define an application’s load control
threshold and operating characteristics).

Terminal Handler menu: SETUP command on Load
Control menu

Format: SETUP-LOAD-CONTROL:SSN=ssn,
TYPE=type,THRESHOLD=threshold,
DELAY=delay,COUNT=count,ABATEDELAY=
abatedelay;

SETUP-LC

Table A-1. MML Command Summary (Page 18 of 29)

MML Command Description

Alternate/
Man Page
Command
A-18 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
send_cm Sends an MML command to the Command Management
Process (nmcm) for execution. Allows you to execute
MML commands from a SINAP login window (at the UNIX
command level). Use this command to execute MML
commands interactively, to execute a script file, or to
issue single MML commands.

Note that the send_cm command does not support the
use of BITE MML commands.

Format: send_cm (interactive mode; accepts
commands via keyboard input)
send_cm file_name
send_cm -s “mml_command;”

send_cm

SET-PRINTER Prints all commands and responses to a terminal or
specified printer.

Terminal Handler menu: System Commands

Format: SET-PRINTER:PRINT=print;

SET-PRINTER

sinap_update Used to update link configuration information without
rebooting the SINAP/SS7 system.

START-DBG Send a debug message to a specified process.

Terminal Handler menu: BITE Commands

Format: START-DBG:ENT=(entity),MSG=message;

STA-DBG

START-MEASURE Start on-demand measurements for signaling information
field (SIF) and service information octets (SIO)
transmitted or received.

Terminal Handler menu: MEASUREMENTS command on
the Network Commands menu

Format: START-MEASURE:MEASURE=measure;

STA-MEAS

Table A-1. MML Command Summary (Page 19 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-19

SINAP/SS7 MML Command Summary
START-MON Start the BITE monitor for specified entities from any
SINAP process.

Terminal Handler menu: MONITOR command on the BITE
Commands menu

Format: START-MON:ENT=(entity)[,DISP=Y/N]
[,LOG=filename [(size)]
[,CONT=Y/N]];

STA-MON

START-MWRITE Start writing measurements to the measurement logs in
the logs/system directory.

Terminal Handler menu: MEASUREMENTS command on
Network Commands menu

Format: START-MWRITE;

STA-MWRITE

START-SCEN Start a BITE scenario execution (network simulation).

Terminal Handler menu: SCENARIO command on BITE
Commands menu

Format:
START-SCEN:ENT=(entity),FILE=filename;

STA-SCEN

Table A-1. MML Command Summary (Page 20 of 29)

MML Command Description

Alternate/
Man Page
Command
A-20 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
start_sinap Execute the start_sinap script file that starts the
SINAP/SS7 system on each node to be activated.

Issue this command from a UNIX operating system
prompt and specify one of three start up modes:

1) Verbose - Displays information on the terminal as
commands execute

2) Test-Environment - Displays information on the
terminal as processes execute

3) Test-Environment and Verbose - Combines
test-environment and verbose modes to display (on the
terminal) commands and processes as they execute

Format: start_sinap
start_sinap -v
start_sinap -t
start_sinap -tv

start_sinap

static2mml Save and re-create an existing SINAP/SS7 configuration
in a specified input file (typically STATIC_load) and write
the command output to a specified output.

Issue this command at the UNIX operating system
prompt.

Format: static2mml$SINAP_HOME/Bin/shm/pri/
input_file [> output_file]

static2mml

STOP-MEASURE Stop on-demand measurements (SIF and SIO octets
transmitted or SIF and SIO octets received).

Terminal Handler menu: MEASUREMENTS command on
Network Commands menu

Format: STOP-MEASURE:Measure=measure;

STOP-MEAS

Table A-1. MML Command Summary (Page 21 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-21

SINAP/SS7 MML Command Summary
STOP-MON Stop the BITE monitor for specified entity.

Terminal Handler menu: MONITOR command on BITE
Commands menu

Format: STOP-MON:ENT=monitor ID;

STOP-MON

STOP-MWRITE Stop writing measurements to the measurement logs in
Logs/system.

Terminal Handler menu: MEASUREMENTS command on
Network Commands menu

Format: STOP-MWRITE;

STOP-MWRITE

STOP-SCEN Stop a specified BITE scenario execution.

Terminal Handler menu: SCENARIO command on BITE
Commands menu

Format: STOP-SCEN:ENT=scenario_id;

STOP-SCEN

stop_sinap Run the stop_sinap script file that stops the
SINAP/SS7 system on each node to be stopped.

Issue this command from a UNIX operating system
prompt.

Format: stop_sinap

stop_sinap

TEST-LINK Send a signaling link test message (SLTM) to a specified
link. (TTC and NTT send signaling route test (SRT)
messages)

Terminal Handler menu: BITE Commands

Format: TEST-LINK:LINK=link;

TEST-LINK

Table A-1. MML Command Summary (Page 22 of 29)

MML Command Description

Alternate/
Man Page
Command
A-22 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
TEST-ROUTE Perform a signaling route test for a specified route. (NTT
and TTC only.) For additional information see the man
page for TEST-ROUTE.

Terminal Handler menu: BITE commands.

Format: TEST-ROUTE:DPC=dpc,AB=ab; Note that ab
corresponds to the A/B indicator in Q.707.

BITE Log Analysis Commands
These commands can only be run from the command line.

(Before using these commands, start the BITE Log Analysis (bila) program.)

bila Starts the offline BITE Log Analysis program.

Format: bila

bila

bidb Starts the Database Builder program which is a
menu-driven interface used to build different types of
MSU messages for different types of applications and
scenarios. The bidb is used to construct a test MSU for
the scenario-execution application to send to the test
application. Use the message_file option to specify the
path name of a file to which an existing MSU has already
been saved.

Format: bidb[message-file]

bidb

DISPLAY:FILE Display records from a specified BITE log file.

Format: DISPLAY:FILE=logfile;

BDISPLAY

FIND:FILE Extracts records from a specified BITE log file that
satisfies all criteria specified within the command
arguments. You can specify multiple keys and key values.

Format: FIND:FILE=logfile, OFILE=
file,key=key_value;

BFIND

Table A-1. MML Command Summary (Page 23 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-23

SINAP/SS7 MML Command Summary
SELECT:FILE Extracts records from a specified BITE log file that
satisfies any criteria specified within the command
arguments. You can specify multiple keys and key values.

Format: SELECT:FILE=logfile, OFILE=
file,key=key_value;

BSELECT

SUMMARY:FILE Counts records in a specified BITE log file that satisfies
the criteria specified within the command arguments. You
can specify multiple keys and key values.

Format: SUMMARY:FILE=logfile, OFILE=
file,key=key_value

BSUMMARY

QUIT Exits the BITE Log Analysis program.

Formats: QUIT or QUIT:; or QUIT:

BQUIT

Frequently-Used sy Utility Commands

? Displays all available commands for the sy utility.

#APPL Displays application tables.

#BI,MDx Displays the BITE monitor table entry. Options for x
include:
• 0 - Display all.

• aname,pname,text - Send the text to the aname or
pname process. text = “TRACE[,n]” for trace
dump for last n (specify number of events) events.

#DIST,x Displays distribution information. Substitute optional
appl_id for x to display distribution information for a
specific application table.

#IPC,x Checks the status of an application. This command
displays IPC process table entry x. Use x=0 to list all
currently-running processes that are registered with the
SINAP/SS7 system.

For x, indicate the table entry to list. For example, if you
enter the command, #IPC,3, you will see a list of the
third entry in the interprocess communications (IPC)
table.

Table A-1. MML Command Summary (Page 24 of 29)

MML Command Description

Alternate/
Man Page
Command
A-24 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
#IPC,LPC When the DLPC feature is configured on the SINAP
node, the command lists all registered logical point codes
(LPCs). If DLPC is not configured, the command
produces the error message This node is not
provisioned for DLPC capabilities.

Issue the command from a SINAP login window.

Format: #IPC,LPC

#IPC,LPC

#IRT Displays the inbound routing table.

#KEY,aname[,pname
[,inst]]

Displays an IPC key table.

#lc,x Displays load control information. Options for x include
SSN_number to display the information for a specific
subsystem, or 0 to display information for all SSNs.

#LCD,SSN_number Displays load control debug information for a specific
SSN.

#L3,CLS Displays MTP shared data for all combined linksets.

#L3,CLS,x Displays MTP shared data for a specific combined linkset
x.

Table A-1. MML Command Summary (Page 25 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-25

SINAP/SS7 MML Command Summary
#L3,x Displays MTP shared data. Options for x include:

• dt - Displays the discrimination table entries.

• lst[,optional linkset_#] - Displays timer
values and includes information about the MTP restart
timers: L3T19, L3T20, and L3T21. Displays values
for the ANSI network variant timers: L3T22, L3T23,
L3T24, L3T25, L3T26, L3T27, L3T28, L3T29, and
L2T30.

In addition to displaying timer information, the
command: #L3,lst displays a flag for each active
link set. The flag indicates whether the node
connected by the link set is executing MTP restart.

• port[,optional linkset_#]- Displays all ports
or the port for a specified link set number.

• res - Displays MTP restart information, such as the
own_sp_restarting flag (which indicates whether
this SINAP/SS7 node is currently executing MTP
restart), the number of active link sets, the number of
TRA messages received, and the L3T20 timer ID.

• rst[,optional n-c-m DPC_#] - Displays
Routeset information, such as the accessibility and
availability of the DPC.

• spf - Displays signaling point routing failure reports.

• tim - Displays timer values and includes information
about the MTP restart timers L3T19, L3T20, and
L3T21. In addition, displays values for the ANSI
network variant timers: L3T22, L3T23, L3T24,
L3T25, L3T26, L3T27, L3T28, L3T29, and L2T30.

#L3,RC Traces delivery of internal messages within the MTP
layers. When the DLPC feature is configured on the
SINAP node, the command traces communications
between MTP Level 3 routing control (L3RC) and the
ISUP manager.

#L3,RC

Table A-1. MML Command Summary (Page 26 of 29)

MML Command Description

Alternate/
Man Page
Command
A-26 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
#ORT,CLS Displays the outbound routing combined link set table.

If you selected the 8-bit signaling link selection (SLS)
processing scheme using the CHANGE-SLSTYPE
command, then combined link set signaling link code
(SLC) values are also displayed. If you did not select 8-bit
SLS processing, the 5-bit SLS SLC values are displayed.

#ORT,LS Displays the outbound routing link set table.

For the ANSI network variant, if you select the 8-bit
signaling link selection (SLS) processing scheme using
the CHANGE-SLSTYPE command, the 8-bit combined
link set signaling link code (SLC) values are also
displayed. If you did not select 8-bit SLS processing, then
5-bit SLS SLC values are displayed for link sets.

#ORT,{RS or DPC#} Displays the outbound routing signaling route set test
signal (RST) table for a specified route set or duplicate
point code.

Q Close the sy utility and quit all operations.

#sc,x,n Displays SCCP shared memory information. Options for
x include:

• appl[,optional local SSN_number] -
Displays all application tables or the application table
for a specified local SSN.

• cpc[,optional local SSN_number] - Displays
all concerned point codes (CPCs) or the CPCs for a
specified local SSN.

• dump - Dumps all SCCP shared memory information.

• lrm - Displays the local reference memory (LRM) and
the command’s output.

• lrn[,optional LRN_number] - Displays
information about all active LRNs or the information for
a specific LRN (n).

• SSN[,optional DPC_number] - Determines
whether all or a specified duplicate point code is
accessible and, thereby, whether messages can be
sent.

Table A-1. MML Command Summary (Page 27 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-27

SINAP/SS7 MML Command Summary
#SLD,x Displays information about an application’s load
distribution (round-robin, least-utilized, or signaling link
selection [SLS] distribution). Options for x include one of
the following three #SLD command formats:

• APPL,appl_name - Displays the SLS assignments
for an application that registered using its name
instead of its SSN (where appl_name is the name of
the application). Use this format for applications that
implement enhanced message distribution (for
example, if an application is one of several
applications that use the same SSN). For example, the
command, #SLD,APPL,DB12, specifies a load
control application named DB12.

• SIO,sio_number - Displays the SLS assignments
for an application that registered with a service
information octet (SIO) (where sio_number is the
SIO number). For example, the #SLD,SIO,5
command specifies an application that registered with
an SIO of 5.

• SSN,subsystem_number - Displays the SLS
assignments for an application that registered with a
subsystem number (SSN) where ssn_number is the
SSN of the application. For example, the
#SLD,SSN,254 command specifies an application
that registered with an SSN of 254.

Table A-1. MML Command Summary (Page 28 of 29)

MML Command Description

Alternate/
Man Page
Command
A-28 SINAP/SS7 Programmer’s Guide R8052-17

SINAP/SS7 MML Command Summary
#STA,x,n Displays the static tables. Options for x include:

• cls - Displays combined link set tables.

• cpc[,optional SSN_number] - Displays tables for
all concerned point codes (CPCs) or for a specified
SSN.

• cr,index - Displays the cluster address table.

• dt - Displays the discrimination table.

• gtt - Displays the Global Title Translation entries.

• lc[,optional SSN_number] - Displays all LC
tables or those for a specified SSN.

• lst - Displays link set tables.

• mr,index - Displays the member address table.

• ncpc[,optional NETWORK_number] - Displays all
network concerned point codes (CPC) or those for a
specified network.

• nr - Displays the network address table.

• rssn - Displays the remote SSN table.

• st,x - Displays timer values. Options for x include:
L2, L3, SCCP, Q707, MTP, PURGE, and ALL.

sy Invokes the sy utility.

#sys Displays the current settings of the shared memory
system table.

#UCOMM,x Displays trace and status for UCOMM. Specify UCOMM
number for x.

Z Displays structure sizes.

Table A-1. MML Command Summary (Page 29 of 29)

MML Command Description

Alternate/
Man Page
Command
SINAP/SS7 MML Command Summary A-29

SINAP/SS7 MML Command Summary
A-30 SINAP/SS7 Programmer’s Guide R8052-17

Appendix B
SINAP/SS7 Environment

VariablesB-

This section lists and describes the environment variables for the SINAP/SS7 system and
explains how to define them on the UNIX system.

Defining SINAP/SS7 Environment Variables
Environment variables define and activate operating characteristics on the SINAP node. The
SINAP environment file $SINAP_HOME/Bin/sinap_env.[sh|csh] contains all
SINAP/SS7 environment variables. Although most of the environment variables are disabled
(commented out), some are activated (uncommented) during software configuration when you
use the /etc/config_sinap script to configure the SINAP node.

N O T E
You must activate all environment variables to be enabled on a
SINAP node before you start or restart the SINAP node.

Enabling Environment Variables
To activate an environment variable, do the following:

1. Stop SINAP.

2. Uncomment the relevant line(s) in the sinap_env.[sh|csh] file for that variable. The
lines usually appear as follows:

<variable-name>=<value>
export <variable-name>

3. Log off and then log back into your SINAP account.

4. Use the env command to verify the new environment variable is set.

5. Start SINAP.

Note that for many of the environment variables, you do not need to assign values. The
description associated with each environment variable in the SINAP environment file provide
the valid setting(s), if required, for the variable.
SINAP/SS7 Environment Variables B-1

The SINAP Environment File
Disabling Environment Variables
To deactivate an environment variable, do the following:

1. Stop SINAP.

2. Comment out the relevant line(s) in the sinap_env.[sh|csh] file for that variable. The
lines usually appear as follows:

<variable-name>=<value>
export <variable-name>

3. Log off and then log back into your SINAP account.

4. Use the env command to verify the environment variable is no longer set.

5. Start SINAP.

The SINAP Environment File
This section provides the contents of the SINAP Environment file
($SINAP_HOME/Bin/sinap_env_var.sh), from which the file
($SINAP_HOME/Bin/sinap_env.sh is copied, for the Bourne shell.

sinap_env_var.sh (for Bourne Shell)
#Environment Variable Description
#==
#
#MANPATH /usr/share/man Enables the display of OS and
SINAP/MultiStack man pages. The
Installation script creates .login
and .profile files for sinap and
sysopr users and appends the SINAP
man page directory name to the
MANPATH variable for each user.
#
Variable is set through /etc/config_sinap

#PATH /usr/ucb Ensures you can display both OS and
SINAP/MultiStack man pages.

#SINAP_ALT_MEASUREMENT_INTERVAL Specifies the reporting interval for
measurement reports (REPORT-MALL,
REPORT_MTP, REPORT_MSCCP, and
REPORT_MTCAP). Valid reporting
intervals are:
Value Measurement Interval (Minutes)
----- -----------------------------
0 or 30 30
1 or 15 15
2 or 5 5

If set to 0 or not defined, SINAP uses
B-2 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
a 30-minute measurement interval.
#SINAP_ALT_MEASUREMENT_INTERVAL=<value>
#export SINAP_ALT_MEASUREMENT_INTERVAL

#SINAP_CONSOLE_ALARM_LEVEL Specifies the severity level of alarms that
SINAP/Multistack logs to the system error
log file. Valid alarm values are:
#
Value Description of Condition
------- --------------------------------
CRITICAL Causes severe service disruption
and requires immediate attention
(be sure to specify 'critical'
in the Severity field of the
message format as defined in the
Emsg file).
#
MAJOR Causes serious service disruption.
Be sure to specify either
'NONRECOVERABLE_L' or
NONRECOVERABLE_LP - the problem
cannot resolve itself and no
acceptable alternative exists
to address situation - in the
Severity field of the message
format as defined in Emsg file.

MINOR Is not likely to cause a serious
service disruption (be sure to
specify INFP_L or INFO_LP in the
severity field of the message
format as defined in Emsg file).
#
#
NOTICE Message is provided for
informational purposes only.
#
#SINAP_CONSOLE_ALARM_LEVEL=<value>
#export SINAP_CONSOLE_ALARM_LEVEL

#SINAP_HEALTH_INTERVAL Specifies the time interval (in seconds)
for sending health-check requests
(default is 60 sec.).
#SINAP_HEALTH_INTERVAL=<value>
Variable is set through /etc/config_sinap

#SINAP_HEALTH_TIMEOUT Defines the interval (in seconds) within
which a process must respond to a
health-check request. If two consecutive#
health-check requests fail, the process
is considered to have failed and trouble
management takes control (default is
60 sec.)
#SINAP_HEALTH_TIMEOUT=<value>
Variable is set through /etc/config_sinap

#SINAP_HOME Specifies the path name of your SINAP
account. For example, /home/sinap.
SINAP/SS7 Environment Variables B-3

The SINAP Environment File
#SINAP_HOME=<value>
Variable is set through /etc/config_sinap

#SINAP_MML_LEVEL Defines the privilege level for
executing MML commands through the
Terminal Handler. Valid range is 0-255
(default is 5).
#SINAP_MML_LEVEL=<value>
#export SINAP_MML_LEVEL

#SINAP_HOME/Bin Adds the directory $SINAP_HOME/Bin to
your PATH environment variable.
#
Variable is set through /etc/config_sinap

#SINAP_LOG_SIZE Defines the size (in bytes) of the
Software Notebook and Alarm Log. The
MML report commands such as REPORT-ALARM
and REPORT-MALL) use this variable
(default value is 1000000 bytes).
#SINAP_LOG_SIZE=<value>
Variable is set through /etc/config_sinap

#SINAP_MDF Defines the path name of the Terminal
Handler's Menu Definition file.
#SINAP_MDF=<value>
#export SINAP_MDF

#SINAP_MODULE Specifies the module name assigned to a
SINAP/MultiStack system (default is M1).
You define this variable when you
configure the SINAP node using the
etc/config_sinap script.
#SINAP_MODULE=<name>
Variable is set through /etc/config_sinap

#SINAP_NODE Specifies the name assigned to a SINAP
node within a module (default is N1).
You define this variable when you
configure the SINAP node using the
etc/config_sinap script.
#SINAP_NODE=<name>
Variable is set through /etc/config_sinap

#SINAP_VARIANT Defines the network variant of the
SINAP node installed on the system.
Valid values are CCITT, ANSI, TTC,
NTT, and China. You define this
variable on the SINAP node using
the etc/config_sinap script.
#SINAP_VARIANT=<value>
Variable is set through /etc/config_sinap

#ENHANCED MESSAGE DISTRIBUTION
#=============================

#DISCARDS_PER_ALARM Specifies the number of MSUs the
SINAP node discards before generating
B-4 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
an alarm.
#DISCARDS_PER_ALARM=<value>
#export DISCARDS_PER_ALARM

#UDTS_NO_OPC Specifies whether or not the SINAP
node generates a unitdata service
(UDTS) message when the MSU's
originating point code(OPC)is not
valid for the specified subsystem
number (SSN).
#UDTS_NO_OPC=1
#export UDTS_NO_OPC

#NETWORK VARIANT FEATURES
#=============================

#ANSI_SINAP_FOPC (ANSI only). Activates the fictitious
originating point code(FOPC) feature.
#ANSI_SINAP_FOPC=YES
#export ANSI_SINAP_FOPC

#TTC_WITH_NSTATE (TTC, NTT only). Enables applications
to support concerned point codes
(CPCs), which are responsible for
sending user-in-service(UIS) messages
and user-out-of-service (UDS) messages.
#TTC_WITH_NSTATE=1
#export TTC_WITH_NSTATE

#CCITT_CONGESTION_OPTION (CCITT and China only). Specifies one of
the following methods used to handle link
congestion:

INTERNATIONAL_1_CONGESTION
NAT_MUL_CONG_WITH_PRIO
NAT_MUL_CONG_WO_PRIO
#
#INTERNATIONAL_1_CONGESTION Specifies the international signaling
network option (the default), which
provides a single congestion onset
threshold and abatement threshold.

#CCITT_CONGESTION_OPTION=INTERNATIONAL_1_CONGESTION
#export CCITT_CONGESTION_OPTION

#NAT_MUL_CONG_WITH_PRIO Specifies the national signaling network
option, multiple signaling link congestion

levels with congestion priority. In the
CCITT and China network variants, this
option allows client applications to
set congestion priority based on multiple
congestion levels (0-3). This option uses
these thresholds:
#
Congestion Onset (CONON1, CONON2, CONON3)
Congestion Abatement (CONAB1, CONAB2,
SINAP/SS7 Environment Variables B-5

The SINAP Environment File
CONAB3)
Congestion Discard (CONDIS1, CONDIS2,
CONDIS3)
#
NOTE: ANSI, TTC, and NTT network variants
automatically implements this national
signaling network option (no environment
variable is required).
#
#CCITT_CONGESTION_OPTION=NAT_MUL_CONG_WITH_PRIO
#export CCITT_CONGESTION_OPTION

#NAT_MUL_CONG_WO_PRIO Defines the national signaling network
option, multiple signaling link congestion
levels without congestion priority. For the
CCITT and China network variants, this
option allows the SINAP node to define up
to four levels (0-3) of link congestion
and to set a link's congestion status
according to those levels. When you set
this option, you must also specify
values for all the following environment
variables:
#
CONGESTION_STATUS
CONGESTION_INITIAL_VALUE
CONGESTION_TX_TIMER
CONGESTION_TY_TIMER
#
#CCITT_CONGESTION_OPTION=NAT_MUL_CONG_WO_PRIO
#export CCITT_CONGESTION_OPTION

#CONGESTION_STATUS Specifies the level (0,1,2, or 3) of link
congestion supported. The value 2 specifies
that the SINAP node supports three levels
(0, 1, and 2) of link congestion. The value
3 specifies support for all four link
congestion levels (0, 1, 2, and 3).

#CONGESTION_STATUS=<value>
#export CONGESTION_STATUS

#CONGESTION_INITIAL_VALUE Defines the link congestion threshold
used to determine the occurrence
of congestion on a link. The Valid range
is 1-3.
#CONGESTION_INITIAL_VALUE=<value>
#export CONGESTION_INITIAL_VALUE

#CONGESTION_TX_TIMER Defines the interval in seconds between
congestion onset measurements. valid range
is 1-255 (default is 1). When this timer #
expires, the SINAP node counts the number
of MSUs on the link's SS7 driver queue.
If the number of MSUs exceeds the value
of the congestion onset threshold, the
SINAP node increments the link's
B-6 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
congestion status by 1.
#CONGESTION_TX_TIMER=<value>
#export CONGESTION_TX_TIMER

#CONGESTION_TY_TIMER Defines the interval in seconds between
congestion abatement measurements. The
Valid range is 1-255 (default is 1).
#CONGESTION_TY_TIMER=<value>
#export CONGESTION_TY_TIMER

#RST_CONFIG_INIT_PROHIBIT (CCITT only). Allows a newly created and
configured route set to be initialized
in the PROHIBITED state instead of the
ALLOWED state. This feature applies only
if the new route set being created and
configured is for a remote signaling
point in the network and not for an
adjacent point code (a signaling point
that is connected directly through a
link set to the SINAP node). For an
adjacent signaling point (including
adjacent STPs), the route set status
should be ALLOWED.
#
The interaction of this feature with MTP
restart is as follows:

If the SINAP node is performing MTP restart,
the new route sets configured during the
restart are set to the ALLOWED state. The
Adjacent STPs are responsible for sending
the appropriate transfer prohibited (TFP),
transfer restricted (TFR), or transfer
allowed (TFA) messages to the SINAP node
during the restart procedure.
#
If you use send_cm or sysopr to create
and configure a new route set to a
nonadjacent signaling point when SINAP
is not performing MTP restart, the route
set state is set to PROHIBITED.

Also, the SINAP node sends signaling
route set test (RST) messages to the
adjacent STPs for prohibited destinations
for which the new route sets were
configured. The node sends the RST
messages every timer T10 seconds until
the STPs send TFA messages to the
SINAP node.

#RST_CONFIG_INIT_PROHIBIT=1
#export RST_CONFIG_INIT_PROHIBIT

#LPC_ROUTING (CCITT, ANSI, China only). Enables the
Distributed Logical Point Code (DLPC)
feature that supports distributed ISUP
applications on two SINAP nodes. The
SINAP/SS7 Environment Variables B-7

The SINAP Environment File
two ISUP applications are Logical Point
Codes (LPCs) that appear to the SS7
network as a pair of signaling transfer
points (STPs). Note that use of this
feature requires significant application
modifications.
#LPC_ROUTING
#export LPC_ROUTING

#MTP ENHANCED FUNCTIONALITY
#=============================

#MTP_ANSI88_RSR_RST (ANSI only). Enables transfer-restricted
(TFR) message handling on the SINAP node
based on 1988 ANSI standards for MTP.
The node responds immediately to TFR or
TFP messages by sending signaling route
set restricted or prohibited (RSR or RSP)
messages without waiting for the T10
timer to expire.
#MTP_ANSI88_RSR_RST=1
#export MTP_ANSI88_RSR_RST

#MTP_ANSI92_MANAGEMENT_INHIBIT (ANSI only). Enables management inhibiting
based on the 1992 ANSI Standards for MTP.
This variable allows a SINAP node to repeat
a link-forced uninhibit(LFU) message once
when the far end does not respond to the
first LFU request message with a link
uninhibit acknowledgement (LUN) message.
If the SINAP node does not receive a LUN
message from the far end, it discontinues
the request, then sends a link uninhibit
acknowledgment (LUA) message and starts
traffic on previously inhibited links. If
you do not define this variable, the SINAP
node implements management inhibiting
based on 1988 ANSI Standards for MTP.
#MTP_ANSI92_MANAGEMENT_INHIBIT=1
#export MTP_ANSI92_MANAGEMENT_INHIBIT

#MTP_ANSI92_RESTART (ANSI only). Enables the MTP restart
feature which provides an orderly process
for activating the SINAP node's links and
routes when you start or restart the node.
This features is based on the 1992 ANSI
standards for MTP.
#MTP_ANSI92_RESTART=1
#export MTP_ANSI92_RESTART

#MTP_ANSI92_TCCO (ANSI only). Enables MTP timed-controlled
changeover (TCCO) functionality when the
SINAP node receives a processor outage
indication on a link at the remote end.
This feature is based on the 1992 ANSI
standards for MTP.

#MTP_ANSI92_TCCO=1
B-8 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
#export MTP_ANSI92_TCCO

#MTP_ANSI92_TCD (ANSI only). Enables use of the MTP
time-controlled diversion(TCD) feature,
based on the 1992 ANSI standards for MTP.
TCD is applied when the signaling point
made available at the far end of the link
is currently inaccessible from the signaling
point initiating the changeback order. If
you do not define this variable, the SINAP
node implements TCD functionality based on
the 1990 ANSI standards for MTP.
#MTP_ANSI92_TCD=1
#export MTP_ANSI92_TCD

#MTP_LINK_DOWN_AFTER_LPO_ENDS Causes MTP processing to bring a link
down after a local processor outage(LPO).
You must use normal link-level recovery
procedures to bring the link back into
service.
#MTP_LINK_DOWN_AFTER_LPO_ENDS=1
#export MTP_LINK_DOWN_AFTER_LPO_ENDS

#MTP_LINKSET_MEASUREMENT Enables the REPORT-MMTP and REPORT-MALL
reports to display the number of octets
and MSUs transmitted and received per
second on all links configured for a
link set in 30-minute blocks during the
reporting interval specified in the MML
command. The reports also include the
peak octet and MSU values within the
30-minute interval for the reporting
period (day, week, month).
#MTP_LINKSET_MEASUREMENT=YES
#export MTP_LINKSET_MEASUREMENT

#MTP_RCT_LOAD_SHARING_SLS (ANSI only).Enables the generation of
random signaling link selections(SLSs)
for outbound route set congestion test
(RCT) messages. If you do not define
this variable, the SINAP node implements
processing based on the 1988 ANSI standards
for MTP. Note that always sending the RCT
message on the same link within the same
link set on which the TFC was received
always results in the RCT message testing
the same network path, which may or may not
be congested.
#MTP_RCT_LOAD_SHARING_SLS=YES
#export MTP_RCT_LOAD_SHARING_SLS

#MTP_SLS4_LOAD_SHARE (CCITT,China). Ensures message sequencing
by routing messages solely on the
signaling link selection (SLS) and
destination point code (DPC). For example,
if a telephone user part (TUP) user employs
the circuit identification code (CIC) for
the SLS value for all messages pertaining
SINAP/SS7 Environment Variables B-9

The SINAP Environment File
to that circuit, all messages go out over
the same link to a particular DPC, even
when loadsharing over two link sets. This
ensures all messages remain in sequence.
However, when loadsharing over link sets,
you can only use 8 links in each link set.
For multiple DPCs and more than 8 links per
link set, you might achieve an even load
distribution, but there is no guarantee.

If you do not define this variable, the
SINAP node supports 16 links per link set,
with a random choice of link sets when
loadsharing. This ensures even distribution,
but not message sequencing. Note that
enabling this option has no affect on TCAP,
SCCP, or ISUP users.
#MTP_SLS4_LOAD_SHARE=1
#export MTP_SLS4_LOAD_SHARE

#MTP_USER_FLOW_CTL Sends a user part unavailable(UPU)
message to the originating user part
when it receives an incoming message
that it cannot deliver. This feature
is based on the 1993 edition of the
1993 ITU-T recommendations for MTP. If
you do not define this variable, the
SINAP node implements user flow control
procedures based on the 1988 ITU-T
recommendations for MTP. For the China
network variant, you must define this
variable.
#MTP_USER_FLOW_CTL=1
#export MTP_USER_FLOW_CTL

#MTP_WHITE_BOOK_RESTART Enables the MTP restart feature that
provides the orderly process for
activating a node's links and routes
when you start the SINAP node. This
feature is based on the 1993 ITU-T
recommendations for MTP. For the China
network variant, you must define this
variable.
#MTP_WHITE_BOOK_RESTART=1
#export MTP_WHITE_BOOK_RESTART

#MTP_WHITE_BOOK_SLC Allows the SINAP node to accept certain
types of signaling network management
(SNM) messages that use a signaling link
code(SLC) value other than 0. This feature
is based on the 1993 ITU-T recommendations
for MTP. For CCITT and China network
variants, if you do not define this
variable, the SINAP node implements SLS
procedures based on the 1988 ITU-T
recommendations for MTP. For the ANSI
network variant, this feature is
automatically activated. There is no
B-10 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
need to define this variable.
#MTP_WHITE_BOOK_SLC=1
#export MTP_WHITE_BOOK_SLC

#MTP_WHITE_BOOK_TCCO (CCITT and China). Enables use of the
MTP timed-controlled changeover(TCCO)
functionality when a processor outage
indication is received on a link at the
remote end. This feature is based on the
1988 ITU-T recommendations for MTP. If
you do not define this variable, the
SINAP node implements TCCO procedures
based on the 1988 ITU-T recommendations.
#MTP_WHITE_BOOK_TCCO=1
#export MTP_WHITE_BOOK_TCCO

#MTP_WHITE_BOOK_TFR (CCITT only). Implements the transfer
restricted (national network) message
handling option that is based on 1993
ITU-T Recommendations for MTP.
#MTP_WHITE_BOOK_TFR=1
#export MTP_WHITE_BOOK_TFR

#SLTM_NOT_REQUIRED When this environment variable is
defined, the SINAP node does not
initiate a signaling link test message
(SLTM) or for the TTC network variant,
signaling route test message (SRTM).
#SLTM_NOT_REQUIRED=1
#export SLTM_NOT_REQUIRED

#SLTM_OPC_CHECK Checks the originating point code(OPC)
in the MTP routing label of the
received signaling link test
message(SLTM) to ensure it matches
the adjacent destination point code
(DPC) to which the link (indicated
by the signaling link code (SLC) of the
SLTM is connected.
#SLTM_OPC_CHECK=1
#export SLTM_OPC_CHECK

#SLTM_WITH_NAT10_FOR_G500 (CCITT only). Allows the SINAP node to
send a Signaling Link Test Acknowledgment
(SLTA) message in response to a Signaling
Link Test(SLT) message ONLY when the SLT
message contains the value NAT10 in the
subservice field(SSF).
#SLTM_WITH_NAT10_FOR_G500=1
#export SLTM_WITH_NAT10_FOR_G500

#LOOPBACK_DISPLAY (CCITT only). Enables the SINAP node to
detect when a remote link is in a
loopback mode. In this case, the SINAP
node sets a loopback diagnostic indicator
to display the loopback status on the
DISPLAY-LINK screen.
SINAP/SS7 Environment Variables B-11

The SINAP Environment File
#LOOPBACK_DISPLAY=1
#export LOOPBACK_DISPLAY

#DISABLE_MTP_DISCRIMINATION (CCITT only). Disables MTP Level 3 point
code discrimination and allows any MSU
received by the SINAP node (regardless
of destination point code(DPC) to be
routed to the appropriate application
process). The SINAP node discards all
SCCP management MTP management messages
with a DPC that is not equal to own point
code. The SINAP node handles MTP and SCCP
messages with a DPC equal to own point code
according to the 1993 ITU-T recommendations
for MTP and SCCP.
#DISABLE_MTP_DISCRIMINATION=1
#export DISABLE_MTP_DISCRIMINATION

#SCCP ENHANCED FUNCTIONALITY
#============================
#
#RESPONSE_WITHOUT_SSN_CONFIGURED Specifies that the SCCP outbound routing
control of the SINAP node should retain
all outbound messages that contain remote
SSNs (REMSSNs) that are not configured
on the SINAP node or REMSSNs that are
configured, but not in the ALLOWED
state. If you do not define this
variable, the SINAP node discards all
these outbound messages.
#RESPONSE_WITHOUT_SSN_CONFIGURED=1
#export RESPONSE_WITHOUT_SSN_CONFIGURED

#REMSSN_INIT_PROHIBIT (CCITT only). Enables the SINAP node to
set the remote SSN status to PROHIBITED
when the remote SSN is created using
the CREATE-REMSSN MML command or when
SCCP management(SCMG) receives an
MTP-RESUME primitive from MTP_L3RC
after a SINAP MTP restart occurs.
#REMSSN_INIT_PROHIBIT=1
#export REMSSN_INIT_PROHIBIT

#SCMG_SSP_SST_HANDLING_DISABLED Disables handling of the SCCP management
messages subsystem prohibited(SSP) and
subsystem test (SST) messages.
#SCMG_SSP_SST_HANDLING_DISABLED=1
#export SCMG_SSP_SST_HANDLING_DISABLED

#CCITT_XUDT_SCMG (CCITT only). Allows a SINAP node to
receive and process an SCCP subsystem
test (SST) in an extended unitdata
(XUDT) message. If the SSN specified in
the XUDT message is in the ALLOWED state,
the SINAP node sends a subsystem allowed
(SSA) message to the original calling
calling address. If you do not define this
variable, the SINAP node discards any XUDT
B-12 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
SCCP management (SCMG) messages it receives
because SCMG messages are normally handled
only by unitdata (UDT) messages.
#CCITT_XUDT_SCMG=1
#export CCITT_XUDT_SCMG

#TCAP ENHANCED FUNCTIONALITY
#===========================
#
#BYPASS_SINAP_GLOBAL_TITLE_TRANSLATION Implements global title(GT) addressing
capabilities, instead of global title
translation (GTT). GT addressing
capabilities allow the SINAP node to
pass GT messages without actually
translating the GT.

#BYPASS_SINAP_GLOBAL_TITLE_TRANSLATION=1
#export BYPASS_SINAP_GLOBAL_TITLE_TRANSLATION

#GLOBAL_TITLE_SSN_NO_CHECK This variable bypasses the availability
check of the remote SSN in the SCCP
called party address field of the
outbound message and enables a SINAP
node to send messages to an STP with the
outbound MSU's SCCP called party address
(including SSN, global title, and routing
indicator set to "route on global title")
if the SSN is unknown (SSN=0).
#GLOBAL_TITLE_SSN_NO_CHECK=1
#export GLOBAL_TITLE_SSN_NO_CHECK

#GTT_BYPASS_NOAI_CHECK Expands the value range for the nature
of address(NOAI) indicator field in
global title entries. Valid values for
NOAI can be within the range 1-127.
If you do not define the variable,
the value specified for NOAI can only
be in the range of 1-4.
#GTT_BYPASS_NOAI_CHECK=1
#export GTT_BYPASS_NOAI_CHECK

#GTT_WITH_BACKUP_DPC_SSN Enables a SINAP node to route MSUs
containing global title information
to an alternate SCCP at a remote node
if the primary SCCP is unavailable. If
both primary and secondary SCCPs are
unavailable, the SINAP node returns a
NOTICE error message.
#GTT_WITH_BACKUP_DPC_SSN=1
#export GTT_WITH_BACKUP_DPC_SSN

#HEX_GLOBAL_TITLE Enables the use of hexadecimal values
(A-F) in the global title string. If
you do not define this variable, you
can only use decimal numbers (0-9) in
global title strings.

#HEX_GLOBAL_TITLE=1
SINAP/SS7 Environment Variables B-13

The SINAP Environment File
#export HEX_GLOBAL_TITLE

#PARTIAL_GTT Enables the use of partial
Global Title Translation by setting a
maximum and minimum number of digits.
If you do not define this variable,
full GTT will take place.

When you set this option, you can also
specify values for the following
environment variables:
#
MAX_PGTT_DIGITS
MIN_PGTT_DIGITS

#PARTIAL_GTT
#export PARTIAL_GTT

#MAX_PGTT_DIGITS
Specifies the maximum number of partial
global title digits when PARTIAL_GTT is
set. Valid range is from 1 to
MAX_GLOBAL_TITLE (up to 28 digits). The
default is 6.
#export MAX_PGTT_DIGITS=<value>

#MIN_PGTT_DIGITS
Specifies the minimum number of partial
global title digits when PARTIAL_GTT is
set. If the digits in the address to be
translated is less than MIN_PGTT_DIGITS
then full GTT will take place. The
default is 3.
#export MIN_PGTT_DIGITS=<value>

#SINAP_XUDT_SEGMENT_SIZE (CCITT, China only). Defines a size for
the message segments that make up an
extended unitdata (XUDT) message that
is smaller than the maximum size allowed
(the default) for the network variant
configured on the SINAP node.
#
Valid values Network Variant
------------ -------------------------
0 - 254 CCITT (default=254 bytes)
1 - 251 ANSI (default=251 bytes)
#SINAP_XUDT_SEGMENT_SIZE=<value>
#export SINAP_XUDT_SEGMENT_SIZE

#TCAP_MAX_SIZE_ORIG_TID_ONLY Defines the value of the origination
transaction ID which must be four bytes
long (the maximum allowable size).
#TCAP_MAX_SIZE_ORIG_TID_ONLY=1
#export TCAP_MAX_SIZE_ORIG_TID_ONLY

#TCRELAY CCITT only). Enables a SINAP node to
pass the hop counter value received in
B-14 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
an XUDT message to a TCAP application.
#TCRELAY=1
#export TCRELAY

#INTERPROCESS COMMUNICATIONS
#===========================

#GUARANTEED_IPC Ensures that critical interprocess
communications(IPC) messages are
delivered to their destinations, even
during period of heavy system load.
Defining this variable changes the
retry_count parameter within the CASL
ca_put_msg() function as follows:
#
If retry_count value is 0, the SINAP
node considers the IPC message to be
noncritical and the node does not
generate a critical alarm if it cannot
deliver the message. Instead. the node
returns an error to the user with errno
typically set to EAGAIN.
#
If retry_count value is greater than 0,
the SINAP node considers the IPC message
to be critical and it makes every effort
to deliver the message, including
restarting the node if necessary. The
ca_put_msg() function call generates a
critical alarm and returns an error only
if the node cannot deliver the message
due to an error condition other than
EAGAIN (for example, the called process
no longer exists.
#GUARANTEED_IPC=1
#export GUARANTEED_IPC

#MML COMMAND ENHANCEMENTS
#========================
#SINAP_MML_ALT_NUMERIC_CONVERSION Allows entry of MML values for command
arguments in decimal, octal, or
hexadecimal notation.

Notation Command Argument Value
-------- ---------------------------
Hexadecimal 0x or 0X, followed by value
Decimal Value only(no prefix needed)
Octal 0, followed by the value
#SINAP_MML_ALT_NUMERIC_CONVERSION=1
#export SINAP_MML_ALT_NUMERIC_CONVERSION

#SINAP_MML_PRINT_RESPONSE Enables the automatic printing feature
in MML commands that includes the PRINT
argument. If you specify a printer in the
PRINT argument of an MML command, the
specified printer automatically prints
the command and all its output. The
feature remains active until you exit
SINAP/SS7 Environment Variables B-15

The SINAP Environment File
the login session. You can specify a
different printer within a login session
by changing the printer defined in the
PRINT argument of the MML command.
#SINAP_MML_PRINT_RESPONSE=1
#export SINAP_MML_PRINT_RESPONSE

#SINAP_MML_PRINT_TTYNAME Allows the TTY name to be printed on the
printed output of a measurement-
reporting command. The TTY name
identifies the sysopr window from which
the MML command was issued.
#SINAP_MML_PRINT_TTYNAME=1
#export SINAP_MML_PRINT_TTYNAME

#CONNECTION-ORIENTED SERVICES
#=============================
#SINAP_LRN_FREEZE_TIMEOUT Defines the number of seconds (up to
1800) before an unused LRN is released
and can be assigned to another LRM
structure.
#SINAP_LRN_FREEZE_TIMEOUT=<value>
#export SINAP_LRN_FREEZE_TIMEOUT

#SINAP_TOTAL_LR_MEMS Defines the number of local reference
memory (LRM) structures specified (up
to 2000).
#SINAP_TOTAL_LR_MEMS=<value>
#export SINAP_TOTAL_LR_MEMS

#SINAP_TOTAL_LR_NUMS Allocates the total number (up to 5000)
of LRNs that can be assigned to LRM
structures.
#SINAP_TOTAL_LR_NUMS=<value>
#export SINAP_TOTAL_LR_NUMS

#SINAP_USER_LR_MEMS Defines the maximum number of connections
(up to 2000) each application can have
open at any given time.
#SINAP_USER_LR_MEMS=<value>
#export SINAP_USER_LR_MEMS

#ISUP Services Feature
#======================

#ISUP_FEATURE Activates a standard-specific or
country-specific version of the ISUP
services feature on a SINAP node.

For the ANSI network variant, the only
valid ISUP version is
ANSI
#
For the CCITT network variant, valid
ISUP versions are:
ACIF_G500
BELGIUM
CCITT
B-16 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File
FRANCE1
GERMANY
ITALY
ITU97
NETHERLANDS
Q767

MEXICO
SWEDEN
TAIWAN
SPAIN

#
For the China network variant, the
valid ISUP version is
CHINA

For the NTT network variant, valid ISUP
versions are:
NTT
NTT_IC
#ISUP_FEATURE=<VERSION>
#export ISUP_FEATURE

#ISUP_DBL_SEIZE_BITS (ANSI only). Enables you to set a value
in the range 0-3 for the Double Seizing
Control Indicator field of the Circuit
Group Characteristics Indicator parameter
in the Circuit Validation Response(CVR)
message. The SINAP node uses this value
for all configured circuits on the node.
If you do not define this variable or you
specify a value outside the valid range,
the SINAP node uses the default value
(0x00) for the Double Seizing Control
Indicator.
#ISUP_DBL_SEIZE_BITS=<value>
#export ISUP_DBL_SEIZE_BITS

#ISUP_REL_NO_ADD_ACC (ANSI only). Disables the Automatic
Congestion Control(ACC) parameter in a
Release (REL) message.
#ISUP_REL_NO_ADD_ACC=1
#export ISUP_REL_NO_ADD_ACC

#ISUP_CQR_TRANS_FOR_UCIC (ANSI only). Causes the state for any
unequipped circuits reported in a Circuit
Query Response (CQR) message to be
transient. Also prevents the circuits from
going into the transient (maintenance)
state when certain outage conditions exist
(for example, when the ISUP application or
its process manager is not running). If
you do not define this variable, the SINAP
node reports the state "unequipped" in a
CQR message. This action applies to all
unequipped circuits, not just those
managed by the application.
SINAP/SS7 Environment Variables B-17

The SINAP Environment File
#ISUP_CQR_TRANS_FOR_UCIC=1
#export ISUP_CQR_TRANS_FOR_UCIC

#ISUP_NO_UCIC_REPLIES (ANSI only). Prohibits the SINAP node from
sending Unequipped Circuit Identification
Code(UCIC) messages to remote nodes in
response to messages destined for
unequipped or unconfigured circuits. This
affects all unequipped circuits, not just
those managed by the application. Normally,
the SINAP node sends UCIC messages to
remote nodes for unequipped circuits.
#ISUP_NO_UCIC_REPLIES=1
#export ISUP_NO_UCIC_REPLIES

#ISUP_UNEQ_REL_ACK Allows REL on unregistered circuits to
#(ANSI only) be replied to with RLC to prevent
remote switch from triggering T5

#ISUP_UNEQ_REL_ACK=1
#export ISUP_UNEQ_REL_ACK

#ISUP_GENERIC_NAME (ANSI only). Enables use of the Generic
Name Parameter in the initial Address
Message (IAM).
#ISUP_GENERIC_NAME=1
#export ISUP_GENERIC_NAME

#ISUP_CGBA_PER_2CGB (ANSI only). Activates the feature (based
on ANSI 1992 standards) that returns a
circuit group block acknowledgement (CGBA)
message to the originator of the circuit
group block (CGB) message whenever two
CGB messages are received within a 5
second timer period.
#ISUP_CGBA_PER_2CGB=YES
#export ISUP_CGBA_PER_2CGB

#ISUP_RSC_BLO_PER_EXP (ANSI only). Enables the SINAP node to
return a blocking (BLO) message immediately
after returning the Reset Circuit(RSC)
message and handle the sending of BLO
messages based on timer T12 and T13
timeouts.
#ISUP_RSC_BLO_PER_EXP=1
#export ISUP_RSC_BLO_PER_EXP
#
#
#ALLOW_GR317_REV4_CAUSE_VALUES (ANSI only) Allows cause values 25 and 26, which
are supported in GR-317 Rev. 4, when a SINAP #
node is configured for ANSI 92.
#
#ALLOW_GR317_REV4_CAUSE_VALUES
#export ALLOW_GR317_REV4_CAUSE_VALUES

#FIRMWARE_HEARTBEAT=1 Used to enable the U916 firmware heartbeat
#export FIRMWARE_HEARTBEAT mechanism. To enable this, please uncomment
the following two lines.
B-18 SINAP/SS7 Programmer’s Guide R8052-17

The SINAP Environment File

#FIRMWARE_HEARTBEAT=1
#export FIRMWARE_HEARTBEAT

#DO_RPQDUMP=1 Used to enable the generation of an rpqdump file
#export DO_RPQDUMP when the ss7dmn detects a board failure. To
enable, please uncomment the following two lines.

#DO_RPQDUMP=1
#export DO_RPQDUMP

#CONG_EVENT_REPORT_OFF=1 This variable controls the congestion report for every
#export CONG_EVENT_REPORT_OFF 1 out of 8 outbound messages per Q.704 section 11.2.3.1
via IPC messages, M_message_for_congested_[link,route,
destination], from CASL to L3RC to notify MTP3 users
via I_MTP_STATUS primitives. Under heavy traffic with
congested link/linkset/routeset, these IPC messages
may prevent the other significant IPC messages from
processing. Setting this variable to 1 or a non-zero
value will disable this report.
#CONG_EVENT_REPORT_OFF=1
#export CONG_EVENT_REPORT_OFF

#SGS_SRST_ROUTING (CCITT only). Enable the MTP L3 inbound
processing of SRST messages, i.e. RCT, RST
and RSR, at L3DT which forwards them to IP
gateway process, e.g. IPMT or IPSG which
acts like STP. Also, the other feature is
to turn off the DPC validation after
inbound GTT, if this env var and the other
one, DISABLE_MTP_DISCRIMINATION, are both
defined.
#SGS_SRST_ROUTING=1
#export SGS_SRST_ROUTING
#
#OSP_UPDATE_ENABLED (CCITT Only). Enable the ability to change
own point code, without SINAP stop/start
or activating/deactivating SINAP MMLs
#OSP_UPDATE_ENABLED=1
#export OSP_UPDATE_ENABLED
#
#ISUP_UPU_FEATURE This enables UPU message to be sent to
each remote point code, for any incoming
ISUP message, when ISUP application is
down.
#ISUP_UPU_FEATURE=1
#export ISUP_UPU_FEATURE
#
#SCCP_ITU96_IMPORTANCE_PARM (CCITT Only). Enable the ability to handle
the 1996 ITU-T Q.71x optional Importance
parameter included in SCCP XUDT/XUDTS MSUs.
#SCCP_ITU96_IMPORTANCE_PARM=1
#export SCCP_ITU96_IMPORTANCE_PARM

#CONG_STATUS_CHANGE_LOGGING=1 This variable is to enable or disable SINAP alarm
logging for link/linkset/routeset(DPC) congestion
status change. Setting this variable to 1 or a non-zero
value will enable the logging of the congestion status
SINAP/SS7 Environment Variables B-19

The SINAP Environment File
change in SINAP alarm log file. Otherwise this
feature will not be enabled.
#CONG_STATUS_CHANGE_LOGGING=1
#export CONG_STATUS_CHANGE_LOGGING
#
#SCCP_BYPASS_CLG_ADDR_CHECK (CCITT Only). Enable the ability to bypass
SCCP calling party address validation for
inbound and outbound MSUs.
#SCCP_BYPASS_CLG_ADDR_CHECK=1
#export SCCP_BYPASS_CLG_ADDR_CHECK
B-20 SINAP/SS7 Programmer’s Guide R8052-17

Appendix C
CASL Error MessagesC-

When a CASL function call is unsuccessful, the system returns an error message and an error
value in the function’s errno field. The message indicates the reason for the failure, and the
number is the errno value, or error number. You will need to provide this error number if you
are unable to resolve the problem and need to call the Stratus Customer Assistance Center
(CAC) for help.

This appendix describes, in numeric order, the error messages that might be returned by CASL
function calls. The following chart presents the range of errno values assigned to each type of
error message. These values are defined in the SINAP/SS7 ca_error.h include file.

This appendix lists and describes each CASL error message you might encounter. The messages
are listed by subsystem and range of errno values, or error numbers. This appendix is divided
into the following sections:

• “UNIX and SS7 Driver Errors” describes the errors that the UNIX operating system and
the SS7 drivers can return when an application issues a call to a CASL function.

• “Node Management Errors” describes the errors UNIX can return when an application
issues a call to the node management process.

errno Value Subsystem

1 – 256 UNIX or SS7 Driver

1000 – 1999 Node Management

2000 – 2999 CASL

3000 – 3999 TCAP

4000 – 4999 SCCP

5000 – 5999 MTP

6000 – 6999 BITE

7000 – 7999 Client application

8000 - 8999 ISUP
CASL Error Messages C-1

UNIX and SS7 Driver Errors
• “CASL Errors” describes the errors that the CASL can return, including general,
registration, load control, and connection-oriented errors.

• “TCAP Errors” describes the errors that TCAP can return.

• “SCCP Errors” describes the errors that SCCP can return.

• “MTP Errors” describes the errors that MTP can return.

• “Built-In Test Environment (BITE) Errors” describes errors returned by the BITE system.

• “Application Errors” describes the errors that can be returned when an application attempts
to register with the SINAP/SS7 system.

N O T E
See the SINAP/SS7 ISDN User Part (ISUP) Guide (R8053) for
descriptions of the errors that can be returned by ISUP.

UNIX and SS7 Driver Errors
This section lists and describes the UNIX and SS7 driver error messages. These errors have a
value range of 1 through 256 and 500, and are listed by error number.

1 EPERM
Indicates one of the following problems:

• The user ID of the sending process is not configured with the appropriate privileges,
and its real or effective user ID does not match the real or saved user ID of the receiving
process.

• The calling process is attempting to send the SIGCONT signal to a process that does
not share the same session ID.

This error can be returned by the ca_get_msg() function.
C-2 SINAP/SS7 Programmer’s Guide R8052-17

UNIX and SS7 Driver Errors
2 ENOENT
Indicates that the calling process has called an unknown file or directory that cannot be
located. This error can be returned by the functions ca_get_msg() and
ca_put_msg().

3 ESRCH
Indicates that no process or process group can be found corresponding to the specified
process ID (PID). This error can be returned by the functions ca_get_msg() and
ca_put_msg().

4 EINTR
Indicates that the system received a signal that interrupted the read or the system call. This
error can be returned by the following functions:

ca_flush_msu(), ca_put_msg(), ca_register(),
ca_get_msg(), ca_put_msu(), ca_withdraw(),
ca_get_msu()

5 EIO
Indicates that an input/output (I/O) error occurred during a read or write operation. This
error can be returned by the following functions:

ca_flush_msu(), ca_get_msu(), ca_register(),
ca_get_key(), ca_put_event(), ca_withdraw(),
ca_get_msg(), ca_put_msu()

6 ENXIO
Indicates that the requested service cannot be performed on the specified subdevice because
the device or address does not exist. This error can be returned by the following functions:

ca_flush_msu(), ca_get_msu(), ca_register(),
ca_get_key(), ca_put_event(), ca_withdraw(),
ca_get_msg()

7 E2BIG
Indicates that the list of arguments exceeds the maximum size allowed. This error can be
returned by the CASL function ca_get_msg().

8 ENOEXEC
Indicates that the command contained a format error when the system attempted to execute
it.
CASL Error Messages C-3

UNIX and SS7 Driver Errors
9 EBADF
Indicates that an invalid open file number was specified. This error can be returned by the
following functions.

ca_flush_msu(), ca_put_event(), ca_put_tc(),
ca_get_key(), ca_put_msg(), ca_register(),
ca_get_msg(), ca_put_msu(), ca_withdraw(),
ca_get_msu()

10 ECHILD
Indicates that the calling process is calling a child process that is not provisioned.

11 EAGAIN
Indicates that the queue is full and the system cannot execute any more commands. This
error can be returned by the ca_put_event() and ca_put_msg() functions.

12 ENOMEM
Indicates that the memory resource is full and you should try again. This error can be
returned by the following functions.

ca_flush_msu(), ca_put_msu(), ca_put_tc()

13 EACCES
Indicates that the calling process has been denied permission to execute the requested
operation. This error can be returned by the functions ca_get_msg() and
ca_put_msg().

14 EFAULT
Indicates that the pointer to the specified message is outside of the address space allocated
for the calling process. This error can be returned by the following functions.

ca_flush_msu(), ca_get_msu(), ca_put_msu(),
ca_get_key(), ca_put_event(), ca_register(),
ca_get_msg(), ca_put_msg(), ca_withdraw()

15 ENOTBLK
Indicates that the operation requires a blocking device to complete the command. This error
can be returned by the ca_register() function.

16 EBUSY
Indicates that the mount device is busy and the system cannot start the operation.

17 EEXIST
Indicates that O_CREAT and OEXCL are set and the named file exists. This error can be
returned by the ca_register() function.

18 EXDEV
C-4 SINAP/SS7 Programmer’s Guide R8052-17

UNIX and SS7 Driver Errors
Indicates the calling process requires a cross-device link to complete the command.

19 ENODEV
Indicates that the operation requires a device that does not exist in the system.

20 ENOTDIR
Indicates that a component of the specified path name is not a directory. This error can be
returned by the ca_register() function.

21 EISDIR
Indicates that the named file is a directory and the oflag is write or read/write.
This error can be returned by the ca_register() function.

22 EINVAL
Indicates one of the following problems:

• The specified message queue ID is invalid.

• The value of msg_type is less than 1.

• The value of msg_sz is greater than 0 or it exceeds the system-imposed limit.

This error can be returned by the following functions:

ca_flush_msu(), ca_get_msu(), ca_put_msg(),
ca_get_key(), ca_put_event(), ca_withdraw(),
ca_get_msg()

23 ENFILE
Indicates that the system file table is full. This error can be returned by the
ca_register() function.

24 EMFILE
NOFILES file descriptors are currently open, indicating that the system has too many files
open. This error can be returned by the ca_register() function.

25 ENOTTY
Indicates that the specified fides is not associated with a device driver that accepts
control functions. This error can be returned by the following functions.

ca_flush_msu(), ca_put_event(), ca_put_tc(),
ca_get_key(), ca_put_msg(), ca_register(),
ca_get_msg(), ca_put_msu(), ca_withdraw(),
ca_get_msu()

26 ETXTBSY
Indicates that the calling process called a text file that is already in use.

27 EFBIG
CASL Error Messages C-5

UNIX and SS7 Driver Errors
Indicates the specified file is too large to open.

28 ENOSPC
Indicates one of the following problems:

• O_CREAT and OEXCL are set and the file system is out of I-nodes.

• The device does not exist and O_CREAT is specified.

This error can be returned by the ca_register() function.

29 ESPIPE
Indicates the calling process requested a search that it is not authorized to perform.

30 EROFS
Indicates that the named file resides on a read-only file system and oflag is set to write
or read/write. This error can be returned by the ca_register() function.

31 EMLINK
Indicates there are too many links between processes and/or files.

32 EPIPE
Indicates the system has a broken pipe, or unusable queue.

33 EDOM
Indicates the operation contains a math argument that is out of the domain of the called
function.

34 ERANGE
Indicates the response to the command contains a math result that cannot be represented.

35 ENOMSG
Indicates that the queue does not contain a message of the desired type. This error can be
returned by the ca_get_msg() function.

36 EIDRM
Indicates that the identifier has been removed from the message and the call cannot be
processed.

37 ECHRNG
Indicates that the requested channel number is out of range for the operation.

38 EL2NSYNC
Indicates that Level 2 functions are not synchronized.

39 EL3HLT
Indicates that all functions in Level 3 have stopped functioning.

40 El3RST
C-6 SINAP/SS7 Programmer’s Guide R8052-17

UNIX and SS7 Driver Errors
Indicates that the functions in Level 3 have been reset.

41 ELNRNG
Indicates that the requested link number is out of range for the operation.

42 EUNATCH
Indicates that the protocol driver is not attached and the operation cannot proceed.

43 ENOCSI
Indicates that no CSI structure is available.

44 EL2HLT
Indicates that all functions in Level 2 have stopped functioning.

45 EDEADLK
Indicates that the system has encountered a deadlock condition.

46 ENOLCK
Indicates that no record locks are available for the operation.

The following messages are returned for a convergent error:

50 EBADE
Indicates the system attempted an invalid exchange of data.

51 EBADR
Indicates the system used an invalid request descriptor.

52 EXFULL
Indicates the exchange queue is full.

53 ENOANO
Indicates the anode is unavailable or not provisioned.

54 EBADRQC
Indicates the operation request contained an invalid request code.

55 EBADSLT
Indicates an invalid slot in the configuration.

56 EDEADLOCK
Indicates the operation encountered a file locking deadlock error.
CASL Error Messages C-7

UNIX and SS7 Driver Errors
57 EBFONT
Indicates the request contained an invalid file font format.

The following messages indicate UNIX stream errors:

60 ENOSTR
Indicates the requested device is not a stream.

61 ENODATA
Indicates that there are no MSUs in the batch buffer. This error can be returned by the
ca_get_msu() function.

62 ETIME
Indicates the timer expired before the operation completed.

63 ENOSR
Indicates the request requires the use of out of streams resources.

64 ENONET
Indicates the machine you are using is not connected to the network that is running the
SINAP/SS7 system. Request assistance from your systems administrator to connect to the
network.

65 ENOPKG
Indicates the operation requires use of a software package that is not installed or accessible
from your machine. Request assistance from your systems administrator.

66 EREMOTE
Indicates the requested object is at a remote location and inaccessible at this time.

67 ENOLINK
Indicates that the link to the specified remote system is no longer active. This error can be
returned by the following functions.

ca_flush_msu(), ca_get_msu(), ca_register(),
ca_get_key(), ca_put_event(), ca_withdraw(),
ca_get_msg()

68 EADV
Indicates an error in the UNIX system’s ability to advertise.

69 ESRMNT
Indicates an error in using the UNIX srmount function.

70 ECOMM
Indicates a communication error occurred when the command was sent.

71 EPROTO
C-8 SINAP/SS7 Programmer’s Guide R8052-17

UNIX and SS7 Driver Errors
Indicates a UNIX protocol error.

74 EMULTIHOP
Indicates the system attempted a multihop, but was unable to complete the operation.

77 EBADMSG
Indicates the system is trying unsuccessfully to read an unreadable message.

78 ENAMETOOLONG
Indicates the command contains a path name that is too long.

79 EOVERFLOW
Indicates the command contains a field or parameter value too large to be stored in the data
type.

80 ENOTUNIQ
Indicates the requested log name is not unique to the system. Rename the log and reissue
the command.

81 EBADFD
Indicates the f.d. operation requested is invalid.

82 EREMCHG
Indicates the remote address specified in the command has changed.

The following error messages indicate problems in the system’s shared libraries:

83 ELIBACC
Indicates the system cannot access the requested shared library. Review the correct path and
library names, then reissue the request.

84 ELIBBAD
Indicates the shared library you are attempting to access has been corrupted and is
unusable.

85 ELIBSCN
Indicates the .lib section in the a.out file has been corrupted and is inaccessible.

86 ELIBMAX
Indicates you attempted to link more libraries that the maximum allowed.

87 ELIBEXEC
Indicates you are attempting to execute a shared library.

88 EILSEQ
Indicates the operation command contains an illegal byte sequence.
CASL Error Messages C-9

UNIX and SS7 Driver Errors
89 ENOSYS
Indicates you are trying to execute a file operation that is not supported by the system.

90 ELOOP
Indicates the system is performing a symbolic link loop.

91 ERESTART
Indicates a restartable system call.

92 ESTRPIPE
Indicates that when the input queue is configured for first in, first out (FIFO) MSU
processing for load control, there can be no delays or gaps in stream processing.

93 ENOTEMPTY
Indicates an attempt to delete or reconfigure a directory that still contains data.

94 EUSERS
Indicates the system has too many users (for UFS).

The following messages indicate errors in the UNIX Berkeley Software Distribution (BSD)
system’s arguments:

95 ENOTSOCK
Indicates an attempt to perform a socket operation on a non-socket element.

96 EDESTADDRREQ
Indicates the operation requires a destination address before it can be completed.

97 EMSGSIZE
Indicates the message is too long to display, send, or receive.

98 EPROTOTYPE
Indicates the protocol being used is the wrong type for the socket selected.

99 ENOPROTOOPT
Indicates the required protocol is unavailable.

120 EPROTONOSUPPORT
Indicates the system does not support the protocol requested/required.

121 ESOCKTNOSUPPORT
Indicates the system does not support the socket type required or requested.

122 EOPNOTSUPP
Indicates the system does not support the requested operation for the specified socket.

123 EPFNOSUPPORT
Indicates the system does not support the protocol family requested/required.
C-10 SINAP/SS7 Programmer’s Guide R8052-17

UNIX and SS7 Driver Errors
124 EAFNOSUPPORT
Indicates the protocol family in use does not support the address family requested.

125 EADDRINUSE
Indicates the address requested is already in use.

126 EADDRNOTAVAIL
Indicates the system cannot assign the requested address.

The following messages indicate UNIX or SS7 driver operational errors:

127 ENETDOWN
Indicates the network is out of service.

128 ENETUNREACH
Indicates the network is running, but the system cannot access it.

129 ENETRESET
Indicates a loss of network connection because the network is being reset.

130 ECONNABORTED
Indicates a loss of connection due to a software problem.

131 ECONNRESET
Indicates the connection was reset by a peer.

132 ENOBUFS
Indicates the system has no available buffer space.

133 EISCONN
Indicates the socket is already connected to the system.

134 ENNOTCONN
Indicates the socket requested/required is not connected to the system.

The following error messages pertain to the Microsoft XENIX system:

135 EUCLEAN
Indicates that the structure needs cleaning.

137 ENOTNAM
Indicates XENIX cannot recognize the file type because it is not named according to
XENIX file naming conventions. Review the conventions, rename the file, and reissue the
command.

138 ENAVAIL
Indicates no XENIX semaphores are available for use.
CASL Error Messages C-11

UNIX and SS7 Driver Errors
139 EISNAM
Indicates the requested file is a named type file.

140 EREMOTEIO
Indicates a remote input/output error.

141 EINIT
This error number is reserved for future use.

142 EREMDEV
This error number is reserved for future use.

The following messages are additional UNIX or SS7 driver operational errors:

143 ESHUTDOWN
Indicates the system cannot send commands because the socket has shut down.

144 ETOOMANYREFS
Indicates the system received or used too many references and cannot splice any additional
ones.

145 ETIMEDOUT
Indicates a timer expired before the operation was complete and the connection timed out.

146 ECONNREFUSED
Indicates the requested connection could not be made.

147 EHOSTDOWN
Indicates the host system is out of service.

148 EHOSTUNREACH
Indicates the system cannot find a route to the requested host system.

149 EALREADY
Indicates the system already processed the command and the operation is in progress.

150 EINPROGRESS
Indicates the system is now processing the command.

The following error message pertains to the SUN Network File System (NFS):

151 ECANCELED
Indicates an outdated NFS file handle.

The following messages indicate errors in the loadable UNIX modules. To resolve the problem,
review the system configuration for accuracy or request assistance from the system
administrator.
C-12 SINAP/SS7 Programmer’s Guide R8052-17

Node Management Errors
152 ENOLOAD
Indicates the system cannot load the required module.

153 ERELOAD
Indicates the system encountered a relocation error while loading the requested module.

154 ENOMATCH
Indicates the system could not find a symbol matching the specification.

155 EINPROG
See 150 EINPROGRESS.

156 EBADVER
Indicates the system cannot match the version number for the requested element to the
version numbers in the system.

157 ECONFIG
Indicates the system has used all configured kernel resources.

158 ECANCELED
Indicates the system canceled the async input/output request.

The following message indicates an error in the Pyramid AIO compatibility raw disk
asynchronous input/output function:

500 EIORESID
Indicates the data block was not fully transferred before processing stopped.

Node Management Errors
This section lists the node management error messages, including client management and disk
server errors. Node management error values are in the range of 1000 through 1999.

The following errors are client management errors:

1000 NMCL_NO_FREE_ENTRY
Indicates the interprocess communications (IPC) table is full, allowing no additional
entries.

1001 NMCL_EXCEEDED_MAX_NODES
Indicates the system has already used the maximum available nodes.

1002 NMCL_EXCEEDED_MAX_MODULES
Indicates the system has already used the maximum number of modules available.

1003 NMCL_EXCEEDED_MAX_APPL
Indicates the system has already activated the maximum number of applications allowed.
CASL Error Messages C-13

Node Management Errors
1004 NMCL_EXCEEDED_MAX_PROCESSES
Indicates the system is already running the maximum number of processes that can be run
at one time.

1005 NMCL_EXCEEDED_MAX_INST
Indicates that you have exceeded the maximum number of instanciations (16) allowed at
one time.

1006 NMCL_KEY_ERROR
Indicates that the SINAP/SS7 system cannot locate one or more pre-registered processes.

1007 NMCL_ALREADY_REGISTERED
Indicates client management already exists.

1008 NMCL_TERM_KEY_INVALID
Indicates the command contains an invalid IPC key to terminate processing.

1009 NMCL_INVALID_LOAD_DIST
Indicates inconsistent load distribution has been defined for multiple instanciations.

1010 NMCL_INVALID_APPL_NAME
Indicates an attempt to register with a different application name for an existing registered
subsystem number/service information octet (SSN/SIO) subsystem.

1011 NMCL_DUP_CTRL_PROC
Indicates an attempt to register a duplicate control process.

1012 NMCL_NAME_IN_USE
Indicates an attempt to register a control process with the same name as a
currently-registered data process.

1013 NMCL_INVALID_DATA_NAME
Indicates an attempt to register a duplicate data process with a different process name.
C-14 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
1014 NMCL_INVALID_BOUNDARY
Indicates an attempt to register duplicate data processes at different boundaries. For
example, one process registers at the SCCP boundary and the other process registers at the
SCCPX boundary.

The following messages indicate disk server errors:

1020 NMDS_INVALID_CMD
Indicates an unrecognizable command was entered.

1021 NMDS_CMD_IN_PROGRESS
Indicates the system is still processing a previous command and must complete the
processing before beginning a new operation.

1022 NMDS_INDEXING_ERROR
Indicates the system could not find the IPC key. This is an internal error of the disk server.

1023 NMDS_SHM_NO_LOAD
Indicates the requested shared memory cannot be loaded.

1024 NMDS_SHM_NO_BACK
Indicates the requested shared memory cannot be backed up.

1025 NMDS_INVALID_SHM_KEY
Indicates the shared memory key is invalid.

1026 NMDS_SHM_LOAD_ERROR
Indicates an error occurred while the shared memory was being loaded.

1027 NMDS_INVALID_COUNT
The read/write data count is invalid (that is, it is too big or zero).

CASL Errors
This section presents a numeric listing of CASL error messages, including registration, general,
load control, and connection-oriented errors. CASL errors are in the range of 2000 through
2999.

The following messages indicate registration function errors:

2000 CA_ERR_ALREADY_REG
Indicates that the application process is already registered with the SINAP/SS7 system and
is attempting to register again. This error can be returned by the function
ca_register().
CASL Error Messages C-15

CASL Errors
2001 CA_ERR_REG_SSN
The application process called ca_register() with an invalid subsystem number
(SSN) in the register_req_t structure’s sio_ssn field. Valid values are in the range
2 to 255.

2002 CA_ERR_REG_SIO
The application process called ca_register() with an invalid service information
octet (SIO) in the register_req_t structure’s sio_ssn field. Valid values are in the
range 1 to 15.

2003 CA_ERR_REG_SIO_SSN_IND
The application process called ca_register() with an invalid value in the
register_req_t structure’s sio_ssn_ind field. This error indicates that the
sio_ssn_ind value is either invalid, or it does not agree with the value of the sio_ssn
or the ss7_input_boundary field (which determines whether an SIO or SSN is
required). Valid values for sio_ssn_ind are as follows: 1 indicates that the sio_ssn
field contains an SIO; 2 indicates an SSN; 3 indicates that the application process
implements enhanced message distribution, in which case the sio_ssn field is set to 0
and the dist_cmd_t structure is used to define the SSN(s) to be associated with the
application process. (See “Enhanced Message Distribution” and ‘‘Custom Application
Distribution’’ in Chapter 3 for more information.)

2004 CA_ERR_REG_SS7_BOUND
The application process called ca_register() with an invalid value in the
register_req_t structure’s ss7_input_boundary field. Valid values are as
follows: 1 (MTP), 2 (SCCP), and 3 (TCAP).

2005 CA_ERR_REG_TCCOUNT
The application process called ca_register() with an invalid value in the
register_req_t structure’s tc_count field.

2006 CA_ERR_REG_SS7_PRIM
The application process called ca_register() with an invalid value in the
register_req_t structure’s ss7_primitive field. Valid values are as
follows: 1 (control primitives), 2 (data primitives), and 3 (control and data primitives).
C-16 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
2007 CA_ERR_REG_LOAD_DIST
Indicates that the application called ca_register() with the register_req_t
structure’s inbound_load_dist_type field set to an invalid value. Valid values are
as follows: 1 (round robin), 2 (least utilized), and 3 (SLS distribution). For example, since
the SLS distribution feature is available only to applications that receive input at the SCCP
boundary or that register with an SIO instead of an SSN, ca_register() would return
this error if the application process is registering to receive input at the TCAP boundary
(ss7_input_boundary set to 3) and is also attempting to specify a load distribution
type of SLS distribution (inbound_load_dist_type set to 3).

2008 CA_ERR_REG_BATCHCOUNT
Indicates that the application process called ca_register() with an invalid value
specified for the register_req_t structure’s batch_count field.

2009 CA_ERR_REG_MAX_INMSU
Indicates that the application process called ca_register() and did not specify a value
for the register_req_t structure’s max_msu_input_que field.

2010 CA_ERR_REG_MAX_OUTMSU
Indicates that the application process called ca_register() and did not specify a value
for the register_req_t structure’s max_msu_out_que field.

2011 CA_ERR_REG_MAX_HOLD
Indicates that the application process called ca_register() and did not specify a value
for the register_req_t structure’s max_msu_holding_que field.

2012 CA_ERR_REG_MAX_TIME
Indicates that the application process called ca_register() and did not specify a value
for the register_req_t structure’s max_time_on_holding_que field.

2013 CA_ERR_REG_FAILURE_OPT
Indicates that the application process called ca_register() with an invalid value
specified for the register_req_t structure’s failure_option field, which defines
the action the SINAP/SS7 system is to perform if the registering process fails. Valid values
are as follows: 1 (no action), 2 (send IPC message), or 3 (execute a script file).

2014 CA_ERR_REG_SCR_FILE
The application process called ca_register() with the register_req_t
structure’s failure_option field set to 3; however, the script field does not contain
the name of a script file, which is required when failure_option is set to 3. This error
can be returned by the ca_register() function.
CASL Error Messages C-17

CASL Errors
2015 CA_ERR_REG_MON_FILE
Indicates that the application process called ca_register() with the
register_req_t structure’s fmon_ss7 and/or fmon_ipc field set to 1, which
indicates that BITE monitoring is to be performed; however, the structure’s
mon_filename field does not specify the path name of the log file to which the BITE
monitor messages are to be written.

2016 CA_ERR_REG_INTC_FILE
Indicates that the application process called ca_register() with the
register_req_t structure’s fintercept field set to 1, which indicates that scenario
execution is to be performed; however, the structure’s intc_filename field does not
specify the path name of a valid scenario execution program.

2017 CA_ERR_REG_NORESP
The application attempted to register with the SINAP/SS7 system; however, there is no
response from the client management process. This error can be returned by the
ca_register() function.

2018 CA_ERR_REG_SS7_PRIMITIVE
The application process called ca_register() with an invalid value in the
register_req_t structure’s ss7_primitive field. (For example, this error will
occur if the application process sets the register_req_t structure’s fss7 field to 1
(use SS7 services) and sets ss7_primitive to 1 (accept control primitives).)

2019 CA_ERR_REG_BCNT_HIGH
Indicates that the application process called ca_register() with an MSU batch count
that is greater than the driver queue count. To correct the problem, the application process
must call ca_register() and specify a value for the register_req_t structure’s
batch_count field that is less than the values defined by the max_msu_input_que
and max_msu_out_que fields.

The following messages indicate CASL general errors:

2020 CA_ERR_NODE
Indicates that the application process called ca_get_key() with an invalid node name.

2021 CA_ERR_MODULE
Indicates that the application process called ca_get_key() with an invalid module
name.

2022 CA_ERR_APPL
Indicates that the application process called ca_get_key() with an invalid application
name.
C-18 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
2023 CA_ERR_PROC
Indicates that the application process called ca_get_key() with an invalid process
name specified in the function’s *pproc parameter.

2024 CA_ERR_INST
Indicates that the application process called ca_get_key() with an invalid instance; that
is, the instance is out of the range of instances associated with the application process.

2025 CA_ERR_DESTN_KEY
Indicates that the calling application process specified an invalid destination IPC key; that
is, the specified IPC key is not listed in the IPC table. This error can be returned by the
following functions.

ca_check_key(), ca_enable_intc(), ca_put_msg(),
ca_dbg_display(), ca_enable_mon(), ca_put_msg_def(),
ca_dbg_dump(), ca_get_key(), ca_put_reply(),
ca_disable_intc(), ca_put_cmd(), ca_restart_timer(),
ca_disable_mon(), ca_put_event(), ca_terminate()

2026 CA_ERR_IBLK_DATA
Indicates the calling application process specified I_Block data with a length that
exceeds the maximum allowed. This error can be returned by the following functions.

ca_put_cmd(), ca_put_msg(), ca_put_reply(),
ca_put_event(), ca_put_msg_def(), ca_terminate()

2027 CA_ERR_NO_SS7_SVC
Indicates that the application process is not registered for SS7 services but has called a
related function. To correct the problem, the application must reregister with the
SINAP/SS7 system, specifying that it wants to use SS7 services. To do this, the application
process must call ca_register() with the register_req_t structure’s fss7 field
set to 1; in addition, the structure’s ss7_primitive field must be set to 2 or 3. This
error can be returned by the following functions.

ca_flush_msu(), ca_get_tc(), ca_put_tc(),
ca_get_msu(), ca_put_msu()

2028 CA_ERR_CMDS
Indicates that the application process is attempting to send a command to another process,
but the other process is not registered to receive IPC commands. This error can be returned
by the function ca_put_cmd().
CASL Error Messages C-19

CASL Errors
2029 CA_ERR_NO_INTERCEPT
Indicates that the application process is not registered to use the intercept mode. To correct
the problem, the application must reregister with the SINAP/SS7 system, specifying that it
wants to use the intercept mode.

2030 CA_ERR_NO_MONITOR
Indicates that the application process is not registered to use the monitor mode. To correct
the problem, the application must reregister with the SINAP/SS7 system, specifying that it
wants to the monitor mode.

2031 CA_ERR_TIMER_ID_MSG
Indicates that a message called a timer ID that does not exist for the message.

2032 CA_ERR_MSU_CALLS
This error can be returned by any of the following functions: ca_get_msu(),
ca_put_msu(), ca_get_tc(), or ca_put_tc(). When returned in response to a
ca_get_msu() or ca_put_msu() function call, this error indicates that the calling
application process is registered for control primitives only, or it is registered to receive
input at the TCAP boundary. To call either of these functions directly, an application must
be registered to receive data primitives and it must registered to receive input at the MTP
or SCCP boundary.

When returned in response to a ca_get_tc() or ca_put_tc() function call, this error
indicates that the application cannot receive or send TCAP components because it is
registered for control primitives only; to send or receive TCAP components, the application
process must be registered to receive data primitives. (TCAP components are stored in
MSUs; therefore, ca_get_tc() must call the ca_get_msu() function to retrieve the
MSU containing the TCAP component. Similarly, ca_put_tc() calls the
ca_put_msu() function to deliver a TCAP component, within an MSU, to the SS7
network.)

2033 CA_ERR_IBLK_MSGTYPE
Indicates that the calling application process specified an invalid message type for the
I_Block. This error can be returned by the following functions.

ca_put_msg(), ca_put_msg_def(), ca_terminate()

2034 CA_ERR_IBLK_PTR
Indicates that the CASL function ca_get_msg() was called and the function’s piblk
parameter contained an invalid pointer to an I_Block.

2035 CA_ERR_ACCESS
Indicates that the calling application process is not registered with the SINAP/SS7 system.
The application process must call the ca_register() function before calling any other
CASL functions. This error can be returned by the following functions.

ca_disable_intc(),ca_get_msu(), ca_put_msu(),
C-20 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
ca_disable_mon(), ca_health_chk_req(), ca_put_reply(),
ca_dbg_display(), ca_health_chk_resp(),ca_put_tc(),
ca_dbg_dump(), ca_put_cmd(), ca_register(),
ca_enable_intc(), ca_put_event(), ca_restart_timer(),
ca_enable_mon(), ca_put_msg(), ca_terminate(),
ca_flush_msu(), ca_put_msg_def(), ca_withdraw(),
ca_get_msg()

2036 CA_ERR_IPC_KEY
Indicates that the specified I_Block is missing the orig_id and/or dest_id fields, or
these fields refer to an invalid origination and/or destination IPC key. This error can be
returned by the functions ca_health_chk_resp() and ca_swap_keys().

2037 CA_ERR_NO_MSUS
Indicates that the application process called ca_get_msu() or ca_get_tc(), but
there are no incoming MSUs on the queue. (TCAP components are stored in MSUs.
Therefore, ca_get_tc() calls the ca_get_msu() function to retrieve the SS7 MSU
that contains the TCAP component.)

2038 CA_ERR_MBLK_SZ
Indicates that the data read from the driver is equal to the size of the mblock(s).

2039 CA_ERR_DFM_OVERFLOW
Indicates that the table for the called timer is full and can contain no additional entries.

2040 CA_ERR_MSG_TRUNCATED
Indicates that the application process called ca_dbg_display() and the function’s
pstring parameter points to an ASCII string whose length exceeds 255 bytes, which is
the maximum allowed.

2041 CA_ERR_INT_MML
Indicates that the Built-In Test Environment (BITE) subsystem returned an error when one
of the following functions was called:

ca_enable_intc(), ca_enable_mon(), ca_register()

2042 CA_ERR_TIMESTAMP_MSGTYPE
Indicates that the function ca_get_msg() was called and contained an unknown
timestamp message type.

2043 CA_ERR_INVALID_MAXSZ
Indicates that the function ca_get_msg() was called and the message on the IPC queue
is larger than the maximum message size defined by the function’s max_sz parameter.
This error can be returned by the function ca_get_msg().

The following CASL messages are associated with the load control process:
CASL Error Messages C-21

CASL Errors
2044 CA_ERR_LC_BAD_ABDELAY
The ca_setup_locon() function call contains an invalid value for the abate_delay
parameter. The value of abate_delay must be a decimal number in the range 1 to
10000.

2045 CA_ERR_LC_BAD_COUNT
The ca_setup_locon() function call contains an invalid value for the count
parameter. The value of count must be a decimal number in the range 1 to 10000.

2046 CA_ERR_LC_BAD_DELAY
The ca_setup_locon() function call contains an invalid value for the delay
parameter. The value of delay must be a decimal number in the range 1 to 10000.

2047 CA_ERR_LC_BAD_INST
The load control function call contains an invalid value for the instance parameter.
Valid values are: 0 (INST_ALL), -1 (INST_THIS), or a decimal number in the range 1
to 16. If the ssn parameter is 0 (SSN_ALL), the instance parameter must also be 0.

N O T E
The functions ca_inquire_locon() and
ca_setup_locon() do not use instance..

2048 CA_ERR_LC_BAD_NOTIFY
The ca_setup_locon() function call contains an invalid value for the notify
parameter. Valid values are: 0 (LC_NONOTIFY), 1 (LC_NOTIFY), and 2
(LC_NOCHANGE).

2049 CA_ERR_LC_BAD_SSN
The load control function call contains an invalid value for the ssn parameter. Valid values
are: -1 (SSN_THIS), 0 (SSN_ALL), or a decimal number in the range 2 to 255.

N O T E
The functions, ca_inquire_locon() and
ca_invoke_locon(), do not support the value SSN_ALL.

2050 CA_ERR_LC_BAD_THRESH
The function call contains an invalid value for the threshold parameter. The value must
be a decimal number in the range 1 to 10000.

2051 CA_ERR_LC_BAD_TYPE
The function call contains an invalid value for the type parameter. Valid values are: 1
(LC_GROUP), 2 (LC_INDIV), and 0 (LC_DELETE).

2052 CA_ERR_LC_DIST_WRONG
C-22 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
The specified application is configured for load control individual-type operation;
however, the application is registered for LEAST_UTILIZED load distribution, which is
not allowed for individual-type operation. Either re-register the application for
ROUND_ROBIN load distribution (by calling ca_register() and specifying the value
1 for the inbound_load_dist_type parameter); or, reconfigure the application for
load control group-type operation (by calling ca_setup_locon() and specifying the
value LC_GROUP for the type parameter).

2053 CA_ERR_LC_INST_DISABLE
The specified application instance is not enabled for load control. To correct the problem,
call the function to enable the application instance for load control.

2054 CA_ERR_LC_INST_NOTRUN
The specified application instance is not running. To correct the problem, either activate the
application instance or call the load control function again, specifying an active application
instance.

2955 CA_ERR_LC_INST_NOT_FORCE
The function was called for an application instance; however, the function must be called
first.

2056 CA_ERR_LC_NOTRUN
The specified application is not running. Either activate the application or call the load
control function again, specifying an active application.

2057 CA_ERR_LC_NOT_ENABLE
The specified application is not enabled for load control. Call the function to enable the
application for load control.

2058 CA_ERR_LC_NOT_FORCE
The function was called for an application; however, the function must be called first.

2059 CA_ERR_LC_NOT_INDIV
The load control function call specifies an application instance; however, the application is
not configured for load control individual-type operation. Reconfigure the application for
individual-type operation by calling the function and specifying the value LC_INDIV for
the type parameter.

N O T E
The application must have registered with an
inbound_load_dist_type parameter value of 1.

2060 CA_ERR_LC_NOT_REG_SSN
The specified application is registered with a service information octet (SIO). To use load
control, the application must be registered with an SSN. Call ca_register() and
re-register the application with an SSN instead of an SIO.
CASL Error Messages C-23

CASL Errors
2061 CA_ERR_LC_NOT_SETUP
The specified application has not been configured for load control. Call the function to
configure the application for load control.

2062 CA_ERR_LC_NOT_TCAP
The specified application is registered to receive input at the MTP or SCCP boundary. To
use load control, an application must be registered to receive input at the TCAP boundary.

2063 CA_ERR_LC_THRESHOLD
The calling process (or application) attempted to configure the specified application for
load control with a threshold value that is greater than the inbound MSU count. Either
re-register the application so that its inbound MSU count (max_msu_input_que) is
greater than its load control threshold value; or, lower the application’s load control
threshold value (by calling and specifying a value for threshold that is less than the
inbound MSU count).
C-24 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
These following error messages indicate additional CASL registration, load control,
connection-oriented, and general errors:

2064 CA_ERR_REG_DIST_WRONG
The calling process (or application) has been configured for load control individual-type
operation. However, the application registered with LEAST_UTILIZED load distribution,
which is not allowed for individual-type operation. Either re-register the application for
ROUND_ROBIN load distribution (call ca_register() and specify 1 for the
register_req_t structure’s inbound_load_dist_type field), or reconfigure the
application for load control group-type operation (call and specify LC_GROUP for the
type parameter).

2065 CA_ERR_REG_NOT_TCAP
The application process called ca_register() and attempted to register to receive
input at the SCCP boundary; however, the application is currently configured for load
control and must therefore receive input at the TCAP boundary. To correct the problem, you
must either reconfigure the application so that it does not use load control, or reregister the
application to receive input at the TCAP boundary (call ca_register() with the
register_req_t structure’s ss7_input_boundary field set to 3).

2066 CA_ERR_REG_THRESHOLD
The application process has been configured for load control and is now attempting to
register with the SINAP/SS7 system with a maximum input MSU count that is too low for
the application’s load control threshold. To correct the problem, you can reconfigure the
application’s load control operating characteristics and reduce the load control threshold;
or, reregister the application with the SINAP/SS7 system, increasing the value of the
register_req_t structure’s max_msu_input_que field. This error can be returned
by the ca_register() function.

2067 CA_ERR_NO_HOME_ENV
Indicates that the application process called ca_register() to register with the
SINAP/SS7 system but the SINAP_HOME environment variable was not defined. To
correct the problem, define the variable and assign as its value the path name of the
directory in which the SINAP/SS7 software is installed (for example,
SINAP_HOME=/home/sinap).

N O T E
You must define the SINAP_HOME environment variable at the
UNIX command level before starting the SINAP/SS7 system.
CASL Error Messages C-25

CASL Errors
2068 CA_ERR_FTOK
Indicates that the application process is attempting to register with the SINAP/SS7 system,
but the SINAP_HOME environment variable specifies a nonexistent path name. This error
can be returned by the function ca_register().

2069 CA_ERR_NULL_DIST
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the ssn_opc_table argument was set to NULL.

2070 CA_ERR_NULL_APPL
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the register_req_t structure’s application value
was set to zero (0).

2071 CA_ERR_DIST_CMD
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because it contained a bad distribution command.

2072 CA_ERR_NEG_COUNT
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the register_req_t structure’s sio_ssn_ind
field was set to a negative value.

2073 CA_ERR_MAX_COUNT
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the register_req_t structure contained SSN and
OPC values that were too high.

2074 CA_ERR_NOT_REG_MULT
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the register_req_t’s application SSN set was not
set to REG_MULT. (See the section “Registering with SINAP/SS7” in Chapter 3 for
additional considerations.)

2075 CA_ERR_APPL_UNEQUIP
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the application was unequipped or unprovisioned.

2076 CA_ERR_SSN_UNEQUIP
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the register_req_t structure’s sio_ssn_ind
field was unequipped.

2077 CA_ERR_NO_OPC
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because no OPC or SSN was defined for the application.
C-26 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
2078 CA_ERR_MULT_CONFLICT
Indicates a conflict in the configuration of the application that is calling
ca_register().

2079 CA_ERR_REG_MULT_SSN
The application process called ca_register() with an SIO or SSN specified in the
register_req_t structure’s sio_ssn field; however, the application is configured
for enhanced message distribution and must therefore set sio_ssn to 0.

You can correct the problem in one of two ways. Register the application process so that it
does not implement enhanced message distribution by setting the register_req_t
structure’s fields as follows: set sio_ssn_ind to 1 (SIO) or 2 (SSN) and provide an SIO
or SSN in the sio_ssn field. To have the application implement enhanced message
distribution, set sio_ssn_ind to 3 (REG_MULT) and sio_ssn to 0. (The
dist_cmd_t structure defines the SSN(s) to associate with the application process. See
“Enhanced Message Distribution” and ‘‘Implementing Enhanced Message Distribution’’ in
Chapter 3 for information about enhanced message distribution and implementation.)

2080 CA_ERR_REG_MULT_BOUND
The application process attempted to register with the SINAP/SS7 system to receive input
at the MTP boundary; however, the application is configured for enhanced message
distribution and must therefore register to receive input at the SCCP or TCAP boundary.
This error can be returned by the ca_register() function.

To correct the problem, either reconfigure the application so that it does not implement
enhanced message distribution (see ‘‘Enhanced Message Distribution’’ in Chapter 3); or,
reregister the application to receive input at the SCCP or TCAP boundary. To do this, call
ca_register() with the register_req_t structure’s ss7_input_boundary
field set to 2 or 3; in addition, make sure that the structure’s sio_ssn_ind field is set to
2 and the sio_ssn field specifies an SSN (in the range 2 to 255).
CASL Error Messages C-27

CASL Errors
2081 CA_ERR_REG_INCONSIST
Indicates that the application process is attempting to register with an SIO or SSN that
differs from the application’s other processes. (Processes that are part of the same
application must each register with the same SIO or SSN.) To correct the problem, the
application process must reregister with the SINAP/SS7 system using the same SIO/SSN
as the other application processes. (The register_req_t structure’s sio_ssn field
defines this SIO/SSN.)

2082 CA_ERR_REG_APPL_FULL
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because there are 32 applications currently registered, which is
the maximum that the SINAP/SS7 system supports.

2083 CA_ERR_REG_CONFLICT
Indicates that the application process called ca_register() with the
register_req_t structure’s sio_ssn_ind field set to REG_MULT; however, one or
more of the structure’s other fields is set incorrectly. An sio_ssn_ind value of
REG_MULT indicates that enhanced message distribution is being implemented, which
means that sio_ssn must be set to 0 and ss7_input_boundary must be set to 2
(SCCP) or 3 (TCAP). (See ‘‘Registering with SINAP/SS7’’ in Chapter 3 for additional
considerations.)

2084 CA_ERR_REG_MAX_INST
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because there are currently 16 application instances registered,
which is the maximum that the SINAP/SS7 system allows.

2085 CA_ERR_REG_INST_USED
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the specified instance number is already in use.

2086 CA_ERR_LC_APPL_FULL
Indicates that the load control function has encountered a full application table that cannot
contain additional entries.

2087 CA_ERR_LC_NO_APPL
Indicates that no application exists for which to implement load control.

2088 CA_ERR_REG_NODE_BAD
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because there was a conflict with the SINAP_NODE
specification.
C-28 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
2089 CA_ERR_REG_MODULE_BAD
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because there was a conflict with the SINAP_MODULE
specification.

2090 CA_ERR_REG_NODE_CONFIG
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the SINAP node specified was not configured.

2091 CA_ERR_REG_VARIANT
Indicates that the application process called ca_register() but the SINAP/SS7 system
could not process the call because the application process and the SINAP node were
configured with different network variants.

The following CASL messages pertain to SCCP Class 2 and Class 3 functions:

2092 CA_ERR_REG_SCCP23
The application did not register for connection-oriented services. Therefore, it cannot call
ca_put_sc() or ca_get_sc(), as appropriate.

2093 CA_ERR_REG_NSCCP23
The application did not register for connection-oriented services. Therefore, it cannot call
ca_put_sc() or ca_get_sc(), as appropriate.

2094 CA_ERR_REG_SIZE_NG
Indicates the application process called ca_register() with a user data size that is
greater than the maximum size allowed.

2095 CA_ERR_REG_CONN_NG
Indicates the application process called ca_register(), but cannot register because the
maximum number of connections have already been used.

2096 CA_ERR_PUTSC_NG
Indicates the msg_type data in the m_block_t.sccp_ctrl structure of
ca_register() is invalid.

2097 CA_ERR_PUTSC_BAD
Indicates the specified sccp_ctrl value of ca_register() is invalid.

2098 CA_ERR_PUTSC_SIZE
Indicates the size of the MSU user data in ca_register() is invalid.

2099 CA_ERR_PUTSC_BUSY
Indicates no more connection IDs are available in the conn-id structure of
ca_put_sc().

2100 CA_ERR_GETSC_BUSY
CASL Error Messages C-29

CASL Errors
Indicates no more connection IDs are available in the conn-id structure of
ca_put_sc().

2101 CA_ERR_PUTSC_CID
Indicates the specified connection ID in the MSU is too large for the buffer.

2102 CA-ERR_GETSC_SIZE
Indicates the incoming MSU’s user data is larger that the size of the memory buffer used
for storing the data. Note that the function call returns the portion of the MSU user data that
fits in the memory buffer and discards the rest of the user data.

2103 CA_ERR_PUTSC_MSG
Indicates the application process is not registered as a Class 3 connection control process.
Therefore, it cannot handle large messages.

2104 CA_ERR_PUTSC_CONN
Indicates the connection ID has been lost. Therefore, the SINAP/SS7 system cannot send
the MSU.

2105 CA_ERR_MTP_RESTART
Indicates that CASL has to discard pending MSUs during MTP restart.

2106 CA_ERR_GETSC_NG
Indicates an invalid message type.

2107 CA_ERR_REG_REACOUNT
Indicates that zero was specified for the value in the reassembly_count field of the
registration parameter structure register_reg_t of ca_get_sc().

2108 CA_ERR_XMAX_SIZE
Indicates that the size of the XUDT data parameter exceeds the max of 2048, or the number
of segments exceeds 16 (the maximum number defined in the 1993 edition of the ITU-T
(CCITT) Recommendations for SCCP). The number of segments is determined by dividing
the data size by the segments size, which is specified in the
SINAP_XUDT_SEGMENT_SIZE environment variable.
C-30 SINAP/SS7 Programmer’s Guide R8052-17

CASL Errors
2109 CA_ERR_REG_MAX_INPUT_QUEUE
Indicates that the application attempted to register (tcrecv) with CASL and failed one of
two checks:

• CASL can reject the registering process if there are more MSUs in the input count
queue (max_msu_input_queue) than the maximum of 32000 allowed. A value
greater than 32000 means the streams threshold was crossed. This returns the
registration error message above.

• However, if the application passes the CASL check, an additional check is made in the
driver to ensure the registration of the new process does not result in a value that
crosses the collective streams threshold, strthresh, divided by 2. This can be a
value in the range of 7000 through 32000. If this happens, the driver returns the
registration with the above error message.

2110 CA_ERR_INVALID_PUT_REQ
Indicates that the ss7_input_boundry is invalid for XUDT message processing.

The following CASL messages are associated with the custom application distribution process:

2111 CA_ERR_CUST_APPL_INQ
Indicates that the reverse application name lookup for SSN/OPC DIST_INQ operation is
disallowed.

2112 CA_ERR_NULL_APPL_LKUP
Indicates a NULL appl_name_table.

2113 CA_ERR_DIST_ID
Indicates an invalid custom_id.

2114 CA_ERR_CS1INAP_SVCKEY_CNT
Indicates an invalid svc_key_count.

2115 CA_ERR_CS1INAP_MAX_ENTRYS
Indicates that the maximum number of ssn, opc, or svc_key entries were exceeded.
CASL Error Messages C-31

CASL Errors
2116 CA_ERR_CS1INAP_SET FAILED
Indicates that the ssn, opc, or svc_key table update failed and the application was
deleted from the tables.

This error can occur when the internal limit (257) on the number of ServiceKeys supported
for a given SSN/OPC criteria is exceeded. This limit is imposed on the number of
ServiceKey entries from all applications that specify the same SSN/OPC criteria. The
number of required ServiceKeys/applications should be analyzed to determine if this
number can be reduced, or if the SSN/OPC criteria can be re-arranged to avoid the limit.

This error can also occur in the event of an internal inconsistency that can be recovered
without corruption of the internal driver tables. In this case, a system error is logged (not
SINAP log, UNIX system log - console message). This indicates a serious condition. In this
case report this error, along with all appropriate debug information, to the Ascend Customer
Assistance Center (CAC).

2117 CA_ERR_CS1INAP_NO_ENTRY
Indicates that no entry matching the criteria specified was found.

This error is specific to the DIST_INQ command. The error indicates that no application
with the specified criteria is currently running. This could mean that such an application
can be started if the DIST_INQ operation was used to screen if the given criteria were
already in use. Otherwise, this indicates that the specified criteria are not correct for any
running applications, and the correct criteria should be used.

2118 CA_ERR_CS1INAP_INCONSISTENT
Indicates that an inconsistency was found in an internal driver table concerning the
DIST_INQ parameter.

This error only occurs if an internal driver table inconsistency is discovered. At a minimum,
the SINAP node should be restarted, and possibly the system rebooted. This indicates a
serious condition. In this case report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC).
C-32 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
TCAP Errors
This section presents a numeric listing of TCAP error messages. TCAP error messages use the
abbreviations in the following chart.

TCAP error messages number in the range of 3000 through 3999. Some messages and error
numbers are common to all network variants (CCITT, TTC, NTT, China, and ANSI). Other
error messages are the same, but have slightly different error numbers, depending on the variant.

Abbreviation Meaning
ADDR address

COMP component(s)

CORR correlation

DEST destination

DIAL_ID dialogue identifier

GEN generate

GT greater than

ID identifier

IND indicator

INV invalid

ISM invoke state machine

LEN length

MSG message

ORIG origination

QWP query with permission

QWOP query without permission

REG register

REJ reject

SVC service

TEQ timer expiry queue

TOT total

TRANS transaction

TSL transaction sublayer

USF user-supplied function
CASL Error Messages C-33

TCAP Errors
This section lists the error messages in numeric order, grouping the error message for the ANSI
network variant and those for the CCITT/TTC/ NTT/China network variant.

3000 TC_ERR_INV_TCAP_REG_PARAMETERS
Indicates that the calling process attempted to register at the TCAP boundary with invalid
parameters.

3001 TC_ERR_NOT_REG_AT_TCAP_BOUNDARY
Indicates that the calling process is not registered to receive input at the TCAP boundary.
To correct the problem, the process must call ca_register() with the
register_req_t structure’s ss7_input_boundary field set to the value 3, which
indicates SS7_INPUT_BOUNDARY_TCAP. This error can be returned by the following
functions.

ca_alloc_tc(), ca_get_tc(), ca_put_tc(), ca_dealloc_tc(), or
ca_process_tc()

3002 (ANSI) TC_ERR_TRANS_ID_NOT_ALLOCATED
Indicates that the application process called ca_get_trans_id() and no transaction
ID was allocated for the trans_id field. Correct the problem by specifying a valid
value for the trans_id parameter and reissuing the call.

3002 (CCITT/TTC/NTT/China) TC_ERR_DIAL_ID_ALREADY_RELEASED
Indicates that the specified dialogue ID is no longer assigned to a dialogue; the ID has
already been released. This error can be returned by the ca_get_tc() or
ca_rel_dial_id() function. When this error is returned by ca_get_tc(), check to
make sure that the function’s pfunc parameter is 0 or that it specifies a pointer to a valid
user-supplied function.

When returned by ca_rel_dial_id(), this error does not indicate a problem. Instead,
it indicates that the specified dialogue ID has already been released and no further action is
necessary.

3003 (ANSI) TC_ERR_TCAP_OWN_TRANS_ID
Indicates that the application process called ca_get_tc() but the transaction is not
under application control. Correct the problem by issuing a TC_RESPONSE primitive to
release the transaction; no further action is required. (As defined by ANSI T1.114.5
Recommendations, a pre-arranged end causes messages to be discarded rather than being
sent to the SS7 network.)

3003 (CCITT/TTC/NTT/China) TC_ERR_TCAP_OWN_DIAL_ID
Indicates that the application process called ca_get_tc() but the dialogue is not under
application control. Correct the problem by issuing a TC_END primitive to release the
dialogue; no further action is required. (As defined by ITU-T (CCITT) Q.775
Recommendations, a pre-arranged end causes messages to be discarded rather than being
sent to the SS7 network.)
C-34 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
3004 (ANSI) TC_ERR_OUT_OF_TRANS_ID_A
Indicates that the calling process has exhausted its supply of transaction IDs. To correct the
problem, the process must reregister with the SINAP/SS7 system, increasing the value of
the register_req_t structure’s max_trans_id field. This error, which can be
returned by the ca_get_tc() or ca_get_trans_id() function, causes the
SINAP/SS7 system to deallocate the T_Block structure; the function call is not executed.

N O T E
The primitives TC_CONV_W_PERM and
TC_CONV_WO_PERM, TC_RESPONSE, TC_P_ABORT, and
TC_U_ABORT do not return this error.

3004 (CCITT/TTC/NTT/China) TC_ERR_OUT_OF_DIAL_ID
Indicates that the calling process has exhausted its supply of dialogue IDs. To correct the
problem, the process must reregister with the SINAP/SS7 system, increasing the value of
the register_req_t structure’s max_trans_id field. This error, which can be
returned by the ca_get_tc() or ca_get_dial_id() function, causes the
SINAP/SS7 system to deallocate the T_Block structure; the function call is not executed.

N O T E
The primitives TC_CONTINUE, TC_END, TC_P_ABORT, and
TC_U_ABORT do not return this error.

3005 (ANSI) TC_ERR_INV_TRANS_ID
Indicates that the application process called ca_put_tc() with an invalid value
specified for the t_block_t structure’s trans_id field. Correct the problem by
reissuing the ca_put_tc() function call and specifying for trans_id one of the
following values: the transaction ID returned by a call to ca_get_dial_id() or the
transaction ID from the t_block_t structure returned by a ca_get_tc() function call.

3005 (CCITT/TTC/NTT/China) TC_ERR_INV_DIAL_ID
Indicates that the application process called ca_put_tc() with an invalid value
specified for the t_block_t structure’s dialogue_id field. Correct the problem by
reissuing the ca_put_tc() function call and specifying for dialogue_id one of the
following values: the dialogue ID returned by a call to ca_get_dial_id() or the
dialogue ID from the t_block_t structure returned by a ca_get_tc() function call.
CASL Error Messages C-35

TCAP Errors
3006 (ANSI) TC_ERR_TRANS_ID_NOT_ASSIGNED
Indicates that the application process called ca_get_tc() or ca_put_tc() without
first calling ca_get_trans_id(). Before calling either of these functions, the process
must call ca_get_trans_id() to obtain a transaction ID for the transaction.

3006 (CCITT/TTC/NTT/China) TC_ERR_DIAL_ID_NOT_ASSIGNED
Indicates that the application process called ca_get_tc() or ca_put_tc() without
first calling ca_get_trans_id(). Before calling either of these functions, the process
must call ca_get_dial_id() to obtain a dialogue ID for the dialogue.

3007 TC_ERR_OUT_OF_ISM_ENTRIES
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

The following error messages with numbers 3008 through 3033 are specific to the ANSI
network variant.

3008 (ANSI) TC_ERR_T_BLOCK_CAPACITY_EXHAUSTED_A
Indicates that the calling process has exhausted its supply of t_block_t (T_Block)
structures. To correct the problem, the process must reregister with the SINAP/SS7 system,
increasing the value of the register_req_t structure’s tc_count field. This error,
which can be returned by the ca_alloc_tc() or ca_get_tc() function, causes the
SINAP/SS7 system to deallocate the T_Block structure; the function call is not executed.
C-36 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
3009 (ANSI) TC_ERR_INV_T_BLOCK_INDEX_A
Indicates that the application process called ca_dealloc_tc() or ca_put_tc()
with an invalid value specified for the function’s tb_index parameter, which specifies an
index for one of the application’s T_Blocks. This error indicates that the specified index
is for a T_Block that is not part of the array of T_Blocks that the SINAP/SS7 system
created for the application. Correct the problem by reissuing the call, specifying a valid
value for the function’s tb_index parameter. Valid values are in the range 0 to the
application’s maximum T_Block index minus 1.

N O T E S
1. The number of T_Blocks that the SINAP/SS7 system

allocates for the application’s T_Block array is defined
by the tc_count field of the register_req_t
structure, which the application initializes prior to calling
the ca_register() function.

2. Each T_Block index is relative to the global variable
PTB, which is defined in the SINAP/SS7 ca_glob.h
include file.

3010 (ANSI) TC_ERR_T_BLOCK_NOT_ALLOCATED_A
Indicates that the application process called ca_dealloc_tc() or ca_put_tc()
without first calling ca_alloc_tc(). Before calling either of these functions, the
application must call ca_alloc_tc() to allocate a T_Block.

3011 (ANSI) TC_ERR_TCAP_OWN_T_BLOCK_A
Indicates that the application process is attempting to manipulate a T_Block that is
currently under TCAP’s control. This error can be returned by the ca_put_tc() or
ca_dealloc_tc() function. If this error is returned by ca_put_tc() and the
application must release the T_Block, the application should issue a TC_U_CANCEL
primitive, specifying the appropriate transaction and invoke IDs.

When returned by ca_dealloc_tc(), this error does not indicate a problem. Instead, it
indicates that the specified T_Block is already under TCAP control; therefore, no further
action is required.

3012 (ANSI) TC_ERR_INV_PRIMITIVE_CODE_A
Indicates that the application process called ca_put_tc() with an invalid value
specified for the t_block_t structure’s primitive_code field. See the description of
ca_put_tc() in Chapter 6 for a list of valid values, which are defined in the SINAP/SS7
system’s tblock.h include file. Correct the problem by reissuing the call, specifying a
valid value for primitive_code.

3013 (ANSI) TC_ERR_INV_PRIORITY
Indicates that the application process called ca_put_tc() with an invalid value
specified for the t_block_t structure’s priority field. See the description of
CASL Error Messages C-37

TCAP Errors
ca_put_tc() in Chapter 6 for a list of valid values.

3014 (ANSI) TC_ERR_INV_QUALITY_OF_SVC_A
Indicates that the application process called ca_put_tc() with an invalid value
specified for the qlty_of_svc field of the tc_thp_t structure. (This field specifies the
SCCP protocol class, 0 or 1, both of which support connectionless service only.) Correct
the problem by reissuing the call, specifying one of the following values for
qlty_of_svc.

0 – protocol class 0 (unsequenced), no return on error
1 – protocol class 1 (sequenced), no return on error
0x80 – protocol class 0 (unsequenced), return on error
0x81 – protocol class 1 (sequenced), return on error

3015 (ANSI) TC_ERR_INV_ORIG_TOT_ADDR_LEN_A
Indicates that the application process called ca_put_tc() with an SCCP calling-party
address that is too long. (The SCCP calling-party address is defined in the orig_addr
field of the tc_thp_t structure.) Correct the problem by reissuing the call, making sure
that orig_addr defines an address of the correct length.

N O T E
The variable MAX_ADDR_LEN specifies the maximum address
length. It is defined in the SINAP/SS7 tblock.h include file.

3016 (ANSI) TC_ERR_INV_DEST_TOT_ADDR_LEN_A
Indicates that the application process called ca_put_tc() with an SCCP called-party (or
destination) address that is too long. (The SCCP called-party address is defined in the
tc_thp_t structure.) Correct the problem by reissuing the call, making sure that
dest_addr defines an address of the correct length.

N O T E
The variable MAX_ADDR_LEN specifies the maximum address
length, which is defined in the SINAP/SS7 tblock.h include file.
C-38 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
3017 (ANSI) TC_ERR_INV_TRANS_END_TYPE
In an attempt to end the transaction, the application process called ca_put_tc() with an
invalid value specified for the tc_thp_t structure’s trans_end_type field. Valid
values are 1 (pre-arranged end) or 2 (basic end). Correct the problem by reissuing the
ca_put_tc() function call, specifying a valid value for trans_end_type.

3018 (ANSI) TC_ERR_INV_CLASS_OF_SVC_A
Indicates that the application process called ca_put_tc() with an invalid value
specified for the class_of_svc field of the of the tc_thp_t structure.

3019 (ANSI) TC_ERR_INV_TIMER_VALUE_A
Indicates that the application process called ca_put_tc()with a value of 0 specified for
the t_chp_t structure’s timer_value field. Correct the problem by reissuing the call,
specifying a value other than 0 for the timer_value field.

3020 (ANSI) TC_ERR_INV_INVOKE_ID
Indicates that the application process called ca_put_tc() with an invalid value
specified for the invoke_id field of the of the tc_thp_t structure. Correct the problem
by specifying a valid value for this field.

3021 (ANSI) TC_ERR_INV_CORR_ID
Indicates that the application process called ca_put_tc() with an invalid correlation ID
specified for the corr_id of the tc_thp_t structure. Correct the problem by specifying
a valid value for this field.

3022 (ANSI) TC_ERR_DUPLICATE_INVOKE_ID_A
Indicates that the application process called ca_put_tc() with an invoke ID that is
currently being used by another dialogue/transaction. Each dialogue/transaction requires a
unique invoke ID. Correct the problem by reissuing the call, specifying a unique invoke ID
for the tc_chp_t structure’s invoke_id field.

3023 (ANSI) TC_ERR_ISM_NOT_IDLE_A
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

3024 (ANSI) TC_ERR_COMP_LEN_GT_DATA_SIZE_A
Indicates that the application process issued a call with an invalid component length for the
global title data size. Global title formats are described in “Routing Capabilities” in Chapter
3.
CASL Error Messages C-39

TCAP Errors
3025 (ANSI) TC_ERR_TOT_LEN_GT_MSU_SIZE_A
Indicates that the application process issued a call with an invalid MSU size specified for
the global title. Global title formats are described in “Routing Capabilities” in Chapter 3.

3026 (ANSI) TC_ERR_GEN_REJ_COMP_A
Indicates a general error in the specification of TCAP components. Review specifications
and correct any that are not valid.

3027 (ANSI) TC_ERR_LEN_IND_VALUE_ZERO_A
Indicates that the application process issued a call to ca_put_tc() with the indicator
value length set to zero, which indicates that there is no information defined. Correct the
problem by reissuing the call, specifying valid information for the data field.

3028 (ANSI) TC_ERR_UNI_MSG_NO_COMP_A
The application process attempted to send information to another application by calling
ca_put_tc() with the t_block_t structure’s primitive_code field set to
TC_UNI. However, the tc_chp_t structure’s data field has a length of 0, which
indicates that there is no information defined. Correct the problem by reissuing the call,
specifying valid information for the data field.

3029 (ANSI) TC_ERR_NO_MSU_BUILT_A
Indicates a TCAP application process attempted to process MSUs, but there are no MSUs
built.

3030 (ANSI) TC_ERR_INV_TSL_STATE_A
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

3031 (ANSI) TC_ERR_INV_TSL_EVENT_A
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

3032 (ANSI) TC_ERR_INV_ISM_STATE_A
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus CAC. This error, which can be returned by the ca_get_tc()
function, causes an immediate return; the function call is not executed.
C-40 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
3033 (ANSI) TC_ERR_INV_ISM_EVENT_A
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() or ca_put_tc() function, causes an immediate return;
the function call is not executed.

The following error messages with numbers 3008 through 3033 are specific to the CCITT, TTC,
NTT, and China network variants.

N O T E
If you are running the CCITT network variant, the error
messages contain an additional _C suffix at the end of the
message, for example, TC_ERR_ISM_NOT_IDLE_C.

3008 (CCITT/TTC/NTT/China) TC_ERR_TRANS_ID_ALREADY_RELEASED
Indicates that the specified transaction ID is no longer assigned to a transaction; the ID has
already been released. This error can be returned by the ca_get_tc() or
ca_rel_dial_id() function. When this error is returned by ca_get_tc(), check to
make sure that the function’s pfunc parameter is 0 or that it specifies a pointer to a valid
user-supplied function.

When returned by ca_rel_trans_id(), this error does not indicate a problem.
Instead, it indicates that the specified transaction ID has already been released; therefore,
no further action is necessary.

3009 (CCITT/TTC/NTT/China) TC_ERR_OUT_OF_TRANS_ID
Indicates that a user-supplied function has exhausted its supply of user IDs. This error can
be returned by the ca_get_tc() function.

3010 (CCITT/TTC/NTT/China) TC_ERR_T_BLOCK_CAPACITY_EXHAUSTED
Indicates that the calling process has exhausted its supply of t_block_t (T_Block)
structures. To correct the problem, the process must reregister with the SINAP/SS7 system,
increasing the value of the register_req_t structure’s tc_count field. This error,
which can be returned by the ca_alloc_tc() or ca_get_tc() function, causes the
SINAP/SS7 system to deallocate the T_Block structure; the function call is not executed.
CASL Error Messages C-41

TCAP Errors
3011 (CCITT/TTC/NTT/China) TC_ERR_INV_T_BLOCK_INDEX
Indicates that the application process called ca_dealloc_tc() or ca_put_tc()
with an invalid value specified for the function’s tb_index parameter, which specifies an
index for one of the application’s T_Blocks. This error indicates that the specified index
is for a T_Block that is not part of the array of T_Blocks that the SINAP/SS7 system
created for the application. Correct the problem by reissuing the call, specifying a valid
value for the function’s tb_index parameter. Valid values are in the range 0 to the
application’s maximum T_Block index minus 1.

N O T E S
1. The number of T_Blocks that the SINAP/SS7 system

allocates for the application’s T_Block array is defined
by the tc_count field of the register_req_t
structure, which the application initializes prior to calling
the ca_register() function.

2. Each T_Block index is relative to the global variable
PTB, which is defined in the SINAP/SS7 ca_glob.h
include file.

3012 (CCITT/TTC/NTT/China) TC_ERR_T_BLOCK_NOT_ALLOCATED
Indicates that the application process called ca_dealloc_tc() or ca_put_tc()
without first calling ca_alloc_tc(). Before calling either of these functions, the
application must call ca_alloc_tc() to allocate a T_Block.

3013 (CCITT/TTC/NTT/China) TC_ERR_TCAP_OWN_T_BLOCK
Indicates that the application process is attempting to manipulate a T_Block that is
currently under TCAP’s control. This error can be returned by the ca_put_tc() or
ca_dealloc_tc() function. If this error is returned by ca_put_tc() and the
application must release the T_Block, the application should issue a TC_U_CANCEL
primitive, specifying the appropriate transaction and invoke IDs.

When returned by ca_dealloc_tc(), this error does not indicate a problem. Instead, it
indicates that the specified T_Block is already under TCAP control; therefore, no further
action is required.

3014 (CCITT/TTC/NTT/China) TC_ERR_INV_PRIMITIVE_CODE
Indicates that the application process called ca_put_tc() with an invalid value
specified for the t_block_t structure’s primitive_code field. See the description of
ca_put_tc() in Chapter 6 for a list of valid values, which are defined in the SINAP/SS7
system’s tblock.h include file. Correct the problem by reissuing the call, specifying a
valid value for primitive_code.

3015 (CCITT/TTC/NTT/China) TC_ERR_INV_QUALITY_OF_SVC
Indicates that the application process called ca_put_tc() with an invalid value
specified for the qlty_of_svc field of the of the tc_dhp_t structure. (This field
C-42 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
specifies the SCCP protocol class, 0 or 1, both of which support connectionless service
only.) Correct the problem by reissuing the call, specifying one of the following values for
qlty_of_svc.

0 – protocol class 0 (unsequenced), no return on error
1 – protocol class 1 (sequenced), no return on error
0x80 – protocol class 0 (unsequenced), return on error
0x81 – protocol class 1 (sequenced), return on error

3016 (CCITT/TTC/NTT/China) TC_ERR_INV_ORIG_TOT_ADDR_LEN
Indicates that the application process called ca_put_tc() with an SCCP calling-party
address that is too long. (The SCCP calling-party address is defined in the orig_addr
field of the tc_dhp_t structure.) Correct the problem by reissuing the call, making sure
that orig_addr defines an address of the correct length.

N O T E
The variable MAX_ADDR_LEN specifies the maximum address
length. It is defined in the SINAP/SS7 system’s tblock.h
include file.

3017 (CCITT/TTC/NTT/China) TC_ERR_INV_DEST_TOT_ADDR_LEN
Indicates that the application process called ca_put_tc() with an SCCP called-party (or
destination) address that is too long. (The SCCP called-party address is defined in the
dest_addr field of the tc_dhp_t structure.) Correct the problem by reissuing the call,
making sure that dest_addr defines an address of the correct length.

N O T E
The variable MAX_ADDR_LEN specifies the maximum address
length, which is defined in the SINAP/SS7 tblock.h include file.

3018 (CCITT/TTC/NTT/China) TC_ERR_INV_DIAL_END_TYPE
In an attempt to end the dialogue, the application process called ca_put_tc() with an
invalid value specified for the tc_dhp_t structure’s dialogue_end_type field. Valid
values are 1 (pre-arranged end) or 2 (basic end). Correct the problem by reissuing the
ca_put_tc() function call, specifying a valid value for dialogue_end_type.
CASL Error Messages C-43

TCAP Errors
3019 (CCITT/TTC/NTT/China) TC_ERR_INV_CLASS_OF_SVC
Indicates that the application process called ca_put_tc() with an invalid value
specified for the class_of_svc field of the of the tc_thp_t structure.

3020 (CCITT/TTC/NTT/China) TC_ERR_INV_TIMER_VALUE
Indicates that the application process called ca_put_tc()with a value of 0 specified for
the t_chp_t structure’s timer_value field. Correct the problem by reissuing the call,
specifying a value other than 0 for the timer_value field.

3021 (CCITT/TTC/NTT/China) TC_ERR_DUPLICATE_INVOKE_ID
Indicates that the application process called ca_put_tc() with an invoke ID that is
currently being used by another dialogue/transaction. Each dialogue/transaction requires a
unique invoke ID. Correct the problem by reissuing the call, specifying a unique invoke ID
for the tc_chp_t structure’s invoke_id field.

3022 (CCITT/TTC/NTT/China) TC_ERR_ISM_NOT_IDLE
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

3023 (CCITT/TTC/NTT/China) TC_ERR_COMP_LEN_GT_DATA_SIZE
Indicates that the application process issued a call with an invalid component length for the
global title data size. Global title formats are described in “Routing Capabilities” in Chapter
3.

3024 (CCITT/TTC/NTT/China) TC_ERR_TOT_LEN_GT_MSU_SIZE
Indicates that the application process issued a call with an invalid MSU size specified for
the global title. Global title formats are described in “Routing Capabilities” in Chapter 3.

3025 (CCITT/TTC/NTT/China) TC_ERR_GEN_REJ_COMP
Indicates a general error in the specification of TCAP components. Review specifications
and correct any that are not valid.

3026 (CCITT/TTC/NTT/China) TC_ERR_LEN_IND_VALUE_ZERO
Indicates that the application process issued a call to ca_put_tc() with the indicator
value length set to zero, which indicates that there is no information defined. Correct the
problem by reissuing the call, specifying valid information for the data field.
C-44 SINAP/SS7 Programmer’s Guide R8052-17

TCAP Errors
3027 (CCITT/CTTC/NTT/China) TC_ERR_UNI_MSG_NO_COMP
The application process attempted to send information to another application by calling
ca_put_tc() with the t_block_t structure’s primitive_code field set to
TC_UNI. However, the tc_chp_t structure’s data field has a length of 0, which
indicates that there is no information defined. Correct the problem by reissuing the call,
specifying valid information for the data field.

3028 (CCITT/TTC/NTT/China) TC_ERR_NO_MSU_BUILT
Indicates a TCAP application process attempted to process MSUs, but there are no MSUs
built.

3029 (CCITT/TTC/NTT/China) TC_ERR_INV_TSL_STATE
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

3030 (CCITT/TTC/NTT/China) TC_ERR_INV_TSL_EVENT
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() function, causes an immediate return; the function call is
not executed.

3031 (CCITT/TTC/NTT/China) TC_ERR_INV_ISM_STATE
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus CAC. This error, which can be returned by the ca_get_tc()
function, causes an immediate return; the function call is not executed.

3032 (CCITT/TTC/NTT/China) TC_ERR_INV_ISM_EVENT
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus Customer Assistance Center (CAC). This error, which can be
returned by the ca_get_tc() or ca_put_tc() function, causes an immediate return;
the function call is not executed.

3033 (CCITT/TTC/NTT/China) TC_ERR_DUPLICATE_BEGIN
Indicates that the application process is attempting to send a TC_BEGIN primitive;
however, the t_block_t structure’s trans_id field is not set to the value -1, which is
necessary for sending that primitive type. Correct the problem by reissuing the call,
specifying the value -1 for the t_block_t structure’s trans_id field. This error can
be returned by the ca_put_tc() function.

Error messages with numbers 3034 through 3042 are for all network variants.

3034 TC_ERR_OUT_OF_TC_USER_ID
Indicates that a user-supplied function has exhausted its supply of user IDs. This error can
be returned by the ca_get_tc() function.
CASL Error Messages C-45

SCCP Errors
3035 TC_ERR_ISM_NOT_ALLOCATED
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus CAC. This error, which can be returned by the ca_put_tc()
function, causes an immediate return; the function call is not executed.

3036 TC_ERR_ISM_TEQ_OVERFLOW
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus CAC. This error, which can be returned by the ca_get_tc()
function, causes an immediate return; the function call is not executed.

3037 TC_ERR_TSL_TEQ_OVERFLOW
Indicates a serious condition. Report this error, along with all appropriate debug
information, to the Stratus CAC. This error, which can be returned by the ca_get_tc()
function, causes an immediate return; the function call is not executed.

3038 TC_ERR_PTR_TO_USF_NOT_SET
Indicates that the application process called ca_get_tc() without specifying a value for
the function’s pfunc parameter. Correct the problem by reissuing the function call,
specifying an appropriate value for the pfunc parameter.

3039 TC_ERR_INV_SEQ_CONTROL_VALUE
Indicates an invalid sequence control value in the application process.

3040 TC_ERR_INV_PRIORITY_VALUE
Indicates that the application process called ca_put_tc() with an invalid value
specified for the t_block_t structure’s priority field. See the description of
ca_put_tc() in Chapter 6 for a list of valid values.

3041 TC_ERR_INV_LEN_OF_CONTENTS
Indicates the set of components exceeds the limits of the XUDT data parameter.

3042 TC_ERR_INV_EXTND_DATA_PTR
Indicates that the tblock has an invalid pointer to the extended data buffer.

SCCP Errors
This section presents a numeric listing of SCCP errors and their meanings. SCCP errors are
returned only in response to a ca_put_tc() function call. When an SCCP error occurs, the
SINAP/SS7 system does not execute the ca_put_tc() function call and it releases the
T_Block. However, since the invoke state machine (ISM) has already been started, it must
time out. Timeout responses are returned to ca_get_tc().

SCCP error numbers are in the range of 4000 through 4999.

4000 SC_ERR_NOTRANS_NATURE
Indicates that the application process requires global title translation.
C-46 SINAP/SS7 Programmer’s Guide R8052-17

SCCP Errors
4001 SC_ERR_NOTRANS_SPECIFIC
Indicates that a specific application process requires global title translation.

4002 SC_ERR_SSN_CONGESTION
Indicates that the application process called ca_put_tc() but was unable to complete
the call due to subsystem number (SSN) congestion.

4003 SC_ERR_SSN_FAILURE
Indicates a subsystem failure occurred.

4004 SC_ERR_SSN_UNEQUIPPED
Indicates the application process called ca_put_tc(). However, the specified remote
SSN was not found or is unequipped.

4005 SC_ERR_PC_FAILURE
Indicates a network failure.

4006 SC_ERR_PC_CONGESTION
Indicates network congestion.

4007 SC_ERR_UNQUALIFIED
Indicates an unqualified error in the system.

4008 SC_ERR_INV_CTRL
Indicates that the application process called ca_put_tc() with an invalid SCCP control
value. Correct the problem by having the application process reissue the call, specifying a
valid SCCP control value.

The following messages indicate errors in the SCCP header format.

4009 SC_INVALID_CLASS
Indicates that the application process called ca_put_tc() with an invalid operating
class, which is defined in the tc_chp_t structure’s oper_class field. Correct the
problem by reissuing the call, specifying a valid operating class.

4010 SC_INVALID_RETURN
Indicates that the application process called ca_put_tc() with an invalid SCCP return
type, which is defined in the pa_report_cause field of the tc_dhp_t structure
(CCITT/TTC/NTT/China) or the tc_thp_t structure (ANSI). Correct the problem by
reissuing the call, specifying a valid SCCP return type.
CASL Error Messages C-47

SCCP Errors
4011 SC_INVALID_OFFSETS
Indicates that the application process called ca_put_tc() with an invalid offset
specified for the calling-party and/or called-party address. Correct the address offset and
reissue the call.

4012 SC_INVALID_NO_CALD_ADDR_PN
Indicates that the application process called ca_put_tc() with an invalid called-party
address, which is defined in the dest_addr field of the tc_dhp_t structure
(CCITT/TTC/NTT/China) or the tc_thp_t structure (ANSI). Correct the problem by
reissuing the call, specifying a valid called-party address.

4013 SC_INVALID_MESSAGE_TYPE
Indicates that the application process called ca_put_tc() with an invalid message type,
which is defined in the tc_chp_t structure’s comp_type field. Correct the problem by
reissuing the call, specifying a valid message type.

4014 SC_INVALID_ADDRESS_LENGTH
Indicates that the application process called ca_put_tc() with a calling-party or
called-party address whose length exceeds the maximum allowed. (These addresses are
defined in the orig_addr and dest_addr fields, respectively, of the tc_dhp_t
structure (CCITT/TTC/NTT/China) or the tc_thp_t structure (ANSI).) Correct the
problem by reissuing the call, specifying a valid address of acceptable length.

4015 SC_INVALID_ADDRESS
Indicates that the application process called ca_put_tc() with an invalid calling-party
and/or called-party address. (These addresses are defined in the orig_addr and
dest_addr fields, respectively, of the tc_dhp_t structure (CCITT/TTC/NTT/China)
or the tc_thp_t structure (ANSI).) Either the address format is incorrect or the address
itself is invalid. Correct the problem by reissuing the call, specifying a valid address in the
correct format.

4016 SC_INVALID_SSN
Indicates that the application process called ca_put_tc() with an invalid subsystem
number. Correct the problem by reissuing the call, specifying a valid subsystem number.

The following message tells CASL to discard an outbound message:

4017 SC_ERR_DISCARD
Indicates that the application process called ca_put_tc() to send an outbound MSU;
however, the SCCP was unable to route the MSU and therefore discarded it.

The following messages indicate SCCP connection-oriented control (SCOC) class 2 and class
3 function errors.

4025 SC_ERR_SID_NO_CID
Indicates that no connection ID is available for the calling process.
C-48 SINAP/SS7 Programmer’s Guide R8052-17

SCCP Errors
4026 SC_ERR_SID_TOO_MANY
Indicates that the calling application or subsystem number is using too many local reference
memory (LRM) segments.

4027 SC_ERR_SID_CID_NG
Indicates that the specified connection ID is out of range for the calling process.

4028 SC_ERR_SID_NOT_IDLE
Indicates that the application process called ca_rel_sccpid with the local reference
memory (LRM) not in the idle state.

4029 SC_ERR_SID_NO_LRN
Indicates that no source local reference number (LRN) is available for the calling process.

4030 SC_ERR_CID_REPLY
Indicates that the SINAP/SS7 system cannot send the connection ID reply to the requesting
process.

4031 SC_ERR_CON_REQ
Indicates that the SINAP/SS7 system cannot send N_CONNECT_REQ to the calling
process.

4032 SC_ERR_CID_HUNT
Indicates that the SINAP/SS7 system cannot locate the LRM or LRN for the calling
process.

4033 SC_ERR_CON_CON
Indicates that the SINAP/SS7 system cannot send N_CONNECT_CON to the calling
process.

4034 SC_ERR_CON_REF
Indicates that the SINAP/SS7 system cannot send N_DISCONNECT_IND to the calling
process.

4035 SC_ERR_RES_REQ
Indicates that the SINAP/SS7 system cannot send N_RESET_REQ to the calling process.

4036 SC_ERR_INV_MSU
Indicates that SCOC received an invalid MSU type and cannot process it..

4037 SC_ERR_INV_MSU_CTRL
Indicates that the SCOC received an invalid sccp_ctrl structure for the MSU.

4038 SC_ERR_INV_MSU_NI
Indicates that the SCOC received an invalid sccp_ctrl structure for the MSU.

4039 SC_ERR_CON_REQ_INV
Indicates that the application process sent an invalid connection request data format.
CASL Error Messages C-49

SCCP Errors
4040 SC_ERR_CON_REQ_NG
Indicates that the SCOC cannot sent the CON_REQ structure to the SINAP/SS7 system.

4041 SC_ERR_INV_MSU_NI
Indicates that the SCOC received an invalid CON_IND structure.

4042 SC_ERR_INV_PRIM
Indicates that the SCOC received an unimplemented primitive.

4043 SC_ERR_CON_CON_INV
Indicates that the SCOC received an invalid CON_CON function call.

4044 SC_ERR_DIS_IND_INV
Indicates that the SCOC received an invalid DIS_CON structure.

4045 SC_ERR_RES_IND_INV
Indicates that the SCOC received an invalid RES_IND structure.

4046 SC_ERR_RES_CON_INV
Indicates that the SCOC received an invalid RES_CON structure.

4047 SC_ERR_CON_CON_NG
Indicates that the SCOC cannot send the RES_IND structure to the SINAP/SS7 system.

4048 SC_ERR_CID_NO_SSN
Indicates that no SSN was specified in the get_connid field.

4049 SC_ERR_CON_CON_BAD
Indicates that the CON_CON structure contains invalid data.

4050 SC_ERR_DIS_IND_NG
Indicates that the SCOC cannot send the N_DISCONNECT_IND field to the SINAP/SS7
system.

4051 SC_ERR_DIS_IND_NG1
Indicates that the SCOC cannot send the N_DISCONNECT_IND field to the user.

4052 SC_ERR_RES_REQ_NG
Indicates that the SCOC cannot send the N_RESET_REQ structure to the SINAP/SS7
system.

4053 SC_ERR_RES_REQ_BAD
Indicates that the RES_REQ structure contains invalid data.

4054 SC_ERR_RES_CON_NG
Indicates that the SCOC cannot send the RES_CON structure to the SINAP/SS7 system.
C-50 SINAP/SS7 Programmer’s Guide R8052-17

MTP Errors
4055 SC_ERR_RES_CON_BAD
Indicates that the RES_CON structure contains invalid data.

4056 SC_ERR_RES_CON_NG1
Indicates that the SCOC cannot send the RES_CON structure to the user.

4057 SC_ERR_REL_NG
Indicates that the SCOC cannot send the N_DISCONNECT field to the SINAP/SS7 system.

4058 SC_ERR_REL_BAD
Indicates that the N_DISCONNECT_REQ field contains invalid data.

4059 SC_ERR_CID_SSN_NG
Indicates that no SSN will be available when the conn_id is released..

4060 SC_ERR_IT_BAD
Indicates that the ca_put_tc function call received an IT with an invalid local reference
number (LRN).

4061 SC_ERR_IT_SEND_NG
Indicates that the ca_put_tc function call cannot send an IT MSU.

4062 SC_ERR_RSEQNO_NG
Indicates that the ca_put_tc function call received a sequence number that was not
valid.

4063 SC_ERR_RLSD_SEND_NG
Indicates that the ca_put_tc function call cannot send the RLSD MSU.

4064 SC_ERR_REF_NG
Indicates that the ca_put_tc function call cannot send the CON_REF structure to the
SINAP/SS7 system.

MTP Errors
This section numerically lists and describes MTP error messages. These messages are returned
only in response to a ca_put_tc() function call. MTP error messages number in the range
of 5000 to 5999.

5002 L3_ERR_HOLDQUE
The application process called ca_put_tc() but the MSU (M_Block) is being held due
to rerouting.

5003 L3_ERR_NO_ROUTING_FOR_DPC
The application process called ca_put_tc() but the SINAP/SS7 system was unable to
establish a route to the specified DPC. Check that your SINAP/SS7 configuration provides
access to this DPC, make any necessary corrections to your configuration, and reissue the
CASL Error Messages C-51

Built-In Test Environment (BITE) Errors
call.

5004 L3_ERR_INACCESSIBLE_DPC
The application process called ca_put_tc() but the route(s) to the specified DPC are
not currently accessible. You can reissue the call.

5007 L3_ERR_NO_HOLD_MEMORY
The application process called ca_put_tc() but no memory was available to hold the
MSU during rerouting. Redefine memory allocations and reissue the call.

5012 L3_DR_DISCARDED_OFFLINE
The application process called ca_put_tc() but could not process the MSUs because
the SINAP/SS7 system was offline.

5013 L3_DR_DISCARDED_TXQFULL
The application process called ca_put_tc() but could not process the MSU because the
TXQ was full.

5014 L3_ERR_DT_NOT_PROVISIONED
The application process called ca_put_tc() but could not process the MSU because the
discrimination table was not provisioned.

5015 L3_ERR_DISCARD
The application process called ca_put_tc() but the link is congested and the MSU can
not be sent; therefore, it is discarded.

Built-In Test Environment (BITE) Errors
BITE errors number in the range of 6000 through 6999. There are currently no CASL errors
associated with the BITE system.

Application Errors
Application errors number in the range of 7000 through 7999. There are currently no CASL
errors associated with the applications themselves.
C-52 SINAP/SS7 Programmer’s Guide R8052-17

Index
IndexIndex-

#APPL command, A-24
#BI,MD command, A-24
#DIST,x command, A-24
#IRT command, A-25
#KEY command, A-25
#L3,CLS, A-25
#lc command, A-25
#LCD command, A-25
#ORT,CLS command, A-27
#ORT,LS command, A-27
#sc command, A-27
#UCOMM command, A-29
$SINAP_HOME/Bin/sinap_env, B-1
/etc/config_sinap, B-1
1996 ITU-T, 3-116
8-bit SLS processing, A-27

A
abatement table, 3-100
acn_t structure, 2-8

in ca_get_tc() function, 6-137
initializing fields, 3-54
processing an incoming MSU, 3-56

address indicator formats, 3-69
adjunct processor (AP), 1-1
Advanced Intelligent Network (AIN), 1-1
ahp field, 3-54
alarms, 4-3

default file, 4-4
determining subsystem reporting, 4-4
evaluating, 4-3–4-4
logging, 4-5
MTP, 4-5
nondata primitives, 4-5
notification, 4-4
reporting, 3-33
system log file messages, 4-5
user-supplied, 4-5
See also events

alternate SCCP routing, 3-74
Alternative Destination Point Code, 3-77
ANSI network variant

CASL functions supported, 3-27
configuration requirements and limitations

table, 3-15–3-28
handling SNM messages, 3-117

implementing the TCCO feature, 3-126
load control, 3-95
MTP restart process, 3-117–3-119

CCITT and China, 3-119–3-121
point codes, 3-16
primitives supported, 3-28
structures used, 3-26
time-controlled diversion, 3-127

ansi_sccp_xuser_t structure
in XUDT and XUDTS messages, 3-115

ansi_variant.h include file, 2-9
AP (adjunct processor), 1-1
APDUs. See application protocol data units
application programming interface (API), 1-1

overview, 2-1–2-3
application protocol data units (APDUs), 3-38–3-40

encoding/decoding functions, 3-51
application service elements (ASEs), 3-38
application-context, 3-49

dialogue, 3-49
names, 3-49–3-50

applications
calling, 3-53
CASL error messages, C-52
client, 3-1, 3-9

registering with SINAP/MultiStack, 3-2
command processing, 3-31
considerations for different types, 3-14
debugging, 4-1–4-3, 4-7

functions, 3-33
definition, 6-251
design and development, 3-1, 3-2
enabling/disabling the intercept mode, 3-32
error handling, 3-175–3-177
going into service, 3-29
going out of service, 3-33
health-check operations, 3-33
load control, 3-165–3-167
maximum number that can be registered, 3-2
message processing, 2-28–2-29
processing, developing, 3-28–3-29
registering with SINAP/MultiStack, 3-63

in enhanced message
distribution, 3-82–3-84

in MTP applications, 3-63
in SCCP applications, 3-58
Index 1

Index
in TCAP applications, 3-42
registration limitations, 3-20
sample. See sample application
sending debug commands to, 4-25
SINAP/MultiStack enhancements

implementation, 3-66
testing, 4-1–4-3, 4-7

arch.h include file, 2-9, 6-2–6-4
Archive

libCASL.a, 3-8
libISSL.a, 3-8

archive libraries, 3-2, 3-9
ASEs (application service elements), 3-38
association, 3-38

B
Backup Application command, A-1
Backup Node command, A-1
BACKUP-APPL command, A-1
BACKUP-NODE command, A-1
basic SINAP/MultiStack environment

variables, B-2
batch buffer, output, changing size, 3-13
bi_ctrl_t structure

in ca_get_msu() function, 6-37
in ca_put_msu() function, 6-69

bidb command, A-23
bidb command (BITE Database Builder), 4-9
bidb.h include file, 2-9
bila command, A-23
bila command (BITE Log Analysis), 4-12
BITE control structure. See bi_ctrl_t structure
BITE monitor, A-12
bitemon.h include file, 2-9

in BITE applications, 3-15
blkhdr.h include file, 2-9

in IPC message applications, 3-15
blocking reads, 2-29
Built-In Test (BITE) Subsystem, 4-6

bitemon.h include file, 3-15
CASL error messages, C-52
control structure, 6-37
Database Builder program, 4-6, 4-8–4-10
displaying and analyzing BITE log, 4-11–4-12
functions, 6-276

See also entries for individual functions:
ca_dbg_display()
ca_dbg_dump()

ca_disable_intc()
ca_disable_mon()
ca_enable_intc()
ca_enable_mon()

include files, 3-15
Log Analysis commands, 4-12

bidb, 4-9
bila, 4-12
DISPLAY, 4-16–4-18
FIND, 4-19
QUIT, 4-22
SELECT, 4-20
SUMMARY, 4-21

Log Analysis program, 4-11–4-22
commands, A-23–A-24

measure.h include file, 3-15
MML commands

DISPLAY-SCEN, 4-24
START-DBG, 4-25
START-MON, 4-26–4-28
START-SCEN, 4-29
STOP-SCEN, 4-31

monitor facility, 4-7, 4-11
monitor process, auto-starting, 3-32
processes, list of, 4-2
scenario execution, 4-7

feature, 4-6
BYPASS_SINAP_GLOBAL_TITLE_

TRANSLATION, 3-68

C
ca_alloc_tc() function, 6-102–6-103

allocating a T_Block structure, 3-47
sending outgoing messages (ANSI), 3-48

ca_ascii_u32() function, 6-184–6-186
ipc_key_t structure, 6-185

ca_cancel_def() function, 6-187
ca_check_key() function, 6-188–6-189

ipc_key_t structure, 6-188
ca_ctrl_t structure

in ca_get_msg() function, 6-197
in ca_get_msu() function, 6-34–6-35
in ca_health_chk_resp()

function, 6-295
in ca_put_msg() function, 6-212–6-213
in ca_put_msg_def() function, 6-224
in ca_put_msu() function, 6-66–6-68
in ca_swap_keys() function, 6-239
2 SINAP/SS7 Programmer’s Guide R8052-17

Index
ca_cust_dist_cmd() function, 6-115
cust_dist_cmd_t structure, 6-110

ca_dbg_display() function, 3-33,
6-277–6-278

debugging capabilities, 3-33
ca_dbg_dump() function, 3-33, 6-279–6-280

debugging capabilities, 3-33
ca_dealloc_tc() function, 6-104–??, 6-105,

??–6-105
deallocating a T_block structure, 3-47

ca_disable_intc() function, 3-32,
6-281–6-282

disabling intercept mode, 3-32
ca_disable_locon() function, 6-253–6-256

implementing load control, 6-251
in load control, 3-170–3-172

ca_disable_mon() function, 3-32,
6-283–6-284

disabling buffer monitoring, 3-32
ca_dist_cmd() function, 3-79, 6-106–6-109,

6-110, 6-116, 6-118
dist_cmd_t structure, 6-107–6-109, 6-111,

6-113
retrieving message distribution

information, 3-88
ca_enable_intc() function, 3-32,

6-285–6-286
enabling intercept mode, 3-32

ca_enable_locon() function, 6-257–6-259
implementing load control, 6-251
in load control, 3-168–3-172

ca_enable_mon() function, 3-32, 6-287–6-288
enabling buffer monitoring, 3-32

ca_error.h include file, 2-10, 4-4, 6-2
ca_exit_locon() function, 6-260–6-262

in load control, 3-172
ca_flush_msu()function, 6-5–6-6
ca_get_dial_id() function, 6-121–6-123

initiating a dialogue, 3-27
obtaining a unique ID, 3-47
retrieving a unique ID, 3-27

ca_get_key() function, 6-190–6-193
in connection-oriented services, 3-144, 3-147,

3-153, 3-163
ipc_key_t structure, 6-191

ca_get_msg() function, 6-194–6-204
ca_ctrl_t structure, 6-197
i_block_t structure, 6-194
in connection-oriented services, 3-145, 3-149,

3-151, 3-157
ipc_data_t structure, 6-202
ipc_key_t structure, 6-201
ipc_trans_t structure, 6-199
node_id_t structure, 6-201
stamp_t structure, 6-200
timestamp_t structure, 6-200

ca_get_msu() function, 3-2, 3-31, 6-31–6-54,
6-52

bi_ctrl_t structure, 6-37
ca_ctrl_t structure, 6-34–6-35
iblk_t structure, 6-53
in XUDT and XUDTS messages, 3-112
l3_event_t structure, 6-52
m_block_t structure, 6-32–6-33
msu_t structure, 6-45–6-48
mtp_ctrl_t structure, 6-40
mtp_ud_t structure, 6-41
sccp_ctrl_t structure, 6-38–6-39
sccp_user_t structure, 6-50
slt_user_t structure, 6-49
snm_user_t structure, 6-48
stamp_t structure, 6-36
tcap_ctrl_t structure, 6-38
timestamp_t structure, 6-36
user_12_t structure, 6-42
user_chg_t structure, 6-43
user_cong_t structure, 6-44
user_link_t structure, 6-42
user_tcoc_t structure, 6-43
user_trsh_t structure, 6-44

ca_get_msu_noxudt() function, 6-55–6-56
ca_get_opc() function, 6-7
ca_get_sc() function, 6-88–6-89

and message segmentation, 3-135
ca_get_tc() function, 3-2, 6-124–6-145

acn_t structure, 6-137
calling an ISM function, 3-46
handling SS7 messages, 3-31
t_block_t structure, 6-125–6-127
tc_association_t

structure, 6-134–6-136
tc_chp_t structure, 6-128
tc_dhp_t structure, 6-131
tc_thp_t structure, 6-139–6-143
tc_user_data_t structure, 6-138

ca_get_tc_ref() function, 3-176,
6-146–6-150

ca_get_trans_id() function, 6-151–6-152
Index 3

Index
retrieving a unique ID, 3-27
sending outgoing messages (ANSI), 3-48

ca_glob.h include file, 2-10, 3-41
in TCAP application, 3-41

ca_health_chk_req() function, 3-33,
6-290–6-292

ipc_key_t structure, 6-291
ca_health_chk_resp() function, 3-33,

6-293–6-301
ca_ctrl_t structure, 6-295
i_block_t structure, 6-293
ipc_data_t structure, 6-300
ipc_key_t structure, 6-299
ipc_trans_t structure, 6-297
node_id_t structure, 6-298
stamp_t structure, 6-298
timestamp_t structure, 6-297

ca_inquire_locon() function, 6-263–6-267
implementing load control, 6-251

ca_invoke_locon() function, 6-268–6-269
in load control, 3-172

ca_ipc_fail_event() function, 3-176
CA_IPC_FAILED_EVENT, 6-221
ca_lookup_gt() function, 3-76, 6-57–6-60
ca_pack() function, 3-84, 6-302
ca_process_tc() function, 6-153–6-155

entry_t structure, 6-154
handling SS7 messages, 3-31
proc_tc_t structure, 6-154

ca_put_cmd() function, 6-205–6-207
ipc_key_t structure, 6-206

ca_put_event() function, 3-33, 6-303–6-306
event-reporting capability, 3-33
ipc_key_t structure, 6-304

ca_put_msg() function, 6-208–6-219
ca_ctrl_t structure, 6-212–6-213
i_block_t structure, 6-210
in connection-oriented services, 3-145, 3-147,

3-153, 3-163
ipc_data_t structure, 6-217
ipc_key_t structure, 6-216
ipc_trans_t structure, 6-214
node_id_t structure, 6-216
sending the UIS message, 3-35
stamp_t structure, 6-215
timestamp_t structure, 6-215

ca_put_msg_def() function, 6-220–6-231
ca_ctrl_t structure, 6-224
i_block_t structure, 6-222

ipc_data_t structure, 6-229
ipc_key_t structure, 6-228
ipc_trans_t structure, 6-226
node_id_t structure, 6-228
stamp_t structure, 6-227
timestamp_t structure, 6-227

ca_put_msu() function, 6-61–6-86
bi_ctrl_t structure
ca_ctrl_t structure, 6-66–6-68
in XUDT and XUDTS messages, 3-111, 3-112
in l3_event_t structure, 6-65
m_block_t structure, 6-63–6-64
msu_t structure, 6-78–6-81
mtp_ctrl_t structure, 6-74
mtp_ud_t structure, 6-75
sccp_ctrl_t structure, 6-71, 6-72, 6-73
sccp_user_t structure, 6-83
slt_user_t structure, 6-81
snm_user_t structure, 6-81
stamp_t structure, 6-69
tcap_ctrl_t structure, 6-70
timestamp_t structure, 6-68
user_12_t structure, 6-76
user_chg_t structure, 6-77
user_cong_t structure, 6-77
user_link_t structure, 6-75
user_tcoc_t structure, 6-76
user_trsh_t structure, 6-78

ca_put_msu_int() function, 3-110
in XUDT and XUDTS messages, 3-114

ca_put_reply() function, 6-232–6-234
ipc_key_t structure, 6-233

ca_put_sc() function, 6-90–6-100
in connection-oriented services, 3-155
and message segmentation, 3-135
sccp_cldclg_t structure, 6-96–6-97
sccp_dt2_t structure, 6-98
sccp_dtl_t structure, 6-98
sccp_expdata_t structure, 6-100
sccp_ipc_t structure, 6-91–6-94
sccp_prim_t structure, 6-95

ca_put_tc() function, 3-77, 3-109,
6-156–6-178

acn_t structure, 6-170
handling SS7 messages, 3-31
sending components to remote

applications, 3-46
t_block_t structure, 6-157–6-159
tc_association_t structure, 6-167
4 SINAP/SS7 Programmer’s Guide R8052-17

Index
tc_chp_t structure, 6-160–6-163
tc_dhp_t structure, 6-164–6-167
tc_thp_t structure, 6-172–6-176
tc_user_data_t structure, 6-170

CA_REG variable, 3-42, 3-58, 3-63, 3-144, 6-8
in connection-oriented services, 3-133

CA_REG.batch_count output batch
buffer, 3-13

ca_register() function, 3-82, 6-8–6-23
implementing load control, 6-251
in connection-oriented services, 3-144
in load control, 3-167
register_req_t structure, 6-8
registering an application, 3-29
registering application with node

management, 3-58
starting the application process, 3-35

ca_rel_dial_id() function, 6-179–6-180
releasing a unique ID, 3-27
releasing the dialogue ID, 3-47

ca_rel_trans_id() function, 6-181–6-182
releasing a unique ID, 3-27
releasing transaction ID, 3-48

ca_restart_timer() function, 6-235–6-236
ca_setup_locon() function, 6-270–6-275

implementing load control, 6-251
in load control, 3-168–3-172

ca_swap_keys() function, 6-237–6-246
ca_ctrl_t structure, 6-239
i_block_t structure, 6-237
ipc_data_t structure, 6-244
ipc_key_t structure, 6-243
ipc_trans_t structure, 6-241
node_id_t structure, 6-243
stamp_t structure, 6-242
timestamp_t structure, 6-242

ca_terminate() function, 6-24–6-27
de-registering, 3-34
ipc_key_t structure, 6-25
terminate_t structure, 6-24
terminating processing, 3-35

ca_u32_ascii() function, 6-247–6-249
ipc_key_t structure, 6-248

ca_unpack() function, 3-84, 6-307
ca_withdraw() function, 3-34, 6-28–6-29

terminating application process
automatically, 3-35

terminating processing, 3-34
CA_XUDT_SEG global variable, 3-110

CAC, xxvi
CAD, 3-90
cadbg.h include file, 2-10
calling application, 3-53
CASL. See Common Application Services Layer
CASL control structure. See ca_ctrl_t structure
casl.h include file, 2-11
caslinc.h include file, 2-11

in MTP application, 3-62
in SCCP application, 3-58
in TCAP application, 3-42

CCITT network variant, 1-2
alternate SCCP routing, 3-73–3-75
CASL functions supported, 3-27
configuration requirements and limitations

table, 3-15–3-28
environment variables for link

congestion, 3-96–3-99
handling SNM messages, 3-117
implementing the TCCO feature, 3-126
link congestion thresholds, 3-101
load control, 3-95
MTP restart process, 3-117, 3-119–3-120
point codes, 3-16
primitives supported, 3-28
structures used, 3-26
XUDT and XUDTS messages, 3-108–3-110

ccitt_sccp_xuser_t structure
in XUDT and XUDTS messages, 3-115

ccitt_variant.h include file, 2-11, 3-12
Change a Link command, A-3
Change Backup Day command, A-1
Change Combined Link Set command, A-2
Change Concerned Point Code command, A-2
Change Duplicate Concerned Point Code

command, A-2
Change Global Title command, A-2
Change Link Set command, A-3
Change Purge Day command, A-3
Change Remote SSN command, A-3
Change Route Set command, A-4
Change SLS Type command, A-5
Change System Table command, 3-95
Change System Table command. See

CHANGE-SYSTAB command
CHANGE-BKUPDAY command, A-1
CHANGE-CLSET command, A-2
CHANGE-CPC command, A-2
CHANGE-DUCPC command, A-2
Index 5

Index
CHANGE-GTT command, 3-75, A-2
CHANGE-LINK command, A-3
CHANGE-LSET command, A-3
CHANGE-PURGEDAY command, A-3
CHANGE-REMSSN command, A-3
CHANGE-RSET command, A-4
CHANGE-SLSTYPE command, A-5, A-27
CHANGE-SYSTAB command, 3-95, 3-121, A-4

in connection-oriented services, 3-137
chatr command, 3-9
China network variant

CASL functions supported, 3-27
configuration requirements and limitations

table, 3-15–3-28
environment variables for link

congestion, 3-96–3-99
handling SNM messages, 3-117
implementing the TCCO feature, 3-126
load control, 3-95
MTP restart process, 3-117, 3-119–3-120
point codes, 3-16
primitives supported, 3-28
structures used, 3-26
XUDT and XUDTS messages, 3-108–3-110

china_variant.h include file, 2-12
cl_register() function, 3-111
client applications, 2-1, 3-1, 3-9, 3-57–3-60

activating, 3-34, 3-35
communicating with another application, 3-28
deactivating, 3-35
enabling/disabling input and output buffer

monitoring, 3-32
enabling/disabling the intercept mode, 3-32
going into service, 3-29, 3-31
going out of service, 3-33
handling SS7 messages, 3-31
process, 3-10
registering with SINAP/MultiStack, 3-2, 3-29
reporting status or alarms, 3-33
SCCP message processing, 3-60
TCAP, 3-36–3-39

communications between, 3-38–3-42
programming considerations, 3-52–3-53
registering, 3-42–3-44

user part (MTP), 3-61, 3-64
include files, 3-62
message processing, 3-64
registration, 3-63, 3-64

See also applications

client.h include file, 2-12
command.h include file, 2-12
commands

client application processing of, 3-31
Common Application Services Layer (CASL), 2-1,

3-1
error messages, C-1

application, C-52
BITE, C-52
CASL, C-15–C-31
MTP, C-51
node management, C-13–C-15
SCCP, C-46–C-51
TCAP, C-33–C-46
UNIX and SS7 driver, C-2–C-13

function types, 2-3–2-5
functions

See also entries for individual functions:
ca_alloc_tc()
ca_ascii_u32()
ca_cancel_def()
ca_check_key()
ca_cust_dist_cmd()
ca_dbg_display()
ca_dbg_dump()
ca_dealloc_tc()
ca_disable_intc()
ca_disable_locon()
ca_disable_mon()
ca_dist_cmd()
ca_enable_intc()
ca_enable_locon()
ca_enable_mon()
ca_exit_locon()
ca_flush_msu()
ca_get_dial_id()
ca_get_key()
ca_get_msg()
ca_get_msu()
ca_get_msu_noxudt()
ca_get_opc()
ca_get_sc()
ca_get_tc()
ca_get_trans_id()
ca_health_chk_req()
ca_health_chk_resp()
ca_inquire_locon()
ca_invoke_locon()
ca_lookup_gt()
6 SINAP/SS7 Programmer’s Guide R8052-17

Index
ca_pack()
ca_process_tc()
ca_put_cmd()
ca_put_event()
ca_put_msg()
ca_put_msg_def()
ca_put_msu()
ca_put_reply()
ca_put_sc()
ca_put_tc()
ca_register()
ca_rel_dial_id()
ca_rel_trans_id()
ca_restart_timer()
ca_setup_locon()
ca_swap_keys()
ca_terminate()
ca_u32_ascii()
ca_unpack()
ca_withdraw()

interprocess communications (IPC). See
interprocess communications
functions

library, 3-1
updating with the Dynamic Linked Library

(DLL), 3-8
structure types, 2-6–2-8

common services functions, 6-4
See also entries for individual functions:
ca_flush_msu()
ca_get_opc()
ca_register()
ca_terminate()
ca_withdraw()

compiling and link editing an application, 3-8
component-handling

errors, 3-178–3-183
primitives, 2-26–2-27, 3-179–3-183

component-handling primitive structure. See
tc_chp_t structure

CONAB (congestion abatement), 3-100
Concerned Point Code (CPC), A-2, A-8, A-11, A-27
concerned point codes

configuration limitations, 3-19
Concerned Point Codes (CPC), A-29
concerned point codes (CPCs)

TTC_WITH_NSTATE variable, 3-16
CONDIS (congestion discard), 3-100
configuration limitations and

requirements, 3-18–3-26
Configure Link command, A-4
Configure Link Set command, A-4
Configure Route Set command, A-5
CONFIGURE-LINK command, A-4
CONFIGURE-LSET command, A-4
CONFIGURE-RSET command, A-5
congestion abatement (CONAB), 3-100
congestion discard (CONDIS), 3-100
congestion onset (CONON), 3-100
congestion tables, 3-100

displaying and changing settings, 3-95
CONGESTION_INITIAL_VALUE, 3-99
CONGESTION_TX_TIMER timer, 3-99
CONGESTION_TY_TIMER timer, 3-99
connection establishment stage, 3-134
connection release stage, 3-134
connection-oriented

control primitives, 2-20–2-23
functions. See entries for individual functions:

ca_get_sc()
ca_put_sc()

services (CCITT, ANSI, China), 3-132–3-164
activating, 3-141
application design

considerations, 3-142–3-143
application processing, 3-143–3-164
CA_REG global variable, 3-133
CHANGE-SYSTAB command, 3-136
control primitives used in IPC

messages, 3-137–3-139
data primitives, 3-139–3-140
defining connection-oriented

structures, 3-141
DISPLAY-SYSTAB command, 3-136
environment variables, 3-142–3-143
global variable, 3-133
implementing, 3-142
inactive connections, 3-135
IPC message types, 3-137
large message segmentation and

reassembly, 3-135
local reference memory (LRM), 3-134
local reference number (LRN), 3-134
maintaining information on active

connections, 3-134
messages and primitives, 3-137
release_lrn command, 3-135
releasing frozen LRNs, 3-135
Index 7

Index
SCCP connection-oriented timers, 3-136
SCCP-SCOC process, 3-133
send_dt1 program module, 3-160
send_dt2 program module, 3-161
send_n_connect_res program

module, 3-153
stages of connection-oriented

communication, 3-134
structure types, 2-9
structures, 2-8

CONON (congestion onset), 3-100
control process, 3-10
CPC. See concerned point codes
Create a Global Title Translation command, A-6
Create Combined Link Set command, A-5
Create Concerned Point Code command, A-5
Create Duplicate Concerned Point Code

command, A-5
Create Fictitious Originating Point Code

command, A-6
Create Link command, A-6
Create Link Set command, A-7
Create Own Signaling Point Code command, A-7
Create Remote Subsystem command, A-7
Create Route Set command, A-7
CREATE-CLSET command, A-5
CREATE-CPC command, A-5
CREATE-DUCPC command, A-5
CREATE-FOPC command, 3-76–3-77, A-6
CREATE-GTT command, 3-72–3-73, A-6

address components, 3-71–3-72
CREATE-LINK command, A-6
CREATE-LSET command, A-7
CREATE-OSP command, A-7
CREATE-REMSSN command, A-7
CREATE-RSET command, A-7
CS1, 3-90
current application, 6-251
current application instance, 6-251
cust_dist_cmd_t structure

in ca_cust__dist_cmd() function, 6-110
cust_dist.h include file, 2-12
custom application distribution, 3-90

D
data

data types defined in arch.h file, 6-3
primitives, 2-22–2-23

process, 3-10
Database Builder program, 4-6, 4-8–4-11
data-transfer stage, 3-134
debugging applications

functions, 3-33
decoding functions, 3-51
Deferred Message Handler, 6-220
deferred messages, 6-220
defining

environment variables, B-1
Delete Combined Link Set command, A-7
Delete Concerned Point Code command, A-8
Delete Duplicate Concerned Point Code

command, A-8
Delete Fictitious Originating Point Code

command, A-8
Delete File command, A-8
Delete Global Title Translation command, A-9
Delete Link command, A-9
Delete Link Set command, A-9
Delete Own Signaling Point Code command, A-9
Delete Remote Subsystem command, A-10
Delete Route Set command, A-10
DELETE-CLSET command, A-7
DELETE-CPC command, A-8
DELETE-DUCPC command, A-8
DELETE-FILE command, A-8
DELETE-FOPC command, 3-76, A-8
DELETE-GTT command, 3-75, A-9
DELETE-LINK command, A-9
DELETE-LSET command, A-9
DELETE-OSP command, A-9
DELETE-REMSSN command, A-10
DELETE-RSET command, A-10
design considerations, 3-2
dest_addr field, 3-27
destination point codes. See DPC
dialogue, 3-39

dialogue ID, 3-39, 6-121
dialogue/transaction ID table, 3-40
dialogue_end_type field, 3-47
errors, 3-177–3-178
portion, 3-49

dialogue_end_type field, 3-47, 3-56
dialogue_id field, 3-47
dialogue-handling primitive structure. See

tc_dhp_t structure
dialogue-handling primitives, 2-24
directory, sample applications. See sample
8 SINAP/SS7 Programmer’s Guide R8052-17

Index
applications directory
Disable Load Control command, A-10
DISABLE-LOAD-CONTROL command, 3-170,

A-10
discard table, 3-100
DISCARDS_PER_ALARM variable, 3-79, 3-82
DISPLAY

FILE command, A-23
Display Backup Day command, A-10
Display Combined Link Set command, A-10
DISPLAY command, 4-16–4-18
Display Concerned Point Code command, A-11
Display Fictitious Originating Point Code

command, A-11
Display Global Titles command, A-11
Display Link command, 3-173, A-11
Display Link Set command, A-11
Display Load Control command, A-12
Display Monitor ID command, A-12
Display Own Signaling Point Code command, A-12
Display Process Version command, A-12
Display Purge Day command, A-12
Display Remote Subsystem Number

command, A-12
Display Route Set command, A-13
Display Scenario command, A-13
Display Subsystem Number command, A-13
DISPLAY-BKUPDAY command, A-10
DISPLAY-CLSET command, A-10
DISPLAY-CPC command, A-11
DISPLAY-FOPC command, A-11
DISPLAY-GTT command, 3-75, A-11
DISPLAY-LINK command, 3-173, A-11
DISPLAY-LOAD-CONTROL command, A-12
DISPLAY-LSET command, A-11
DISPLAY-MON command, 3-32, A-12
DISPLAY-OSP command, A-12
DISPLAY-PROCESS-VERSION command, A-12
DISPLAY-PURGEDAY command, A-12
DISPLAY-REMSSN command, A-12
DISPLAY-RSET command, 3-173, A-13
DISPLAY-SCEN command, 4-23–4-24, A-13
DISPLAY-SUBSYSTEM command, A-13
DISPLAY-SYSTAB command, 3-95, A-13

in connection-oriented services, 3-136
using to display XUDT timer values, 3-109

dist_cmd_t structure, 3-79, 3-83–3-87
in ca_dist_cmd() function, 6-107–6-109,

6-111, 6-113

retrieving message distribution
information, 3-88

dl_chan_user.h include file, 2-12
DLL, 3-9

libCASL.so, 3-8
libISSL.so, 3-8

DLL (dynamic linked library), 3-2
DLL See dynamic linked library, 3-2
documentation

notation conventions, xxii
related, xxv
revision information, xxi
viewing, xxv

DPC, 3-19
configuration limitations, 3-19

DPC and SLS routing, 3-65
dr_incl.h include file, 2-12
dr_minor.h include file, 2-12
drda_daemon processes, 3-20
DUCPU

configuration limitations, 3-19
Dump Table command, A-13
DUMP-TABLE command, 4-35, A-13
Duplicate Concerned Point Code (DCPC), A-2
Duplicate Concerned Point Code (DUCPC), A-8
duplicate concerned point codes

See DUCPU
dynamic linked library (DLL), 3-2, 3-9

using to compile and link edit, 3-8

E
/etc/inittab file, 3-35
EINTR, 3-14
Enable Load Control command, A-14
ENABLE-LOAD-CONTROL

command, 3-168–3-169, A-14
encoding functions, 3-51
enhanced message distribution, 3-78–3-89, 6-254

changing information about, 3-88
deleting information about, 3-89
implementing, 3-81–3-87

activating and deactivating, 3-87
application registration, 3-82, 3-84
applications using OPC

discrimination, 3-86
applications using SSN

discrimination, 3-85
applications using the same SSN, 3-86
Index 9

Index
defining message distribution
information, 3-84

DISCARDS_PER_ALARM variable, 3-82
handling discarded MSUs, 3-82
UDTS_NO_OPC variable, 3-82

information structure, 3-80
load control applications, 3-81
retrieving information about, 3-88

enhancements, list of, 3-66–3-68
entry_t structure

in ca_process_tc() function, 6-154
environment variables

ANSI_SINAP_FOPC=YES, 3-77
basic, B-2
BYPASS_SINAP_GLOBAL_TITLE_TRANS

LATION, 3-68, 3-69
CCITT_CONGESTION_OPTION, 3-95
CONGESTION_INITIAL_VALUE, 3-99
defining, B-1
DISCARDS_PER_ALARM, 3-79, 3-82
for defining LRNs and LRMs, 3-142
GLOBAL_TITLE_SSN_NO_CHECK, 3-74
GTT_BYPASS_NOAI_CHECK, 3-71
GTT_WITH_BACKUP_DPC_SSN, 3-21, 3-74
INTERNATIONAL_1_CONGESTION, 3-97
LOOPBACK_DISPLAY, 3-24, 3-172
MTP_ANSI88_RSR_RST, 3-25, 3-174
MTP_ANSI92_RESTART, 3-22, 3-121, 3-122

in MTP time-controlled diversion
(TCD), 3-127

MTP_ANSI92_TCCO, 3-23, 3-126
MTP_ANSI92_TCD, 3-23, 3-127
MTP_SLS4_LOAD_SHARE, 3-25, 3-65
MTP_USER_FLOW_CTL, 3-104
MTP_WHITE_BOOK_RESTART, 3-22, 3-119
MTP_WHITE_BOOK_SLC, 3-23, 3-117

in XUDT and XUDTS messages, 3-115
MTP_WHITE_BOOK_TCCO, 3-23, 3-126
MTP_WHITE_BOOK_TFR, 3-25, 3-173
NAT_MUL_CONG_WITH_PRIO, 3-97
NAT_MULT_CONG_WO_PRIO, 3-98
PARTIAL_GTT, 3-21
SINAP_HEALTH_INTERVAL, 3-33
SINAP_HEALTH_TIMEOUT, 3-33
SINAP_LRN_FREEZE_TIMEOUT, 3-142
SINAP_TOTAL_LR_MEMS, 3-142
SINAP_TOTAL_LR_NUMS, 3-142
SINAP_USER_LR_MEMS, 3-142
SINAP_XUDT_SEGMENT_SIZE, 3-110

TCC_WITH_NSTATE, 3-30
TTC_WITH_NSTATE, 3-16, 3-19
UDTS_NO_OPC, 3-79, 3-82, 3-86

eqpi_appl.h include file, 2-12
errno

values, 4-4, C-1
variable, 6-2

errors
CA_ERR array, 6-2
component-handling, 3-178–3-183
dialogue and transaction, 3-177–3-178
evaluating, 4-3
function call, 6-2
handling, 3-175–3-177
logging, 4-5

ETSI, 3-90
event3.h include file, 2-12

in trouble treatment, 3-15
event.h include file, 2-12

in trouble treatment, 3-15
events, 4-3

processing, 3-183–3-184
reporting, 3-33
user-supplied, 4-5
See also alarms

executable programs, 5-1
Exit Load Control command, A-14
EXIT-LOAD-CONTROL command, A-14
extended unitdata and extended unitdata service

messages. See XUDT and XUDTS
messages

F
fictitious originating point code (FOPC) (ANSI

only), 3-76–3-77
ANSI_SINAP_FOPC=YES, 3-77
CREATE_FOPC command, 3-76
DELETE_FOPC command, 3-76
DISPLAY_FOPC command, 3-76

Fields
HADDR, A-2

files
/etc/inittab, 3-35
alarm messages, 4-4
startappl, 3-35
system log files, 4-5
treat.tab (Trouble Treatment

table), 3-183, 3-185, 3-187
10 SINAP/SS7 Programmer’s Guide R8052-17

Index
See also include files
FIND

FILE command, A-23
FIND command (BITE Log Analysis), 4-19
finite state machine (FSM), 3-10
fmon_ipc field, 3-32
fmon_ss7 field, 3-32
FOPC. See fictitious originating point code
FSM (finite state machine), 3-10
fts_dev.h include file, 2-13
fts_info.h include file, 2-13
FTX

/etc/inittab file, 3-35
commands for debugging, 3-9
log files, 4-5
SHMMAX tunable system parameter, 3-81
signals

SIGALRM, 3-12
SIGPOLL, 3-12
SIGTTIN, 3-12
SIGTTOU, 3-12
SIGXCPU, 3-13

functions
See also individual functions
Built-In Test (BITE) Subsystem. See Built-In

Test (BITE) Subsystem functions
ca_alloc_tc(), 6-102–6-103
ca_ascii_u32(), 6-184–6-186
ca_cancel_def(), 6-187
ca_check_key(), 6-188–6-189
ca_cust_dist_cmd(), 6-115
ca_dbg_display(), 3-33, 6-277–6-278
ca_dbg_dump(), 3-33, 6-279–6-280
ca_dealloc_tc(), 6-104–??, 6-105,

??–6-105
ca_disable_intc(), 3-32, 6-281–6-282
ca_disable_locon(), 6-253–6-256
ca_disable_mon(), 3-32, 6-283–6-284
ca_dist_cmd(), 3-79, 6-106–6-109, 6-110,

6-116, 6-118
ca_enable_intc(), 3-32, 6-285–6-286
ca_enable_locon(), 6-257–6-259
ca_enable_mon(), 3-32, 6-287–6-288
ca_exit_locon(), 6-260–6-262
ca_flush_msu(), 6-5–6-6
ca_get_dial_id(), 6-121–6-123
ca_get_key(), 6-190–6-193
ca_get_msg(), 6-194–6-204
ca_get_msu(), 3-2, 3-31, 6-31–6-54

ca_get_msu_noxudt(), 6-55–6-56
ca_get_opc(), 6-7
ca_get_sc(), 6-88–6-89
ca_get_tc(), 6-124–6-145, 6-156–6-178
ca_get_tc_ref(), 6-146–6-150
ca_get_trans_id(), 6-151–6-152
ca_health_chk_req(), 3-33,

6-290–6-292
ca_health_chk_resp(), 3-33,

6-293–6-301
ca_inquire_locon(), 6-263–6-267
ca_invoke_locon(), 6-268–6-269
ca_lookup_gt(), 6-57–6-60
ca_pack(), 6-302
ca_process_tc(), 6-153–6-155
ca_put_cmd(), 6-205–6-207
ca_put_event(), 3-33, 6-303–6-306
ca_put_msg(), 6-208–6-219
ca_put_msg_def(), 6-220–6-231
ca_put_msu(), 3-31, 6-61–6-86
ca_put_reply(), 6-232–6-234
ca_put_sc(), 6-90–6-100
ca_register(), 6-8–6-23
ca_rel_dial_id(), 6-179–6-180
ca_rel_trans_id(), 6-181–6-182
ca_restart_timer(), 6-235–6-236
ca_setup_locon(), 6-270–6-275
ca_swap_keys(), 6-237–6-238
ca_terminate(), 6-24–6-27
ca_u32_ascii(), 6-247–6-249
ca_unpack(), 6-307
ca_withdraw(), 3-34, 6-28–6-29
Common Application Services Layer (CASL).

See Common Application Services
Layer (CASL) functions

common services. See common services
functions

connection-oriented. See connection-oriented
functions

interprocess communications (IPC). See
interprocess communications
functions

ISUP encoding and decoding. See ISUP
encoding and decoding functions

ISUP services. See ISUP services functions
load control. See load control functions
Message Transfer Part (MTP). See Message

Transfer Part functions
send_nstate_uis_to_sccp(), 3-30
Index 11

Index
send_nstate_uos_to_sccp(), 3-30
Signaling Connection Control Part (SCCP). See

Signaling Connection Control Part
functions

Transaction Capabilities Application Part
(TCAP). See Transaction Capabilities
Application Part functions

functions call return values, 6-2

G
global title addressing, 3-68

BYPASS_SINAP_GLOBAL_TITLE_
TRANSLATION variable, 3-68

global title translation
alternate SCCP routing

GTT_WITH_BACKUP_DPC_SSN
variable, 3-21

global title translation (GTT), 3-68–3-76
address indicator, 3-69
alternate SCCP routing, 3-73–3-75

CREATE_GTT command, 3-74
GLOBAL_TITLE_SSN_NO_CHECK

variable, 3-74
GTT_BYPASS_NOAI_CHECK

variable, 3-71
GTT_WITH_BACKUP_DPC_SSN

variable, 3-74
RouteOnGT, 3-73
RouteOnSSN, 3-73

called party address, 3-69, 3-72
CHANGE-GTT command, 3-75
CREATE-GTT command, 3-69, 3-72–3-73,

3-75
defining and maintaining GTT table

entries, 3-75
defining application logic for implementing

GTT, 3-76
DELETE-GTT command, 3-75
DISPLAY-GTT command, 3-75
global title format, 3-71–3-72

address components, 3-71
GTI values, 3-72

GTT processing, 3-72–3-73
GTT table, 3-69
include files
sinap_env.csh include file, 3-71
sinap_env.sh include file, 3-71

global variables

CA_REG, 3-133
in MTP application registration, 3-63
in SCCP application registration, 3-58
in TCAP application registration, 3-42

CA_XUDT_SEG, 3-110
definition, 3-11
SINAP_VARIANT, 3-26

GLOBAL_TITLE_SSN_NO_CHECK, 3-74
going into service, applications, 3-29–3-31
going out of service, applications, 3-33
GTT. See global title translation
GTT_BYPASS_NOAI_CHECK, 3-71
gtt_tr_entry_t structure, 6-58
GTT_WITH_BACKUP_DPC_SSN, 3-21, 3-74

H
health-check

functions, 3-33
operations, 3-33, 6-293–6-295

heap memory, 3-13
hop counter, 3-115

inbound, 3-115
outbound, 3-115
XUDT messages, 3-115

HP-UX system
command for debugging, 3-9

I
#IPC,0 command, A-24
I_Block structure. See i_block_t structure
i_block_t structure, 2-6

in ca_get_msg() function, 6-195
in ca_health_chk_resp()

function, 6-294–6-295
in ca_put_msg() function, 6-210–6-211
in ca_put_msg_def()

function, 6-222–6-223
in ca_swap_keys() function, 6-237–6-238

I_MTP_PAUSE primitive, 2-18
I_MTP_RESUME primitive, 2-18
I_MTP_STATUS primitive, 2-18
I_N_CONNECT_CON primitive, 2-21
I_N_CONNECT_IND primitive, 2-22
I_N_CONNECT_REQ primitive, 2-21
I_N_CONNECT_RES primitive, 2-21
I_N_COORD primitive, 2-20
I_N_COORD_CONF primitive, 3-44, 3-60
I_N_COORD_CONFIG primitive, 3-60
12 SINAP/SS7 Programmer’s Guide R8052-17

Index
I_N_COORD_INDIC primitive, 3-44, 3-60
I_N_COORD_REQ primitive, 3-44, 3-60
I_N_COORD_RESP primitive, 3-44, 3-60
I_N_DISCONNECT_IND primitive, 2-22
I_N_DISCONNECT_REQ primitive, 2-21
I_N_PCSTATE_INDIC primitive, 2-19, 3-44,

3-60
I_N_RESET_CON primitive, 2-22
I_N_RESET_IND primitive, 2-22
I_N_RESET_REQ primitive, 2-21
I_N_RESET_RES primitive, 2-21
I_N_STATE_INDIC primitive, 2-19, 3-44, 3-60
I_N_STATE_REQ primitive, 2-19, 3-44, 3-60
I_SCOC_CID_RESULT primitive, 2-22
I_SCOC_GET_CONNID primitive, 2-21
iblk_t structure

in ca_get_msu() function, 6-53
in ca_put_msu() function, 6-85

iblock.h include file, 2-6, 2-13
in IPC message applications, 3-15

Importance Parameter, 3-116
in XUDT and XUDTS messages, 3-109
INAP, 3-90
inbound_load_dist_type field

in SLS message distribution, 3-129
include files, 2-9–2-18, 3-14–3-15

in MTP applications, 3-62
in SCCP applications, 3-58
in TCAP applications, 3-42
ansi_variant.h, 2-9
arch.h, 2-9, 6-2–6-4
bidb.h, 2-9
bitemon.h, 2-9
blkhdr.h, 2-9
ca_error.h, 2-10, 4-4, 6-2
ca_glob.h, 2-10, 3-41
cadbg.h, 2-10
casl.h, 2-11
caslinc.h, 2-11
ccitt_variant.h, 2-11, 3-12
china_variant.h, 2-12
client.h, 2-12
command.h, 2-12
cust_dist.h, 2-12
dl_chan_user.h, 2-12
dr_incl.h, 2-12
dr_minor.h, 2-12
eqpi_appl.h, 2-12
event3.h, 2-12

event.h, 2-12
fts_dev.h, 2-13
fts_info.h, 2-13
iblock.h, 2-6, 2-13
ipctbl.h, 2-13
irt3.h, 2-13
load control, 6-250
locon.h, 2-13
mblock.h, 2-7, 2-14
measure3.h, 2-14
measure.h, 2-14
mml.h, 2-14
mtpevents.h, 2-14, 4-5
mtp.h, 2-14
mtptypes.h, 2-14
network.h, 2-15
nmcmdata.h, 2-15
nmcmglob.h, 2-15
ort3.h, 2-15
prims3.h, 2-15
proc_tc.h, 2-15
register.h, 2-15
required for different applications, 3-14–3-15
s7signal.h, 2-15, 3-12
sccp.h, 2-15
sccphdrs.h, 2-15, 3-58
sccp-intrn.h, 2-15, 3-58
scmg-prims.h, 2-16, 2-19
SINAP/MultiStack, list of, 2-9–2-18
sinap_variant.h, 2-16
sinap.h, 2-16
sinapintf.h, 2-16
sysdefs.h, 2-17
sysshm.h, 2-17
tblock.h, 2-7, 2-17, 3-11
tcap.h, 2-17
tccom.h, 2-17
tcglob.h, 2-17
terminate.h, 2-17, 3-35
timestamp.h, 2-17
treatment.h, 2-17
ttc_variant.h, 2-17
variant.h, 2-18, 3-12
See also individual files

initializing, 3-54
INST_ALL keyword, 6-252
INST_THIS keyword, 6-252
instances per application, 3-20
Integrated Services Digital Network User Part
Index 13

Index
(ISUP)
Services Support Library (ISSL), 3-1

International Telecommunications Union (ITU), 1-2
International Telegraph and Telephone Consultative

Committee (CCITT), 1-2
interprocess communications (IPC), 2-29–2-30

blkhdr.h include file, 3-15
data record, sample, 4-17
functions, 6-183

See also entries for individual functions:
ca_ascii_u32()
ca_cancel_def()
ca_check_key()
ca_get_key()
ca_get_msg()
ca_put_cmd()
ca_put_msg()
ca_put_msg_def()
ca_put_reply()
ca_restart_timer()
ca_swap_keys()
ca_u32_ascii()

iblock.h include file, 3-15
include files, 3-15
ipctbl.h include file, 3-15
message types, 3-137
messages, primitives used in, 2-20
obtaining IPC key for, 6-190–6-192
queue, 3-100
timestamp.h include file, 3-15

Invoke Load Control command, 3-165, A-14
Invoke State Machine (ISM) table, 3-41
INVOKE-LOAD-CONTROL command, 3-165,

A-14
IPC key structure. See ipc_key_t structure
IPC. See interprocess communications
IPC transaction ID structure. See ipc_trans_t

structure
ipc_data_t structure

in ca_get_msg() function, 6-202–6-204
in ca_health_chk_resp()

function, 6-300
in ca_put_msg() function, 6-217–6-218
in ca_put_msg_def() function, 6-229,

6-230
in ca_swap_keys() function, 6-244, 6-245

ipc_key_t structure, 2-30
in ca_ascii_u32() function, 6-185
in ca_check_key() function, 6-188–6-189

in ca_get_key() function, 6-191
in ca_get_msg() function, 6-201–6-202
in ca_health_chk_req() function, 6-291
in ca_health_chk_resp()

function, 6-299
in ca_put_cmd() function, 6-206
in ca_put_event() function, 6-304–6-306
in ca_put_msg() function, 6-216–6-219
in ca_put_msg_def() function, 6-228,

6-229
in ca_put_reply() function, 6-233
in ca_swap_keys() function, 6-243, 6-244
in ca_terminate() function, 6-25
in ca_u32_ascii() function, 6-248

ipc_trans_t structure
ca_get_msg() function, 6-199
ca_put_msg() function, 6-214
in ca_get_msg() function, 6-199
in ca_health_chk_resp()

function, 6-297
in ca_put_msg() function, 6-214
in ca_put_msg_def()

function, 6-226–6-227
in ca_swap_keys() function, 6-241

ipctbl.h include file, 2-13
in IPC message applications, 3-15

irt3.h include file, 2-13
ISDN User Part (ISUP), 3-1

See also ISUP services
ISM (Invoke State Machine), 3-41
ISSL (ISUP Services Support Library), 3-1, 3-8
issl.h include file

in ISUP services application, 3-15
ISUP encoding and decoding

library files, 3-8
ISUP services

applications, 3-66
DLL, 3-9
include files, 3-15
issl.h include file, 3-15
primitives, 2-27

ISUP Services Support Library (ISSL), 3-1, 3-8
ITU (International Telecommunications Union), 1-2

K
keywords

BITE log-analysis, 4-14, 4-15
INST_ALL, 6-252
14 SINAP/SS7 Programmer’s Guide R8052-17

Index
INST_THIS, 6-252
SSN_ALL, 6-252
SSN_THIS, 6-252
using in load control, 6-252

L
#L3,LST command, A-26
l3_event_t structure

ca_put_msu() function, 6-65
in ca_get_msu() function, 6-52

last_comp_ind field, 3-178
lc_notify_t structure, 6-273
libraries

archive, 3-2, 3-9
CASL, 3-1, 3-8
dynamic linked library (DLL), 3-2, 3-9
ISSL, 3-1, 3-8

link congestion
changing congestion table settings, 3-95
displaying congestion table settings, 3-95
environment variables

for CCITT and China, 3-96–3-99
levels and states, 3-95
measuring, 3-99–3-100
network variant differences, 3-95
notifying the application of congestion, 3-100
thresholds, 3-100–3-101

link editing an application, 3-8
link operating speeds, 3-18
link sets, configuration limitations, 3-18
load control, 3-165–3-172

configuring, 3-165, 3-167, 3-168
deactivating for a specified

application, 6-260–6-261
DISABLE-LOAD-CONTROL

command, 3-169–3-171
disabling for an application, 3-169–3-172
ENABLE-LOAD-CONTROL

command, 3-168–3-171
enabling, 3-169, 6-257–6-259
enhanced message distribution

applications, 3-81
functions, 6-250

See also entries for individual functions:
ca_disable_locon()
ca_enable_locon()
ca_exit_locon()
ca_inquire_locon()

ca_invoke_locon()
ca_setup_locon()

implementing, 6-251, 6-252
include files, 3-15
INST_ALL keyword, 6-252
INST_THIS keyword, 6-252
invoking processing, 6-268–6-269
IPC message notification, 6-273
locon.h include file, 3-15
processing, 3-166–3-167
removing from an application, 6-270–6-275
restrictions, 3-166, 3-168, 6-251
retrieving statistics for an

application, 6-263–6-267
SETUP-LOAD-CONTROL

command, 3-168–3-170
SSN_ALL keyword, 6-252
SSN_THIS keyword, 6-252
terminating, 3-169, 6-253–6-256
using keywords, 6-252

load sharing, 3-65
load-shared routes, configuration limitations, 3-19
local application, 3-133
Local Reference Memory (LRM), A-27
local reference memory. See LRM
local reference number. See LRN
locon.h include file, 2-13

in load control applications, 3-15
log files

example, 4-16
locating records, 4-14–4-15
test1.23sep, 4-16

log-analysis program, 4-6–4-12
commands, 4-12, 4-13

DISPLAY, 4-16–4-18
FIND, 4-19
QUIT, 4-22
SELECT, 4-20
SUMMARY, 4-21

keywords for searching log file
records, 4-14–4-15

relational operators, 4-13
long-term remote processor outage, 3-125
loopback detection

enabling (CCITT), 3-172
LOOPBACK_DISPLAY, 3-24, 3-172

LRM (local reference memory), 3-134
environment variables for defining, 3-142

LRN (local reference number), 3-134
Index 15

Index
environment variables for defining, 3-142
releasing frozen, 3-135

M
M_Block structure. See m_block_t structure
m_block_t structure, 2-7

in ca_get_msu() function, 6-32–6-33
in ca_put_msu() function, 6-63–6-64
in connection-oriented services, 3-155
in XUDT and XUDTS messages, 3-112

Man Machine Language (MML) commands, 3-1
sending and responding to, 3-31

manuals
notation conventions, xxii
related, xxv
revision information, xxi
viewing, xxv

MAX_APPL_OPC variable, 3-2
MAX_APPL_SSN variable, 3-2
max_dial_id field, 3-44
max_ism field, 3-44
max_trans_id field, 3-44
mblock_t structure

in XUDT and XUDTS messages, 3-111
mblock.h file, 3-111
mblock.h include file, 2-7, 2-14
measure3.h include file, 2-14
measure.h include file, 2-14

in BITE applications, 3-15
Measurement Collection Process, sample

output, 4-45
measurement commands, 4-32–4-34

DUMP-TABLE, 4-35
REPORT-MALL, 4-36–4-37
REPORT-MMTP, 4-38
REPORT-MSCCP, 4-39
REPORT-MTCAP, 4-40
RETRIEVE-NOM, 4-41–4-42
RETRIEVE-SMR, 4-44
START-MEASURE, 4-45
START-MWRITE, 4-46
STOP-MEASURE, 4-47
STOP-MWRITE, 4-48

measurements
handling, 4-32–4-33
interval, defining, 4-32
link congestion, measuring, 3-99–3-100
logs, 4-46, 4-48

starting writing to logs, 4-46
stopping writing to logs, 4-48

reports
considerations for issuing

commands, 4-33
entering date and time

information, 4-32–4-33
MTP, SCCP, and TCAP, 4-36–4-37
node network management, retrieving

latest, 4-44
node network management, retrieving

oldest, 4-41–4-42
saving and printing, 4-34
saving to a file, 4-32
SCCP, 4-39
TCAP, 4-40

starting on-demand, 4-45
stopping on-demand, 4-47

Message
Signaling Link Test (SLTM), A-22

Message Signaling Units (MSUs)
control structure, 6-45–6-48
data record, 4-18
handling incoming, 3-45–3-46
load control processing of, 3-166–3-167
parameters to specify processing, 3-101–3-103
processing the dialogue portion of, 3-50
routing, 3-78
sending outgoing, 3-46–3-48

Message Transfer Part (MTP), 3-117, A-13
alarms, 4-5
applications

functions for handling SS7
messages, 3-31

registering with SINAP/MultiStack, 3-63
CASL error messages, C-51
CASL functions, 6-30
caslinc.h include file, 3-62
client applications

user part, 3-61, 3-64
control structure, 6-40–6-41
functions.

See entries for individual functions:
ca_flush_msu()
ca_get_msu()
ca_get_msu_noxudt()
ca_get_opc()
ca_lookup_gt()
ca_put_msu()
16 SINAP/SS7 Programmer’s Guide R8052-17

Index
ca_register()
ca_terminate()
ca_withdraw()

include files, 3-62
measurements, reporting, 4-38

all for MTP, SCCP, and TCAP, 4-36–4-37
MTP_ANSI92_RESTART, 3-121, 3-122
MTP-RESUME primitive, 3-120, 3-123–3-124
MTP-STATUS primitive, 3-107
N-PCSTATE primitive, 3-107
primitives, 2-18, 3-64
prims3.h include file, 3-63
prims.h include file, 3-108
processes, list of, 4-2
restart process, 3-117–3-124

completing, 3-120, 3-124
for CCITT and China, 3-119–3-120
for the ANSI network variant, 3-121
message processing, 3-122
message processing during MTP

restart, 3-122
messages used, 3-118
MTP_ANSI92_RESTART, 3-121
MTP_WHITE_BOOK_RESTART, 3-119
performing on a SINAP

node, 3-122–3-123
performing on adjacent

node, 3-123–3-124
system option definitions, 2-17

routing and management tables, dumping to
static file, 4-35

routing label, 3-76
SLS field, 3-128

routing, based on SLS and DPC, 3-65
time-controlled changeover. See

time-controlled changeover (TCCO)
time-controlled diversion. See time-controlled

diversion (TCD)
timer, conditions under which

implemented, 3-125
upu_id_cause field, 3-107
user data structure, 6-41
user flow control, 3-104–3-108

generating a UPU message, 3-105
handling incoming UPU messages, 3-106
implementing, 3-104
MTP_USER_FLOW_CNTL

variable, 3-104
user part client applications

include files, 3-62
message processing, 3-64
registration, 3-63, 3-64

See also MTP applications
messages

connection-oriented, 3-137
even distribution of

MTP_SLS4_LOAD_SHARE, 3-25
handling

TCAP, 3-51
handling incoming, 3-45–3-46
handling SS7, 3-31
large message segmentation, 3-135
processing during MTP restart, 3-122
processing incoming

ANSI, 3-46
CCITT/China/TTC, 3-45

protocol, 3-49
reading from the queue, 2-28
routing, 3-76
sending debug, 4-25
sending outgoing

ANSI, 3-48
CCITT/China/TTC, 3-47–3-48

Signaling Route Test (SRT), A-22
SS7 processing of, 2-28–2-29
UPU (user part unavailable), 3-105

mml.h include file, 2-14
monitoring facility, 4-7

initiating, 4-26
stopping, 4-30

more_data_ind field, 3-143
msg_type field, 3-113
MSU data structure. See msu_t structure
msu_t structure, 6-45–6-48

ca_get_msu() function, 6-45–6-48
ca_put_msu() function, 6-78–6-81
variant-specific versions, 3-26

MTP
restart process, 3-22

MTP control structure. See mtp_ctrl_t
structure

MTP. See Message Transfer Part
MTP user data structure. See mtp_ud_t structure
MTP_ANSI88_RSR_RST, 3-25, 3-174
MTP_ANSI92_RESTART, 3-121, 3-122

in MTP time-controlled diversion
(TCD), 3-127

MTP_ANSI92_TCCO, 3-23, 3-126
Index 17

Index
in MTP time-controlled changeover
(TCCO), 3-126

MTP_ANSI92_TCD, 3-23, 3-127
in MTP time-controlled diversion (TCD)

, 3-127
mtp_ctrl_t structure

ca_get_msu() function, 6-40
ca_put_msu() function, 6-74
in XUDT and XUDTS messages, 3-113

MTP_PAUSE primitive, 3-62, 3-64
MTP_RESUME primitive, 3-62, 3-64
MTP_SLS4_LOAD_SHARE, 3-25, 3-65
MTP_STATUS primitive, 3-62, 3-64
mtp_status_t structure, 3-106
MTP_TRANSFER primitive, 3-62, 3-64
mtp_ud_t structure, 6-41

in ca_get_msu() function, 6-41
in ca_put_msu() function, 6-75

MTP_USER_FLOW_CTL, 3-104
MTP_WHITE_BOOK_RESTART, 3-119
MTP_WHITE_BOOK_SLC, 3-23, 3-117
MTP_WHITE_BOOK_TCCO, 3-23, 3-126

in MTP time-controlled changeover
(TCCO), 3-126

MTP_WHITE_BOOK_TFR, 3-25
mtpevents.h include file, 2-14, 4-5
mtp.h include file, 2-14
mtprecv.c sample program, 5-12
MTP-RESUME primitive, 3-120, 3-123–3-124
mtprx2.c sample program, 5-12
mtprx-ctl.c sample program, 5-12
mtpsend.c sample program, 5-12
MTP-STATUS primitive, 3-107
mtptypes.h include file, 2-14
multiple link congestion levels, 3-94–3-101

congestion states, 3-95
implementing functionality (CCITT and

China), 3-96–3-99
INTERNATIONAL_1_CONGESTION

variable, 3-97
NAT_MUL_CONG_WITH_PRIO

variable, 3-97
NAT_MULT_CONG_WO_PRIO

variable, 3-98
link congestion thresholds, 3-100
measuring congestion for multiple congestion

states without the congestion
priority, 3-99

notifying the application of congestion, 3-100

variant differences, 3-95
MultiStack product, 1-1

N
N_STATE primitive, 3-30, 3-33
Netra 1400, 3-18, 5-2
Netra 20/T4, 3-18, 5-2
network variants

differences between CCITT, ANSI, TTC, and
China, 3-15–3-28

See also ANSI network variant, TTC network
variant, CCITT network variant, and
China network variant

network.h include file, 2-15
nmcmdata.h include file, 2-15
nmcmglob.h include file, 2-15
nmnp process, 3-127
nmtr conversion program, 3-184
NOAI indicator, 3-71–3-72
node, 1-2

interaction between TCAP nodes, 3-53
management

CASL errors, C-13–C-15
node parent process, 3-127
processes, list of, 4-2

node network management measurement report
retrieving latest, 4-44
retrieving oldest, 4-41–4-42

Node Management Software Notebook, 4-5
node_id_t structure

in ca_get_msg() function, 6-201
in ca_health_chk_resp()

function, 6-298
in ca_put_msg() function, 6-216
in ca_put_msg_def() function, 6-228
in ca_swap_keys() function, 6-243

non-blocking reads, 2-29
nondata primitives, 4-5
non-executable programs, 5-1
N-PCSTATE primitive, 3-107
NTT network variant

setting SLS bits in MSU routing labels, 3-131

O
objmk() function, 3-52–3-55
onset congestion table, 3-100
orig_addr field, 3-27
originating point codes (OPCs)
18 SINAP/SS7 Programmer’s Guide R8052-17

Index
defined, 3-27
fictitious, 3-76–3-77

ort3.h include file, 2-15
output batch buffer, changing size, 3-13
overload conditions, 3-165
Own Signaling Point (OSP) code, A-9, A-12

P
parameters

priority, 3-102
protocol class, 3-103
return-option, 3-103
sequence control, 3-102

PARTIAL_GTT, 3-21
point codes, differences between network

variants, 3-16
primitive_code field, 3-47, 3-48, 3-56
primitives, 2-18

the application process can receive, 3-64
component-handling, 2-26–2-27, 3-179–3-183
connection-oriented, 3-137, 3-143
connection-oriented control, 2-20–2-23

I_N_CONNECT_CON, 2-21
I_N_CONNECT_IND, 2-22
I_N_CONNECT_REQ, 2-21
I_N_CONNECT_RES, 2-21
I_N_DISCONNECT_REQ, 2-21
I_N_RESET_CON, 2-22
I_N_RESET_IND, 2-22
I_N_RESET_REQ, 2-21
I_N_RESET_RES, 2-21
I_SCOC_CID_RESULT, 2-22
I_SCOC_GET_CONNID, 2-21
SC_DATA_FORM1, 2-22, 2-23
SC_DATA_FORM2, 2-22, 2-23
SC_EXPEDITED_DATA, 2-23
SC_RELEASED, 2-23

data, 2-22–2-23
defining types application process can

receive, 3-44
dialogue/transaction, 3-177–3-178
dialogue-handling, 2-24
IPC, 2-20
ISUP services, 2-27
MTP, 2-18, 3-64

I_MTP_PAUSE, 2-18
I_MTP_RESUME, 2-18
I_MTP_STATUS, 2-18

MTP_PAUSE, 3-62
MTP_RESUME, 3-62
MTP_STATUS, 3-62
MTP_TRANSFER, 3-62

SCCP, 2-19, 2-20
I_N_COORD, 2-20
I_N_PCSTATE_INDIC, 2-19
I_N_STATE_INDIC, 2-19
I_N_STATE_REQ, 2-19
N_STATE, 3-30, 3-33
SC_N_UNITDATA, 2-20

SS7, 2-18
TC_BEGIN, 3-50
TC_CONTINUE, 3-50
TC_END, 3-50
TC_REQUESTX, 2-24
TC_U_ABORT, 3-50
TCAP, 2-24, 3-44
TCAP (ANSI)

TC_CONV_W_PERM, 2-25, 3-28
TC_CONV_WO_PERM, 2-25, 3-28
TC_INVOKE_L, 2-26, 3-28
TC_INVOKE_NL, 2-26, 3-28
TC_L_CANCEL, 2-27
TC_L_REJECT, 2-27
TC_NO_RESPONSE, 2-26, 3-28
TC_NOTICE, 2-25, 2-26
TC_P_ABORT, 2-26
TC_QRY_W_PERM, 2-25, 3-28
TC_QRY_WO_PERM, 2-25, 3-28
TC_R_REJECT, 2-27
TC_RESPONSE, 2-25, 3-28
TC_RESULT_L, 2-27
TC_RESULT_NL, 2-27
TC_U_ABORT, 2-26
TC_U_CANCEL, 2-27
TC_U_ERROR, 2-27
TC_U_REJECT, 2-27
TC_UNI, 2-25

TCAP (CCITT/TTC/NTT/China)
TC_BEGIN, 2-24, 3-28
TC_CONTINUE, 2-24, 3-28
TC_END, 2-24, 3-28
TC_INVOKE, 2-26, 3-28
TC_L_CANCEL, 2-27
TC_L_REJECT, 2-27
TC_NOTICE, 2-24
TC_P_ABORT, 2-24
TC_R_REJECT, 2-27
Index 19

Index
TC_REQUESTX, 2-24
TC_RESULT_L, 2-27
TC_RESULT_NL, 2-27
TC_U_ABORT, 2-24
TC_U_CANCEL, 2-27
TC_U_ERROR, 2-27
TC_U_REJECT, 2-27
TC_UNI, 2-24

transaction-handling, 2-25–2-26
prims3.h include file, 2-15, 3-15

in MTP application, 3-63
in SCCP application, 3-58
in TCAP application, 3-42

prims.h include file
in Message Transfer Part (MTP), 3-108

priority control, 3-101–3-103
priority field, 3-47
priority parameters, 3-102
proc_req_A, message-handling function, 3-51
proc_req_A_dial, APDU encoding

function, 3-51
proc_tc_t structure

in ca_process_tc function, 6-154
proc_tc.h include file, 2-15
processes

BITE monitor, 3-32–3-33
client application, 3-10
configuration limitations, 3-20
control, 3-10
data, 3-10
listing active SINAP/MultiStack, 4-2–4-3
maximum number that can run at one time, 3-2

processor outage, 3-122, 3-125
long-term, 3-125
See also MTP Time Controlled

Changeover, 3-124
short-term, 3-125

processor outages, 3-67
program modules

send_dt1, 3-160
send_dt2, 3-161

protocol class parameters, 3-103

Q
? command, A-24
Q command, A-27
quality of service (QOS), 3-101–3-103
Quality of Service Main Menu screen, 5-5–5-7

QUIT command, A-24
BITE Log Analysis, 4-22

R
rcMeasData, 4-41
Read Trouble Treatment Table command, A-15
READ-TREAT command, 3-184, A-15
register_req_t structure, 3-29, 3-111

in ca_register() function, 6-8
in connection-oriented services, 3-144
in enhanced message distribution, 3-82
in MTP applications, 3-63
in SCCP applications, 3-58
in SLS message distribution, 3-129
in TCAP applications, 3-41
in XUDT and XUDTS messages (CASL

registration), 3-111
register.h header file, 3-111
register.h include file, 2-15
registering with SINAP/MultiStack, 3-29

in enhanced message distribution, 3-82–3-84
in MTP applications, 3-63
in SCCP applications, 3-58
in TCAP applications, 3-42

relational operators, 4-13
release_lrn command

in connection-oriented services, 3-135
remote processor outage, 3-125
Remote Subsystem Number (SSN), A-10
Remote Subsystem Numbers (SSN, A-12
Report Alarm command, A-15
Report Measurements

command, 4-36–4-37, A-15
Report MTP Measurements command, 4-38, A-16
Report SCCP Measurements, 4-39
Report SCCP Measurements command, A-16
Report Software Notebook command, A-17
Report TCAP Measurements, 4-40
Report TCAP Measurements command, A-17
REPORT-ALARM command, A-15
reporting

all measurements related to MTP, SCCP, and
TCAP, 4-36–4-37

MTP measurements, 4-38
SCCP measurements, 4-39
TCAP measurements, 4-40

REPORT-MALL command, 4-36–4-37, A-15
REPORT-MMTP command, 4-38, A-16
20 SINAP/SS7 Programmer’s Guide R8052-17

Index
REPORT-MSCCP command, 4-39, A-16
REPORT-MTCAP command, 4-40, A-17
REPORT-NBOOK command, 4-5, A-17
Restore Application command, A-17
Restore Node command, 3-172, A-17
RESTORE-APPL command, A-17
RESTORE-NODE command, 3-172, A-17
resultSourceDiag field, 3-52
resultSourceDiagValue field, 3-52, 3-57
Retrieve Latest 5-Min Measurement

command, 4-44, A-18
Retrieve Oldest 15- or 30-Minute Measurement

command, 4-41–4-42, A-18
RETRIEVE-NOM command, 4-41–4-42, A-18
RETRIEVE-SMR command, 4-44, A-18
return-option parameters, 3-103
route sets, configuration limitations, 3-19
RouteOnGT, 3-73
RouteOnSSN, 3-73
routes, configuration limitations, 3-19
routeSetMeasurement, 4-41
routing

MTP, based on SLS and DPC, 3-65
routing capabilities, 3-68, 3-77

ensuring sequentiality
MTP_SLS4_LOAD_SHARE, 3-25

See also global title addressing and global title
translation (GTT)

RSP message, 3-174
RSR message, 3-174

S
#SLD command, 3-129
#SLD command, A-28
#STA,ST,L3 command, A-29
#sta,xudt command, 3-110
#sys command, A-29
$SINAP_HOME, 3-8
$SINAP_MASTER, 3-8
s7signal.h include file, 2-15, 3-12
sample applications, 5-1

directory, 5-1
for CCITT, 5-1
MTP, 5-12
SCCP, 5-11
tcrecv.c, 5-5
tcsend.c, 5-4

executing, 5-1

MTP, 5-12
mtprecv.c, 5-12
mtprx2.c, 5-12
mtprx-ctl.c, 5-12
mtpsend.c, 5-12
SCCP, 5-11
screcv.c, 5-11
scsend.c, 5-11
TCAP (ANSI/CCITT/China), 5-4–5-5
TCAP (TTC), 5-5–5-11
TCAP Quality of Service Main Menu

screen, 5-5–5-7
tcap_2.c, 5-5
tcrecv.c, 5-3–5-5

for the TTC variant, 5-8–5-9
tcsend.c, 5-3–5-5, 5-7

for the TTC variant, 5-10–5-11
sample programs

tcrecv.c, 5-7
See also sample applications

SC_DATA_FORM1 primitive, 2-22, 2-23
SC_DATA_FORM2 primitive, 2-22, 2-23
SC_EXPEDITED_DATA primitive, 2-23
SC_N_UNITDATA primitive, 2-20
SC_RELEASED primitive, 2-23
SC_RESET_REQUEST primitive, 2-23
sc23.h include file

in SCCP application, 3-58
SCCP. See Signaling Connection Control Part
SCCP control structure. See sccp_ctrl_t

structure
SCCP management process (SCMG), 3-134
SCCP user data structure. See sccp_user_t

structure
sccp_cldclg_t structure, 2-8

in ca_put_sc() function, 6-96–6-97
sccp_con_req_t structure

in connection-oriented services, 3-137
sccp_ctrl_t structure, 3-103

in ca_get_msu() function, 6-38
in ca_put_msu() function, 6-71, 6-72, 6-73

sccp_dt1_t structure, 2-9, 3-140
in ca_put_sc() function, 6-98

sccp_dt2_t structure, 2-9, 3-140
in ca_put_sc() function, 6-98

sccp_expdata_t structure, 2-9, 3-140
in ca_put_sc() function, 6-100

sccp_ipc_t structure, 2-8
in ca_put_sc() function, 6-91–6-94
Index 21

Index
in connection-oriented services, 3-137
sccp_lrm_t structure

in connection-oriented services, 3-134
sccp_lrn_t structure

in connection-oriented services, 3-134
sccp_prim_t structure, 2-8, 3-143

in ca_put_sc() function, 6-95
in XUDT and XUDTS messages, 3-112

sccp_resetreq_t structure, 3-140
sccp_rlsd_t structure, 3-140
sccp_user_t structure

in ca_get_msu() function, 6-50
in ca_put_msu() function, 6-83

sccp.h include file, 2-15
sccphdrs.h include file, 2-15

in SCCP application, 3-15, 3-58
sccp-intrn.h include file, 2-15

in SCCP application, 3-15, 3-58
SCCP-SCCP connection-oriented control

(SCOC), 3-133
scenario execution, 4-7

displaying information (such as ID), 4-24
obtaining ID number of, 4-11
running, 4-8, 4-10–4-11
scenario execution feature, 4-6
se_send application, 4-7, 4-8
starting, 4-29, 6-285–6-286
stopping, 4-11, 4-31, 6-281

SCMG (SCCP management process), 3-134
scmg_ipc_t.primitives.pcstate

structure, 3-106
scmg-prims.h include file, 2-16, 2-19

in SCCP application, 3-15
in TCAP application, 3-42

SCOC (SCCP-SCCP connection-oriented
control), 3-133

scoc_cid_result_t structure, 3-139
scoc_con_con_t structure, 3-139
scoc_con_ind_t structure, 3-139
scoc_con_req_t structure, 3-138
scoc_con_res_t structure, 3-138
scoc_dis_ind_t structure, 3-139
scoc_dis_req_t structure, 3-138
scoc_get_connid_t structure, 3-138

in connection-oriented services, 3-137
scoc_res_con_t structure, 3-139
scoc_res_ind_t structure, 3-139
scoc_res_req_t structure, 3-138
scoc_res_res_t structure, 3-138

scoc-prims.h include file
in SCCP application, 3-58

SCP (service control point), 1-1
screcv.c sample program, 5-11
screen, Quality of Service Main Menu, 5-5–5-7
script files

startappl, 3-35
scsend.c sample program, 5-11
se_send application for scenario execution, 4-7,

4-8
SELECT

FILE command, A-24
SELECT command (BITE Log Analysis), 4-20
Send a Debug Message command, A-19
send_cm command, A-19

using to display XUDT timer values, 3-109
send_dt1 program module, 3-160
send_dt2 program module, 3-161
send_n_connect_res program module, 3-153
send_nstate_uis_to_sccp()

function, 3-30
send_nstate_uos_to_sccp()

function, 3-30
seq_ctrl field, 3-47, 3-48
sequence control, 3-101–3-103

parameters, 3-102
service control point (SCP), 1-1
Service Information Octet (SIO), A-28
service information octet (SIO), 3-28
Service Information Octets (SIO), A-19
service node (SN), 1-1
ServiceKey, 3-90
Set Printer command, A-19
Set Up Load Control command, A-18
SET-PRINTER command, A-19
Setup Load Control command, 3-168–3-170
setup_req_t structure, 6-271
SETUP-LOAD-CONTROL

command, 3-167–3-170, A-18
shared virtual memory, 3-29
SHMMAX FTX tunable system parameter, 3-81
short-term processor outage, 3-125
SIG_S7_HIRES signal (SINAP), 3-12
SIG_S7_IPC signal (SINAP), 3-12–3-13
SIG_S7_PF_BEGIN signal (SINAP), 3-12, 3-13
SIG_S7_PF_RIDETHRU signal (SINAP), 3-13
SIG_S7_REROUTE signal (SINAP), 3-12
SIGALRM signal (FTX), 3-12
Signaling Connection Control Part (SCCP), 2-19,
22 SINAP/SS7 Programmer’s Guide R8052-17

Index
2-20
alternate routing for CCITT, 3-73–3-75
applications

functions for handling SS7
messages, 3-31

message processing, 3-60
primitives used by, 2-19

CASL error messages, C-46–C-51
CASL functions, 6-30
caslinc.h include file, 3-58
client applications, 3-57–3-60

include files required by, 3-58
message processing, 3-60
registration, 3-58–3-60

connection-oriented timers, 3-136–3-137
control structure, 6-38–6-39
functions.

See entries for individual functions:
ca_flush_msu()
ca_get_msu()
ca_get_msu_noxudt()
ca_get_opc()
ca_lookup_gt()
ca_put_msu()
ca_register()
ca_terminate()
ca_withdraw()

include files, 3-15, 3-58
M_Block fields set for SCCP routing, 6-62
management process, 3-134
primitives, 2-19
prims3.h include file, 3-58
processes, list of, 4-3
reporting all measurements for MTP, SCCP,

and TCAP, 4-36–4-37
reporting measurements, 4-39
sc23.h include file, 3-58
sccphdrs.h include file, 3-15, 3-58
sccp-intrn.h include file, 3-15, 3-58
scoc-prims.h include file, 3-58
structures

See also entries for individual structures:
register_req_t

Signaling Connection Control Point (SCCP), A-13
Signaling Information Field (SIF), A-19
signaling link code (SLC), A-27
signaling link code (SLC) for MTP SNM

messages, 3-117
signaling link selection (SLS) message

distribution, 3-128–3-130
displaying SLS assignments, 3-129
implementing distribution, 3-128

Signaling Link Test (SLTM) message, A-22
signaling link test structure. See slt_user_t

structure
signaling links, configuration limitations, 3-18
signaling network

management
messages with nonzero SLCs, 3-23

signaling network management data structure. See
snm_user_t structure

signaling point restart control (SPRC), 3-118
Signaling Route Test (SRT) message, A-22
Signaling System 7 (SS7), 1-1

driver CASL error messages, C-2–C-13
handling incoming messages, 3-45–3-46
message processing, 2-28–2-29
messages, handling, 3-31
messages, monitoring and intercepting, 3-32
network, withdrawing from, 3-34
primitives, 2-18
sending outgoing messages, 3-46–3-48

Signaling Transfer Point (STP), A-5
signaling transfer point (STP), 1-1
signals, UNIX, 3-12–3-13

SIG_S7_IPC, 3-12
SIG_S7_PF_BEGIN, 3-12
SIG_S7_PF_RIDETHROUGH, 3-12
SIGALRM, 3-12
SIGPOLL, 3-12
SIGTTIN, 3-12
SIGTTOU, 3-12
SIGXCPU, 3-13

SIGPOLL signal (FTX), 3-12
SIGTTIN signal (FTX), 3-12
SIGTTOU signal (FTX), 3-12
SIGXCPU signal (FTX), 3-13
SINAP

node, 1-2
performing MTP restart on, 3-122–3-123
performing MTP restart on adjacent

node, 3-123–3-124
product, 1-1
signals, 3-12–3-13
stack, 1-2

SINAP_ALT_MEASUREMENT_INTERVAL, 4-32
sinap_env.csh include file, 3-71
sinap_env.sh include file, 3-71
Index 23

Index
SINAP_HEALTH_INTERVAL, 3-33
SINAP_HEALTH_TIMEOUT, 3-33
SINAP_LRN_FREEZE_TIMEOUT=nnnn, 3-142
SINAP_NAT_VARIANT variable, 3-77
SINAP_TOTAL_LR_MEMS=nnnn, 3-142
SINAP_TOTAL_LR_NUMS=nnnn, 3-142
SINAP_USER_LR_MEMS=nnnn, 3-142
SINAP_VARIANT, 3-11, 3-26
sinap_variant.h include file, 2-16
SINAP_XUDT_SEGMENT_SIZE, 3-110
sinap.h include file, 2-16
sinapintf.h include file, 2-16
SIO (service information octet), 3-28
sio_ssn field, 3-43, 3-59
sio_ssn parameter, 3-63
sio_ssn_ind field, 3-43, 3-59
sio_ssn_ind parameter, 3-63
SLC for MTP SNM messages, 3-117
SLS and DPC routing, 3-65
SLS message distribution

displaying assignments, 3-129–3-130
implementing, 3-128

SLS(signaling link selection assignments
setting SLS bits in NTT network variant, 3-131

slt_user_t structure
in ca_get_msu() function, 6-49
in ca_put_msu() function, 6-82

SN (service node), 1-1
SNM messages with nonzero SLCs

MTP_WHITE_BOOK_SLC, 3-117
snm_user_t structure

in ca_get_msu() function, 6-48
in ca_put_msu() function, 6-81

Software Notebook, 4-3
source code, 3-11
specified subsystem number (SSN), 3-28
SPRC (signaling point restart control), 3-118
SS7. See Signaling System 7 (SS7)
SS7_CTRL_DATA_PRIMITIVE, 3-44, 3-60, 3-64
SS7_CTRL_PRIMITIVE, 3-44, 3-60, 3-64
SS7_DATA_PRIMITIVE, 3-44, 3-60, 3-64
ss7_input_boundary field, 3-43, 3-59
ss7_input_boundary parameter, 3-63
ss7_primitive field, 3-143
SSN (specified subsystem number), 3-28
SSN_ALL keyword, 6-252
SSN_THIS keyword, 6-252
stack, 1-2
STA-DBG command, 4-25

stamp_t structure, 6-36
in ca_get_msg() function, 6-200
in ca_health_chk_resp()

function, 6-298
in ca_put_msg() function, 6-215
in ca_put_msg_def() function, 6-227
in ca_put_msu() function, 6-69
in ca_swap_keys() function, 6-242

standards, TCAP, 3-38, 3-49–3-51
implementing, 3-51–3-57

Start a BITE Scenario command, A-20
Start Monitor command, 4-26–4-28, A-20
Start On-Demand Measurements

command, 4-32–4-34, A-19
Start Write Log File command, 4-46, A-20
start_sinap command, A-21
start_sinap script file, A-21
START-DBG command, 4-23, 4-25, A-19
START-MEASURE command, 4-45, A-19
START-MON command, 4-7, 4-23, 4-26–4-28, A-20
START-MWRITE command, 4-46, A-20
START-SCEN command, 4-23, 4-29, A-20
static2mml command, A-21
Stop a BITE Scenario command, A-22
Stop Monitor command, A-22
Stop On-Demand Measurements command, 4-47,

A-21
Stop Write Log File command, 4-48, A-22
stop_sinap command, A-22
stop_sinap script file, A-22
STOP-MEASURE command, 4-47, A-21
STOP-MON command, 3-32, 4-23, A-22
STOP-MWRITE command, 4-48, A-22
STOP-SCEN command, 4-23, 4-31, A-22
STP (signaling transfer point), 1-1
structures

BITE control structure. See bi_ctrl_t
structure

CASL control structure. See ca_ctrl_t
structure

component-handling primitive structure. See
tc_chp_t structure

connection-oriented, 2-8, 2-9
dialogue-handling primitive structure. See

tc_dhp_t structure
differences between network variants, 3-26
I_Block structure. See i_block_t structure
IPC transaction ID structure. See

ipc_trans_t structure
24 SINAP/SS7 Programmer’s Guide R8052-17

Index
M_Block structure. See m_block_t structure
MSU data structure. See msu_t structure
MTP control structure. See mtp_ctrl_t

structure
MTP user data structure. See mtp_ud_t

structure
SCCP control structure. See sccp_ctrl_t

structure
SCCP user data structure. See sccp_user_t

structure
signaling link test structure. See slt_user_t

structure
T_Block structure. See t_block_t structure
TC_DIALOGUE_REQUEST, 3-51
TCAP application-context, 2-8
TCAP control structure. See tcap_ctrl_t

structure
transaction-handling primitive structure. See

tc_thp_t structure
See also entries for individual structures:
acn_t
bi_ctrl_t
ca_ctrl_t
dist_cmd_t
entry_t
i_block_t
iblk_t
ipc_data_t
ipc_key_t
ipc_trans_t
l3_event_t
lc_notify_t
m_block_t
msu_t
mtp_ctrl_t
mtp_ud_t
node_id_t
proc_tc_t
register_req_t
sccp_cldclg_t
sccp_ctrl_t
sccp_dt1_t
sccp_dt2_t
sccp_expdata_t
sccp_ipc_t
sccp_prim_t
sccp_user_t
setup_req_t
slt_user_t

snm_user_t
stamp_t
t_block_t
tc_association_t
tc_chp_t
tc_dhp_t
tc_thp_t
tc_user_data_t
tcap_ctrl_t
terminate_t
timestamp_t
user_12_t
user_chg_t
user_cong_t
user_l2_t
user_link_t
user_tcoc_t
user_trsh_t

Subsystem Number (SSN), A-3
SUMMARY

command (BITE Log Analysis), 4-21
FILE command, A-24

sy command, A-29
sy debugger

commands, A-24–A-29
sysdefs.h include file, 2-17
sysshm.h include file, 2-17

T
T_Block structure. See t_block_t structure
t_block_t structure, 2-7, 3-77

allocating, 3-41
in ca_get_tc() function, 6-125–6-127
in ca_put_tc() function, 6-157–6-159
in load control, 3-166
initializing fields, 3-47, 3-48

T1/E1 (G703) links
configuration limitations, 3-18

tables
dialogue/transaction ID, 3-40
Invoke State Machine (ISM), 3-41
trouble treatment (treat.tab), 3-183,

3-185, 3-187
tblock.h include file, 2-7, 2-17, 3-11
TC_ABORT primitive, 3-45
tc_association_t structure, 2-8, 3-52

defining application-context information, 3-54
in ca_get_tc() function, 6-134–6-136
Index 25

Index
in ca_put_tc() function, 6-167
processing an incoming MSU, 3-56

TC_BEGIN primitive, 2-24, 3-28, 3-45, 3-50
tc_chp_t structure, 3-47–3-48, 3-114,

3-178–3-183
in ca_get_tc() function, 6-128
in ca_put_tc() function, 6-160–6-163
in TCAP data structure, 3-41
initializing fields, 3-47, 3-48

TC_CONTINUE primitive, 2-24, 3-28, 3-50
TC_CONV_W_PERM primitive, 2-25, 3-28
TC_CONV_WO_PERM primitive, 2-25, 3-28
tc_count field, 3-41, 3-44
tc_dhp_t structure, 3-11, 3-103, 3-177

defining application-context information, 3-54
in ca_get_tc() function, 6-131
in ca_put_tc() function, 6-164–6-167
in TCAP data structure, 3-41
initializing fields, 3-47

TC_DIALOGUE_REQUEST structure, 3-51
TC_END primitive, 2-24, 3-28, 3-50
TC_INVOKE primitive, 2-26, 3-28, 3-45
TC_INVOKE_L primitive, 2-26, 3-28
TC_INVOKE_NL primitive, 2-26, 3-28
TC_L_CANCEL primitive, 2-27
TC_L_REJECT primitive, 2-27
TC_NO_RESPONSE primitive, 2-26, 3-28
TC_NOTICE primitive, 2-24, 2-25
tc_objmk, 3-50, 3-52, 3-54, 3-55, 6-137, 6-170
TC_P_ABORT primitive, 2-24, 2-26
TC_QRY_W_PERM primitive, 2-25, 3-28, 3-45
TC_QRY_WO_PERM primitive, 2-25–2-26, 3-28,

3-45
TC_R_REJECT primitive, 2-27
TC_REJECT primitive, 3-45
TC_REQUESTX primitive, 2-24, 3-109

in XUDT and XUDTS messages, 3-115
TC_RESPONSE primitive, 2-25, 3-28
TC_RESULT_L primitive, 2-27
TC_RESULT_NL primitive, 2-27
tc_thp_t structure, 3-11

ca_get_tc() function, 6-143
in ca_get_tc() function, 6-139–6-143
in ca_put_tc() function, 6-172–6-176
in TCAP data structure, 3-41
initializing fields, 3-48

TC_U_ABORT primitive, 2-24, 2-26, 3-50, 3-57
TC_U_CANCEL primitive, 2-27
TC_U_ERROR primitive, 2-27

TC_U_REJECT primitive, 2-27
TC_UNI primitive, 2-24, 2-25, 3-45
tc_user_data_t structure, 2-8

in ca_get_tc() function, 6-138
in ca_put_tc() function, 6-170
including optional user information, 3-55
initializing fields, 3-54
processing an incoming MSU, 3-56

tc_user.dhp structure, 3-78
tc_user.thp.alt_DPC structure, 3-78
TCAP control structure. See tcap_ctrl_t

structure
TCAP. See Transaction Capabilities Application Part
tcap_2.c sample program, 5-5
tcap_ctrl_t structure

in ca_get_msu() function, 6-38
in ca_put_msu() function, 6-70

tcap.h include file, 2-17
in SCCP application, 3-15
in TCAP application, 3-42

TCCO
MTP_ANSI92_TCCO, 3-23
MTP_WHITE_BOOK_TCCO, 3-23

TCCO. See time-controlled changeover, 3-124
tccom.h include file, 2-17
TCD

MTP_ANSI92_TCD, 3-23
TCD. See time-controlled diversion
tcglob.h include file, 2-17, 3-51

in TCAP application, 3-42
TC-NOTICE primitive, 2-26
tcrecv.c sample program, 5-3–5-5, 5-7

for the TTC variant, 5-8–5-9
tcsend.c sample program, 5-3–5-5, 5-7

for the TTC variant, 5-10–5-11
Telephone User Part (TUP), 3-1
terminate_t structure, 6-24

ca_terminate() function, 6-24
terminate.h include file, 2-17, 3-35
test applications

tcrecv.c, 3-10
tcsend.c, 3-10

Test Link command, A-22
Test Route command, A-23
test1.23sep, 4-16
TEST-LINK command, A-22
TEST-ROUTE command, A-23
TFR

handling
26 SINAP/SS7 Programmer’s Guide R8052-17

Index
MTP_ANSI88_RSR_RST, 3-25
MTP_WHITE_BOOK_TFR, 3-25

thresholds
levels for link congestion, 3-100–3-101

time-controlled changeover (TCCO), 3-124, 3-126
implementing, 3-126
long-term processor outage, 3-125
MTP_ANSI92_TCCO, 3-126
MTP_WHITE_BOOK_TCCO, 3-126
short-term processor outage, 3-125
system option definitions, 2-17

time-controlled diversion (TCD), 3-126–3-127
implementing ANSI variant TCD

enhancement, 3-127
MTP_ANSI92_TCD, 3-127
system option definitions, 2-17

timers
MTP, conditions under which implementation

occurs, 3-125
timestamp, 4-41
timestamp structure. See timestamp_t structure
timestamp_t structure

ca_get_msg() function, 6-200
in ca_get_msg() function, 6-200
in ca_get_msu() function, 6-36
in ca_health_chk_resp()

function, 6-297
in ca_put_msg() function, 6-215
in ca_put_msg_def() function, 6-227
in ca_put_msu() function, 6-68
in ca_swap_keys() function, 6-242

timestamp.h include file, 2-17
in IPC message applications, 3-15

trans_end_type field, 3-48
trans_id field, 3-48
trans_id_t structure, 3-48, 3-103
Transaction Capabilities Application Part (TCAP)

application-context dialogue
defining a name, 3-54
defining information, 3-54
defining optional user information, 3-55
ending a dialogue, 3-56
error handling, 3-57
initiating, 3-53, 3-56
processing an incoming MSU, 3-56

applications
allocating T_Blocks, 3-41

ca_glob.h include file, 3-41
CASL error messages, C-33–C-46

caslinc.h include file, 3-42
client applications, 3-36–3-39

communications between, 3-38–3-42
functions for handling SS7

messages, 3-31
include files, 3-42
primitives available to, 3-44
programming considerations, 3-52–3-53
registering, 3-42–3-44
sending outgoing messages, 3-46–3-48

component, handling incoming MSUs
with, 3-45–3-46

control structure, 6-37–6-38
dialogue IDs, 6-121
dialogue/transaction ID table, 3-40
functions, 6-101

See also entries for individual functions:
ca_alloc_tc()
ca_cust_dist_cmd()
ca_dealloc_tc()
ca_dist_cmd()
ca_flush_msu()
ca_get_dial_id()
ca_get_opc()
ca_get_tc()
ca_get_trans_id()
ca_process_tc()
ca_put_tc()
ca_register()
ca_rel_dial_id()
ca_rel_trans_id()
ca_terminate()
ca_withdraw()

include files, 3-15, 3-41, 3-42
ISM table, 3-41
maintaining information to manage

dialogue/transactions, 3-40
message handling, 3-51
nodes

interaction between, 3-53
primitives, 2-24, 3-28
prims3.h include file, 3-42
registration parameters, 3-43–3-44
reporting all measurements for MTP, SCCP,

and TCAP, 4-36–4-37
reporting measurements, 4-40
sample applications

ANSI/CCITT/China, 5-4–5-5
Quality of Service Main Menu
Index 27

Index
screen, 5-5–5-7
TTC, 5-5–5-11

scmg-prims.h include file, 3-15, 3-42
standards, 3-49–3-51

implementing, 3-51–3-57
standards supported, 3-38
structures

See also entries for individual structures:
register_req_t
t_block_t
tc_association_t
tc_chp_t
tc_dhp_t
TC_DIALOGUE_REQUEST
tc_thp_t
tc_user_data_t
trans_idt_t
application-context, 2-8

TC_BEGIN, 3-28
TC_CONTINUE, 3-28
TC_CONV_W_PERM, 3-28
TC_CONV_WO_PERM, 3-28
TC_END, 3-28
TC_INVOKE, 3-28
TC_INVOKE_L, 3-28
TC_INVOKE_NL, 3-28
TC_NO_RESPONSE, 3-28
TC_QRY_W_PERM, 3-28
TC_QRY_WO_PERM, 3-28
TC_RESPONSE, 3-28
tcap.h include file, 3-15, 3-42
tcglob.h include file, 3-42
UXDT messages

hop counter, 3-115
transaction errors, 3-177–3-178
transaction-handling primitive structure. See

tc_thp_t structure
transaction-handling primitives, 2-25–2-26
transfer-controlled option, 3-174
transfer-restricted message handling

enabling, 3-173–3-174
MTP_WHITE_BOOK_TFR, 3-173

treatment.h include file, 2-17
in trouble treatment, 3-15

Trouble Management Subsystem, 4-3
Software Notebook, 4-3

trouble treatment, 3-184
adding/changing an event, 3-183
event3.h include file, 3-15

event.h include file, 3-15
include files, 3-15
setting up trouble treatment table, 3-184
table (treat.tab), 3-183, 3-185, 3-187
treatment.h include file, 3-15

tsl_timer_value field, 3-44
TTC network variant

CASL functions supported, 3-27
configuration requirements and limitations

table, 3-15–3-28
load control, 3-95
MTP restart process, 3-117
point codes, 3-16
primitives supported, 3-28
specifying UOS and UIS messages, 3-16
structures used, 3-26

ttc_variant.h include file, 2-17
TTC_WITH_NSTATE, 3-30
tunable parameters, 3-13

U
U403

configuration limitations, 3-18
U420

configuration limitations, 3-18
U916

configuration limitations, 3-18
UDTS_NO_OPC variable, 3-79, 3-82
UNIX, 1-2

CASL error messages, C-2–C-13
signals, reassignment, 3-12

upu_id_cause field, 3-107
user, 3-1

information, 3-49
user part, 3-1
user part (MTP) client applications, 3-61

include files, 3-62
message processing, 3-64
registration, 3-63, 3-64

user_12_t structure
in ca_get_msu() function, 6-42
in ca_put_msu() function, 6-76

user_chg_t structure
in ca_get_msu() function, 6-43
in ca_put_msu() function, 6-77

user_cong_t structure
in ca_get_msu() function, 6-44
in ca_put_msu() function, 6-77
28 SINAP/SS7 Programmer’s Guide R8052-17

Index
user_data_size field, 3-143
user_l2_t structure

in ca_put_msu() function, 6-76
user_link_t structure

in ca_get_msu() function, 6-42
in ca_put_msu() function, 6-75

user_tcoc_t structure
in ca_get_msu() function, 6-43
in ca_put_msu() function, 6-76

user_trsh_t structure
in ca_get_msu() function, 6-44
in ca_put_msu() function, 6-78

V
variables

MAX_APPL_OPC, 3-2
MAX_APPL_SSN, 3-2

variant.h include file, 2-18, 3-12
variants

overriding default, 3-12
See also network variants

X
XUDT and XUDTS messages, 3-108–3-110

hop counter, 3-115
MSU segment size, XUDT messages, 3-110
MTP_WHITE_BOOK_SLC environment

variable, 3-115
programming considerations, 3-111–3-116

CASL registration, 3-111
SCCP applications, 3-111–3-114
SS7_INPUT_BOUNDARY_SCCPX

parameter, 3-111
SS7_INPUT_BOUNDARY_TCAPX

parameter, 3-111
TCAP applications, 3-114–3-115
XUDT message formats, 3-115

TC_REQUESTX primitive, 3-109
validating segment size, XUDT

messages, 3-110

Z
Z command, A-29
Index 29

Index
30 SINAP/SS7 Programmer’s Guide R8052-17

	Notice
	Contents
	Figures
	Tables
	Preface
	Commenting on the Documentation
	Contacting the CAC

	Introduction
	What is SINAP/SS7?

	Application Programming Interface (API)
	API Overview
	CASL Function Types
	SINAP/SS7 Management Functions
	SS7 Functions
	ISUP Services Functions
	IPC Functions
	Connection-oriented Services Functions
	Load Control Functions
	BITE Functions
	Miscellaneous Functions

	CASL Structure Types
	I_Block - IPC Unit of Exchange
	M_Block - SS7 MSU-Level Unit of Exchange
	T_Block - SS7 TCAP-Level Unit of Exchange
	TCAP Application-Context Structures
	Connection-Oriented Structures

	SINAP/SS7 Include Files
	SS7 Primitives
	MTP Primitives
	SCCP Primitives
	Connection-Control Primitives
	Primitives Used in IPC Messages
	Data Primitives Used in Data MSUs

	TCAP Primitives
	Dialogue-Handling Primitives (CCITT/TTC/NTT/China)
	Transaction-Handling Primitives (ANSI)
	Component-Handling Primitives

	ISUP Services Primitives

	SS7 Message Processing
	SINAP/SS7 Interaction with the SS7 Network
	Issuing Calls to Read from the Queue
	Blocking-Mode Timing Problem
	Implementation of the ca_get_tc_ref() Function

	Interprocess Communications (IPC)

	Application Design and Development
	General Design Considerations
	Multi-Threading Considerations (pthreads)
	Porting 32-Bit SINAP Applications to 64-Bit (HP-UX and Solaris only)
	Compiling 64-Bit Applications with 64-bit HP-UX OS
	Compiling 64-Bit Applications with 64-bit Solaris OS
	Guidelines
	References

	SINAP/SS7 Libraries
	Client Application Models
	Control and Data Processes
	Single-Source SINAP/SS7 Code
	UNIX Signal Remapping
	Tuning the Outgoing Batch Buffer Size
	Supporting Large Numbers of Transactions
	TCAP EINTR Considerations

	Considerations for Different Types of Applications
	Include Files Required for Different Types of Applications
	Network Variant Differences
	Configuration Requirements and Limitations
	Structure Differences
	Differences in CASL Functions Supported
	Primitives Supported

	Developing Application Processing
	Registering with SINAP/SS7
	Going Into Service
	Handling SS7 Messages
	Sending MML Commands
	Monitoring and Intercepting SS7 Messages
	Auto-Starting BITE Monitor Processes
	Debugging Processing Logic
	Reporting Events
	Health-Check Operations
	Going Out of Service
	Withdrawing From the SS7 Network

	Activating/Deactivating a SINAP/SS7 Application
	Activating a SINAP/SS7 Client Application
	Terminating a SINAP/SS7 Client Application

	TCAP Client Applications
	Communication Between TCAP Applications
	Application Protocol Data Units (APDUs)
	Maintaining Information about Transactions
	TCAP Data Structure (t_block_t)
	Allocating t_block_t Structures

	TCAP Application Include Files
	TCAP Application Registration
	TCAP Registration Parameters

	Handling Incoming SS7 Messages
	Processing Incoming Messages (CCITT/China/TTC/NTT)
	Processing Incoming Messages (ANSI)

	Sending Outgoing SS7 Messages
	Sending Outgoing Messages (CCITT/China/TTC/NTT)
	Sending Outgoing Messages (ANSI)

	1993 TCAP Standards Overview
	Implementing 1993 TCAP Standards
	Application-Context Names
	Processing the Dialogue Portion of an MSU

	Implementing 1993 TCAP Standards in Your Application
	Application-Programming Considerations
	Interaction Between Nodes
	Initiating an Application-Context Dialogue

	SCCP Client Applications
	SCCP Application Include Files
	SCCP Application Registration
	SCCP Registration Parameters

	SCCP Application Message Processing

	User Part (MTP) Client Applications
	User Part (MTP) Application Include Files
	User Part (MTP) Application Registration
	User Part (MTP) Registration Parameters

	User Part (MTP) Application Message Processing
	MTP Routing Based on SLS and DPC

	ISUP Services Applications
	Considerations for Implementing SINAP/SS7 Features
	Routing Capabilities
	Global Title Addressing (GTA)
	Global Title Translation (GTT)
	Fictitious Originating Point Code (ANSI only)
	Alternative Destination Point Code (ANSI, CCITT, and China only)

	Enhanced Message Distribution
	Processing Overview
	The Message Distribution Information Structure
	Implementing Enhanced Message Distribution
	Retrieving Message Distribution Information
	Changing Message Distribution Information
	Deleting Message Distribution Information

	SCCP Third Party Address
	Custom Application Distribution
	Generic CAD Registration
	CS-1 INAP-Specific CAD Registration
	Generic CAD Message Processing
	CS-1 INAP Message Processing
	SCCP Management Considerations for CAD

	Configuring Multiple Link Congestion Levels
	Variant Differences
	Congestion States
	Implementing Multiple Link Congestion Functionality
	Multiple Congestion States Without the Congestion Priority
	Notifying the Application of Congestion
	Link Congestion Thresholds

	Priority, Sequence Control, and Quality of Service
	MTP User Flow Control
	Implementing MTP User Flow Control
	Generating a UPU Message
	Handling Incoming UPU Messages

	XUDT and XUDTS Messages (CCITT and China)
	XUDT MSU Segment Sizes
	Validating the XUDT Message Segment Size
	Programming Considerations for XUDT/XUDTS Messages

	Processing SCCP Subsystem Tests in XUDT Messages
	Handling SNM Messages with Nonzero SLCs
	The MTP Restart Process
	MTP Restart Processing Overview
	Enabling MTP Restart Functionality

	MTP Time-Controlled Changeover
	Overview of MTP TCCO Processing

	MTP Time-Controlled Diversion
	Implementing TCD Feature for ANSI Network Variant

	Implementing the MTP Management Inhibit Feature (ANSI)
	Signaling Link Selection (SLS) Message Distribution
	Implementing SLS Message Distribution
	Displaying SLS Assignments
	Enabling Random SLS Generation
	Setting SLS Bits in the MTP Routing Label

	Connection-Oriented Services (CCITT, ANSI, China)
	Processing Overview
	Connection-Oriented Messages and Primitives
	Defining Connection-Oriented Structures
	Activating Connection-Oriented Services
	Implementing Connection-Oriented Services in an Application

	Load Control
	Performing Load Control Processing
	Implementing Load Control Functionality

	Enabling Loopback Detection (CCITT)
	Enabling Transfer-Restricted Message Handling
	RSR/RSP in Response to TFR/TFP (ANSI)

	Error Handling
	Error-Handling Considerations
	Dialogue and Transaction Errors
	Component-Handling Errors
	Triggering Events and Trouble Treatment
	Adding an Event or Changing Its Treatment
	Setting Up the Trouble Treatment Table

	Application Testing, Debugging, and Troubleshooting
	Listing Active SINAP/SS7 Processes
	Evaluating Alarms and Events
	Alarm Notification and Severity
	Alarms and Software Notebook Events
	Software Notebook Events and Messages
	MTP Alarms
	Nondata Primitives

	System Log File
	User-Supplied Error Messages and Events

	The BITE Subsystem
	The BITE Monitor Facility
	Scenario Execution
	The Scenario-Execution Application (se_send)
	Using the Database Builder to Create Test MSUs
	Procedures for Running a Scenario Execution

	The BITE Log-Analysis Program

	Log-Analysis Commands Reference
	DISPLAY
	FIND
	SELECT
	SUMMARY
	QUIT

	BITE Commands Reference
	DISPLAY-SCEN
	START-DBG
	START-MON
	START-SCEN
	STOP-MON
	STOP-SCEN

	Measurement Collection Commands
	Report Measurement Considerations
	Saving the Report to a File and Printing It
	DUMP-TABLE
	REPORT-MALL
	REPORT-MMTP
	REPORT-MSCCP
	REPORT-MTCAP
	RETRIEVE-NOM
	RETRIEVE-SMR
	START-MEASURE
	START-MWRITE
	STOP-MEASURE
	STOP-MWRITE

	Sample Applications
	Compiling the Sample Applications
	Solaris Operating Systems
	HP-UX Operating Systems
	Stratus ft Linux Systems
	Sample Applications

	Sample TCAP Application
	tcsend.c
	tcrecv.c
	tcap_2.c
	Sample TCAP Applications for the TTC Variant
	The Quality of Service Main Menu Screen (TTC)
	The tcrecv.c Sample Program (TTC)
	The tcsend.c Sample Program (TTC)

	Sample SCCP Applications
	Sample MTP Applications

	CASL Function Calls
	Function Call Return Values
	The arch.h Include File
	Common Services Functions
	The register_req_t Structure
	The terminate_t Structure
	The IPC Key Structure (ipc_key_t)

	MTP and SCCP Functions
	The Main M_Block Structure (m_block_t)
	The CASL Control Structure (ca_ctrl_t)
	The Timestamp Structure (timestamp_t)
	The stamp_t Structure
	The BITE Control Structure (bi_ctrl_t)
	The TCAP Control Structure (tcap_ctrl_t)
	The SCCP Control Structure (sccp_ctrl_t)
	The MTP Control Structure (mtp_ctrl_t)
	The MTP User Data Structure (mtp_ud_t)
	The user_link_t Structure
	The user_l2_t Structure
	The user_tcoc_t Structure
	The user_chg_t Structure
	The user_cong_t Structure
	The user_trsh_t Structure
	The MSU Data Structure (msu_t)
	The Signaling Network Management Structure (snm_user_t)
	The Signaling Link Test Structure (slt_user_t)
	The SCCP User Data Structure (sccp_user_t)
	The sccp_xuser_t Structure
	The l3_event_t Structure
	The iblk_t Structure
	The Main M_Block Structure (m_block_t)
	The l3_event_t Structure
	The CASL Control Structure (ca_ctrl_t)
	The Timestamp Structure (timestamp_t)
	The stamp_t Structure
	The BITE Control Structure (bi_ctrl_t)
	The TCAP Control Structure (tcap_ctrl_t)
	The SCCP Control Structure (sccp_ctrl_t)
	The TCAP Alternative DPC Structure (tcap_alt_t)
	The MTP Control Structure (mtp_ctrl_t)
	The MTP User Data Structure (mtp_ud_t)
	The user_link_t Structure
	The user_l2_t Structure
	The user_tcoc_t Structure
	The user_chg_t Structure
	The user_cong_t Structure
	The user_trsh_t Structure
	The MSU Data Structure (msu_t)
	The Signaling Network Management Structure (snm_user_t)
	The Signaling Link Test Structure (slt_user_t)
	The SCCP User Data Structure (sccp_user_t)
	The sccp_xuser_t Structure
	The iblk_t Structure

	Connection-Oriented Functions
	Connection-Oriented Structures
	The sccp_ipc_t Structure
	The sccp_prim_t Structure
	The sccp_cldclg_t Structure
	The sccp_dt1_t Structure
	The sccp_dt2_t Structure
	The sccp_expdata_t Structure

	TCAP Functions
	The dist_cmd_t Structure
	The cust_dist_cmd_t Structure
	The dist_cmd_t Structure
	The cust_dist_id_t Structure
	The cs1_inap_v01_tbl_t Structure
	The T_Block Structure (t_block_t)
	The Component-Handling Primitive Structure (tc_chp_t)
	Dialogue-Handling Primitive Structure (tc_dhp_t)
	The tc_association_t Structure
	The acn_t Structure
	The tc_user_data_t Structure
	The Transaction-Handling Primitive Structure (tc_thp_t)
	The proc_tc_t Structure
	The entry_t Structure
	The T_Block Structure (t_block_t)
	The Component-Handling Primitive Structure (tc_chp_t)
	Dialogue-Handling Primitive Structure (tc_dhp_t)
	The tc_association_t Structure
	The acn_t Structure
	The tc_user_data_t Structure
	The Transaction-Handling Primitive Structure (tc_thp_t)

	IPC Functions
	IPC Key Structure (ipc_key_t)
	IPC Key Structure (ipc_key_t)
	IPC Key Structure (ipc_key_t)
	Main I_Block Structure (i_block_t)
	CASL Control Structure (ca_ctrl_t)
	IPC Transaction ID Structure (ipc_trans_t)
	Timestamp Structure (timestamp_t)
	The stamp_t Structure
	Node ID Structure (node_id_t)
	IPC Key Structure (ipc_key_t)
	IPC Data Structure (ipc_data_t)
	IPC Key Structure (ipc_key_t)
	Main I_Block Structure (i_block_t)
	CASL Control Structure (ca_ctrl_t)
	IPC Transaction ID Structure (ipc_trans_t)
	Timestamp Structure (timestamp_t)
	The stamp_t Structure
	The node_id_t Structure
	IPC Key Structure (ipc_key_t)
	IPC Data Structure (ipc_data_t)
	Main I_Block Structure (i_block_t)
	CASL Control Structure (ca_ctrl_t)
	IPC Transaction ID Structure (ipc_trans_t)
	Timestamp Structure (timestamp_t)
	The stamp_t Structure
	The node_id_t Structure
	IPC Key Structure (ipc_key_t)
	IPC Data Structure (ipc_data_t)
	IPC Key Structure (ipc_key_t)
	Main I_Block Structure (i_block_t)
	CASL Control Structure (ca_ctrl_t)
	IPC Transaction ID Structure (ipc_trans_t)
	Timestamp Structure (timestamp_t)
	The stamp_t Structure
	The node_id_t Structure
	IPC Key Structure (ipc_key_t)
	IPC Data Structure (ipc_data_t)
	IPC Key Structure (ipc_key_t)

	Load Control Functions
	Implementing Load Control in an Application
	Using Load Control Keywords

	BITE Functions
	Miscellaneous Functions
	IPC Key Structure (ipc_key_t)
	Main I_Block Structure (i_block_t)
	CASL Control Structure (ca_ctrl_t)
	IPC Transaction ID Structure (ipc_trans_t)
	Timestamp Structure (timestamp_t)
	The stamp_t Structure
	The node_id_t Structure
	IPC Key Structure (ipc_key_t)
	IPC Data Structure (ipc_data_t)
	IPC Key Structure (ipc_key_t)

	SINAP/SS7 MML Command Summary
	SINAP/SS7 Environment Variables
	Defining SINAP/SS7 Environment Variables
	Enabling Environment Variables
	Disabling Environment Variables

	The SINAP Environment File
	sinap_env_var.sh (for Bourne Shell)

	CASL Error Messages
	UNIX and SS7 Driver Errors
	Node Management Errors
	CASL Errors
	TCAP Errors
	SCCP Errors
	MTP Errors
	Built-In Test Environment (BITE) Errors
	Application Errors

	Index

