Stratus® ftServer® 28x0, 48x0, and 68x0 Systems:
Site Planning Guide
Notice

The information contained in this document is subject to change without notice.

UNLESS EXPRESSLY SET FORTH IN A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED REPRESENTATIVE OF STRATUS TECHNOLOGIES, STRATUS MAKES NO WARRANTY OR REPRESENTATION OF ANY KIND WITH RESPECT TO THE INFORMATION CONTAINED HEREIN, INCLUDING WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PURPOSE. Stratus Technologies assumes no responsibility or obligation of any kind for any errors contained herein or in connection with the furnishing, performance, or use of this document.

Software described in Stratus documents (a) is the property of Stratus Technologies Bermuda, Ltd. or the third party, (b) is furnished only under license, and (c) may be copied or used only as expressly permitted under the terms of the license.

Stratus documentation describes all supported features of the user interfaces and the application programming interfaces (API) developed by Stratus. Any undocumented features of these interfaces are intended solely for use by Stratus personnel and are subject to change without warning.

This document is protected by copyright. All rights are reserved. Stratus Technologies grants you limited permission to download and print a reasonable number of copies of this document (or any portions thereof), without change, for your internal use only, provided you retain all copyright notices and other restrictive legends and/or notices appearing in the copied document.

Stratus, the Stratus logo, ftServer, and the ftServer logo are registered trademarks of Stratus Technologies Bermuda, Ltd. The Stratus Technologies logo, the Stratus 24 x 7 logo, ActiveService, ftScalarable, Automated Uptime, and Active Upgrade are trademarks of Stratus Technologies Bermuda, Ltd.

The registered trademark Linux is used pursuant to a sublicense from the Linux Mark Institute, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis. FLEXlm is a registered trademark of Macrovision Corporation. VMware, vSphere, ESX, ESXi, vCenter Server, and vMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions. QLogic, the QLogic logo SANbox, InfiniPath and SANblade are trademarks or registered trademarks of QLogic Corporation.

All other trademarks are the property of their respective owners.

Manual Name: Stratus ftServer 28x0, 48x0, and 68x0 Systems: Site Planning Guide
Part Number: R684
Revision Number: 06A
Software Release Number: Automated Uptime Layer for Windows-based ftServer Systems, Release 11.0.0.0
Automated Uptime Layer for Linux-based ftServer Systems, Release 11.0.4.0
Automated Uptime Layer for VMware vSphere-based ftServer Systems, Release 6.5.0.0

Publication Date: September 2019

Stratus Technologies, Inc.
5 Mill and Main Place, Suite 500
Maynard, Massachusetts 01754-2660

© 2019 Stratus Technologies Bermuda, Ltd. All rights reserved.
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Site Planning for ftServer 28x0, 48x0, and 68x0 Systems</td>
<td>1-1</td>
</tr>
<tr>
<td>Site Planning Overview</td>
<td>1-1</td>
</tr>
<tr>
<td>The Stratus ActiveService Network</td>
<td>1-3</td>
</tr>
<tr>
<td>Site Planning Checklist</td>
<td>1-3</td>
</tr>
<tr>
<td>System Documentation</td>
<td>1-7</td>
</tr>
<tr>
<td>Safety Notices</td>
<td>1-10</td>
</tr>
<tr>
<td>Consignes de sécurité</td>
<td>1-13</td>
</tr>
<tr>
<td>2. Electrical Power Planning</td>
<td>2-1</td>
</tr>
<tr>
<td>Redundant Power Sources</td>
<td>2-1</td>
</tr>
<tr>
<td>AC Power and HVAC Service Requirements</td>
<td>2-2</td>
</tr>
<tr>
<td>AC Power Outlet Requirements</td>
<td>2-4</td>
</tr>
<tr>
<td>Connecting a System Directly to Separate AC Sources</td>
<td>2-6</td>
</tr>
<tr>
<td>Selecting a UPS Unit for ftServer Systems</td>
<td>2-8</td>
</tr>
<tr>
<td>Communicating with a UPS over a Network</td>
<td>2-8</td>
</tr>
<tr>
<td>Connecting a System Directly to a UPS</td>
<td>2-9</td>
</tr>
<tr>
<td>Power Cord Summary</td>
<td>2-10</td>
</tr>
<tr>
<td>Power Cords for ftServer Systems and Peripheral Components</td>
<td>2-10</td>
</tr>
<tr>
<td>PDU Power Cords</td>
<td>2-12</td>
</tr>
<tr>
<td>Grounding Requirements</td>
<td>2-13</td>
</tr>
<tr>
<td>3. Space Planning</td>
<td>3-1</td>
</tr>
<tr>
<td>Room Requirements</td>
<td>3-1</td>
</tr>
<tr>
<td>Planning for Cables</td>
<td>3-3</td>
</tr>
</tbody>
</table>
4. Communications Line Planning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Host Bus Adapters</td>
<td>4-2</td>
</tr>
<tr>
<td>Connections from Storage Systems to ftServer Systems</td>
<td>4-2</td>
</tr>
<tr>
<td>Fibre Channel Connections</td>
<td>4-2</td>
</tr>
<tr>
<td>iSCSI Connections</td>
<td>4-4</td>
</tr>
<tr>
<td>Ethernet Cables</td>
<td>4-5</td>
</tr>
<tr>
<td>Category-6/Category-6A Cables</td>
<td>4-8</td>
</tr>
<tr>
<td>Telephone Line Connections</td>
<td>4-9</td>
</tr>
</tbody>
</table>

5. Rack Configuration Planning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using PDUs</td>
<td>5-1</td>
</tr>
<tr>
<td>Determining PDU Requirements</td>
<td>5-2</td>
</tr>
<tr>
<td>Example of PDU Usage Calculation</td>
<td>5-4</td>
</tr>
</tbody>
</table>

6. Cabinet and Monitor Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Requirements</td>
<td>6-1</td>
</tr>
<tr>
<td>Monitor Requirements</td>
<td>6-5</td>
</tr>
</tbody>
</table>

Appendix A. System Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Specifications</td>
<td>A-1</td>
</tr>
<tr>
<td>PCIe Adapter Specifications</td>
<td>A-7</td>
</tr>
<tr>
<td>AAP87600 PDU Specifications</td>
<td>A-8</td>
</tr>
</tbody>
</table>

Appendix B. Electrical Circuit and Wiring Information

<table>
<thead>
<tr>
<th>Information</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Protection Requirements</td>
<td>B-1</td>
</tr>
<tr>
<td>Grounding Considerations</td>
<td>B-1</td>
</tr>
<tr>
<td>Circuit Wiring Diagrams</td>
<td>B-2</td>
</tr>
<tr>
<td>Electrical Power Connectors</td>
<td>B-9</td>
</tr>
<tr>
<td>PDU Safety Considerations</td>
<td>B-10</td>
</tr>
</tbody>
</table>

Index

Index-1
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>System Connected Directly to AC Power</td>
<td>2-6</td>
</tr>
<tr>
<td>2-2</td>
<td>PDUs Connected Directly to AC Power</td>
<td>2-7</td>
</tr>
<tr>
<td>2-3</td>
<td>Rack-Mountable Systems: A-Side Power Connected Directly to a UPS</td>
<td>2-9</td>
</tr>
<tr>
<td>6-1</td>
<td>Rail Clearance</td>
<td>6-4</td>
</tr>
<tr>
<td>A-1</td>
<td>ftServer 28x0, 48x0, 68x0 System: CPU-I/O Enclosures: Front View</td>
<td>A-2</td>
</tr>
<tr>
<td>A-2</td>
<td>ftServer 28x0, 48x0, 68x0 System: Rear View</td>
<td>A-3</td>
</tr>
<tr>
<td>A-3</td>
<td>AAP87600 PDU</td>
<td>A-9</td>
</tr>
<tr>
<td>B-1</td>
<td>Star Ground Example</td>
<td>B-2</td>
</tr>
<tr>
<td>B-2</td>
<td>PDU Power Input Labeling</td>
<td>B-3</td>
</tr>
<tr>
<td>B-3</td>
<td>ftServer Enclosure Power Input Labeling</td>
<td>B-3</td>
</tr>
<tr>
<td>B-4</td>
<td>Single-Phase 120V AC Circuit Connection</td>
<td>B-4</td>
</tr>
<tr>
<td>B-5</td>
<td>Single-Phase 240V AC Circuit Connection</td>
<td>B-5</td>
</tr>
<tr>
<td>B-6</td>
<td>Split-Phase 120/240 Volts AC Circuit Connection</td>
<td>B-6</td>
</tr>
<tr>
<td>B-7</td>
<td>Three-Phase 208V AC, Y-, or D-Source Circuit Connection, Phase-to-Phase</td>
<td>B-7</td>
</tr>
<tr>
<td>B-8</td>
<td>Three-Phase 380V AC, Y-, or D-Source Circuit Connection, Phase-to-Neutral</td>
<td>B-8</td>
</tr>
</tbody>
</table>
Tables

Table 1-1. Ethernet PCIe Adapters
Table 1-2. ftServer 28x0, 48x0, and 68x0 System Documentation
Table 1-3. Additional System Documentation for Windows-based Systems
Table 1-4. Additional System Documentation for Linux-based Systems
Table 1-5. Additional System Documentation for VMware vSphere-based Systems
Table 2-1. Worksheet: Determining A-Side Power Requirements
Table 2-2. Worksheet: Determining B-Side Power Requirements
Table 2-3. Worksheet: Determining External Power Requirements
Table 2-4. HVAC Requirements
Table 2-5. Worksheet: A-Side External Power Outlet Requirements: PDUs Used
Table 2-6. Worksheet: B-Side External Power Outlet Requirements: PDUs Used
Table 2-7. Worksheet: A-Side External Power Outlet Requirements: No PDUs
Table 2-8. Worksheet: B-Side External Power Outlet Requirements: No PDUs
Table 2-9. Power Cords - ftServer Systems and Peripheral Components to AC Power
Table 2-10. Power Cords Between ftServer Systems or Storage Systems and a UPS
Table 2-11. Power Cords to Connect PDUs Directly to AC Power Mains
Table 2-12. Power Cords to Connect PDUs to a UPS
Table 2-13. System Power (Jumper) Cables to Connect ftServer Systems to PDUs
Table 4-1. HBAs Supported by ftServer 28x0, 48x0, and 68x0 Systems
Table 4-2. Optical FC Cables
Table 4-3. Customer-Supplied Ethernet Cables
Table 5-1. Current and Rack-Space Requirements
Table 5-2. Calculating A-Side PDU and Rack-Space Requirements
Table 5-3. Example: Current and Rack-Space Requirements (208 volts)
<table>
<thead>
<tr>
<th>Table 5-4. Example: Calculating A-Side PDU and Rack-Space Requirements</th>
<th>5-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A-1. Cabinet Dimensions</td>
<td>A-4</td>
</tr>
<tr>
<td>Table A-2. ftServer 28x0, 48x0, 68x0 System Unit Specifications</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-3. PCIe Adapter Specifications</td>
<td>A-7</td>
</tr>
<tr>
<td>Table A-4. AAP87600 PDU: Specifications</td>
<td>A-10</td>
</tr>
<tr>
<td>Table B-1. Connectors for AC Power Outlets</td>
<td>B-9</td>
</tr>
<tr>
<td>Tables</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
</tbody>
</table>

viii Stratus xServer 28x0, 48x0, and 68x0 Systems: Site Planning Guide (R684)
The *Stratus ftServer 28x0, 48x0, and 68x0 Systems: Site Planning Guide* (R684) documents the site requirements and customer responsibilities related to preparing a site for the installation of ftServer 28x0, 48x0, and 68x0 systems.

This document is intended for those responsible for preparing a site for the installation of an ftServer 28x0, 48x0, or 68x0 system.

Revision Information

This document is a revision. The revision has the following changes:

- It removes compliance information from this document. See *Regulatory Notice* for information about the new location of compliance information.
- It contains corrections to the *Environmental* section of *Table A-2*.

Notation Conventions

This document uses the notation conventions described in this section.

Warnings, Cautions, Notices, and Notes

Warnings, cautions, notices, and notes provide special information and have the following meanings:

![WARNING](image)

A warning indicates a hazardous situation that, if not avoided, could result in death or serious injury.

![AVERTISSEMENT](image)

Un avertissement indique une situation dangereuse qui, si pas évitée, pourrait entraîner la mort ou des blessures graves.

![CAUTION](image)

A caution indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.
MISE EN GARDE

Une mise en garde indique une situation dangereuse qui, si pas évitée, pourrait entraîner des blessures mineures ou modérées.

NOTICE

A notice indicates information that, if not acted on, could result in damage to a system, hardware device, program, or data, but does not present a health or safety hazard.

NOTE

A note provides important information about the operation of an ftServer system or related equipment or software.

Typographical Conventions

The following typographical conventions are used in this document:

- The bold font emphasizes words in text or (for Windows-based systems) indicates text that you type, the name of a screen object, or the name of a programming element. For example:

 Before handling or replacing system components, make sure that you are properly grounded by using a grounded wrist strap.

 In the **System Properties** dialog box, click the **Hardware** tab.

 Call the **RegisterDeviceNotification** function.

- The italic font introduces new terms and (for Windows-based systems) indicates programming and command-line arguments that the user supplies. For example:

 Many hardware components are **customer-replaceable units** (CRUs), which can be replaced on-site by system administrators with minimal training or tools.

  ```
  copy filename1 filename2
  ```

 Pass a pointer for the **NotificationFilter** parameter
• The monospace font indicates sample program code and output, including message text. For example:

 #include <iostream.h>
 The operation completed successfully.

The monospace font also represents text that would appear on your display screen when working in a text-based console on a Linux-based or VMware vSphere-based system. The monospace bold font represents text you must type in examples that contain both user input and system output. The monospace italic font represents terms in command lines that are to be replaced by literal values. For example:

 To display the state of a CPU enclosure, type a command in the following format:

 /opt/ft/bin/ftsmaint ls n

 If you type /opt/ft/bin/ftsmaint ls 0 at the prompt, the following output appears:

 H/W Path : 0
 Description : Combined CPU/IO

• The percent sign (%), dollar sign ($), and number sign (#) are default prompt signs that have a specific meaning at the command prompt of a Linux-based or VMware vSphere-based system. Although a prompt is sometimes shown at the beginning of a command line as it would appear on the screen, you do not type it.

 – % or $ indicates you are logged in to a standard user account and are subject to certain access limitations. The prompt displayed on the screen depends on your shell environment, for example, csh (%) or bash ($).

 – # indicates you are logged in to the system administrator account and have superuser access. Users of this account are referred to as root. The # prompt sign used in an example indicates the command can be issued only by root.
Getting Help

If you have a technical question about ftServer system hardware or software, try these online resources first:

- **Online documentation at the StrataDOC Web site.** Stratus provides complimentary access to StrataDOC, an online-documentation service that enables you to view, search, download, and print customer documentation. You can access StrataDOC at the following Web site:

 http://stratadoc.stratus.com

- **Online support from Stratus Customer Service.** You can find the latest technical information about an ftServer system in the Stratus Customer Service Portal at the following Web site:

 http://www.stratus.com/go/support

 The Service Portal provides access to Knowledge Base articles for all Stratus product lines. You can locate articles by performing a simple or advanced keyword search, viewing recent articles or top FAQs, or browsing a product and category.

 To log in to the Service Portal, enter your employee user name and password or, if you have not been provided with a login account, click **Register Account.** When registering a new account, ensure that you specify an email address from a company that has a service agreement with Stratus.

- **Online product support for Microsoft® products.** Your primary source for support is the computer manufacturer who provided your software, or an authorized Microsoft Support Provider. You can also find the latest technical information about Microsoft Windows® and other Microsoft products through online product support at the Microsoft Help and Support Web site:

 http://support.microsoft.com/

- **Online product support for Red Hat® Linux® products.** Your primary source for support is the manufacturer who provided your software, or Red Hat Global Support Services. You can also find the latest technical information about Red Hat Enterprise and Standard Linux through online product support at the Red Hat Support Web site:

 http://www.redhat.com/apps/support/

- **Online product support for VMware vSphere® products.** You can find the latest technical information about VMware vSphere through online product support at the VMware Support Web site:

 http://www.vmware.com/support/
If you cannot resolve your questions with these online self-help resources, and the ftServer system is covered by a service agreement, contact the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative. To contact the CAC, use the Service Portal to log a support request. Click Customer Support and Add Issue, and then complete the Create Issue form. A member of our Customer Service team will be glad to assist you.

Commenting on This Manual

You can comment on this manual using one of the following methods. When you submit a comment, be sure to provide the manual’s name and part number, a description of the problem, and the location in the manual where the affected text appears.

- From StrataDOC, click the site feedback link at the bottom of any page. In the pop-up window, answer the questions and click Submit.
- From any email client, send email to comments@stratus.com.
- From the Stratus Customer Service Portal, log on to your account and create a new issue.

Stratus welcomes any corrections and suggestions for improving this manual.

Regulatory Notice

All regulatory notices are provided in Compliance Information for Stratus Products (R002G), which is available on StrataDOC:

https://stratadoc.stratus.com/compliance_info/Compliance_Information_for_Stratus_Products.htm
Preface
For an overview of required information and tasks you need to perform to prepare a site for ftServer 28x0, 48x0, and 68x0 systems, see:

- “Site Planning Overview” on page 1-1
- “Site Planning Checklist” on page 1-3
- “System Documentation” on page 1-7
- “Safety Notices” on page 1-10

Site Planning Overview

Site planning for fault-tolerant systems includes:

- **Purchasing an appropriate cabinet and monitor**
 Provide a monitor that meets the system’s requirements.

 NOTE
 A monitor, keyboard, and mouse are required to install Automated Uptime Layer.

 If you do not purchase a cabinet from Stratus, provide a cabinet that meets the system’s requirements.

- **Electrical power planning**
 Provide electrical power sources that meet the requirements of the system and optional components, optionally including the purchase of a qualified uninterruptible power supply (UPS).
Site Planning Overview

- **Space planning**
 Provide adequate space for the system or cabinet and for a desk or table to accommodate components outside a cabinet. Also provide enough space for servicing the systems and components.

 Provide an environment that meets the system’s requirements for ambient temperature and air quality.

- **Communications line planning**
 Provide sufficient network and analog telephone lines and plan the location of the system and external components to accommodate the lengths of the connecting cables.

- **Rack space planning**
 Ensure that the power distribution units (PDUs) supply sufficient power to the components you have purchased and that you have sufficient space available in an appropriate cabinet.

Use the “Site Planning Checklist” on page 1-3 to track your site preparation progress.

For information about obtaining documents related to your ftServer system, see “System Documentation” on page 1-7.

During the site planning and preparation processes, work closely with your facilities group or contractor to determine space, power, and environmental requirements. Enlist their help to provide a suitable location with sufficient alternating current (AC) power, heating, ventilation and air conditioning (HVAC) capabilities, and network and telephone connections.

If your system is covered by a service agreement and you need help with site planning, contact the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative. If you have a contract with the CAC or your authorized Stratus service representative to install the system, contact them after you have prepared the installation site and moved the system to the site. For more information about the CAC, see Getting Help in the Preface or the http://www.stratus.com/go/support Web site.

See Appendix A for the specifications of the base ftServer systems and of PDUs. See the *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for specifications of other components.
The Stratus ActiveService Network

The Stratus ActiveService Network (ASN) is a network that allows your ftServer system to automatically report problems to the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative, and that can allow the CAC or your authorized Stratus service representative to remotely diagnose, troubleshoot, and resolve problems online.

To enable connectivity to the ASN, you connect a pair of partnered Ethernet ports, one from each CPU-I/O enclosure in your system, to a network that has Internet access. For additional protection, if you connect the Ethernet port of the VTM in each enclosure to a network with Internet access, the VTMs can communicate with the ASN even when the host operating system is not running or is unresponsive.

If Internet access is not available, or if you wish to have a backup method of connecting to the ASN, you can also connect the optional ASN modem to your system, which allows either the host operating system or a VTM to communicate with the ASN through a telephone dialup connection.

Site Planning Checklist

Referring to the information in this document, answer the following questions:

Planning for ASN Connectivity

- Will your system connect to the ASN? If so, will it connect over an ASN modem or the Internet?
- If your system will use the Internet to connect to the ASN, do you have an Internet connection available?
- If your system will use an ASN modem, do you have an external analog telephone line available for the ASN modem?

NOTE
A dedicated phone line provides the most reliable service. ASN calls routed through a PBX may be slow due to load on the PBX, or may not complete successfully due to disconnections. If you must use a PBX, do not route the telephone extension through a switchboard; instead, provide a direct-dial analog number.

- Do you have an additional telephone connection and telephone near the operator’s station for voice communications when calling for support?
Planning for Network Connectivity
- All ftServer 28x0, 48x0, and 68x0 systems contain four embedded 1-gigabit Ethernet (GbE) ports that operate at 10 or 100 Megabits-per-second (Mbps) or at 1 gigabit-per-second (Gbps). In addition, four embedded 10-GbE ports are standard on ftServer 48x0 and ftServer 68x0 systems. Also, you can add optional Ethernet PCI adapters to provide additional Ethernet bandwidth.

In Table 1-1, indicate the number of Ethernet ports you will use, and plan network connections accordingly.

Table 1-1. Ethernet PCIe Adapters

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Number of Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Dual-Port 1GbE Base-T Ethernet PCI-Express Adapters (2)</td>
<td>4</td>
</tr>
<tr>
<td>Embedded Dual-Port 10-Gigabit Ethernet PCI-Express Adapters (2)†</td>
<td></td>
</tr>
<tr>
<td>U113 Dual-Port 10/100/1000 Base-T Ethernet PCI-Express Adapter</td>
<td></td>
</tr>
<tr>
<td>U115 Dual-Port 10-Gbps Base-T Ethernet PCI-Express Adapter (Windows- and VMware vSphere-based systems)</td>
<td></td>
</tr>
<tr>
<td>U116A Dual-Port Low-Latency 10GbE SFP+ PCI-Express Adapter with PTP (Linux-based systems)</td>
<td></td>
</tr>
<tr>
<td>U117 Dual-Port Fiber 10-Gbps Ethernet PCI-Express Adapter (Windows- and VMware vSphere-based systems)‡</td>
<td></td>
</tr>
<tr>
<td>Total Number of Ports</td>
<td></td>
</tr>
</tbody>
</table>

† Standard on ftServer 48x0 and ftServer 68x0 systems, but not available on ftServer 28x0 systems. See “Category-6/Category-6A Cables” on page 4-8 for additional site-planning requirements for embedded 10-GbE ports.
‡ Available only on ftServer 4810 and 6810 systems.

Planning for External Storage Options
- Will your system connect to external Fibre Channel storage enclosures? If so, the system requires a pair of Fibre Channel HBAs, which are provided when you order the storage enclosure. If you order the enclosure at the same time you order the system, the required Fibre Channel HBAs are installed at the factory. See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for descriptions of the storage enclosures provided by Stratus and the names of the PCI adapters required for supported storage enclosures.
NOTES

1. ftServer systems support ftScalable Storage G3 systems, ftScalable Storage G2 systems, and EMC® CLARiiON® or Symmetrix® storage systems.

2. If you plan to connect an EMC storage system to your ftServer system, ensure that you receive approval for your configuration by submitting a request through EMC’s RPQ process to guarantee EMC support.

☐ Will your system connect to external Fibre Channel storage enclosures in a storage area network (SAN) configuration? If so, do you have a minimum of two switches that can accommodate the cables from the pair of Fibre Channel HBAs in each ftServer system?

NOTE

Stratus has successfully tested the Brocade® 6510 Fibre Channel switches. Other model switches may also be compatible as long as they can be configured in the same manner as the Brocade 6510 switch.

☐ Will your system have an iSCSI connection to ftScalable Storage G3 or EMC CLARiiON storage systems? If so, ensure that you supply two Ethernet switches that can accommodate the cables from the network adapters in each ftServer system.

☐ Set up your system to communicate with a UPS.

Planning for Optional Components

☐ Will you be using an external modem?

☐ Will you connect a SAS tape drive (customer-supplied) to your system?

NOTE

VMware vSphere-based systems do not support tape drives.

Planning AC Power

☐ Will you provide power to both sides of the system through a pair of PDUs?

☐ Will you protect the system power with a UPS?

☐ What optional components will you use?

☐ What are the AC power requirements of your system, including all optional components?
Site Planning Checklist

- What are the lengths and types of the power cords that are provided for the PDUs or system, and optional components?
- What type of AC receptacles do you need to provide?
- Is the AC power service wired properly?

Planning Space for Your System

- Provide a table or desk for the monitor.
- Will your system and its external components fit where you plan to place them?
- What is the height of the cabinet you will use, and what is the total height of the systems and components that will be installed in the cabinet? Will the items fit into the cabinet? What components will be located outside the cabinet?
- What are the lengths and types of the interface and communications cables that will connect to your system?
- Have you created a sketch of how you plan to arrange the system at the installation site? Consider the available cable lengths, the placement of external devices, and the location of network and voice communication connections.

On the sketch, show the following:
- Location of the system and its external components
- Power cords, and telephone and interface cables
- Locations of AC power receptacles, phone jacks, Ethernet jacks, switches, and hubs

NOTE

Make sure that all cords and cables are long enough to reach between their respective components and connectors. Route all cables out of the way of foot traffic.

Working with Other Groups

- Have you provided your facilities group and contractors with the sketch of how you plan to arrange the system and copies of the following?
 - “AC Power and HVAC Service Requirements” on page 2-2
 - “Redundant Power Sources” on page 2-1
 - Tables 2-1, 2-2, and 2-3, worksheets for determining AC power requirements
 - Tables 2-5 and 2-6 (if you are using PDUs) or Tables 2-7 and 2-8 (if you are not using PDUs), worksheets for determining the number of external power outlets required
Appendix B, “Electrical Circuit and Wiring Information”

Any notes you have about site planning

Have you reviewed and discussed the requirements with the facilities personnel and contractors to ensure that all site modifications are understood and implemented?

If you have any questions about the number and types of components, contact your Stratus account representative or distributor.

System Documentation

Table 1-2 lists the hardware documents for ftServer 28x0, 48x0, and 68x0 systems, and the tasks described in each document. Also see Table 1-3 (for Windows-based systems), Table 1-4 (for Linux-based systems), or Table 1-5 (for VMware vSphere-based systems).

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratus ActiveService Network Configuration Guide (R072)</td>
<td>Configure your system for support by the ASN</td>
</tr>
<tr>
<td>Stratus ftServer Systems: PCI Adapter Guide (R461)</td>
<td>Install, configure, replace, or troubleshoot PCI adapters</td>
</tr>
<tr>
<td></td>
<td>View or change BIOS settings in the system BIOS setup utility</td>
</tr>
<tr>
<td></td>
<td>Use the Unified Extensible Firmware Interface (UEFI) to configure the BMC and configure user accounts</td>
</tr>
<tr>
<td>Stratus ftServer Systems: Peripherals Site Planning Guide (R582)</td>
<td>Find information about optional equipment that you have ordered with your system that is needed to complete site preparation</td>
</tr>
<tr>
<td>Stratus ftServer Virtual Technician Module User’s Guide (R642)</td>
<td>Use the VTM console to remotely control, monitor, and troubleshoot your system</td>
</tr>
<tr>
<td>Read Me First: Unpacking ftServer 28x0, 48x0, and 68x0 Systems (R685)</td>
<td>Inspect and unpack ftServer system hardware that you install in your cabinet</td>
</tr>
</tbody>
</table>
Table 1-3 lists additional documentation for Windows-based systems.

Table 1-3. Additional System Documentation for Windows-based Systems

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
</table>
Learn the latest information about the product
Learn about significant known problems and how to work around or avoid the problems |
| **Stratus Automated Uptime Layer for Windows-based ftServer Systems: Installation and Configuration** (R002W) | Respond to Mini-Setup questions
Install or reinstall Automated Uptime Layer and Windows Server software
Install the operating system on your new system
Upgrade software and BIOS and BMC firmware
Configure Automated Uptime Layer
Set up your system to communicate with a UPS
Configure VTMs |
Table 1-3. Additional System Documentation for Windows-based Systems (Continued)

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratus ftServer System Administrator's Guide for the Windows Operating System (R014W)</td>
<td>Use tools that are provided by the operating system software, Automated Uptime Layer, and other vendors to manage and troubleshoot the system</td>
</tr>
<tr>
<td></td>
<td>Manage data-storage devices</td>
</tr>
</tbody>
</table>

Table 1-4 lists additional documentation for Linux-based systems.

Table 1-4. Additional System Documentation for Linux-based Systems

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes: Stratus Automated Uptime Layer for Linux-based ftServer Systems (R005L)</td>
<td>Learn the contents of the latest Automated Uptime Layer release</td>
</tr>
<tr>
<td></td>
<td>Learn the latest information about the product</td>
</tr>
<tr>
<td></td>
<td>Learn about significant known problems and how to work around or avoid the problems</td>
</tr>
<tr>
<td>Stratus Automated Uptime Layer for Linux-based ftServer Systems: Installation and Configuration (R013L)</td>
<td>Install and update the Linux operating system, Automated Uptime Layer, and BIOS and BMC firmware</td>
</tr>
<tr>
<td></td>
<td>Configure VTMs</td>
</tr>
<tr>
<td></td>
<td>Set up your system to communicate with a UPS</td>
</tr>
<tr>
<td>Stratus ftServer System Administrator's Guide for the Linux Operating System (R003L)</td>
<td>Use tools that are provided by the operating system software, Automated Uptime Layer, and other vendors to manage and troubleshoot the system</td>
</tr>
<tr>
<td></td>
<td>Manage network connections and data storage devices</td>
</tr>
<tr>
<td></td>
<td>Install and configure the Simple Network Management Protocol</td>
</tr>
</tbody>
</table>

Table 1-5 lists additional documentation for VMware vSphere-based systems.
Safety Notices

<table>
<thead>
<tr>
<th>Document</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes: Stratus Automated Uptime Layer for VMware vSphere-based ftServer Systems (R001E)</td>
<td>Learn the contents of the latest Automated Uptime Layer release
Learn the latest information about the product
Learn about significant known problems and how to work around or avoid the problems</td>
</tr>
<tr>
<td>Stratus Automated Uptime Layer for VMware vSphere-based ftServer Systems: Installation and Configuration (R004E)</td>
<td>Install, update, and configure VMware ESXi™ Automated Uptime Layer, and BIOS and BMC firmware
Configure VTMs
Set up your system to communicate with a UPS</td>
</tr>
<tr>
<td>Stratus ftServer System Administrator’s Guide for VMware vSphere (R002E)</td>
<td>Use tools that are provided by VMware vSphere, Automated Uptime Layer, and other vendors to manage and troubleshoot the system
Manage data storage devices</td>
</tr>
<tr>
<td>VMware vSphere Storage†</td>
<td>Learn how to set up and manage a system using VMware vSphere with Fibre Channel storage area networks (SANs) or iSCSI storage systems</td>
</tr>
</tbody>
</table>

Safety Notices

WARNING

Risk of explosion if battery is replaced by an incorrect type. Dispose of used batteries according to the instructions provided with the battery.

WARNING

The system uses two power cords to provide redundant sources of power. To fully remove power from a system, disconnect both power cords. To reduce the risk that electrical shock could injure a person or damage the system, exercise caution when working in the unit even when only one power cord is connected.
WARNING

To prevent a cabinet from tipping over and injuring a person or damaging the system, start installing systems from the bottom of the cabinet upward.

WARNING

If you replace the modem cable supplied by Stratus, use a cable with a gauge of at least 26 AWG to prevent fire.

WARNING

To avoid fire, electric shock, and equipment breakdown, prevent water or foreign objects from getting into the equipment. Do not let water or foreign objects, such as pins or paper clips, enter the equipment.

WARNING

To prevent fire or current leakage, do not plug the power cord into a nonconforming outlet. Use a power outlet with appropriate voltage and power type, as specified in this guide.

WARNING

Do not install the equipment where you may need an extension cord. Use of an extension cord that does not meet the power specifications introduces a risk of overheating that could lead to a fire.

WARNING

Disconnect the power cords from the server or power source before you install or relocate the equipment. All voltage is removed only when the power cords are disconnected.

WARNING

Do not install or store the equipment in an unsuitable place. Install or store the equipment in a place that meets
the requirements specified in this guide. Avoid the following conditions to avoid the risk of fire:

- Dust
- High humidity, such as a place near a boiler
- Direct sunlight
- Instability, such as places not stabilized against earthquakes

WARNING

Do not use or store this product in a corrosive environment.

Avoid using or storing this product in an environment which may contain corrosive gases. Such gases include, but are not limited to, sulfur dioxide, hydrogen sulfide, nitrogen dioxide, chlorine, ammonia or ozone.

Avoid installing this product in a dusty environment or one that may contain corrosive materials such as sodium chloride or sulfur.

Avoid installing this product in an environment having excessive metal flakes or conductive particles in the air.

Such environments may cause corrosion or short circuits within this product, resulting in not only damage to this product, but also fire.

If there are any concerns regarding the environment at the planned site of installation or storage, please contact your CAC or your authorized Stratus service representative.

WARNING

When installing a system or CRU, always connect the power cord first, before adding communications cables. The power cord contains the protective earth connection; it should be connected first and disconnected last, to maintain a grounded chassis.

Before attempting to remove a CRU from the system chassis, make sure to power off the CRU, disconnect communications cables, and then disconnect the power cord.
Never connect a power cord to a CRU when it is not located within the system chassis.

WARNING
Do not disassemble, repair, or alter the server, except as described in the *Stratus ftServer 28x0, 48x0, and 68x0 Systems: Operation and Maintenance Guide* (R683). There is a risk of an electric shock or fire as well as equipment malfunction if you do not observe the instructions in the *Stratus ftServer 28x0, 48x0, and 68x0 Systems: Operation and Maintenance Guide* (R683).

WARNING
Do not place any object on top of the server. The object may fall off and cause injuries, damage to hardware, or a fire.

CAUTION
Do not leave the DVD tray ejected. Dust may enter the equipment and cause it to malfunction. The ejected tray may also become a cause of injuries.

Consignes de sécurité

AVERTISSEMENT
Risque d’explosion si la batterie est remplacée par une autre de type incorrect. Jeter les batteries usagées conformément aux instructions fournies avec la batterie.

AVERTISSEMENT
Le système utilise deux cordons d’alimentation pour fournir des sources d’alimentation redondantes. Pour mettre un système entièrement hors tension, débrancher les deux cordons d’alimentation. Pour réduire le risque qu’un choc électrique puisse blesser une personne ou endommager le système, utiliser l’unité avec prudence même lorsqu’un seul cordon d’alimentation est branché.
AVERTISSEMENT

Pour éviter qu'une armoire ne bascule et blesse une personne ou endommage le système, commencer par installer les systèmes de bas en haut de l'armoire.

AVERTISSEMENT

En cas de remplacement du câble de modem fourni par Stratus, utiliser un câble homologué UL dont le calibre est d'au moins 26 AWG afin de prévenir les incendies.

AVERTISSEMENT

Pour éviter tout risque d'incendie, de choc électrique et de panne de matériel, empêcher l'eau ou les objets étrangers d'entrer dans l'équipement. Ne pas laisser d'eau ou d'objets étrangers, tels que des agrafes ou des trombones, entrer dans l'équipement.

AVERTISSEMENT

Pour éviter tout risque d'incendie ou de fuite de courant, ne pas brancher le cordon d'alimentation dans une prise non conforme. Utiliser une prise de courant avec une tension et un type d'alimentation appropriés, tel qu'indiqué dans ce guide.

AVERTISSEMENT

Ne pas installer l'équipement dans un lieu où une rallonge pourrait être nécessaire. L'utilisation d'une rallonge ne respectant pas les spécifications électriques présente un risque de surchauffe pouvant provoquer un incendie.

AVERTISSEMENT

Débrancher les cordons d'alimentation du serveur ou de la source d'alimentation avant d'installer ou de déplacer l'équipement. Toute la tension n'est coupée que lorsque les cordons d'alimentation sont débranchés.
AVERTISSEMENT

Ne pas installer ou entreposer l’équipement dans un lieu inadapté. Installer ou entreposer l’équipement dans un lieu qui satisfait aux exigences spécifiées dans ce guide. Éviter les situations suivantes pour empêcher le risque d’incendie:
• Poussière
• Forte humidité, comme à proximité d’une chaudière
• Exposition directe au soleil
• Instabilité, comme des endroits non stabilisés contre les tremblements de terre

AVERTISSEMENT

Ne pas utiliser ou entreposer ce produit dans un environnement corrosif.

Éviter d’installer ce produit dans un environnement poussiéreux ou qui pourrait contenir des matériaux corrosifs, tels que du chlorure de sodium ou du soufre.

Éviter d’installer ce produit dans un environnement qui pourrait contenir des éclats de métal excessifs ou des particules conductrices dans l’air.

Ces environnements peuvent causer une corrosion ou des courts-circuits dans ce produit, ce qui endommage non seulement le produit, mais peut aussi provoquer un incendie.

Pour toute question concernant l’environnement sur le site planifié de l’installation ou de l’entreposage, veuillez communiquer avec votre centre d’assistance à la clientèle (CAC).
Consignes de sécurité

AVERTISSEMENT

À l'installation d'un système ou d'une unité remplaçable par le client (CRU), commencez toujours par brancher le cordon d'alimentation, avant d'ajouter les câbles de communications. Le cordon d'alimentation est équipé d'une connexion de terre de protection; il doit être branché en premier et débranché en dernier afin de conserver un châssis relié à la terre.

Avant d'essayer d'enlever une CRU du châssis du système, veillez à bien mettre la CRU hors tension, à débrancher les câbles de communications, puis à débrancher le cordon d'alimentation.

Ne jamais brancher un cordon d'alimentation à une CRU lorsqu'elle n'est pas à l'intérieur du châssis du système.

AVERTISSEMENT

Ne pas démonter, réparer ou modifier le serveur, sauf conformément à ce qui est décrit dans le Stratus ftServer 28x0, 48x0, and 68x0 Systems: Operation and Maintenance Guide (R683). Il existe un risque de choc électrique ou d'incendie, ainsi que de défaillance de l'équipement, si vous ne respectez pas les instructions décrites dans le Stratus ftServer 28x0, 48x0, and 68x0 Systems: Operation and Maintenance Guide (R683).

AVERTISSEMENT

Ne placer aucun objet au-dessus du serveur. L'objet pourrait tomber et causer des blessures, endommager le matériel ou provoquer un incendie.

MISE EN GARDE

Ne pas laisser le plateau du DVD ouvert. De la poussière pourrait entraîner dans l'équipement et causer une défaillance. Le plateau d'éjection pourrait également causer des blessures en position ouverte.
安全注意事项

⚠️ WARNING ⚠️
若错误更換电池类型，将导致爆炸风险。请按电池包装说明，妥善丢弃已耗损电池。

⚠️ WARNING ⚠️
系统採用兩條電源線，以提供冗餘電源。欲徹底清除非系統電源，先拔下兩條電源線。為降低觸電所導致的人體傷害或系統損害，請小心操作機體，即使系統僅插入一條電源線。

⚠️ WARNING ⚠️
欲預防機殼傾倒，進而導致人體傷害或系統損害，請從儲藏下方開始往上安裝系統。

⚠️ WARNING ⚠️
若您更換由Stratus供應的數據機纜線，請使用至少有26 AWG壓力的纜線，避免發生火災。

⚠️ WARNING ⚠️
避免火災、觸電，設備故障，液體或其他異物進入設備。不得讓液體或類似釘釘或釘頭針等異物進入設備。

⚠️ WARNING ⚠️
為避免火災或漏電，不得將電源線插入規格不符的插座中。請使用本指南指定之電壓及電源類別的插座。
WARNING

不得使用延長線安裝設備。使用與指定電源規格不符的延長線會產生設備過熱風險，進而可能導致火災。

WARNING

安裝或移動設備前，請從伺服器或電源拔下電源插頭。

只有在拔下電源線後，設備的所有電壓才會消除。

WARNING

不得在不適合場所安裝或存放設備。請按本指南指定且符合規格要求的場所安裝或存放設備。避免下列可能產生火災風險的地方：

- 灰塵較多
- 熱水器旁易氧較重的地方
- 險光直照的地方
- 不平穩位置，例如易受地震影響的地方

WARNING

不得在腐蝕性環境中使用或存放產品。避免在含腐蝕性氣體的環境使用或存放本產品，其中包括但不限於：二氧化硫、氯氣、氨、氯、氫、氫和臭氧。

不得將本產品安裝在灰塵較多或含類似氯化鈉或硫磺等腐蝕性物質的地方。

不得將本產品安裝在空氣中含過量金屬碎片或傳導粒子的地方。

上述環境可能導致本產品腐蝕或短路，因而損壞產品，甚至引起火災。若對產品安裝或存放的場地環境規劃有任何疑問，請與CAC或授權Stratus服務代表聯繫。
WARNING

不得在伺服器已連接電源的狀態下連接電纜。安裝或移除任何內建裝置，或從伺服器拔下或連接任何界面電纜前，確認已關閉伺服器的電源，並從伺服器或電插座拔下電纜線。即使伺服器電源已切斷，在仍連接電源的狀態下，碰觸內建裝置、電纜或連接器也可能產生觸電、或因短路而引起火災。

WARNING

除Stratus ftServer 28x0、48x0和68x0系統：操作和維修指導 (R683)之說明外，不得以任何方式拆卸、修理或改裝伺服器。若未遵循Stratus ftServer 28x0、48x0和68x0系統：操作和維修指導 (R683)的說明指示，將可能產生觸電、火災以及設備故障的風險。

WARNING

不得在伺服器上放置任何物件。物件可能會掉落而導致人體傷害、硬體損壞或火災。

CAUTION

DVD光碟機不得靜置於彈出位置。灰塵進入設備將導致功能異常。彈出的光盤也可能是導致設備損壞的來源。
Chapter 2
Electrical Power Planning

For information about planning appropriate AC electrical power for your system and its peripheral components, see:

- “Redundant Power Sources” on page 2-1
- “AC Power and HVAC Service Requirements” on page 2-2
- “Selecting a UPS Unit for ftServer Systems” on page 2-8
- “Power Cord Summary” on page 2-10
- “PDU Power Cords” on page 2-12

Related Topic
- Chapter 5, “Rack Configuration Planning”

Redundant Power Sources

ftServer systems require at least two separate and independent AC power sources—an A-side power source and a B-side power source—that provide power to the system’s power receptacles, labeled A and B, respectively. Either source must be capable of continuing to provide power if power to the other source is lost.

The A-side power source provides power to one side of each system and storage enclosure, as well as to components that do not require two sources of power, such as tape-drive enclosures and a monitor. If you use an uninterruptible power supply (UPS), the UPS is, in these standard, documented, configurations, the A-side power source.

The B-side power source provides power to the other side of each system and storage enclosure.

The wattage required from the A-side power source will always be equal to or greater than the wattage required from the B-side power source.
From the Stratus ftServer Systems: Peripherals Site Planning Guide (R582), obtain the nominal input line voltage (volts AC) and frequency (Hz) required for optional, AC-powered components. In general, provide 100–127 VAC or 200–240 VAC at 50 or 60 Hz for optional components. PDUs require 200–240 VAC at 50 or 60 Hz. Operating the system at the higher end of the voltage range, when possible, results in higher power system efficiency and consequently less generated heat and lower utility costs.

For detailed information about the plug types and lengths of the power cords provided with the system, see “Power Cord Summary” on page 2-10.

The power service must be properly wired and grounded according to local standards and regulations. See Appendix B for more information.

NOTE

A branch circuit breaker with ground fault protection must allow a minimum of 3.5 milliamperes (mA) leakage current for each power cord.

Use the following worksheets to determine AC power requirements for the site.

- In Table 2-1, determine the power requirements at the A-side power source.
- In Table 2-2, determine the power requirements at the B-side power source.
- In Table 2-3, determine the power requirements for components outside of the cabinet. These components can share a power source with the A-side or B-side components.
- In Table 2-4, determine the related HVAC requirements.

To determine AC power requirements

Provide information in Tables 2-1, 2-2, and 2-3 as follows:

1. In the Quantity column, write the number of each type of component.
2. Multiply the entry in the Quantity column by the number in the Watts column, and enter the result in the Watts Subtotal column.
3. Add the values in the Watts Subtotal column, and enter the sum on the bottom line. This value indicates the maximum power requirement for each power source.
Table 2-1. Worksheet: Determining A-Side Power Requirements

<table>
<thead>
<tr>
<th>System Component</th>
<th>Quantity</th>
<th>Watts</th>
<th>Watts Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer 28x0, 48x0, and 6800 systems</td>
<td></td>
<td>x 800</td>
<td></td>
</tr>
<tr>
<td>ftServer 6810 systems</td>
<td></td>
<td>x 1000</td>
<td></td>
</tr>
<tr>
<td>Storage enclosure†</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Fibre Channel switch‡</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>User-supplied components</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL A-SIDE POWER REQUIREMENTS

† See the *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for the wattage of optional components you purchase from Stratus.
‡ If you are using Fibre Channel switches to connect the systems to storage enclosures, include on this line the power requirements for a Fibre Channel switch. Two switches are required for fault-tolerant operation. Connect one switch to A-side power and the other switch to B-side power.

Table 2-2. Worksheet: Determining B-Side Power Requirements

<table>
<thead>
<tr>
<th>System Component</th>
<th>Quantity</th>
<th>Watts</th>
<th>Watts Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer 28x0, 48x0, and 6800 systems</td>
<td></td>
<td>x 800</td>
<td></td>
</tr>
<tr>
<td>ftServer 6810 systems</td>
<td></td>
<td>x 1000</td>
<td></td>
</tr>
<tr>
<td>Storage enclosure†</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Fibre Channel switch‡</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>User-supplied components</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL B-SIDE POWER REQUIREMENTS

† See the *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for the wattage of optional components you purchase from Stratus.
‡ If you are using Fibre Channel switches to connect the systems to storage enclosures, include on this line the power requirements for a Fibre Channel switch. Two switches are required for fault-tolerant operation. Connect one switch to A-side power and the other switch to B-side power.
To determine HVAC requirements

1. Add together the values from the Total row of Tables 2-1, 2-2, and 2-3, and enter the value in the Total Watts column of Table 2-4.
2. Multiply the value in the Total Watts column by 3.41, and enter the number of BTUs in the BTUs/hr. Subtotal column.

Table 2-3. Worksheet: Determining External Power Requirements

<table>
<thead>
<tr>
<th>System Component</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other peripheral components</td>
<td></td>
</tr>
<tr>
<td>TOTAL EXTERNAL POWER REQUIREMENTS</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-4. HVAC Requirements

<table>
<thead>
<tr>
<th>Total Watts (From Tables 2-1, 2-2, and 2-3)</th>
<th>Convert to BTUs</th>
<th>BTUs/hr. Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x 3.41 =</td>
</tr>
</tbody>
</table>

AC Power Outlet Requirements

If you do use a pair of PDUs in the cabinet, use Tables 2-5 and 2-6 to determine the total number of power outlets required outside the cabinet.

1. In the Quantity column, write the number of each type of component.
2. Multiply the value in the Quantity column by the value in the Outlets column, and enter the total in the Subtotal column.
3. Add the values in the Subtotal column and enter the sum next to TOTAL NUMBER OF A-SIDE POWER OUTLETS and TOTAL NUMBER OF B-SIDE POWER OUTLETS.

Table 2-5. Worksheet: A-Side External Power Outlet Requirements: PDUs Used

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDUs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other external components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF A-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you do not use PDUs in the cabinet, use Tables 2-7 and 2-8 to determine the number of AC power outlets required outside the cabinet.

1. In the Quantity column, write the number of each type of component.
2. Multiply the value in the Quantity column by the value in the Outlets column, and enter the total in the Subtotal column.
3. Add the values in the Subtotal column and enter the sum next to TOTAL NUMBER OF A-SIDE POWER OUTLETS and TOTAL NUMBER OF B-SIDE POWER OUTLETS.

Table 2-6. Worksheet: B-Side External Power Outlet Requirements: PDUs Used

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDUs</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other external components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF B-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-7. Worksheet: A-Side External Power Outlet Requirements: No PDUs

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer systems</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Storage enclosures</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>External monitor</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tape-drive enclosure</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other peripheral components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF A-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-8. Worksheet: B-Side External Power Outlet Requirements: No PDUs

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Outlets</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftServer systems</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Storage enclosures</td>
<td>x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other peripheral components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL NUMBER OF B-SIDE POWER OUTLETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connecting a System Directly to Separate AC Sources

If you do not connect your ftServer system or PDUs to a UPS, provide two AC power sources that are as electrically independent of each other as the installation site allows.

At a minimum, the two power sources must be powered by separate circuit breakers (maximum of 20A) to AC power and, if possible, be independent of each other beyond that level. The more electrical separation between the two power sources, the less likely they will both fail at the same time. Due to redundancy in ftServer systems, power to either side of the system keeps the system in operation, although the system is no longer fault-tolerant.

Figure 2-1 shows how to connect rack-mounted ftServer 28x0, 48x0, and 68x0 systems directly to two separate AC power sources. Figure 2-2 shows how to connect PDUs directly to two separate power sources.

Figure 2-1. System Connected Directly to AC Power

1 A-side power cord
2 B-side power cord
3 AC power outlets
4 Circuit breakers (maximum of 20A)
Figure 2-2. PDUs Connected Directly to AC Power

1. A-side PDU
2. B-side PDU
3. B-side jumper cables
4. A-side jumper cables
5. PDU power cords
6. AC power outlets
7. Circuit breakers (maximum of 20A)
Selecting a UPS Unit for ftServer Systems

Stratus does not sell or service UPS units. However, Stratus has qualified UPS models for use with ftServer 28x0, 48x0, and 68x0 systems.

Use Table 2-1 to determine the number of watts the A-side of your system requires, and then see http://stratadoc.stratus.com/genref/refsell/qualified_equipment.html to select an appropriate UPS model.

NOTE

Site planning information for the UPS in this document is of a general nature only. Do not rely exclusively on the UPS information in this document. Contact APC at http://www.apc.com for detailed UPS specifications, documentation, sizing, and ordering information.

Communicating with a UPS over a Network

Use the following additional tools to enable a UPS and an ftServer system to communicate over the network:

- APC UPS Network Management Card 2 (APC part number AP9630)

When you install your ftServer system, download PCNS from APC, and install and configure the tool on the system, as described in one of the following:

- *Stratus Automated Uptime Layer for Linux-based ftServer Systems: Installation and Configuration* (R013L)
- *Stratus Automated Uptime Layer for VMware vSphere-based ftServer Systems: Installation and Configuration* (R004E)

PowerChute Network Shutdown monitors the UPS for an imminent power loss, and initiates an orderly shutdown of the system before power is lost.
Connecting a System Directly to a UPS

You can connect the A-side power connectors of your system directly to a UPS, as shown in Figure 2-3.

Figure 2-3. Rack-Mountable Systems: A-Side Power Connected Directly to a UPS

1 A-side system power cord
2 B-side system power cord
3 UPS
4 UPS power cord
5 AC power outlets
6 Circuit breakers (maximum of 20A)
Power Cord Summary

Stratus supplies tested and approved AC power cords for the following components:

- ftServer systems and peripheral components
- PDUs

CAUTION

Place all power cords out of the way of foot traffic.

MISE EN GARDE

Éloigner tous les cordons d’alimentation du passage.

Power cords described as Domestic are made with American Wire Gauge (AWG) cordage and are intended for use in North America. Refer to UL 62 and CSA C22.2, No. 49. All other power cords are made with International cordage and are intended for use in the specified countries, and other countries that use that standard.

Power Cords for ftServer Systems and Peripheral Components

Table 2-9 lists the available power cords that connect ftServer systems and peripheral components directly to an AC power source (not to a PDU or to a UPS).

Table 2-9. Power Cords - ftServer Systems and Peripheral Components to AC Power

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50101F</td>
<td>NEMA 5-15, UL/CSA approved, to IEC 60320 C13</td>
<td>15A/127V</td>
<td>7 ft (2.1m)</td>
<td>North America (Domestic)</td>
</tr>
<tr>
<td>B50104F-P</td>
<td>NEMA 5-15, UL/CSA approved, to IEC 60320 C13</td>
<td>15A/127V</td>
<td>15 ft (4.6m)</td>
<td>North America (Domestic)</td>
</tr>
<tr>
<td>B50112F</td>
<td>CEE 7 VII to IEC 60320 C13</td>
<td>16A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>Europe (Continental)</td>
</tr>
<tr>
<td>B50116F</td>
<td>BS 1363/A to IEC 60320 C13</td>
<td>13A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>B50124F</td>
<td>AS/NZS 3112:1993 to IEC 60320 C13</td>
<td>10A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>Australia</td>
</tr>
<tr>
<td>B50140F</td>
<td>SEV 1011-S24507 to IEC 60320 C13</td>
<td>10A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>Switzerland</td>
</tr>
<tr>
<td>B50152F</td>
<td>SABS164-1:1992 ZA/3 to IEC 60320 C13</td>
<td>13A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>South Africa/India</td>
</tr>
</tbody>
</table>
Table 2-10 lists the available power cords that connect ftServer systems to qualified UPS models from APC.

Table 2-10. Power Cords - ftServer Systems and Peripheral Components to AC Power (Continued)

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50153F</td>
<td>IEC 60309, TUV approved, to IEC 60320 C13</td>
<td>16A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>International, locking power cord</td>
</tr>
<tr>
<td>B50160F-P</td>
<td>NEMA 5-15, PSE approved, to IEC 60320 C13</td>
<td>15A/127V</td>
<td>15 ft (4.6m)</td>
<td>Japan (100V applications)</td>
</tr>
<tr>
<td>B50161F-P</td>
<td>NEMA L6-20, UL approved, to IEC 60320 C13</td>
<td>20A/250V</td>
<td>15 ft (4.6m)</td>
<td>North America, locking power cord</td>
</tr>
<tr>
<td>B50162F</td>
<td>GB1002-1996, CCC approved, to IEC 60320 C13</td>
<td>10A/250V</td>
<td>8 ft (2.4m)</td>
<td>China</td>
</tr>
<tr>
<td>B50173F</td>
<td>NEMA 5-15, BSMI approved, to IEC 60320 C13</td>
<td>10A/125V</td>
<td>14.8 ft (4.5m)</td>
<td>Taiwan</td>
</tr>
<tr>
<td>B50174-P</td>
<td>L6-20P, PSE approved, to IEC 60320 C13</td>
<td>15A/250V</td>
<td>15 ft (4.6m)</td>
<td>Japan, locking power cord (200V applications)</td>
</tr>
<tr>
<td>B50176</td>
<td>IEC60227, Inmetro approved, to IEC 60320 C13</td>
<td>10A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>Brazil</td>
</tr>
</tbody>
</table>

Table 2-10. Power Cords Between ftServer Systems or Storage Systems and a UPS

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Types</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50104F-P</td>
<td>NEMA 5-15 to IEC 60320 C13</td>
<td>15A/127V</td>
<td>15 ft (4.6m)</td>
<td>North America</td>
</tr>
<tr>
<td>B50160F-P</td>
<td>NEMA 5-15 to IEC 60320 C13</td>
<td>15A/127V</td>
<td>15 ft (4.6m)</td>
<td>Japan</td>
</tr>
<tr>
<td>B50161F-P</td>
<td>NEMA L6-20 to IEC 60320 C13</td>
<td>20A/250V</td>
<td>15 ft (4.6m)</td>
<td>North America, locking power cord</td>
</tr>
<tr>
<td>B50301F-P</td>
<td>IEC 60320 C14 to IEC 60320 C13</td>
<td>10A/250V</td>
<td>14.8 ft (4.5m)</td>
<td>International</td>
</tr>
<tr>
<td>B50174-P</td>
<td>L6-20P, PSE approved, to IEC 60320 C13</td>
<td>15A/250V</td>
<td>15 ft (4.6m)</td>
<td>Japan, locking power cord (200V applications)</td>
</tr>
</tbody>
</table>
PDU Power Cords

The PDU supplies power to ftServer systems. Table 2-11 lists the available power cords that connect PDUs directly to an AC power source. Table 2-12 describes the power cords used to connect PDUs to a UPS. Table 2-13 describes the gray and black power (jumper) cables that are provided to connect ftServer systems to PDUs.

Table 2-11. Power Cords to Connect PDUs Directly to AC Power Mains

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50154F</td>
<td>IEC 60320 C19 to IEC 60309</td>
<td>20A/250V</td>
<td>15 ft (4.6m)</td>
<td>International</td>
</tr>
<tr>
<td>B50171F</td>
<td>IEC 60320 C19 to NEMA L6-20P, UL approved</td>
<td>16A/250V</td>
<td>15 ft (4.6m)</td>
<td>North America</td>
</tr>
<tr>
<td>B50175</td>
<td>IEC 60320 C19 to NEMA L6-20P, PSE approved</td>
<td>20A/250V</td>
<td>15 ft (4.6m)</td>
<td>Japan locking power cord</td>
</tr>
</tbody>
</table>

Table 2-12. Power Cords to Connect PDUs to a UPS

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type</th>
<th>Rating</th>
<th>Length</th>
<th>Locale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50171F</td>
<td>IEC 60320 C19 to NEMA L6-20P, UL approved</td>
<td>16A/250V</td>
<td>14.8 ft. (4.5m)</td>
<td>North America</td>
</tr>
<tr>
<td>B50175</td>
<td>IEC 60320 C19 to NEMA L6-20P, PSE approved</td>
<td>20A/250V</td>
<td>15 ft. (4.6m)</td>
<td>Japan</td>
</tr>
<tr>
<td>B52700F-45M</td>
<td>IEC 60320 C19 to IEC 60320 C20</td>
<td>20A/250V</td>
<td>14.8 ft. (4.5m)</td>
<td>International</td>
</tr>
</tbody>
</table>

Table 2-13. System Power (Jumper) Cables to Connect ftServer Systems to PDUs

<table>
<thead>
<tr>
<th>Marketing ID</th>
<th>Plug Type to System</th>
<th>Plug Type to PDU</th>
<th>Rating</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50502F</td>
<td>IEC 60320 C13</td>
<td>IEC 60320 C14</td>
<td>10A/250V</td>
<td>6.6 ft (2m)</td>
</tr>
<tr>
<td>B50503F</td>
<td>IEC 60320 C13</td>
<td>IEC 60320 C14</td>
<td>10A/250V</td>
<td>6.6 ft (2m)</td>
</tr>
</tbody>
</table>
WARNING
Incorrect grounding can cause severe personal injury and extensive equipment damage.

AVERTISSEMENT
Une mise à la terre incorrecte peut provoquer des blessures graves et endommager sérieusement l’équipement.

The ftServer system obtains its protective earth (PE) ground through the power cord.

See “Grounding Considerations” on page B-1 for a more complete discussion of ftServer system grounding.
Chapter 3
Space Planning

For information about planning sufficient space for your ftServer system, see:

- “Room Requirements” on page 3-1
- “Planning for Cables” on page 3-3

Room Requirements
To ensure that the installation site provides a properly equipped, cooled, and sized environment, make sure that the site:

- Provides clearances for air circulation, opening cabinet doors, removing cabinet panels, and servicing the system from the front and rear.
 Locate the front and rear of the system at least 2.5 feet (ft) (0.76 meters (m)) away from walls and other obstructions.
- Maintains reasonable temperature and humidity levels and has a thermometer and humidistat to monitor room temperature and humidity.
 See Chapter 2 for detailed information about HVAC planning and Appendix A for detailed information about temperature and humidity requirements.
- Is as free as possible of airborne contamination (particulate and gaseous).

NOTICE
Due to the mission-critical nature of Stratus servers, data centers housing the equipment should follow the guidelines of airborne contamination (particulate and gaseous) as outlined in the ASHRAE (TC) 9.9 documentation. Particulate matter to adhere to ISO 14644-1 Class 8. Gaseous contamination, such as sulfur or chlorine-bearing gases to adhere to ANSI/ISA-71.04-1985 Severity level G1.

Dust buildup in the system can impede air circulation and heat transfer, causing components to become less reliable as the ambient temperature rises.
Fans clogged by dust fail to expel hot air, causing circuit boards to overheat and fail.

Dust on circuit boards raises the temperature, thus reducing the component's mean time between failure (MTBF).

Dust circulating in the room increases the risk of fire within the room by providing potential combustible material within the environment.

Dust contamination on tape devices causes mis-reads and -writes, leading to failure of attempts to back up and restore data.

- Has sufficient floor space for external components.
- Provides a table or desktop for external devices such as a telephone, external monitor, keyboard, and mouse.

 Each of these devices requires table or rack space.

 NOTICE

 Do not place a peripheral component on top of a system cabinet.

- Allows the system and peripheral devices to be placed within the room so that power cords and communications cables will reach their respective power receptacles, telephone jacks, and other connection points.
- Provides communications cable connectors or patch panels as needed.
- Provides two electrically separate grounded AC wall outlets, within reach of the power cords from the system or PDUs, and, if used, UPS units. The lengths of detachable power cords are listed in "Power Cords for ftServer Systems and Peripheral Components" on page 2-10 and "PDU Power Cords" on page 2-12. If the power cord must be hard-wired, consult an electrician to plan the length of the power cord.
- Provides grounded AC wall outlets for external components that do not connect to a PDU.
- Provides cutouts in the floor for routing cables, if the site has an elevated floor.
- Contains space for future expansion.

 NOTICE

 Do not place the system in an area of high electrostatic discharge. Static electricity may damage components. Do
not locate components near transformers or other electromagnetic devices.

See Appendix A and the *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for the dimensions of system components.

Planning for Cables

To accommodate cables from your system, make sure to provide:

- One or two telephone lines:
 - One telephone line for use when calling for service
 - One telephone line for the ASN modem, if used
- Ethernet jacks, switches, or hubs, as needed
- Two electrically separate grounded AC wall outlets, or a UPS and a wall outlet, within reach of the power cords from the system or PDUs, and additional outlets for any components that do not connect to a PDU
- For optional components, AC wall outlets within reach of the power cords from the components, or use PDUs

Make sure that cables you plan to connect to the system are long enough to reach between the system and external components or connections. For information about specific cables and power cords, see the following:

- "Power Cord Summary" on page 2-10
- Chapter 4, "Communications Line Planning"
- "Monitor Requirements" on page 6-5
- *Stratus ftServer Systems: Peripherals Site Planning Guide* (R582) for information about cable lengths for peripheral components
Chapter 4
Communications Line Planning

Make sure that you plan the locations of your ftServer system and its external components so that all communications and data cables will reach their connection points.

This chapter contains the following sections:

- “Supported Host Bus Adapters” on page 4-2
- “Connections from Storage Systems to ftServer Systems” on page 4-2
- “Ethernet Cables” on page 4-5
- “Telephone Line Connections” on page 4-9

NOTES

1. If you have a unique network requirement, contact the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative. For more information about the CAC, see Getting Help in the Preface or the http://www.stratus.com/go/support Web site.

2. See the Stratus ftServer Systems: PCI Adapter Guide (R461) for more information about the adapters Stratus supplies for your ftServer system.
Supported Host Bus Adapters

Table 4-1 summarizes the host bus adapters (HBAs) supported by ftServer 28x0, 48x0, and 68x0 systems.

Table 4-1. HBAs Supported by ftServer 28x0, 48x0, and 68x0 Systems

<table>
<thead>
<tr>
<th>HBA</th>
<th>For Connections to</th>
<th>Supported on</th>
</tr>
</thead>
<tbody>
<tr>
<td>U114 Eight-Port SAS PCI-Express Adapter</td>
<td>Tape drives</td>
<td>Windows- and Linux-based systems</td>
</tr>
<tr>
<td>U112A Single-Port 16-Gbps Fibre Channel PCI-Express Adapter</td>
<td>External storage systems</td>
<td>Windows-, Linux-, and VMware vSphere-based systems</td>
</tr>
</tbody>
</table>

You must provide your own cables, with one exception: two 2-meter 50/125 μm (micrometer) OM3 multi-mode fiber (MMF) dual-fiber cables with LC-type connectors (part number AW-B91000-020) are included with each ftScalable Storage G3 and ftScalable Storage G2 system.

See the Stratus ftServer Systems: PCI Adapter Guide (R461) for information about PCI-Express adapters.

Connections from Storage Systems to ftServer Systems

ftServer systems support both Fibre Channel (FC) connections and Internet SCSI (iSCSI) connections to storage systems. For more information, see the following sections:

- “Fibre Channel Connections” on page 4-2
- “iSCSI Connections” on page 4-4

Fibre Channel Connections

ftServer systems support FC connections to ftScalable Storage G3 and ftScalable Storage G2 systems, and to EMC CLARiiON and Symmetrix storage systems. Optical FC HBAs in the CPU-I/O enclosures provide connection points to these storage enclosures.

NOTE

Follow EMC’s RPQ process for approval before attaching an EMC storage system to your ftServer system.
ftServer systems support the following FC connection options:

- Directly attach the FC cables between one or two ftServer systems and the RAID controller trays of an ftScalable Storage G3 system.
- Connect the FC cables from one or two ftServer systems directly to an EMC storage system (for Windows-based systems only).
- Connect multiple ftServer systems to ftScalable Storage G3 or ftScalable Storage G2 systems through a storage area network (SAN).
- Connect up to six ftServer systems to EMC storage systems through a SAN.

A pair of optical FC HBAs provides fault tolerance through the multipath I/O capability of the operating system. The adapters are single-ported, and each member of the pair is installed in a different CPU-I/O enclosure: one in the top enclosure and the other in the bottom enclosure. See Table 4-1 for the supported HBAs.

Table 4-2 lists the optical FC cables available for connecting the supported FC PCI adapter. The cable sets come in blue and yellow, to make it easy to distinguish between members of cable pairs.

Table 4-2. Optical FC Cables

<table>
<thead>
<tr>
<th>Length</th>
<th>Part number Blue Cables</th>
<th>Part number Yellow Cables</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98 ft (0.3m)</td>
<td>AW-B91000-003</td>
<td>AW-B91001-003</td>
</tr>
<tr>
<td>1.64 ft (0.5m)</td>
<td>AW-B91000-005</td>
<td>AW-B91001-005</td>
</tr>
<tr>
<td>6.5 ft (2m)</td>
<td>AW-B91000-020</td>
<td>AW-B91001-020</td>
</tr>
<tr>
<td>32.8 ft (10m)</td>
<td>AW-B91000-100</td>
<td>AW-B91001-100</td>
</tr>
<tr>
<td>98.4 ft (30m)</td>
<td>AW-B91000-300</td>
<td>AW-B91001-300</td>
</tr>
</tbody>
</table>

For detailed information about making the FC connections, see one of the following:

- *ftScalable Storage G3: Getting Started Guide* (R687)
- *ftScalable Storage G2: Getting Started Guide* (R651)
- *Stratus ftServer Systems: PCI Adapter Guide* (R461) for supported FC PCI adapters
- The documentation for your EMC storage system

The cabling diagrams shown in the *ftScalable Storage G3: Getting Started Guide* (R687) and the *ftScalable Storage G2: Getting Started Guide* (R651) show FC connections, in both direct-attach (DAS) and storage-area-network (SAN)
connections, from ftServer systems to ftScalable Storage G3 or ftScalable Storage G2 storage systems. (Connections to EMC storage systems through a SAN are similar.)

In the appropriate Getting Started guide, see the following figures:

- Single-Host DAS Connections
- Multi-Host DAS Connections
- Dual-Host SAN Connections

iSCSI Connections

ftServer 28x0, 48x0, and 68x0 systems support iSCSI connections to ftScalable Storage G3 and to EMC CLARiiON storage systems.

NOTES

1. Ensure that your ftServer system provides adequate bandwidth for your iSCSI storage requirements.

2. Follow EMC’s RPQ process for approval before attaching an EMC storage system to your ftServer system.

3. ftServer systems support only software iSCSI initiators in conjunction with standard network adapters. Hardware iSCSI HBAs are not supported. Contact your account representative for information about third-party iSCSI storage systems qualified for use with ftServer systems.

Each ftServer system must contain two available Ethernet adapters (one in each CPU-I/O enclosure). You can use embedded Ethernet adapters or U113 Dual-Port 10/100/1000 Base-T Ethernet PCI-Express Adapters. For better performance, use the following:

- Windows-based systems: U115 Dual-Port 10-Gbps Base-T Ethernet PCI-Express Adapters or U117 Dual-Port Fiber 10-Gbps Ethernet PCI-Express Adapters, where applicable

- VMware vSphere-based systems: U115 Dual-Port 10-Gbps Base-T Ethernet PCI-Express Adapters or U117 Dual-Port Fiber 10-Gbps Ethernet PCI-Express Adapters, where applicable

- Linux-based systems: U116A Dual-Port Low-Latency 10GbE SFP+ PCI-Express Adapter with PTP
Ethernet Cables

See the Stratus ftServer Systems: PCI Adapter Guide (R461) for additional information about supported Ethernet adapters.

For cabling diagrams and detailed information about making the iSCSI connections to ftScalable Storage G3 and ftScalable Storage G2 systems, see the ftScalable Storage G3: Getting Started Guide (R687) and the ftScalable Storage G2: Getting Started Guide (R651). For information about making the iSCSI connections to EMC CLARiiON storage systems, see the Stratus ftServer 28x0, 48x0, and 68x0 Systems: Installation Guide (R682).

Ethernet Cables

In addition to the Ethernet cables listed in this section, you must also plan to provide network connection points. Consider providing a network connection with Internet access for each of the VTM s to allow you and, if authorized, the CAC or your authorized Stratus service representative to access the VTM s' Web interface to operate the system and diagnose problems remotely. If available, this mode of accessing the VTM s is faster and more reliable than dialup through the ASN modem.

CAUTION

Make sure network cables can be routed out of the way of foot traffic.

MISE EN GARDE

Vérifier que les câbles réseau peuvent être acheminés en dehors du passage.

You will need Ethernet cables for the following connections:

- From embedded Ethernet ports on the system and Ethernet ports on optional Ethernet PCIe adapters to network connection points. See “Planning for Network Connectivity” on page 1-4 for information about the number and types of embedded Ethernet ports available on each system.

NOTES

1. Two Ethernet ports are typically paired and teamed in software for fault tolerance. Each member of the pair requires an Ethernet cable.

2. If you will use the embedded 10-GbE ports on an ftServer 48x0 or 68x0 system, see “Category-6/Category-6A Cables” on page 4-8 for additional site-planning information.
• From each ftScalable Storage G3 or ftScalable Storage G2 RAID controller tray, if present, to a network connection point, for Web management and monitoring of ftScalable Storage systems

• From a management PC to a network connection point, for Web management of ftScalable Storage systems

The same network must provide access to the RAID controllers on the ftScalable controller tray from the PC.

Table 4-3 describes the cables you must supply for network connectivity. Be sure to provide cables of sufficient length for the distance between the system and a wall jack or hub.

Table 4-3. Customer-Supplied Ethernet Cables

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Cable Length</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTM Ethernet Port</td>
<td>2</td>
<td>N/A. You must supply these cables.</td>
<td>24 AWG Unshielded Twisted Pair (UTP) EIA/TIA-Verified, Category-3 or Category-5 wire, with RJ-45 modular connectors terminated with pair-wiring adhering to the EIA/TIA 568-A or EIA/TIA 568-B standard.</td>
</tr>
<tr>
<td>1-GbE Embedded Ethernet Port</td>
<td>4</td>
<td>The maximum allowable distance from these ports to a switch or a hub is 328 ft (100m).</td>
<td>For connections to an Ethernet hub or switch, provide a straight-through cable. For 100- or 1000-Mbps (fast Ethernet) operation, provide full-duplex, or Category-5 Ethernet cables.</td>
</tr>
<tr>
<td>U113 Dual-Port 10/100/1000 Base-T Ethernet PCI-Express Adapter (RJ-45 copper)</td>
<td>Ordered in pairs. Typically teamed for fault tolerance.</td>
<td>The maximum distance between the adapter and a hub or a switch is 328 ft (100m).</td>
<td>The customer must supply a standard Ethernet cable to the following specifications: 1000 Mbps requires a Category-5e cable 100 Mbps (fast Ethernet connection) requires either a Category-5e (recommended) or Category-5 cable 10 Mbps requires either a Category-5, Category-4, or Category-3 cable</td>
</tr>
</tbody>
</table>
Table 4-3. Customer-Supplied Ethernet Cables (Continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Cable Length</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>U115 Dual-Port 10-Gbps Base-T Ethernet PCI-Express Adapter (RJ-45 copper)</td>
<td>Ordered in pairs. Typically teamed for fault tolerance.</td>
<td>The maximum distance between the adapter and a hub or a switch is 328 ft (100m), except when using Category-6A or -6 cable, for which the maximum distance is 180 ft (55m).</td>
<td>The customer must supply a standard Ethernet cable to the following specifications: 1000 Mbps requires a Category-5e cable 100 Mbps (fast Ethernet connection) requires either a Category-5e (recommended) or Category-5 cable 10 Gbps requires a Category-6A or Category-6 cable</td>
</tr>
<tr>
<td>U116A Dual-Port Low-Latency 10GbE SFP+ PCI-Express Adapter with PTP</td>
<td>Ordered in pairs. Typically teamed for fault tolerance.</td>
<td>The maximum distance between the adapter and a hub or a switch is 984 ft (300m).</td>
<td>The customer must supply a fiber-optic cable with a duplex LC multi-mode fiber connector.</td>
</tr>
<tr>
<td>U117 Dual-Port Fiber 10-Gbps Ethernet PCI-Express Adapter</td>
<td>Ordered in pairs. Typically teamed for fault tolerance.</td>
<td>The maximum distance between the adapter and a hub or a switch is 984 ft (300m).</td>
<td>The customer must supply a multi-mode fiber (MMF), 50/125 mm dual-fiber cable rated with the OM3 performance code, with LC-type connectors to the PCIe adapter, and connectors on the other end that are compatible with your site network switch.</td>
</tr>
<tr>
<td>10-GbE Embedded Ethernet Port</td>
<td>4</td>
<td>N/A. You must supply these cables. The maximum allowable distance from these ports to a switch or a hub is 328 ft (100m) for Category-6A wire, and 180 ft (55m) for Category-6 wire.</td>
<td>22 AWG Unshielded Twisted Pair (UTP) EIA/TIA-Verified, Category-6 or Category-6A wire, with RJ-45 modular connectors terminated with pair-wiring adhering to the TIA/EIA-568-B.2-10 standard</td>
</tr>
</tbody>
</table>
Category-6/Category-6A Cables

If your system contains embedded 10-GbE ports using Category-6/Category-6A cables, additional site planning is needed to prevent disruptions from electromagnetic interference (EMI).

- Between devices, try to have as close as possible to zero (0) volt potential relative to earth reference ground. See “Grounding Considerations” on page B-1 for detailed information.
- Separate all power cords from the cables.
- Do not route the cables near fluorescent lights.
- Ground the cable trays.
- Avoid using two-way radios and cell phones near the cables.
- If your site is located near high electric fields, transmission towers, high-voltage transmission lines, or electrical switching relays, consider using shielded Category-6A cable.

See the following standards for more information about Category-6A cables and how to qualify a test site:

- The ANSI/TIA-568 family of Telecommunications Standards (C.0, C.1, C.2, C.3)
- TIA/EIA-607: Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

Table 4-3. Customer-Supplied Ethernet Cables (Continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Cable Length</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftScalable Storage RAID controller tray (note that ftScalable Storage G3 and ftScalable Storage G2 systems are optional)</td>
<td>3: two for each controller tray and one to a management PC; N/A. You must supply these cables.</td>
<td>24 AWG Unshielded Twisted Pair (UTP) EIA/TIA-Verified, Category-3 or Category-5 wire, with RJ-45 modular connectors terminated with pair-wiring adhering to the EIA/TIA 568-A or EIA/TIA 568-B standard. For connections to an Ethernet hub or switch, provide a straight-through cable. For 100-Mbps (fast Ethernet) operation, provide full-duplex, or Category-5 Ethernet cables.</td>
<td></td>
</tr>
</tbody>
</table>
Telephone Line Connections

The system requires up to two telephone cables, and related connection points:

- One telephone line for use when calling for service
- One analog telephone line to connect a modem dedicated to ASN connectivity, if used, to a telephone connection point

A 7 ft (2.13m) telephone cable (minimum 26 AWG phone cord) is shipped with the modem, except with orders destined for the Republic of Korea.

NOTE

A dedicated phone line provides the most reliable service for ASN connections. ASN calls routed through a PBX might be slow due to the load on the PBX, or might not complete successfully because the calls can become disconnected. If you must use a PBX, do not route the telephone extension through a switchboard; instead, provide a direct-dial analog number.

- Always use telephone cable that is 26 AWG or greater and is UL approved.

If no modem is used, a second telephone line is not necessary. A modem is not necessary if your system will connect to a network with Internet access. You may choose to use the Internet to send alarms to the ASN and allow the CAC or your authorized Stratus service representative to connect to your system over the Internet for troubleshooting.
Chapter 5
Rack Configuration Planning

For information about planning a rack configuration, see:

- “Using PDUs” on page 5-1
- “Determining PDU Requirements” on page 5-2
- “Example of PDU Usage Calculation” on page 5-4

Using PDUs

ftServer systems have two power receptacles. Correspondingly, two power distribution units (PDUs) provide power to the receptacles.

Use of PDUs is optional unless you have a support agreement with Stratus. If you do have a support agreement with Stratus, use pairs of PDUs to provide AC power to systems and components in a cabinet if six or more power cords would otherwise exit from the cabinet.

The A-side (top) PDU provides power to:

- The A-side of each system
- A storage enclosure
- Any rack-mounted tape drives

The B-side (bottom) PDU provides power to the other side of each system and to the second side of a storage enclosure.
Because the A-side PDU always uses at least as many power cords and consumes at least as much power as the B-side PDU, plan the cabinet configuration so that the A-side PDU can support the configuration.

NOTES

1. Connect each PDU to a separate AC power source.
2. Install a maximum of two pairs of PDUs in a rack.

Use the information in “Determining PDU Requirements” on page 5-2 to plan the rack configuration for your ftServer system. “Example of PDU Usage Calculation” on page 5-4 shows how to use the information you gather for planning the rack configuration.

WARNING

For important safety information about your PDUs, see “PDU Safety Considerations” on page B-10.

AVERTISSEMENT

Pour obtenir des informations importantes sur la sécurité de vos unités de distribution de l'alimentation, consultez la section “PDU Safety Considerations” on page B-10.

Determining PDU Requirements

Using the nominal voltage rating of the power receptacle at your site and the total wattage of the components that will draw power from the A-side PDU, complete the information in Tables 5-1 and 5-2. This information will help you determine the current that the ftServer systems and rack-mounted components will draw and whether you need a second pair of PDUs.

To complete Table 5-1

1. Obtain the voltage available at your location. Consult a facilities manager at your site to make sure you know the correct voltage.

2. For each type of component you plan to place in the rack, calculate the required current, as follows: Divide the wattage of the element, listed in the Watts column of Table 5-1, by the voltage available at your site. Multiply the result by 1.25 and enter the value in the Current column.
Table 5-1. Current and Rack-Space Requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Watts</th>
<th>Site Voltage†</th>
<th>Current (A)</th>
<th>Rack Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single CPU-I/O enclosure of ftServer 28x0, 48x0, or 6800 system</td>
<td>800</td>
<td>200</td>
<td>5A</td>
<td>4U (full system)</td>
</tr>
<tr>
<td>Single CPU-I/O enclosure of ftServer 6810 system</td>
<td>1000</td>
<td>200</td>
<td>5A</td>
<td>4U (full system)</td>
</tr>
<tr>
<td>Tape-drive enclosure‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk-storage enclosure§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† PDU input voltage is 200-240 VAC.
‡ See your tape-drive documentation for the wattage and rack requirements of your tape drive.
§ See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the wattage and rack requirements of your disk-storage solutions.

To complete Table 5-2

1. In column 1, write the names of each system or component in the rack. If you have more than one system, use a row for each system.

2. In column 2, write the cumulative number of rack units (Us): Add the number of Us (see Table 5-1) for the component to the value in the space above and write the result.

3. In column 3, write the cumulative number of outlets required. For each component, add 1 to the value in the space above and write the result.

4. In column 4, write the cumulative current required. For each component, add the current for the component, which you entered in Table 5-1, to the value in the space above and write the result.

You need another pair of PDUs if the cumulative number of outlets exceeds 8 or if the cumulative current exceeds 15A. Use the information in column 2 to plan the size and number of racks required.
Table 5-2. Calculating A-Side PDU and Rack-Space Requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDU Pair</td>
<td>2U</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 5-3. Example: Current and Rack-Space Requirements (208 volts)

<table>
<thead>
<tr>
<th>Component</th>
<th>Watts</th>
<th>Site Voltage</th>
<th>x 1.25</th>
<th>Current (A)</th>
<th>Rack Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single CPU-I/O enclosure of ftServer 2810 system</td>
<td>800</td>
<td>208</td>
<td>4.80</td>
<td>4U</td>
<td></td>
</tr>
<tr>
<td>Tape drive (typical)</td>
<td>80</td>
<td>208</td>
<td>0.48</td>
<td>2U</td>
<td></td>
</tr>
<tr>
<td>ftScalable Storage G3 or G2 system</td>
<td>400</td>
<td>208</td>
<td>2.40</td>
<td>2U</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-4 and the explanation that follows show how to use the information from Table 5-3 to determine when you need to buy an additional pair of PDUs or calculate the size and number of cabinets you need.
Example of PDU Usage Calculation

In the calculations in Table 5-4, components were added one by one, calculating:

- The total current demanded by the components
- The total space used in the rack
- The total number of outlets required

In this example, two PDUs can provide enough current for two ftServer 2810 systems, one tape drive (typical), and one ftScalable Storage G3 or ftScalable Storage G2 system. This set of components consumes 12.48 amperes; adding another CPU-I/O enclosure would increase the consumption to 17.28 amperes, which exceeds the 15 amperes limit for the PDUs. The configuration also utilizes four outlets in the A-side PDU and 14U of rack space.

To add any more components, you require another pair of PDUs.

For information about planning a rack configuration, see:

- “Using PDUs” on page 5-1
- “Determining PDU Requirements” on page 5-2
- “Example of PDU Usage Calculation” on page 5-4

Table 5-4. Example: Calculating A-Side PDU and Rack-Space Requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDU pair</td>
<td>2</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Single CPU-I/O enclosure of ftServer 2810 system</td>
<td>6</td>
<td>1</td>
<td>4.8†</td>
</tr>
<tr>
<td>Tape drive (typical)</td>
<td>8</td>
<td>2</td>
<td>5.28</td>
</tr>
<tr>
<td>ftScalable Storage G3 or G2 system</td>
<td>10</td>
<td>3</td>
<td>7.68</td>
</tr>
<tr>
<td>ftServer system</td>
<td>14</td>
<td>4</td>
<td>12.48</td>
</tr>
<tr>
<td>PDU pair</td>
<td>2</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Single CPU-I/O enclosure of ftServer 2810 system</td>
<td>6</td>
<td>1</td>
<td>4.8†</td>
</tr>
<tr>
<td>Single CPU-I/O enclosure of ftServer 2810 system</td>
<td>10</td>
<td>2</td>
<td>9.6</td>
</tr>
</tbody>
</table>

† For a single CPU-I/O enclosure.
Example of PDU Usage Calculation
Chapter 6
Cabinet and Monitor Requirements

For requirements related to providing your own cabinet and monitor, see:

- “Cabinet Requirements” on page 6-1
- “Monitor Requirements” on page 6-5

Cabinet Requirements

If you are providing your own cabinet for an ftServer system, make sure the cabinet contains a rack that is 19 inches (in.) wide and that meets the Electronic Industries Association (EIA) 310-D Section 1 standard.

In general, consider the following factors during your site planning for systems in cabinets:

- Elevated Operating Ambient Temperature—If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma) specified by the manufacturer.

- Reduced Air Flow—Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.

- Mechanical Loading—Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.

- Circuit Overloading—Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

- Reliable Earthing—Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (for example, use of power strips).
Make sure that the cabinet meets the following requirements:

- The cabinet can support the weight of all of the components you plan to install in it. Appendix A and the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) provide the weights of components supplied by Stratus.
- The cabinet contains two front and two rear vertical EIA rails, one in each corner of the cabinet, that have the universal square-hole pattern as defined in the EIA 310-D Section 1 specification.
- The front vertical rails extend at least 0.5 in. (1.27 centimeters (cm)) beyond the inside edge of the accessory leg, if present, to allow the mounting rails to be fitted. See Figure 6-1.
- The distance between the front vertical rails and the inside of the front door is at least 3.0 in. (7.62 cm).
- The distance between the rear of the system chassis and the inside of the rear door is at least 6.0 in. (15.24 cm).
- The distance between the front and rear vertical rails is between 24.5 in. and 30 in. (62.23 cm and 76.20 cm, respectively).
- The vertical mounting rails have a 0.345" or 0.375" square pattern, with a thickness between 0.063" - 0.105", to accept 10-32 cage nuts and mounting hardware.
- The vertical mounting rails are plated, or some other method is used to ensure continuity for grounding between installed equipment.
- Cable-management brackets are provided to support and constrain data and power cords so that the cables do not interfere with air flow out of the rear of the enclosures, and so that the connectors do not disconnect or break.
- To prevent stray voltages, all components are grounded together through the vertical mounting rails to the cabinet frame, and then to local building ground. To ensure signal quality, use a grounding cable for local building ground.
- There is a plan for maintaining cables and wires to the cabinet by either running them under the floor or placing them overhead in an overhead cable tray.
- Air flows through the cabinet from front to back.
- Air does not recirculate within the cabinet.
- Filler panels cover any unused rack space to prevent air recirculation.
- Blockers are installed between the vertical mounting rails and the side panels at the rear of the cabinet.
- Vents are evenly distributed on the front and rear doors and make up at least 69% of the surface area.

NOTE

If your cabinet does not have vented front and rear doors, you can remove the doors from the cabinet while your ftServer system is operating.

- The final installation conforms to all emission, immunity, safety, and other applicable regulations.

Figure 6-1 shows the required rail clearance between the front vertical rails and the inside edge of an accessory leg.
Figure 6-1. Rail Clearance

1. Front vertical EIA rail
2. Accessory leg
3. Front of cabinet
Monitor Requirements

For your monitor, make sure that:

- The monitor accepts universal 100–240 volts AC (VAC), 50/60 Hertz (Hz) power.
- The VGA cable has a 15-pin D-sub connector.
- The power cord for the monitor is long enough to reach the power source.
- The plug type on the power cord is compatible with the external power source at the site.
Appendix A
System Specifications

For system specifications, see:

- “System Specifications” on page A-1
- “PCIe Adapter Specifications” on page A-7
- “AAP87600 PDU Specifications” on page A-8

NOTES

1. The system temperature and humidity requirements defined in Table A-2 are the minimum requirements the site must provide.

2. The temperature and humidity requirements for optional components are provided in the Stratus ftServer Systems: Peripherals Site Planning Guide (R582).

System Specifications

The following figures show front and rear views of the systems.

- Figure A-1 shows the front of an ftServer 28x0, 48x0, or 68x0 system, mounted in a rack with its bezel pulled forward.

- Figure A-2 shows the rear of a rack-mountable ftServer 28x0, 48x0, or 68x0 system, specifying the locations of the connectors at the rear of the system.

Table A-1 lists the dimensions of the system cabinets supplied by Stratus. Table A-2 lists the specifications for each ftServer CPU-I/O enclosure, the front panel, and the backplane assembly. Table A-4 lists the specifications of the PDU. See the Stratus ftServer Systems: Peripherals Site Planning Guide (R582) for the specifications of other components.
Figure A-1. ftServer 28x0, 48x0, 68x0 System: CPU-I/O Enclosures: Front View

1. CPU 0, I/O 10
2. CPU 1, I/O 11
3. CPU ID button (magnifying glass icon)
4. System LEDs
5. NMI (dump) button
6. DVD drive
7. Front panel LEDs
8. USB port
9. Front panel
10. Power button
11. Internal disk drives (16) or disk drive blanks
12. Release levers (4)
Figure A-2. ftServer 28x0, 48x0, 68x0 System: Rear View

1. USB 2.0 ports (3)
2. PCI adapter slot 3 (PCle full-height)†
3. PCI adapter slot 4 (PCle full-height)†
4. PCI adapter slot 1 (PCle, low profile)
5. PCI adapter slot 2 (PCle, low profile)
6. Power receptacles (2)
7. Power supply LEDs (2)
8. Embedded 1GbE ports (4)
9. Embedded 10GbE Ethernet ports (4)‡
10. CPU-I/O enclosure blue identification LEDs (2)
11. VTM Ethernet ports (2)
12. System backplane
13. Serial (COM) ports (2)
14. VGA (monitor) port

† No failover capacity for USB 3.0 ports.
‡ Not available on ftServer 28x0 systems.
Table A-1. Cabinet Dimensions

<table>
<thead>
<tr>
<th></th>
<th>24U Shipping Container</th>
<th>38U Shipping Container</th>
<th>24U Cabinet</th>
<th>38U Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (including pallet)</td>
<td>56 in. (1.42m)</td>
<td>80 in. (2.03m)</td>
<td>49.5 in. (1.26m)</td>
<td>74 in. (1.9m)</td>
</tr>
<tr>
<td>Width</td>
<td>41 in. (1.04m)</td>
<td>41 in. (1.04m)</td>
<td>27.6 in. (70 cm)</td>
<td>27.5 in. (70 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>53 in. (1.35m)</td>
<td>53 in. (1.35m)</td>
<td>41 in. (1.04m)</td>
<td>41 in. (1.04m)</td>
</tr>
<tr>
<td>Weight, empty</td>
<td>280 lb (127 kg)</td>
<td>436 lb (197.8 kg)</td>
<td>350 lb (158.76 kg)</td>
<td>512 lb (232.2 kg)</td>
</tr>
<tr>
<td>Weight, empty with pallet and shipping container</td>
<td>436 lb (197.8 kg)</td>
<td>Weight capacity (payload)</td>
<td>1500 lb (680.4 kg)</td>
<td>1500 lb (680.4 kg)</td>
</tr>
</tbody>
</table>
System Specifications

Table A-2. ftServer 28x0, 48x0, 68x0 System Unit Specifications

<table>
<thead>
<tr>
<th>Power</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td>An AC power connector</td>
</tr>
<tr>
<td></td>
<td>800W for each ftServer 28x0, 48x0, or 6800 enclosure (1600W total)</td>
</tr>
<tr>
<td></td>
<td>1000W for each ftServer 6810 enclosure (2000W total)</td>
</tr>
<tr>
<td>Nominal input voltage</td>
<td>100-127 or 200-240 volts; 50/60 Hz.</td>
</tr>
<tr>
<td></td>
<td>Each CPU-I/O enclosure has a C14 (IEC 60320) input connector.</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.98</td>
</tr>
<tr>
<td>VA</td>
<td>960 (240V x 4A)</td>
</tr>
<tr>
<td></td>
<td>800 (100V x 8A)</td>
</tr>
<tr>
<td>Protective earth ground current</td>
<td>3.5 mA maximum for each AC power cord</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>7.0 in. (17.78 cm; 4U)</td>
</tr>
<tr>
<td>Width</td>
<td>17.5 in. (44.45 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>30.1 in. (76.5 cm), with bezel, excluding rail</td>
</tr>
<tr>
<td>Weight (fully-loaded,</td>
<td>System (2 CPU-I/O enclosures, shelf unit, front panel, backplane, and bezel):</td>
</tr>
<tr>
<td>with 2 processors,</td>
<td>120 lb (54.4 kg)</td>
</tr>
<tr>
<td>16 DIMMs, and 8 disks per CPU-I/O enclosure)</td>
<td>Mounting brackets: 3 lb (1.4 kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>41°F to 104°F (5°C to 40°C)</td>
</tr>
<tr>
<td>For every 800 ft (243.8 m) above 2000 ft (609.6 m), lower the maximum operating temperature by 0.56°F (1°C)</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-38°F to 140°F (-39°C to 60°C), vented</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>0 ft to 10,000 ft (0m to 3,048m). In China markets, regulations may limit installations to a maximum altitude of 6562 ft (2000m).</td>
</tr>
<tr>
<td>Maximum rate of temperature change during operation</td>
<td>6.67°F (12°C) per hour</td>
</tr>
<tr>
<td>Relative humidity during operation</td>
<td>10% to 80% (noncondensing)</td>
</tr>
<tr>
<td>Relative humidity during storage</td>
<td>5% to 95% (noncondensing)</td>
</tr>
</tbody>
</table>
System Specifications

Table A-2. ftServer 28x0, 48x0, 68x0 System Unit Specifications (Continued)

<table>
<thead>
<tr>
<th>Heat dissipation, each system (both enclosures)</th>
<th>5464 Btu/hr. maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air cleanliness</td>
<td>Meets ISO 14644-1 class 8 standards</td>
</tr>
</tbody>
</table>

Features

Processors
- ftServer 2800: One Intel® Haswell-EP Octa-Core 2.4 GHz processor in each CPU-I/O enclosure
- ftServer 4800: One Intel Haswell-EP 12-Core 2.3 GHz processor in each CPU-I/O enclosure
- ftServer 6800: Two Intel Haswell-EP 12-Core 2.3 GHz processors in each CPU-I/O enclosure
- ftServer 2810: One Intel Broadwell-EP 10-Core 2.2 GHz processor in each CPU-I/O enclosure
- ftServer 4810: Two Intel Broadwell-EP 10-Core 2.2 GHz processors in each CPU-I/O enclosure
- ftServer 6810: Two Intel Broadwell-EP 14-Core 2.3 GHz processors in each CPU-I/O enclosure

Memory
16 physical, fully buffered (FB) DDR4 inline memory module (DIMM) slots in each CPU-I/O enclosure. All 16 slots are usable in dual-processor systems. Only 8 slots are usable in single-processor systems.

Ports
Each CPU-I/O enclosure contains the following ports:
- **System front**
 - A USB 2.0 port
- **System rear**
 - Two embedded 1GbE
 - Two embedded 10GbE (None on ftServer 28x0 systems)
 - Two USB 3.0
- **System backplane**
 - Three USB 2.0 ports
 - A VGA port
 - Two serial ports

PCIe slots (standard)
Two low-profile PCI-Express slots standard on each CPU-I/O enclosure
See “PCIe Adapter Specifications” for details.
PCIe Adapter Specifications

Two PCIe slots are standard on each CPU-I/O enclosure motherboard. In addition, a PCIe riser that adds two slots per enclosure is standard on ftServer 68x0 systems and optional on ftServer 48x0 systems. (The PCIe riser is not available on ftServer 28x0 systems.) Table A-3 lists the power and length specifications for PCI adapters.

Table A-3. PCIe Adapter Specifications

<table>
<thead>
<tr>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI slot rating</td>
</tr>
</tbody>
</table>

System Specifications A-7
Use only Stratus-approved PCI adapters in your Stratus system. Before approving an adapter, Stratus thoroughly tests it to make sure that it interacts properly with Stratus systems, including failover to a duplexed partner if an active adapter or CPU-I/O enclosure fails or is removed from service. Customers who have attempted to use inadequately tested PCI adapters in their systems have frequently experienced problems that proved difficult to isolate and diagnose and resulted in delayed projects.

Stratus provides ftReady third-party PCI adapter testing and driver hardening services. To find out more about these offerings, contact the Stratus Customer Assistance Center (CAC) or your authorized Stratus service representative (see Getting Help in the Preface or the http://www.stratus.com/go/support Web site).

You should thoroughly test any new PCI adapter, including adapters sold or approved by Stratus, with your applications in a test environment before using it in a production environment.

All Stratus-approved PCI adapters are submitted for Electromagnetic Interference (EMI) and safety compliance. Other adapters will not have EMI and safety approvals for use in an ftServer system.

AAP87600 PDU Specifications

A power distribution unit (PDU) optionally supplies power to rack-mounted ftServer systems and optional rack-mountable components.

WARNING

For important safety information about your PDUs, see “PDU Safety Considerations” on page B-10.

Table A-3. PCIe Adapter Specifications (Continued)

<table>
<thead>
<tr>
<th>Power</th>
<th>Two low-profile PCIe slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-I/O enclosure mother board</td>
<td>6.6 in (167.64 mm) maximum adapter length</td>
</tr>
<tr>
<td>PCIe riser (standard on ftServer 68x0 systems; optional on ftServer 48x0 systems)</td>
<td>Two full-height-capable PCIe slots</td>
</tr>
<tr>
<td></td>
<td>Top riser slot (PCI 3): 6.6 in. (167.64 mm) maximum adapter length</td>
</tr>
<tr>
<td></td>
<td>Lower riser slot (PCI 4): 6.6 in. (167.64 mm) maximum adapter length</td>
</tr>
</tbody>
</table>
AVERTISSEMENT

Pour obtenir des informations importantes sur la sécurité de vos unités de distribution de l'alimentation, consultez la section "PDU Safety Considerations" on page B-10.

Figure A-3 shows the AAP87600 PDU.

Figure A-3. AAP87600 PDU

1. Circuit breaker switch
2. AC input receptacle
3. AC outlet receptacles
Table A-4 lists the specifications for the AAP87600 PDU.

Table A-4. AAP87600 PDU: Specifications

<table>
<thead>
<tr>
<th>Input Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power input</td>
<td>Single phase, AC</td>
</tr>
<tr>
<td>Nominal input voltage; frequency</td>
<td>200–240 VAC; 50/60 Hz</td>
</tr>
<tr>
<td>Current†</td>
<td>16 amps</td>
</tr>
<tr>
<td>Input receptacle</td>
<td>IEC 320/C20</td>
</tr>
<tr>
<td>Input protection‡</td>
<td>16A, circuit breaker</td>
</tr>
<tr>
<td>Power dissipation§</td>
<td>10W nom. @ 240 VAC</td>
</tr>
<tr>
<td>Panel indicators¶</td>
<td>LED, main, and TVS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output††</td>
<td>3.84 KVA, maximum</td>
</tr>
<tr>
<td>Output receptacle</td>
<td>8x - IEC 320/C13</td>
</tr>
<tr>
<td>PE ground‡‡</td>
<td>1/4” - 20 threaded stud</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical and Environmental Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall size§§</td>
<td>Height: 1.72 in. (4.36 cm)</td>
</tr>
<tr>
<td></td>
<td>Width: 19.0 in. (48.26 cm)</td>
</tr>
<tr>
<td></td>
<td>Depth: 6.5 in. (16.51 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>5.7 lb (2.6 kg)</td>
</tr>
<tr>
<td>Operating temperature during operation</td>
<td>32°F (0°C) to 131°F (55°C)</td>
</tr>
<tr>
<td></td>
<td>For every 800 ft (243.8m) above 2000 ft (609.6m), lower the maximum operating temperature (95°F (35°C)) by 1.8°F (1°C).</td>
</tr>
<tr>
<td>Maximum rate of temperature change during operation</td>
<td>54°F (12°C) per hour or 32.36°F (0.2°C) per minute</td>
</tr>
<tr>
<td>Relative humidity during operation</td>
<td>10% to 80% (noncondensing)</td>
</tr>
<tr>
<td>Storage temperature to 40,000 ft (12.2 km)</td>
<td>-38°F to 140°F (-40°C to 60°C)</td>
</tr>
<tr>
<td>Relative humidity during storage</td>
<td>5% to 95% (noncondensing)</td>
</tr>
</tbody>
</table>

† Denotes a maximum continuous input current of 16A at 240 VAC.
‡ The circuit breaker is UL 489-listed and features a flat rocker front surface with an “Accidental Off” feature. The circuit breaker has a delay curve similar to an AIRPAX™ LEG series, delay 62.
§§ Denotes a maximum continuous input current of 16A at 240 VAC.
§ *Power dissipation* is the combination of heat loss due to wiring, input filter leakage, and LED indicators.
¶ LEDs are turned off when TVS networks are disconnected from the circuitry because of overheating caused by transient voltage conditions.
†† Output power is the combined power of the 8 outlets, which averages 2 amps/outlet at 240 VAC.
‡‡ Denotes Protective Earth Ground.
§§ Overall size includes the width of the mounting flanges. The PDU cabinet is sized for EIA 19 in. (48.26 cm) rack installation.
Appendix B

Electrical Circuit and Wiring Information

For electrical circuit and wiring information that you need to provide to the contractor and/or facilities personnel responsible for wiring the power at the system installation site, see:

- “Fault Protection Requirements” on page B-1
- “Grounding Considerations” on page B-1
- “Circuit Wiring Diagrams” on page B-2
- “Electrical Power Connectors” on page B-9
- “PDU Safety Considerations” on page B-10

Fault Protection Requirements

Each enclosure in ftServer systems contains internal fault/overload current protection. However, the system relies on the power distribution system at your site for protection against potential faults in the power cords and the wiring in the system base.

System and PDU power cords must not be connected to a branch circuit greater than 20A.

Grounding Considerations

The system obtains an earth reference ground through the power cords attached to the system. Similarly, each peripheral device connected to the system obtains ground through its power cord. You must ensure that a high-integrity safety-ground conductor is installed as part of the wiring system (in accordance with U.S. national electric code NFPA 70 or the equivalent). The international safety standard (EN60950) for electronic data processing (EDP) equipment also requires a ground conductor, but calls it a protective earth (PE) ground.

Depending upon local conditions, ground potentials may differ between the system base and any peripheral devices connected to the system base. All grounds in the system must return to the same reference point in the power distribution system, as close as possible to zero (0) volt potential relative to earth reference ground. Earth reference ground is typically a metal stake in the ground to which the ground conductors from one or more buildings are attached.
As shown in Figure B-1, a **star ground** is often used to obtain the same earth reference ground. Each earth reference ground, such as the system base ground, is returned separately to a common point where a zero-volt (0V) earth ground exists. The star ground ensures that all equipment is at the same potential and that no noise or safety problems associated with an unpredictable or uncharacterized grounding system will occur.

Figure B-1. Star Ground Example

1. To monitor
2. To ftServer system
3. Earth reference ground (0V)

Circuit Wiring Diagrams

The following circuit wiring diagrams show how the hot, ground, and/or neutral AC signals should be connected to the power input plugs of the system and optional components:

- **Figure B-4** illustrates a single-phase 120V AC circuit connection.
- **Figure B-5** illustrates a single-phase 240V AC circuit connection.
- **Figure B-6** illustrates a split-phase 120/240V AC circuit connection.
- **Figure B-7** illustrates a three-phase 208V AC, Y-, or Δ-source circuit connection, phase-to-phase.
- **Figure B-8** illustrates a three-phase 380V AC, Y-, or Δ-source circuit connection, phase-to-neutral.

In the following diagrams, the power inputs for ftServer 28x0, 48x0, and 68x0 systems are labeled X and Y, as shown in **Figure B-2** and **Figure B-3**, to eliminate any ambiguities in the nomenclature. For single-phase applications, the X input is...
connected to the L (Line) hot input, and the Y input is connected to the N (Neutral) input. However, for split-phase or three-phase applications, the X and Y inputs are connected to L1, L2, or L3 (separate lines). Therefore, for split-phase or three-phase applications, both X and Y can be electrically hot with respect to the system base (earth reference ground). Figure B-2 shows the physical locations of the X and Y inputs on the PDU, and Figure B-3 shows them on the system enclosure.

Figure B-2. PDU Power Input Labeling

![PDU power input A or B (Face View)](image)

Figure B-3. ftServer Enclosure Power Input Labeling

![ftServer Enclosure power input A or B (Face View)](image)
Figure B-4 shows a single-phase 120V AC circuit connection. Note that this application requires a single-pole circuit breaker.

Figure B-4. Single-Phase 120V AC Circuit Connection
Figure B-5 shows a single-phase 240V AC circuit connection. Note that this application requires a single-pole circuit breaker.

Figure B-5. Single-Phase 240V AC Circuit Connection

- Circuit A or B
- L
- N
- G (PE)
- 240V
- 0V
- Circuit Breaker: 20A maximum
- PDU: 20A maximum
- Wall
- Power Cord
- X Y G (PE)
- To power input A or B
Figure B-6 shows a split-phase 120/240V AC circuit connection. Note that this application requires a double-pole circuit breaker.

Figure B-6. Split-Phase 120/240 Volts AC Circuit Connection

Circuit A or B

L1

L2

N

G (PE)

Circuit Breaker: 20A maximum
PDU: 20A maximum

240V
120V
120V
0V

Wall

Power Cord

To power input A or B
Figure B-7 shows a three-phase 208V AC, Y-, or \(\Delta \)-source circuit connection, which is a phase-to-phase source connection. Note that the X and Y inputs on the system can be connected from L1 and L2, L2 and L3, or L1 and L3. This application requires a double-pole circuit breaker.

Figure B-7. Three-Phase 208V AC, Y-, or D-Source Circuit Connection, Phase-to-Phase
Figure B-8 shows a three-phase 380V AC, Y-, or Δ-source circuit connection, which is a phase-to-neutral source connection. Note that the system’s X input can be connected to L1, L2, or L3. This application requires a single-pole circuit breaker.

Figure B-8. Three-Phase 380V AC, Y-, or D-Source Circuit Connection, Phase-to-Neutral
Electrical Power Connectors

Table B-1 describes the connectors required by the AC power cords that Stratus supplies with ftServer systems and optional devices.

Table B-1. Connectors for AC Power Outlets

<table>
<thead>
<tr>
<th>Connector</th>
<th>Configuration</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA L6-20</td>
<td></td>
<td>20A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>NEMA 5-15</td>
<td></td>
<td>15A, 125 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>CEE (7) VII</td>
<td></td>
<td>20A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>IEC 60309</td>
<td></td>
<td>16-20A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
<tr>
<td>(formerly IEC 309)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABS 164-1:1992</td>
<td></td>
<td>16A, 250 volts AC</td>
<td>2-pole, 3-wire</td>
</tr>
</tbody>
</table>
PDU Safety Considerations

This section describes some important safety considerations for PDUs.

A PDU provides for the reliable distribution of power via eight outlets. When installed into a standard EIA 19-inch data, security, or industrial control rack, the PDU provides up to 3.84 kilowatts of filtered power to the system.

The PDU’s input is filtered to reduce emissions in Information Technology (IT) applications and provides at least 30 decibels of common-mode noise reduction. It provides even greater differential noise reduction between the frequency ranges of 1 to 10 MHz. In addition, the PDU contains thermally protected transient voltage suppression (TVS) networks, which clamp common mode and differential mode voltage transients with up to 170 joules of energy content. The PDU is also equipped
with LEDs that are lit green if the main power input is present and if the TVS networks are ready and functional.

Transient voltages are unpredictable. The amount of energy associated with them varies greatly depending on amplitude and duration. This PDU with its 170-joule rating is designed to be effective at the equipment rack level. It should be part of a layered protection system, coordinated with higher energy-level protective devices such as AC distribution TVS devices, UPS systems with TVS devices, and building-level protective devices, including active or passive devices such as isolation transformers. In the event of a high voltage transient, the PDU TVS network will activate, clamping the voltage to protect the load. Based on the amplitude and duration of these abnormal events, higher source currents can trip the branch circuit breaker, leaving the PDU without an input source.

NOTICE

TVS devices have a finite life expectancy and wear out when subjected to input voltage transients. If either LED is off, the PDU's transient protection is not guaranteed and you should replace the PDU.

Be careful when specifying amperage and delay parameters for the branch circuit breaker that provides power to the PDU. Selection of circuit breakers in an electrical power system should be specified so that when an abnormal condition exists, the breaker closest to the abnormality in the distribution path trips before the larger upstream circuit breaker. This isolates and limits service interruption only to the branch experiencing the problem. The coordination of protective devices, especially in a continuous availability server environment, should be designed by an appropriately experienced engineering service.

CAUTION

High current leakage conditions exist when using a PDU because multiple loads are connected to a common source. Use only the locking line cords supplied with the PDU.

MISE EN GARDE

Il existe un risque élevé de fuite de courant lorsqu’une PDU est utilisée, car plusieurs charges sont reliées à une source commune. Utilisez uniquement les cordons d’alimentation dotés d’un système de verrouillage fournis avec la PDU.
WARNING

Do not connect the power supply until the PDU has a proper earth reference ground.

AVERTISSEMENT

Ne branchez pas l'alimentation électrique tant que la PDU a été correctement mise à la terre.
Index

A
AC power service requirements, 2-2
APC UPS, 2-10
 PowerChute Network Shutdown, 2-8
AS/NZS 3112-1993 connector, B-10
A-side power source, 2-1
ASN, site planning, 3-3, 4-9

B
BMC, A-7
BS connector
 1363/A, B-10
B-side power source, 2-1

C
 cabinets
 configuration planning, 5-1, 5-5
 requirements, 6-1
 specifications, A-4
 cables
 Ethernet, 4-5
 Fibre Channel, 4-2, 4-3
 planning for, 3-3, 4-1
 telephone, 3-3
 CAC, getting assistance, 1-2
 CEE connector
 (7) VII, B-9
 checklist for site planning, 1-2
 circuit, electrical
 planning information, B-1
 wiring diagrams, B-2
 communications cables
 planning for, 4-1
 connectors, electrical, B-9
 BS 1363/A, B-10
 CEE (7) VII, B-9
 GB1002-1996, B-10
 IEC 60309, B-9
 NEMA 5-15, B-9
 SAA/3/15 AS/NZS 3112-1993, B-10
 SABS 164-1:1992, B-9
 SEV 1011-S24507, B-10
 current requirements, from PDU, 5-2
 Customer Assistance Center. See CAC

D
dust contamination, 3-2

E
earth reference ground, B-1
 electrical
 connectors, B-9
 grounding, B-1
 power planning, 2-1
 wiring, B-1
 embedded Ethernet ports, 4-5, A-3
 EMC storage systems, 1-5, 4-2
 environmental requirements
 maximum rate of temperature change, A-5
 operating humidity, A-5
 storage humidity, A-5
 Ethernet cables, 4-5

F
Fibre Channel
 cables, 4-3
 connections, 4-2
 switches, 1-5
 switches electrical requirements, 2-3
 ftScalable Storage systems
 Ethernet cables, 4-8
 Ethernet connections, 4-6
 management PC, 4-6

Index-1
Index

G
GB connector
 GB1002-1996, B-10
grounding the system, 2-13, 6-2, B-1

H
hubs, network, 3-3

I
IEC connector
 60309, B-9

J
jacks, Ethernet, 3-3

M
management PC
 for ftScalable Storage systems, 4-6, 4-8
memory, A-6
monitor (VGA) port, A-3
monitors
 power cords, 2-10
 requirements, 6-5

N
NEMA connector
 5-15, B-9
 L6-20, B-9
network (Ethernet) cables, 4-6
network management card, UPS, 2-8

O
optical Fibre Channel connections, 4-2

P
PCIe adapters
 U112A, 4-2, 4-3
 U113, 4-4
 U114, 4-2
 U115, 4-7
 U116A, 4-7
 U117, 4-4
PCIe slots, A-6
PDUs
 configuration planning, 5-1
 power (jumper) cables, 2-12
 power cords, 2-12
 safety considerations, B-10
 site planning, A-9
 specifications, A-10
 usage calculation
 sample, 5-4
 worksheets, 5-4
power (AC)
 button, A-2
cords
 monitors, 2-10
 storage enclosures, 2-10
 systems, 2-10
 tape-drive enclosures, 2-10
 electrical requirements, 2-2
 service requirements, 2-2, 2-4, 2-5
 A-side, 2-4, 2-5
 B-side, 2-4, 2-5
sources, 2-1
 direct, 2-6
 UPS, 2-9
PowerChute Network Shutdown, 2-8
protective earth ground, B-1

R
racks
 configuration planning, 5-1, 5-5
 requirements, 6-1
 removing power, 1-10
 room requirements, 3-1

S
SAA/3/15 AS/NZS connector
 3112-1993, B-10
SABS connector
 164-1:1992, B-9
safety notices, 1-10
serial ports, A-6
service requirements, AC-power, 2-2
SEV connector
 1011-S24507, B-10
 single-phase circuit connections
 120 V AC, B-4
 240 V AC, B-5

site planning
 checklist, 1-2
 overview, 1-1

space planning
 checklist, 1-2
 overview, 1-1

specifications
 AC power, 2-2
 cabinet, A-4
 PDUs, A-10
 rack-mountable system, A-1

split-phase circuit connections
 120–240 V AC, B-6

star ground, B-2

Stratus Customer Assistance Center. See CAC

switches
 circuit breaker
 PDU, A-9
 Ethernet
 cable planning, 3-3, 4-6, 4-7
 Fibre Channel, 1-5
 site network, 3-3
 system power cords, 2-10
 system specifications
 rack-mounted systems, A-1

T

tape-drive enclosures
 power cords, 2-10

technical support. See CAC
 telephone lines, 4-9
 for ASN modem, 1-3
 for support calls, 4-9
 telephones
 for support calls, 1-3

three-phase circuit connections
 208 V AC, B-7
 380 V AC, B-8

transient voltages, B-11

U

U112A PCIe Fibre Channel adapters, 4-2, 4-3
U113 PCIe Ethernet adapters, 4-4
U114 PCIe SAS adapters, 4-2
U115 PCIe Ethernet adapters, 4-7
U116A PCIe Ethernet adapters, 4-7
U117 PCIe Ethernet adapters, 4-4

uninterruptible power supply (UPS). See UPS
 UPS, 2-10
 network communication hardware, 2-8
 network communication software, 2-8
 network management card, 2-8
 rack system connections, 2-9

USB ports
 front, A-2
 rear, A-3

V

VGA (monitor) port, A-3
VTM ports, A-3
VTMs, A-7
 cables, 4-6

W

wiring, electrical, B-1