
R098-19

Stratus Technologies

OpenVOS Commands Reference Manual

Notice

The information contained in this document is subject to change without notice.

UNLESS EXPRESSLY SET FORTH IN A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED REPRESENTATIVE OF STRATUS
TECHNOLOGIES, STRATUS MAKES NO WARRANTY OR REPRESENTATION OF ANY KIND WITH RESPECT TO THE INFORMATION
CONTAINED HEREIN, INCLUDING WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PURPOSE. Stratus Technologies
assumes no responsibility or obligation of any kind for any errors contained herein or in connection with the furnishing, performance, or use of this
document.

Software described in Stratus documents (a) is the property of Stratus Technologies Bermuda, Ltd. or the third party, (b) is furnished only under
license, and (c) may be copied or used only as expressly permitted under the terms of the license.

Stratus documentation describes all supported features of the user interfaces and the application programming interfaces (API) developed by Stratus.
Any undocumented features of these interfaces are intended solely for use by Stratus personnel and are subject to change without warning.

This document is protected by copyright. All rights are reserved. Stratus Technologies grants you limited permission to download and print a
reasonable number of copies of this document (or any portions thereof), without change, for your internal use only, provided you retain all copyright
notices and other restrictive legends and/or notices appearing in the copied document.

Stratus, the Stratus logo, ftServer, the ftServer logo, Continuum, StrataLINK, and StrataNET are registered trademarks of Stratus Technologies
Bermuda, Ltd.

The Stratus Technologies logo, the Continuum logo, the Stratus 24 x 7 logo, ActiveService, Automated Uptime, ftScalable, and ftMessaging are
trademarks of Stratus Technologies Bermuda, Ltd.

RSN is a trademark of Lucent Technologies, Inc.
All other trademarks are the property of their respective owners.

Manual Name: OpenVOS Commands Reference Manual

Part Number: R098
Revision Number: 19
OpenVOS Release Number: 19.1.0
Publication Date: November 2017

Stratus Technologies, Inc.
5 Mill and Main Place, Suite 500
Maynard, Massachusetts 01754-2660

© 2017 Stratus Technologies Bermuda, Ltd. All rights reserved.

Preface

The OpenVOS Commands Reference Manual (R098) documents the OpenVOS operating
system commands and command functions for the OpenVOS release shown on the Notice
page.

This manual is intended for users who have access to the OpenVOS operating system,
applications and systems programmers, and system administrators.

Manual Version
This manual is a revision. Change bars, which appear in the margin, note the specific changes
to text since the previous publication of this manual.

This revision incorporates the following new commands or command functions.

This revision incorporates changes to the following commands or command functions.

The term OpenVOS applies to operating system releases from Release 17.0.0 and later. The
term VOS applies to operating system releases prior to OpenVOS Release 17.0.0.

Manual Organization
This manual has two chapters and three appendixes.

Chapter 1 describes the OpenVOS command functions.

Chapter 2 describes the OpenVOS commands.

Appendix A describes tape parameter values.

Appendix B describes the general software limits for OpenVOS.

Appendix C describes a way to reduce program module size when using shared virtual
memory databases.

(date)
(date_time)

(iso_date)
(iso_date_time)
(time)

list_batch_requests
OpenVOS Commands Reference Manual (R098) iii

Preface
Related Manuals
See the following Stratus manuals for related documentation.

 VOS Reference Manual (R002)
 OpenVOS Commands User’s Guide (R089)
 Using OpenVOS Extended Names (R631)

See also the OpenVOS System Administration manuals.

 OpenVOS System Administration: Administering and Customizing a System (R281)
 OpenVOS System Administration: Starting Up and Shutting Down a Module or

System (R282)
 OpenVOS System Administration: Registration and Security (R283)
 OpenVOS System Administration: Disk and Tape Administration (R284)
 OpenVOS System Administration: Backing Up and Restoring Data (R285)
 OpenVOS System Administration: Configuring a System (R287)

Notation Conventions
This manual uses the following notation conventions.

 Italics introduces or defines new terms. For example:

The master disk is the name of the member disk from which the module was
booted.

 Boldface emphasizes words in text. For example:

Every module must have a copy of the module_start_up.cm file.

 Monospace represents text that would appear on your terminal’s screen (such as
commands, subroutines, code fragments, and names of files and directories).
For example:

change_current_dir (master_disk)>system>doc

 Monospace italic represents terms that are to be replaced by literal values. In the
following example, the user must replace the monospace-italic term with a literal value.

list_users -module module_name

 Monospace bold represents user input in examples and figures that contain both user
input and system output (which appears in monospace). For example:

display_access_list system_default

%dev#m1>system>acl>system_default

w *.*
iv Preface

Preface
Format for Commands and Requests
Stratus manuals use the following format conventions for documenting commands and
requests. (A request is typically a command used within a subsystem, such as
analyze_system.) Note that the command and request descriptions do not necessarily
include each of the following sections.

name
The name of the command or request is at the top of the first page of the description.

Privileged
This notation appears after the name of a command or request that can be issued only
from a privileged process.

Purpose
Explains briefly what the command or request does.

Display Form
Shows the form that is displayed when you type the command or request name followed
by -form or when you press the key that performs the DISPLAY FORM function. Each
field in the form represents a command or request argument. If an argument has a
default value, that value is displayed in the form.

The following table explains the notation used in display forms.

The Notation Used in Display Forms

Command-Line Form
Shows the syntax of the command or request with its arguments. You can display an
online version of the command-line form of a command or request by typing the
command or request name followed by -usage.

Notation Meaning

Required field with no default value.

The cursor, which indicates the current position
on the screen. For example, the cursor may be
positioned on the first character of a value, as in
ll.

current_user
current_module
current_system
current_disk

The default value is the current user, module,
system, or disk. The actual name is displayed in
the display form of the command or request.

a

OpenVOS Commands Reference Manual (R098) v

Preface
The following table explains the notation used in command-line forms. In the table, the
term multiple values refers to explicitly stated separate values, such as two or more
object names. Specifying multiple values is not the same as specifying a star name.
When you specify multiple values, you must separate each value with a space.

The Notation Used in Command-Line Forms

Arguments
Describes the command or request arguments. The following table explains the
notation used in argument descriptions.

The Notation Used in Argument Descriptions

Notation Meaning

argument_1 Required argument.

argument_1... Required argument for which you can specify multiple
values.

Î Ï
Set of arguments that are mutually exclusive; you must
specify one of these arguments.

[argument_1] Optional argument.

[argument_1]...
Optional argument for which you can specify multiple
values.

¢ £ Set of optional arguments that are mutually exclusive; you
can specify only one of these arguments.

Note: Dots, brackets, and braces are not literal characters; you should not type
them. Any list or set of arguments can contain more than two elements. Brackets
and braces are sometimes nested.

Notation Meaning

<CYCLE> This argument has predefined values. In the display form,
you display these values in sequence by pressing the key
that performs the CYCLE function.

Required You cannot issue the command or request without
specifying a value for this argument.

If an argument is required but has a default value, it is not
labeled Required since you do not need to specify it in the
command-line form. However, in the display form, a
required field must have a value—either the displayed
default value or a value that you specify.

element_1
element_2

argument_1
argument_2
vi Preface

Preface
Explanation
Explains how to use the command or request and provides supplementary information.

Error Messages
Lists common error messages with a short explanation.

Examples
Illustrates uses of the command or request.

Related Information
Refers you to related information (in this manual or other manuals), including
descriptions of commands, subroutines, and requests that you can use with or in place
of this command or request.

Getting Help
If you have a technical question about ftServer system hardware or software, try these online
resources first:

 Online documentation at the StrataDOC Web site. Stratus provides complimentary
access to StrataDOC, an online-documentation service that enables you to view,
search, download, and print customer documentation. You can access StrataDOC at the
following Web site:

http://stratadoc.stratus.com

 Online support from Stratus Customer Service. You can find the latest technical
information about an ftServer system in the Stratus Customer Service Portal at the
following Web site:

http://www.stratus.com/go/support

The Service Portal provides access to Knowledge Base articles for all Stratus product
lines. You can locate articles by performing a simple or advanced keyword search,
viewing recent articles or top FAQs, or browsing a product and category.

To log in to the Service Portal, enter your employee user name and password or, if you
have not been provided with a login account, click Register Account. When registering
a new account, ensure that you specify an email address from a company that has a
service agreement with Stratus.

If you cannot resolve your questions with these online self-help resources, and the ftServer
system is covered by a service agreement, contact the Customer Assistance Center. To contact
the CAC, use the Service Portal to log a support request. Click Customer Support and Add
Issue, and then complete the Create Issue form. A member of our Customer Service team
will be glad to assist you.

(Privileged) Only a privileged process can specify a value for this
argument.

Notation Meaning
OpenVOS Commands Reference Manual (R098) vii

http://stratadoc.stratus.com
http://www.stratus.com/go/support

Preface
Commenting on This Manual
You can comment on this manual using one of the following methods. When you submit a
comment, be sure to provide the manual’s name and part number, a description of the
problem, and the location in the manual where the affected text appears.

 From StrataDOC, click the site feedback link at the bottom of any page. In the pop-up
window, answer the questions and click Submit.

 From any email client, send email to comments@stratus.com.

 From the Stratus Customer Service Portal, log on to your account and create a new
issue.

Stratus welcomes any corrections and suggestions for improving this manual.
viii Preface

Contents

1. OpenVOS Command Functions . 1-1
(abs) . . 1-4
(access) . . 1-5
(after) . . 1-7
(ask) . . 1-8
(before) . 1-10
(break) . 1-11
(byte) . 1-12
(calc) . 1-13
(ceil) . 1-16
(command_status) . 1-17
(concat) . 1-18
(contents) . 1-19
(copy) . 1-20
(count) . 1-21
(current_dir) . 1-22
(current_module) . 1-23
(date) . 1-24
(date_time) . 1-27
(decimal) . 1-29
(directory_name) . 1-30
(end_of_file) . 1-31
(exists) . 1-32
(extended_names) . 1-34
(extended_names_version) . 1-35
(file_info) . 1-37
(floor) . 1-39
(given) . 1-40
(group_name) . 1-41
(has_access) . 1-42
(hexadecimal) . 1-44
(home_dir) . 1-45
(index) . 1-46
(iso_date) . 1-47
(iso_date_time) . 1-50
(language_name) . 1-53
(length) . 1-54
(lock_type) . 1-55
(locked) . 1-56
(ltrim) . 1-57
(master_disk) . 1-58
(max) . 1-59
OpenVOS Commands Reference Manual (R098) ix

Contents
(message) . 1-60
(min) . 1-62
(mod) . 1-63
(module_info) . 1-64
(module_name) . 1-67
(name_string) . 1-68
(object_name) . 1-69
(online) . 1-70
(path_name) . 1-71
(person_name) . 1-72
(posix_path) . 1-73
(process_dir) . 1-75
(process_info) . 1-76
(process_type) . 1-78
(quote) . 1-79
(rank) . 1-80
(referencing_dir) . 1-81
(reverse) . 1-82
(rtrim) . 1-83
(search) . 1-84
(software_purchased) . 1-85
(string) . 1-86
(substitute) . 1-90
(substr) . 1-91
(system_info) . 1-92
(system_name) . 1-94
(terminal_info) . 1-95
(terminal_name) . 1-97
(time) . 1-98
(translate) . 1-100
(trunc) . . 1-101
(unique_string) . 1-102
(unquote) . . 1-103
(user_name) . 1-104
(verify) . 1-105
(vos_path) . 1-106
(where_path) . 1-108
Date and Time Keywords . 1-110

2. OpenVOS User and Programming Commands . 1-1
add_entry_names . 1-2
add_library_path . . 1-6
add_profile . 1-10
analyze_pc_samples . 1-15
attach_default_output . 1-33
attach_port . 1-35
batch . 1-37
bind . 1-42
break_process . 1-77
bundle . 1-79
c . 1-84
c_preprocess . 1-100
call_thru . . 1-103
x Contents

Contents
cancel_batch_requests . 1-106
cancel_device_reservation . 1-108
cancel_print_requests . 1-109
cc . 1-111
change_current_dir . . 1-132
change_password . 1-134
check_posix . 1-137
clone_dir . . 1-139
clone_file . 1-142
cobol . . 1-144
compare_dirs . 1-157
compare_files . 1-160
consolidate_dir . 1-169
convert_stream_file . 1-173
convert_text_file . 1-177
copy_dir . 1-180
copy_file . . 1-187
copy_tape . . 1-195
cpp, vcpp . . 1-198
create_data_object . . 1-200
create_deleted_record_index . . 1-202
create_dir . 1-205
create_file . 1-207
create_index . 1-226
create_record_index . 1-233
create_tape_volumes . 1-235
cvt_fixed_to_stream . 1-238
cvt_stream_to_fixed . 1-239
debug . . 1-241
decode_vos_file . 1-272
decrypt . . 1-274
delete_dir . 1-276
delete_file . 1-279
delete_index . 1-282
delete_library_path . 1-284
detach_default_output . 1-287
detach_port . 1-288
dismount_tape . 1-289
display . . 1-291
display_access . 1-296
display_access_list . 1-299
display_batch_status . . 1-301
display_current_dir . 1-303
display_current_module . 1-304
display_date_time . 1-305
display_default_access_list . . 1-307
display_default_open_options . 1-309
display_device_info . 1-311
display_dir_status . . 1-319
display_disk_info . 1-321
display_disk_usage . . 1-327
display_error . 1-329
display_file . 1-331
display_file_status . 1-337
OpenVOS Commands Reference Manual (R098) xi

Contents
display_line . 1-349
display_notices . 1-351
display_object_module_info . 1-352
display_open_options . . 1-358
display_print_defaults . 1-361
display_print_status . . 1-363
display_program_module . 1-366
display_system_usage . . 1-382
display_tape_params . 1-388
display_terminal_parameters . . 1-392
display_usb_info . . 1-393
dump_file . . 1-394
dump_record . 1-396
dump_tape . . 1-397
edit . 1-400
edit_form . . 1-405
emacs . . 1-411
encode_vos_file . 1-417
encrypt . . 1-420
enforce_region_locks . . 1-423
fortran . . 1-425
get_external_variable . 1-437
give_access . 1-439
give_default_access . 1-444
handle_sig_dfl . 1-446
harvest_pc_samples . . 1-448
help . 1-456
kill . 1-459
ldd . 1-461
line_edit . . 1-462
link . 1-465
link_dirs . . 1-468
list . 1-471
list_batch_requests . 1-477
list_devices . 1-481
list_dynamic_dependencies . 1-483
list_gateways . 1-484
list_library_paths . . 1-485
list_modules . 1-487
list_port_attachments . 1-489
list_print_requests . 1-494
list_process_cmd_limits . 1-497
list_save_tape . 1-500
list_systems . 1-502
list_tape . . 1-504
list_terminal_types . 1-506
list_users . 1-508
locate_expandable_dirs . 1-517
locate_files . 1-519
locate_indexed_files . . 1-521
locate_large_dirs . 1-526
locate_large_files . . 1-528
locate_stream_files . 1-531
login . . 1-534
xii Contents

Contents
logout . 1-538
mount_tape . 1-540
move_device_reservation . 1-550
move_dir . 1-552
move_file . . 1-558
mp_debug . 1-564
nls_edit_form . 1-569
pascal . 1-576
pl1 . 1-588
position_tape . 1-601
posixpath . . 1-604
preprocess_file . 1-606
print . . 1-614
profile . . 1-622
propagate_access . . 1-634
read_tape . . 1-637
ready . . 1-640
remove_access . 1-642
remove_default_access . 1-644
rename . 1-646
reserve_device . 1-649
reset_eof . . 1-650
restore_object . 1-653
save_object . 1-658
send_message . 1-661
set . 1-664
set_cpu_time_limit . . 1-665
set_default_open_options . 1-667
set_dir_limits . 1-669
set_dir_type . 1-672
set_expiration_date . 1-675
set_external_variable . 1-677
set_file_allocation . 1-679
set_implicit_locking . . 1-681
set_index_flags . 1-683
set_language . 1-684
set_library_paths . 1-686
set_line_wrap_width . 1-689
set_open_options . . 1-691
set_owner_access . . 1-694
set_pipe_file . 1-697
set_priority . 1-699
set_ram_file . 1-701
set_ready . . 1-703
set_safety_switch . 1-705
set_second_tape . 1-707
set_tape_drive_params . 1-709
set_tape_file_params . . 1-712
set_tape_mount_params . 1-717
set_terminal_parameters . 1-721
set_text_file . 1-731
set_time_zone . 1-734
sleep, vsleep . 1-738
sort, vsort . 1-740
OpenVOS Commands Reference Manual (R098) xiii

Contents
start_logging . 1-751
start_process . 1-757
stop_logging . 1-760
stop_process . 1-761
tail_file . . 1-764
temacs . 1-767
text_data_merge . 1-770
translate_links . 1-778
truncate_file . 1-781
unbundle . 1-783
unlink . 1-786
update_batch_requests . 1-788
update_print_requests . 1-792
update_process_cmd_limits . 1-799
use_abbreviations . 1-812
use_message_file . . 1-814
vcc . 1-816
vemacs . 1-821
verify_posix_access . . 1-824
verify_save . 1-829
verify_system_access . . 1-832
vospath . . 1-834
walk_dir . 1-836
where_command . 1-839
where_path . 1-841
who_locked . 1-843
write_tape . 1-845

Appendix A. Setting and Displaying Tape Parameter Values A-1

Appendix B. General OpenVOS Software Limits and Numerical Definitions B-1

Appendix C. Reducing Program Module Size When Using Shared Virtual Memory Databases C-1
Using create_data_object to Organize Virtual Memory C-2
Using Bind Directives to Organize Virtual Memory C-3
Using Bind Directives to Create a Shared Virtual Memory Database C-4

Making and Checking the Calculations C-6
Reacting to Application and Compiler Changes C-6
Using More Than One Shared Virtual Memory Region C-7
Example of Binder Control File Changes C-7

Binder Control Files Using a Created Data Object C-7
Changing Binder Control Files to Use SVMR C-8
Using high_water_mark to Adjust the Size Reserved for the SVMR C-9

Index. Index-1
xiv Contents

OpenVOS Commands Reference Manual (R098) xv

Figures

Figure 2-1. Analyzing Program Modules in the Kernel and User Address Space 1-19
Figure 2-2. Example of Standard Deviation . . 1-31
Figure 2-3. Process Address Space and Related bind Arguments 1-58
Figure 2-4. ftServer Modules: Stack and Fence Size for Programs with Multiple Static Tasks . . . 1-60
Figure 2-5. The Program Counter Sampling System 1-452
Figure 2-6. Default Process Address Space on ftServer Modules 1-806
Figure 2-7. Effects of Setting Process Initial, Current, and Maximum Command Limits 1-810
Figure 2-8. Phases of the vcc Command . 1-818
Figure A-1. Duration of User and Default Values . A-3
Figure C-1. Shared Virtual Memory Database in a Program Module C-3
Figure C-2. Shared Virtual Memory Database Not in a Program Module C-4

Tables

Table 1-1. Arithmetic, Logical, and String Expression Operators 1-14
Table 1-3. Scalar Numeric Values in (system_info) Output 1-92
Table 1-5. Date and Time Input Keywords . 1-110
Table 2-1. Line, Module, and Function Statistics Columns of analyze_pc_samples 1-29
Table 2-2. Module Summary Statistics Columns of analyze_pc_samples. 1-31
Table 2-3. Command-Line Options of the bind Command. 1-50
Table 2-4. Summary of the Behavior of -extended_names/extended_names Values 1-63
Table 2-5. Values for the options Directive of the bind Command 1-68
Table 2-6. Possible Destination File Names After Bundling 1-82
Table 2-7. Predefined Preprocessor Variables . 1-92
Table 2-8. Arguments Affecting Optimization Level 1-96
Table 2-9. cc Command: Short Options . 1-113
Table 2-10. cc Command: Optimization-Related Options and Arguments 1-122
Table 2-11. Predefined Preprocessor Variables . 1-126
Table 2-12. Predefined Preprocessor Variables . 1-152
Table 2-12. Metasymbols Used by compare_files 1-165
Table 2-13. Extent-based Files: Advantages and Disadvantages 1-215
Table 2-14. Block Environments . 1-245
Table 2-15. Modifiers and Modifier Abbreviations 1-263
Table 2-16. Regions and Region Abbreviations . 1-263
Table 2-17. Example Memory References . 1-264
Table 2-18. Example Relational Expressions . 1-267
Table 2-19. Requests That Are Modified in Machine Mode 1-268
Table 2-20. Values for the endian_specifier Argument 1-270
Table 2-21. Predefined Preprocessor Variables . 1-431
Table 2-22. Commands That Measure Performance 1-450
Table 2-23. Data Items Displayed by the list_users Command 1-512
Table 2-24. Matching Access Rights . 1-545
Table 2-25. Predefined Preprocessor Variables . 1-583
Table 2-26. Predefined Preprocessor Variables . 1-595
Table 2-27. Optimization-Related Arguments . 1-597
Table 2-28. Preprocessing Operators and Lead-In Characters 1-608
Table 2-29. Maximum Offset Values for DAE Files 1-652
Table 2-30. File Formats . 1-714
Table 2-31. Tape File Format Names . 1-716
Table 2-32. ANSI and IBM Tape Label Fields . 1-719
Table 2-33. Time Zones Supported in OpenVOS . 1-735
Table 2-34. Embedded Replacement References . 1-773
Table 2-35. Suffixes Appended by the bundle Command 1-784
xvi Tables

Tables
Table 2-36. Default Values on an ftServer Module 1-808
Table 2-37. The vcc Command Options . 1-816
Table 2-38. Differences between the vcc and cc Commands 1-819
Table A-1. Setting Tape Parameters . A-1
Table B-1. General OpenVOS Software Limits . B-1
Table B-2. OpenVOS Numerical Definitions . B-7
OpenVOS Commands Reference Manual (R098) xvii

Tables
xviii Tables

Chapter 1:
OpenVOS Command Functions 1-

A command function is a self-contained function, enclosed in parentheses, that you can use
as an argument in a command line.

Note: A command line in a command macro can be up to 32,767 characters long. A
command line at command level can be up to 300 characters long. Individual words
(including quoted strings) can be up to 256 characters long. The output of a command
function is no longer than 256 characters.

Before executing the rest of the command line in which a command function appears, the
command processor evaluates the command function. The resulting value replaces the
command function and its parentheses in the command line. The value returned by the
command function has a 256-character limit. The command processor treats that resulting
value as a string enclosed in apostrophes. For example, the command function (time) is
replaced by the current time in the following command line.

display_line (time)

In some cases, you may want the command function evaluated at a future time, rather than
when the current command line executes. An example is using the (current_dir) or
(referencing_dir) command function with a library path command. To prevent
evaluation of a command function at the time you use it in a command line, enclose it in
apostrophes.

The command processor expands abbreviations in the command line before evaluating
command functions, because there may be command functions in the abbreviations.
OpenVOS Commands Reference Manual (R098) 1-1

OpenVOS Command Functions
This chapter alphabetically lists and describes in detail all of the available command
functions, which follow.

The following table shows the meaning of symbols used in this appendix to show the syntax
of command functions.

A character string is an ordered set of characters. Positions in a character string are counted
starting with the leftmost character. A substring is a string of any length that occurs within a
longer string. An initial substring is a substring whose first character is also the first character
in the containing string. Similarly, a final substring is a substring whose last character is also
the last character in the containing string. For example, if there is the character string abcdef,
then a and abcd are two initial substrings of the string; likewise, def and ef are two final
substrings of the full character string.

(abs)
(access)
(after)
(ask)
(before)
(break)
(byte)
(calc)
(ceil)
(command_status)
(concat)
(contents)
(copy)
(count)
(current_dir)
(current_module)
(date)
(date_time)
(decimal)
(directory_name)
(end_of_file)
(exists)
(extended_names)
(extended_names_version)
(file_info)
(floor)
(given)

(group_name)
(has_access)
(hexadecimal)
(home_dir)
(index)
(iso_date)
(iso_date_time)
(language_name)
(length)
(lock_type)
(locked)
(ltrim)
(master_disk)
(max)
(message)
(min)
(mod)
(module_info)
(module_name)
(name_string)
(object_name)
(online)
(path_name)
(person_name)
(posix_path)
(process_dir)

(process_info)
(process_type)
(quote)
(rank)
(referencing_dir)
(reverse)
(rtrim)
(search)
(software_purchased)
(string)
(substitute)
(substr)
(system_info)
(system_name)
(terminal_info)
(terminal_name)
(time)
(translate)
(trunc)
(unique_string)
(unquote)
(user_name)
(verify)
(vos_path)
(where_path)

Symbol Meaning

S, S1, S2, ..., Sn, R
C
I
N, N1, N2,, Nn

A character string
A character or set of characters
An integer
A number
1-2 Chapter 1: OpenVOS Command Functions

OpenVOS Command Functions
You must enclose character string arguments within apostrophes if the string contains one or
more spaces, semicolons, or parentheses. If you need an apostrophe character within a
character string, type two apostrophes ('').

See the tables in the Preface for an explanation of the other notation used in documenting the
command functions.

Note that many of the examples of command functions in this chapter make the following
assumptions:

 The current system is %s1.
 The current module is #m2 (path name %s1#m2).
 The current master disk is #d01 (path name %s1#d01).
 The current user is Smith in the group Sales (user name Smith.Sales).
 The current directory is %s1#d01>Sales>Smith (the current user’s home directory).
OpenVOS Commands Reference Manual (R098) 1-3

(abs)
(abs) 1-

Purpose
This command function returns the absolute value of a number.

Syntax

(abs N)

Explanation
The (abs) command function returns the absolute value of N. N can be an integer or a floating
point number.

Example
For example, if you specify (abs -2), the command function returns the value 2.

Related Information
See also the descriptions of the (calc), (ceil), (floor), (max), (min), and (mod)
command functions.
1-4 Chapter 1: OpenVOS Command Functions

(access)
(access) 1-

Purpose
This command function returns a code specifying the access rights of a user to an object.

Syntax

(access path_name [user_name])
Explanation

The (access) command function returns a code specifying the access rights of a user to the
object specified by path_name. If you specify a value for user_name, it must be of the form
person_name.group_name (for example, Smith.Sales). If you omit the user name, the
access rights returned are your own.

The possible codes the (access) command function returns, and their corresponding
meanings for files and directories, are as follows:

If none of the access rights defined for the object specified by path_name apply to the user
specified by user_name, the (access) command function returns the code
u (for undefined), which is effectively null access.

If the object specified by path_name does not exist, the returned value is n. Also, if the value
for user_name does not specify a particular user by having the form
person_name.group_name, the returned value is n.

Example
For example, if you specify (access %s#d01>Sales>Smith Smith.Sales), the
command function returns the value m. The user Smith.Sales has modify access rights to
his or her home directory.

Directories Files

m for modify
s for status
n for null

w for write
r for read
e for execute
n for null
OpenVOS Commands Reference Manual (R098) 1-5

(access)
Related Information
See also the descriptions of the (group_name), (has_access), and (person_name)
command functions.
1-6 Chapter 1: OpenVOS Command Functions

(after)
(after) 1-

Purpose
This command function returns the final characters in a string following a substring in the
string.

Syntax
(after S1 S2)

Explanation
The (after) command function returns the final substring of S1 that follows the
substring S2.

Example
For example, if you specify (after aabbcc.ddeeff c.d), the command function returns
the value deeff.

Related Information
See also the descriptions of the (before), (break), (concat), (copy), (count),
(index), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-7

(ask)
(ask) 1-

Purpose
This command function returns a user-supplied input string in response to a specified query.

Syntax

(ask [prompt [response_qualifier]] [-no_echo])
Explanation

The (ask) command function:

1. Returns a user-supplied input string.

2. Writes the string specified by prompt and any string specified by
response_qualifier to the terminal_output port (with no trailing new line).

3. Reads the user-supplied response string from the default_input port and displays it
on a new line.

For example, the command function (ask 'Do you want to delete x?') first displays
the prompt Do you want to delete x?. On the same line you could respond by entering
yes. Therefore, the value of the function is yes. Since no value for response_qualifier
is specified, you could respond I doubt it. The value of the function would then be I
doubt it.

If the string you specify for prompt contains spaces, semicolons, or parentheses that are not
part of a command function, the string must be enclosed in apostrophes ('). If you omit a
value for prompt, the null string is written to the terminal_output port.

You can specify a string value for response_qualifier to restrict the type of response the
command function will accept.

To specify that the response must be one of a particular set of responses, each element of
response_qualifier must have the form:

(S1 [S2 [S3]...]) = R
In this case, you must enclose the entire response_qualifier string in apostrophes ('),
and separate each Sn from the next with a comma. If you specify any Sn value as a response,
1-8 Chapter 1: OpenVOS Command Functions

(ask)
the command function returns R. For example, to restrict the response allowed to either yes
or no, the value of response_qualifier might be:

'(yes,y)=yes (no,n)=no'

If the response is yes or y, the returned value is yes; if the response is no or n, the returned
value is no.

To specify that the response must have a particular data type, the value for
response_qualifier can be any of the following:

date_time
module_name
device_name
system_name
name
number
pathname [suffix]
string
user_name

In any of these cases, ask displays the string specified by prompt and a form of the string
specified by response_qualifier; the response entered must be of the type specified, or
an error message results.

If you select the -no_echo option, terminal input is not echoed to the screen, and the
response to the prompt is suppressed.

Example
Consider this form of the (ask) command function:

(ask 'Do you want to delete x?' '(yes,y)=yes (no,n)=no')

The prompt displayed is Do you want to delete x? (yes, no). If the response is yes
or y, the returned value is yes; if the response is no or n, the returned value is no.

The value of (ask 'What is your name?' name) might be John.
OpenVOS Commands Reference Manual (R098) 1-9

(before)
(before) 1-

Purpose
This command function returns initial characters in a string that precede a substring in the
string.

Syntax
(before S1 S2)

Explanation
The (before) command function returns the initial substring of S1 that precedes the
substring S2.

Example
For example, if you specify (before aabbcc.ddeeff c.d), the command function
returns the value aabbc.

Related Information
See also the descriptions of the (after), (break), (concat), (copy), (count),
(index), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-10 Chapter 1: OpenVOS Command Functions

(break)
(break) 1-

Purpose
This command function returns the length of the initial string that precedes the first instance
in the string of a specified character.

Syntax
(break S C)

Explanation
The (break) command function returns the length of the initial substring of S that precedes
the first instance in S of any character in the set C.

Example
For example, if you specify (break aabbcc.ddeeff ',.;:'), the command function
returns the value 6.

Related Information
See also the descriptions of the (after), (before), (concat), (copy), (count),
(index), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-11

(byte)
(byte) 1-

Purpose
This command function returns the ASCII character that corresponds to an integer in the
ASCII collating sequence.

Syntax
(byte I)

Explanation
The (byte) command function returns the ASCII character that corresponds to the integer
I in the ASCII collating sequence. The (byte) command function is the inverse of the
(rank) command function.

Example
For example, if you specify (byte 97), the command function returns the value a.

Related Information
See also the description of the (rank) command function.
1-12 Chapter 1: OpenVOS Command Functions

(calc)
(calc) 1-

Purpose
This command function returns the value that results from the command processor’s
evaluation of the specified expression.

Syntax
(calc expression)

Explanation
The (calc) command function returns the value that results from the command processor’s
evaluation of a specified expression. An expression is a series of one or more operands and
zero or more operators that can be evaluated. Operands are the terms, or elements, of the
expression to which the operators are applied. An operand can be a character string or a
number (a number is any string that can be converted to a number). Operators are symbols
that represent the actions to be performed on the operands. An infix operator appears between
two operands. A prefix operator appears before an operand.

All operators associate left to right, except for the prefix of positive and negative signs and
logical negation. When you write an expression, observe the following rules.

 You must enter spaces before and after the operators so that the operating system can
distinguish between use of the symbols as operators and other uses of the symbols.

 You can use parentheses to change the order in which operators are evaluated. When
you use parentheses to associate terms, you must enclose them in apostrophes.

The expression can be an arithmetic, logical, or string expression. An arithmetic expression
contains an arithmetic operator and operands that can be evaluated and reduced to a single
numeric value. A logical expression contains a logical operator and operands that can be
evaluated and reduced to either 0 when the expression is false or 1 when it is true. A string
expression contains the string operator (||) and operands that can be evaluated and reduced
to a single character-string value.

Table 1-1 shows the operators that an expression can contain in order of decreasing
precedence. Precedence is the order in which the operators in an expression are processed;
operators with higher precedence are processed before operators with lower precedence.

Table 1-1 also shows which operators can be used in arithmetic, logical, and string
expressions. Note that the equality operators are categorized only as logical operators. These
operators are used with numeric and character-string operands; however, they are logical
expressions since the resulting value is always 0 or 1.
OpenVOS Commands Reference Manual (R098) 1-13

(calc)
1

Note that the broken vertical bars that represent the concatenation operator and the logical or
operator appear as solid vertical bars on some terminals and keyboards.

The arithmetic operations are performed with floating-point arithmetic to a precision of
15 decimal digits. When two terms are compared, they are converted to numbers if possible.
If both terms cannot be converted to numbers, they are compared as character strings.

All calculations and conversions are performed by PL/I operators. See the OpenVOS PL/I
Language Manual (R009) for the evaluation and conversion rules.

If you want to evaluate two operands and a string operator as a string expression that (calc)
would otherwise evaluate as an arithmetic or logical expression, use the (quote) command
function. For example:

(calc (quote 1) || (quote 2))

Similarly, in a logical or logical and a string expression, if you want to use one or more
characters in an operand that (calc) would otherwise interpret as an operator, you can
specify the operand as an argument to the (quote) command function. For example:

(calc (quote *) < (quote /))

Table 1-1. Arithmetic, Logical, and String Expression Operators

 Symbol Meaning Arithmetic Logical String

 ** Exponentiation Y N N

+
 -
 ^

Positive (prefix)
Negative (prefix)
Not

Y
Y
N

N
N
Y

N
N
N

 *
 /

Multiplication
Division

Y
Y

N
N

N
N

 +
 -

Addition (infix)
Subtraction (infix)

Y
Y

N
N

N
N

|| Concatenation N N Y

 =
 ^=
 >
 <
 >=
 <=

 Equal to
 Not equal to
 Greater than
 Less than
 Greater than or equal to
 Less than or equal to

N
N
N
N
N
N

Y
Y
Y
Y
Y
Y

N
N
N
N
N
N

& And N Y N

 | Or N Y N
1-14 Chapter 1: OpenVOS Command Functions

(calc)
Operators are evaluated from left to right, except for exponentiation and prefix operators,
which are evaluated from right to left. For example, note how the expression 12 / 3 * 4
produces a different result when it is evaluated from right to left instead of from left to right.
(Division and multiplication operands have equal precedence.)

Examples
Note how the result differs when parentheses are used to alter the precedence of
multiplication over addition. For example, if you specify (calc 3 + 4 * 7), the command
function returns the value 31. If you specify (calc '(' 3 + 4 ')' * 7), the command
function returns the value 49.

The following examples illustrate the use of (calc) in an expression in a command macro:

&set a (calc (length &file&) - 4)

&set a (calc '(' 2 + 2 ')' / '(' 3 + 2 ')')

&set a '(' 2 + 2 ')' / '(' 3 + 2 ')'

&set count &count& + 1
&if &count& > 5
&then &goto exit

Note that &set statements imply (calc). Some of the preceding examples use (calc) for
clarity. For more information about the &set macro statement, see the OpenVOS Commands
User’s Guide (R089).

Related Information
See also the descriptions of the (abs), (ceil), (floor), (max), (min), and (mod)
command functions.

Expression Order of Evaluation Value

12 / 3 * 4
12 / 3 * 4

 Left to right
 Right to left

16
1

OpenVOS Commands Reference Manual (R098) 1-15

(ceil)
(ceil) 1-

Purpose
This command function returns the smallest integer greater than or equal to a specified
number.

Syntax
(ceil N)

Explanation
The (ceil) command function returns the smallest integer greater than or equal to N.

Examples
For example, if you specify (ceil 1.5), the command function returns the value 2. If you
specify (ceil -1.5), the command function returns the value -1.

Related Information
See also the descriptions of the (abs), (calc), (floor), (max), (min), and (mod)
command functions.
1-16 Chapter 1: OpenVOS Command Functions

(command_status)
(command_status) 1-

Purpose
This command function returns the status code of the most recently executed command.

Syntax

(command_status)

Explanation
The (command_status) command function returns the status code of the most recently
executed command. When a command begins to execute, the operating system sets the value
of the status code to 0. If the command executes normally without errors, the value of the
status code does not change. If an error occurs, the operating system sets the value of the
status code to the value returned by the OpenVOS subroutine s$error or
s$stop_program.

Example
The following example illustrates the use of the (command_status) command function in
a command.

display_error (command_status)

Related Information
See also the description of the (message) command function. For information about the
values returned by the s$error and s$stop_program subroutines, see the OpenVOS
Subroutines manuals.
OpenVOS Commands Reference Manual (R098) 1-17

(concat)
(concat) 1-

Purpose
This command function combines two or more strings.

Syntax

(concat S1 ...Sn)

Explanation
The (concat) command function returns the strings S1 through Sn combined into one string
with all spaces between the components removed.

Example
For example, if you specify (concat aabbcc . ddeeff), the command function returns
the value aabbcc.ddeeff.

Related Information
See also the descriptions of the (after), (before), (break), (copy), (count),
(index), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-18 Chapter 1: OpenVOS Command Functions

(contents)
(contents) 1-

Purpose
This command function returns the records in a file with each record separated by a space.

Syntax

(contents path_name [line_number] [open_status])
Explanation

The (contents) command function returns the records of the file specified by path_name,
with each record separated from the next by a space. The command function can return up to
256 characters from a file. The value of path_name can be a relative path name. The
argument line_number is an option to specify the number of the line you want to display.

The value of open_status can be either -hold or -close. This argument can be used only
within a command macro. The -hold option keeps the file open until the command macro
terminates or until the macro processor encounters the -close option.

Examples
The following examples use the file >Sales>Smith>reminders, which contains these two
lines:

1. Write the sales report.
2. Hire a temporary typist.

In the first example, the (contents) command function returns all of the records in the file.

ready: display_line (contents >Sales>Smith>reminders)
1. Write the sales report.
2. Hire a temporary typist.

In the second example, the (contents) command function returns the second record in the
file.

ready: display_line (contents >Sales>Smith>reminders 2)
2. Hire a temporary typist.

Related Information
See also the descriptions of the (end_of_file), (exists), and (file_info) command
functions.
OpenVOS Commands Reference Manual (R098) 1-19

(copy)
(copy) 1-

Purpose
This command function returns a specified string copied a specified number of times.

Syntax

(copy S I)

Explanation
The (copy) command function returns the string S, copied I times. The integer I can be
expanded as a binary, octal, decimal, or hexadecimal integer.

Example
For example, if you specify (copy ba 4), the command function returns the value
babababa.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (count),
(index), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-20 Chapter 1: OpenVOS Command Functions

(count)
(count) 1-

Purpose
This command function returns the length of the longest initial substring in a string that
consists of a specified set of characters.

Syntax
(count S C)

Explanation
The (count) command function returns the length of the longest initial substring of S
consisting entirely of characters in the set C.

Example
For example, if you specify (count aabbcc.ddeeff af), the command function returns
the value 2.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(index), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-21

(current_dir)
(current_dir) 1-

Purpose
This command function returns the full path name of your current directory.

Syntax

(current_dir)

Explanation
The (current_dir) command function returns the full path name of your current directory.

Example
The following example illustrates the use of the (current_dir) command function in a
command.

ready: display_dir_status (current_dir)
>Sales>Smith>prospects

Related Information
See also the descriptions of the (directory_name), (home_dir), (object_name),
(path_name), (referencing_dir), and (where_path) command functions.
1-22 Chapter 1: OpenVOS Command Functions

(current_module)
(current_module) 1-

Purpose
This command function returns the name of your current module.

Syntax

(current_module)

Explanation
The (current_module) command function returns the name of your current module.

Example
The following example illustrates the use of the (current_module) command function in
a command.

ready: display_line (current_module)
%s1#m2

Related Information
See also the descriptions of the (module_info), (master_disk), (module_name),
(online), and (system_name) command functions.
OpenVOS Commands Reference Manual (R098) 1-23

(date)
(date) 1-

Purpose
This command function returns a date.

Syntax

(date [date_string][-long][-standard])
Explanation

The (date) command function returns a date in the form yy-mm-dd. The date_string
argument represents a date to be returned; if you omit it, the (date) command function
returns the current date. The date_string must always be in the form defined in the
system>configuration>languages.tin file. The date_string argument can use
any of the following keywords. These keywords are described in Table 1-5 later in this
chapter.

absolute_date
coming
relative_terms

A date in a date_string consists of one, two, or three tokens. A token can be either a
numeric string or an alphabetic string matching one of the words defined in the
>system>configuration>languages.tin file. The tokens can be separated by
delimiter characters such as spaces, periods (.), hyphens (-), or slashes (/). No delimiter
characters are needed if the month is represented by a character string or you use the
ISO/ANSI date formats. In a three-token date with two delimiter characters, at least one
delimiter character must be a space or the two delimiter characters must be the same. Note
that in two- or three-token dates, you can precede a year token with a comma (,).

Valid token formats are listed below:

 month name tokens can be strings in the form specified in
>system>configuration>languages.tin

 one or two digit tokens are a month, day, or year

 two digit tokens greater than or equal to 80 are a year from 1980 to 1999

 three digit tokens from 1 to 366 are a day in the year

 four digit tokens are a year
1-24 Chapter 1: OpenVOS Command Functions

(date)
 six digit tokens in the form yymmdd are ISO/ANSI dates

 eight digit tokens in the form yyyymmdd are ISO/ANSI dates

 weekday name tokens in the form specified in
>system>configuration>languages.tin

Years must be in the range 1980 to 2048.

The following are valid single token dates.

 an ISO/ANSI string of six or eight digits

 a month name, given that the day is assumed to be the first of the month and the year is
the current year

 a four-digit year, given that the day is assumed to be January 1

 a two-digit year greater than or equal to 80, given that the day is assumed to be
January 1

 a weekday name

Numbers less than 80 and three-digit numbers are not valid single token dates.

The following are valid two token dates.

 a year followed by three-digit day of the year

 a month and year, or year and month, given that the day is assumed to be the first of
month

 a year and a two-digit number, or two-digit number and year, given that the number is
assumed to be a month and that the day is assumed to be the first of the month

 a month and a one- or two-digit number, given that the number is assumed to be a day
and that the year is the current year

 a number followed by a number, given that the two values are assumed to be the month
and day as ordered in >system>configuration>languages.tin and that the year
is current.

A valid three token date consists of year, month, and day numbers. However, day-in-year
numbers and ISO/ANSI strings are not valid. If it is obvious that a token represents a year (it
is a four-digit year, a two-digit year greater than 80, or is preceded by a comma) or a month
(it is a month name), then these tokens are interpreted as such. If a year token is identified,
then the command function uses the forms defined in
>system>configuration>languages.tin to determine the month and day. If a month
token is identified, then the command function uses the forms defined in
>system>configuration>languages.tin to determine the year and day. If a year and
month are identified, the third value is assumed to be an day of the month in the range of 1
to 31.
OpenVOS Commands Reference Manual (R098) 1-25

(date)
For most time zones, this command function returns accurate values through December 31,
2048 (2048-12-31_23:59:59_gmt). However, because some local time zones can differ
from GMT by up to 13 hours, the last full day for which this command function returns an
accurate value is 2048-12-30 for those time zones.

With the -long argument, the date returned is in the form month day, year. With
-standard, the (date) command function returns a date in the form defined in the
system>configuration>languages.tin file.

Examples
Example 1.
The value of (date) can be 10-04-22. The value of (date -long) can be April 22,
2010. The value of (date -long -standard) can be 22 April 2010.

The following example illustrates the use of the (date) command function in a command.

set_expiration_date current_year_calendar (date coming 1/1)

Example 2.
The following example illustrates the use of the (date) command function in the Eastern
Standard Time zone using the upper limit date.

ready 09:04:12
display_line (date 2048-12-31_23:59:59_gmt)
79-12-31
ready 09:15:47

The following example illustrates what happens when the upper limit is exceeded by a
second. If the upper limit is exceeded by more than a second, the system displays: Invalid
date or time.

ready 09:04:12
display_line (date 2049-01-01_00:00:00_gmt)
date: Invalid date or time.
ready 09:15:47

Related Information
See also the descriptions of the (date_time) and (time) command functions. For a list of
the time zones supported by OpenVOS, see the set_time_zone command later in this
manual.
1-26 Chapter 1: OpenVOS Command Functions

(date_time)
(date_time) 1-

Purpose
This command function returns a date and time.

Syntax

(date_time [date_string][-long][-standard])
Explanation

The (date_time) command function returns a date and time in the form yy-mm-dd
hh:mm:ss. The date_string argument represents a date and time to be returned; if you
omit it, the (date_time) command function returns the current date and time. The
date_string must always be in the form defined in the
system>configuration>languages.tin file. The date_string argument accepts
any of the following keywords. These keywords are described in Table 1-5 later in this
chapter.

absolute_date
absolute_time
coming
relative_terms
time_zone

For more information about the format of dates in the date_string, see the description of
the (date) command function.

For most time zones, this command function returns accurate values through
December 31, 2048 (2048-12-31_23:59:59_gmt). However, because some local time
zones can differ from GMT by up to 13 hours, the last full day for which this command
function returns an accurate value is 2048-12-30 for those time zones.

With the -long argument, the date and time returned is in the form weekday, month day,
year hh:mm:ss am/pm time_zone. With -standard, the (date_time) command
function returns a date in the form defined in the
system>configuration>languages.tin file.
OpenVOS Commands Reference Manual (R098) 1-27

(date_time)
Examples
Example 1.
The value of (date_time) could be 94-10-09 15:25:45. The value of (date_time
-long) could be Thursday, October 9, 1994 3:25 pm. The value of (date_time
-long -standard) could be Venerdi', 8 Dicembre 1994 12:14 del pomeriggio
EST.

The following example illustrates the use of the (date_time) command function in a
command.

batch do_weekly_reports -defer_until (date_time Friday 6pm)

Example 2.
When the (date_time) command function executes with time_zone as an argument, the
value returned is based on the current time in your own time zone. The value (date_time
time_zone) returns is the time it will be in your own time zone when the time in the time
zone specified by time_zone is the current time. The following example illustrates the
(date_time) command function using time_zone (pst, Pacific Standard Time) as an
argument issued in the Eastern Standard Time zone.

ready 10:08:19
display_line (date_time pst)
97-11-19 13:08:39

The first ready prompt is the current time in Eastern Standard Time. The command function
returns 13:08:39, which is the time it will be in Eastern Standard Time when the current time
is 10:08:39 in Pacific Standard Time.

Example 3.
The following example illustrates the use of the (date_time) command function in the
Eastern Standard Time zone using the upper limit date.

ready 10:36:31
display_line (date_time 2048-12-31_23:59:59_gmt)
79-12-31 19:59:59
ready 10:39:50

The following example illustrates what happens when the upper limit is exceeded by a
second. If the upper limit is exceeded by more than a second, the system displays: Invalid
date or time.

ready 10:39:50
display_line (date_time 2049-01-01_00:00:00_gmt)
date_time: Invalid date or time.
ready 10:41:35

Related Information
See also the descriptions of the (date) and (time) command functions. For a list of the
time zones supported by OpenVOS, see the set_time_zone command later in this manual.
1-28 Chapter 1: OpenVOS Command Functions

(decimal)
(decimal) 1-

Purpose
This command function returns the decimal value of a binary, octal, decimal, or hexadecimal
integer.

Syntax
(decimal I)

Explanation
The (decimal) command function returns the value of I expressed as a decimal integer. The
integer I can be expressed as a binary, octal, decimal, or hexadecimal integer.

Example
The values of (decimal -1101b), (decimal -15o),(decimal -13d), and
(decimal -dx) are -13.

The following example illustrates the use of the (decimal) command function in a
command.

display_line (decimal 0facex)

Related Information
See also the description of the (hexadecimal) command function.
OpenVOS Commands Reference Manual (R098) 1-29

(directory_name)
(directory_name) 1-

Purpose
This command function returns the full path name of the directory containing the specified
object.

Syntax
(directory_name path_name)

Explanation
The (directory_name) command function returns the full path name of the directory
containing the object specified by path_name. The input path name can be a relative path
name.

Example
For example, if you specify (directory_name %s1#d01>Sales>Smith), the command
function returns the value %s1#d01>Sales.

Related Information
See also the descriptions of the (current_dir), (home_dir), (object_name),
(path_name), (referencing_dir), and (where_path) command functions.
1-30 Chapter 1: OpenVOS Command Functions

(end_of_file)
(end_of_file) 1-

Purpose
This command function determines whether the (contents) command function has read to
the end of a file opened by a command macro.

Syntax
(end_of_file path_name)

Explanation
The (end_of_file) command function returns the value 1 if the last execution of the
(contents) command function on a file held open in a macro returned e$end_of_file;
otherwise, the returned value is 0. If the file specified as path_name is not a held file, or if
the function is invoked from outside a command macro, an error occurs.

Related Information
See also the descriptions of the (contents), (exists), and (file_info) command
functions.
OpenVOS Commands Reference Manual (R098) 1-31

(exists)
(exists) 1-

Purpose
This command function determines whether a specified object exists.

Syntax

(exists path_name [object_type][chase_code])
Explanation

The (exists) command function returns the value 1 if the object specified by path_name
exists, and you have status access to its containing directory, or non-null access to the object
itself, and 0 otherwise.

You can meet either access requirement if you have non-null access to an object but no access
to any of its containing directories. Inquiries about any of the containing directories would
return 0, while inquiries about the object would return 1.

The path_name argument can be a star name. The value for the object_type argument can
be -device, -file, -directory, or -link. If you omit a value for object_type, the
operating system looks for all non-device types.

The value for chase_code can be either -chase or -no_chase. This argument controls
whether the operating system chases a link to its ultimate target. If you omit chase_code,
the operating system uses -chase, unless you specify -link, in which case -no_chase is
used.

If you specify a star name as the value for path_name, you must specify -no_chase for
chase_code.

You cannot use both -link for object_type and -chase for chase_code in the same
command function, since the command function cannot look for a link and chase it at the
same time. Therefore, if you specify -link, you must specify -no_chase.

Example
For example, the value of (exists %s1#d01>Sales) is 1 if the object exists and you have
appropriate access, and 0 if it does not exist.
1-32 Chapter 1: OpenVOS Command Functions

(exists)
Related Information
See also the descriptions of the (contents), (end_of_file), and (file_info)
command functions.
OpenVOS Commands Reference Manual (R098) 1-33

(extended_names)
(extended_names) 1-

Purpose
This command function determines whether extended-names support is enabled in the current
execution environment.

Syntax

(extended_names [path_name])
Explanation

The (extended_names) command function determines whether extended-names support is
enabled in the current execution environment.

The command function returns the value 1 if either of the following is true:

 path_name is not specified, and either version 1 or version 2 extended names is
supported in the current execution environment

 path_name is specified, and the file system containing the object supports either
version 1 or version 2 extended names

Otherwise, the command function returns the value 0.

Version 1 or version 2 extended names are enabled in OpenVOS releases unless a command
macro has disabled this feature with the no_extended_names keyword of the
&begin_parameters statement. See the OpenVOS Commands User’s Guide (R089) for
more information about the &begin_parameters statement.

Example
For example, display_line (extended_names) displays either 1 or 0.

Related Information
See Using OpenVOS Extended Names (R631) for more information about extended-names
support. See also the description of the (extended_names_version) command function.
1-34 Chapter 1: OpenVOS Command Functions

(extended_names_version)
(extended_names_version) 1-

Purpose
This command function determines which version of extended-names support is enabled in
the current execution environment.

Syntax

(extended_names_version [path_name])
Explanation

The (extended_names_version) command function determines which version of
extended-names support is enabled in the current execution environment.

If path_name is not specified:

 The command function returns the value 2 if version 2 extended names is enabled.

 The command function returns the value 1 if version 1 extended names is enabled.

 Otherwise, the command function returns the value 0 (legacy names).

If path_name is specified and the object exists:

 The command function returns the value 2 if the file system containing that object
supports version 2 extended names.

 The command function returns the value 1 if the file system containing that object
supports version 1 extended names.

 Otherwise, the command function returns the value 0 (legacy names).

Version 1 or version 2 extended names are enabled in OpenVOS releases unless a command
macro has disabled this feature with the no_extended_names keyword of the
&begin_parameters statement. See the OpenVOS Commands User’s Guide (R089) for
more information about the &begin_parameters statement.

Example
For example, display_line (extended_names) displays either 2, 1, or 0.
OpenVOS Commands Reference Manual (R098) 1-35

(extended_names_version)
Related Information
See Using OpenVOS Extended Names (R631) for more information about extended-names
support. See also the description of the (extended_names) command function.
1-36 Chapter 1: OpenVOS Command Functions

(file_info)
(file_info) 1-

Purpose
This command function returns a specified piece of status information about a file.

Syntax

(file_info path_name key)

Explanation
The (file_info) command function returns a specified piece of information about the file
specified by path_name, depending on the value of key. All dates returned by this command
function use the form defined in the >system>configuration>languages.tin file. The
following table shows the allowed values for key and the information returned by each value.

Key Returned Value

allocation_size The allocation size set by the set_file_allocation command or 1,
if that command is not used

author The name of the file’s author

blocks_used The size of the file, excluding the blocks used by indexes on that file

date_created The date the file was created

date_modified The date the file was last modified

date_saved The date the file was last saved; returns the null string if there is no
last-saved date

date_used The date the file was last used; returns the null string if there is no
last-used date

dynamic_extents Returns 1 if the file has dynamic extents; returns 0 if it does not

expiration_date The date the file expires; returns the null string if there is no expiration
date

extent_size Either the value of the extent size of a file, or 1 if the file is not an
extent file, or -1 if the file has flexible extents (such a file is called a
flex file)

implicit_locking Returns 1 if the file has implicit locking; returns 0 if it does not
OpenVOS Commands Reference Manual (R098) 1-37

(file_info)
Related Information
See also the descriptions of the (contents), (end_of_file), and (exists) command
functions.

last_record The last record number in a file with fixed, relative, sequential,
extended sequential, stream, or 64-bit stream file organization; returns
the null string for all other file organizations

organization The type of file organization

pipe_file Returns 1 if the file is a pipe file; returns 0 if it is not.

ram_file Returns 1 if the file is a RAM file; returns 0 if it is not.

record_size The maximum record size of the file if the file is fixed, relative,
sequential, extended sequential, stream, or 64-bit stream; returns the
null string for all other file organizations. If the file is a stream file, 0 is
returned. If the file is a 64-bit stream file, a negative value is returned
(-1 for 64-bit stream files and -2 for restricted 64-bit stream files).

sparse Returns 1 if the file is a sparse file; returns 0 if it is not.

stream64_file Returns 1 if the file is a 64-bit stream file; returns 0 if it is not.

transaction_file Returns 1 if the file is a transaction file; returns 0 if it is not.

Key Returned Value
1-38 Chapter 1: OpenVOS Command Functions

(floor)
(floor) 1-

Purpose
This command function returns the largest integer less than or equal to the specified number.

Syntax

(floor N)

Explanation
The (floor) command function returns the largest integer less than or equal to N.

Examples
For example, the value of (floor 1.5) is 1, and the value of (floor -1.5) is -2.

Related Information
See also the descriptions of the (abs), (calc), (ceil), (max), (min), and (mod)
command functions.
OpenVOS Commands Reference Manual (R098) 1-39

(given)
(given) 1-

Purpose
This command function indicates whether a command function parameter was supplied a
value.

Syntax
(given parameter)

Explanation
The (given) command function returns the value 1 if the specified command macro
parameter was supplied a value when the current command macro was issued, and 0
otherwise.

This command function can be used only in command macros.

Example
The value of (given source) is 1 when an argument was supplied that corresponds to the
command macro parameter source, and 0 otherwise.
1-40 Chapter 1: OpenVOS Command Functions

(group_name)
(group_name) 1-

Purpose
This command function returns the name of your current group.

Syntax

(group_name)

Explanation
The (group_name) command function returns the name of your current group.

Example
For example, you can use the (group_name) command function in the login command as
follows.

login (group_name) -module %s1#m3

Related Information
See also the description of the (person_name) and (user_name) command functions.
OpenVOS Commands Reference Manual (R098) 1-41

(has_access)
(has_access) 1-

Purpose
This command function indicates whether a user has the specified access rights to a specified
object.

Syntax

(has_access path_name access_code [user_name])
Explanation

The (has_access) command function returns the value 1 if the user specified by
user_name has at least the access rights specified by access_code to the object specified
by path_name. Otherwise, the returned value is 0.

If the object specified by path_name does not exist, the returned value is 0.

If you specify a value for user_name, it must be of the form person_name.group_name.
If you omit the user name, the access rights returned are your own.

The value you specify for access_code must be appropriate for the type of object you
specify for path_name. The valid codes you can specify for access_code and their
corresponding meanings for files and directories are as follows:

If you specify n as the value for access_code, the value the command function returns is
always 1 since all users have at least null access to every object in the system.

Example
For example, if you specify (has_access %s#d01>Sales>Smith s Smith.Sales), the
command function might return the value 1.

Directories Files

m for modify
s for status
n for null

w for write
r for read
e for execute
n for null
1-42 Chapter 1: OpenVOS Command Functions

(has_access)
Related Information
See also the descriptions of the (group_name), (access), and (person_name)
command functions.
OpenVOS Commands Reference Manual (R098) 1-43

(hexadecimal)
(hexadecimal) 1-

Purpose
This command function returns the value of a binary, octal, decimal, or hexadecimal integer
expressed as a hexadecimal integer.

Syntax
(hexadecimal I)

Explanation
The (hexadecimal) command function returns the value of I expressed as a hexadecimal
integer. The integer I can be expressed as a binary, octal, decimal, or hexadecimal integer.

Example
The values of (hexadecimal 1101b), (hexadecimal 15o), (hexadecimal 13d), and
(hexadecimal dx) are 0Dx.

The following example illustrates the use of the (hexadecimal) command function in a
command.

display_line (hexadecimal 1032)

Related Information
See also the description of the (decimal) command function.
1-44 Chapter 1: OpenVOS Command Functions

(home_dir)
(home_dir) 1-

Purpose
This command function returns the full path name of your home directory.

Syntax

(home_dir)

Explanation
The (home_dir) command function returns the full path name of your home directory.

Example
For example, if your user name is Smith.Sales, the (home_dir) command function might
return the value %s1#d02>Sales>Smith.

This command function might be used in the following command.

emacs (home_dir)>abbreviations

Related Information
See also the descriptions of the (current_dir), (directory_name), (object_name),
(path_name), (referencing_dir), and (where_path) command functions.
OpenVOS Commands Reference Manual (R098) 1-45

(index)
(index) 1-

Purpose
This command function returns the position in a string of the first character in a substring.

Syntax

(index S1 S2)

Explanation
The (index) command function returns the position in the string S1 of the first character in
the substring S2. If S2 is not a substring of S1, the returned value is 0.

Example
For example, if you specify (index aabcc.ddeeff .), the command function returns the
value 6.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (length), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-46 Chapter 1: OpenVOS Command Functions

(iso_date)
(iso_date) 1-

Purpose
This command function returns a date using a four-digit year.

Syntax

(iso_date [date_string][-long][-standard])
Explanation

The (iso_date) command function returns a date in the form yyyy-mm-dd. The
date_string argument represents a date to be returned; if you omit it, the (iso_date)
command function returns the current date. The date_string must always be in the form
defined in the system>configuration>languages.tin file. The date_string
argument can use any of the following keywords. These keywords are described in Table 1-5
later in this chapter.

absolute_date
coming
relative_terms

A date in a date_string consists of one, two, or three tokens. A token can be either a
numeric string or an alphabetic string matching one of the words defined in the
>system>configuration>languages.tin file. The tokens can be separated by
delimiter characters such as spaces, periods (.), hyphens (-), or slashes (/). No delimiter
characters are needed if the month is represented by a character string or you use the
ISO/ANSI date formats. In a three-token date with two delimiter characters, at least one
delimiter character must be a space or the two delimiter characters must be the same. Note
that in two- or three-token dates, you can precede a year token with a comma (,).

Valid token formats are listed below.

 month name tokens can be strings in the form specified in
>system>configuration>languages.tin

 one- or two-digit tokens are a month, day, or year

 two-digit tokens greater than or equal to 80 are a year from 1980 to 1999

 three-digit tokens from 1 to 366 are a day in the year

 four-digit tokens are a year
OpenVOS Commands Reference Manual (R098) 1-47

(iso_date)
 six-digit tokens in the form yymmdd are ISO/ANSI dates

 eight-digit tokens in the form yyyymmdd are ISO/ANSI dates

 weekday name tokens in the form specified in
>system>configuration>languages.tin

Years must be in the range 1980 to 2048.

The following are valid single-token dates.

 an ISO/ANSI string of six or eight digits

 a month name, given that the day is assumed to be the first of the month and the year is
the current year

 a four-digit year, given that the day is assumed to be January 1

 a two-digit year greater than or equal to 80, given that the day is assumed to be
January 1

 a weekday name

Numbers less than 80 and three-digit numbers are not valid single token dates.

The following are valid two-token dates.

 a year followed by a three-digit day of the year

 a month and year, or year and month, given that the day is assumed to be the first of
month

 a year and a two-digit number, or two-digit number and year, given that the number is
assumed to be a month and that the day is assumed to be the first of the month

 a month and a one- or two-digit number, given that the number is assumed to be a day
and that the year is the current year

 a number followed by a number, given that the two values are assumed to be the month
and day as ordered in >system>configuration>languages.tin and that the year
is the current year.

A valid three-token date consists of year, month, and day numbers. However, day-in-year
numbers and ISO/ANSI strings are not valid. If a token represents a year (it is a four-digit
year, a two-digit year greater than 80, or is preceded by a comma) or a month (it is a month
name), then these tokens are interpreted as such. If a year token is identified, then the
command function uses the forms defined in >system>configuration>languages.tin
to determine the month and day. If a month token is identified, then the command function
uses the forms defined in >system>configuration>languages.tin to determine the
year and day. If a year and month are identified, the third value is assumed to be a day of the
month in the range of 1 to 31.
1-48 Chapter 1: OpenVOS Command Functions

(iso_date)
For most time zones, this command function returns accurate values through December 31,
2048 (2048-31_23:59:59_gmt). However, because some local time zones can differ from
GMT by up to 13 hours, the last full day for which this command function returns an accurate
value is 2048-12-30 for those time zones.

With the -long argument, (iso_date) returns the date in the form month day, year.

With -standard, (iso_date) returns the date in the form defined in the
system>configuration>languages.tin file. If you do not specify a value for this
argument, (iso_date) returns the current date. If you specify the -standard argument,
you can specify coming in your process language; for example, if your process language is
Italian, the term might be prossimo. See Table 1-5 for more information.

Examples
Example 1.
The value of (iso_date) could be 1997-08-01. The value of (iso_date -long) could
be August 1, 1997. The value of (iso_date -long -standard) could be
1 August 1997.

The following example illustrates the use of the (iso_date) command function in a
command.

set_expiration_date current_year_calendar (iso_date coming 1/1)

Example 2.
The following example illustrates the use of the (iso_date) command function in the
Eastern Standard Time zone using the upper limit date.

ready 09:04:12
display_line (iso_date 2048-12-31_23:59:59_gmt)
2048-12-31
ready 09:15:47

The following example illustrates what happens when the upper limit is exceeded by a
second. If the upper limit is exceeded by more than a second, the system displays: Invalid
date or time.

ready 09:04:12
display_line (iso_date 2049-01-01_00:00:00_gmt)
iso_date: Invalid date or time.
ready 09:15:47

Related Information
See also the descriptions of the (iso_date_time), (date_time), and (time) command
functions. For a list of the time zones supported by OpenVOS, see the set_time_zone
command later in this manual.
OpenVOS Commands Reference Manual (R098) 1-49

(iso_date_time)
(iso_date_time) 1-

Purpose
This command function returns a date using a four-digit year and a time.

Syntax

(iso_date_time [date_time_string][-long][-standard])
Explanation

The (iso_date_time) command function returns a date and time in the form yyyy-mm-dd
hh:mm:ss. The date_time_string argument represents a date and time to be returned; if
you omit it, the (iso_date_time) command function returns the current date and time. The
date_time_string must always be in the form defined in the
system>configuration>languages.tin file. The date_time_string argument
accepts any of the following keywords. These keywords are described in Table 1-5 later in
this chapter.

absolute_date
absolute_time
coming
relative_terms
time_zone

For more information about the format of dates in the date_time_string, see the
description of the (iso_date) command function.

For most time zones, this command function returns accurate values through December 31,
2048 (2048-12-31_23:59:59_gmt). However, because some local time zones can differ
from GMT by up to 13 hours, the last full day for which this command function returns an
accurate value is 2048-12-30 for those time zones.

With -long, the date-time value is in the form weekday, month day, year hh:mm:ss
am/pm time_zone. For example, if the value of (iso_date_time) is 2001-06-09
15:25:45, the value of (iso_date_time -long) would be Tuesday, June 9, 2001
3:25 pm est.

With -standard, the (iso_date_time) command function returns a date, and accepts a
date_time_string argument formed in accordance with the date and time values in the
language definition for the process language. If you give no value for date_time_string,
the returned value is the current date and time. If you specify the -standard argument, you
1-50 Chapter 1: OpenVOS Command Functions

(iso_date_time)
can specify coming in your process language; for example, if your process language is
Italian, the term might be prossimo. See Table 1-5 for more information.

Examples
Example 1.
The value of (iso_date_time) could be 1997-08-01 12:50:50. The value of
(iso_date_time -long) could be Friday, August 1, 1997 12:50 pm edt. The
value of (iso_date_time -long -standard) could be Friday, August 1, 1997
12:50 pm.

The following example illustrates the use of the (iso_date_time) command function in a
command.

batch do_weekly_reports -defer_until (iso_date_time Friday 6pm)

Example 2.
When the (iso_date_time) command function executes with time_zone as an argument,
the value returned is based on the current time in your own time zone. The value
(iso_date_time time_zone) returns is the time it will be in your own time zone when
the time in the time zone specified by time_zone is the current time. The following example
illustrates the (iso_date_time) command function using time_zone (pst, Pacific
Standard Time) as an argument issued in the Eastern Standard Time zone.

ready 10:08:19
display_line (iso_date_time pst)
97-11-19 13:08:39
ready 10:08:39

The first ready prompt is the current time in Eastern Standard Time. The command function
returns 13:08:39, which is the time it will be in Eastern Standard Time when the current time
is 10:08:39 in Pacific Standard Time.

Example 3.
The following example illustrates the use of the (iso_date_time) command function in
the Eastern Standard Time zone using the upper limit date.

ready 09:04:12
display_line (iso_date_time 2048-12-31_23:59:59_gmt)
2048-12-31 19:59:59
ready 09:15:47

The following example illustrates what happens when the upper limit is exceeded by a
second. If the upper limit is exceeded by more than a second, the system displays: Invalid
date or time.

ready 09:04:12
display_line (iso_date_time 2049-01-01_00:00:00_gmt)
iso_date_time: Invalid date or time.
ready 09:15:47
OpenVOS Commands Reference Manual (R098) 1-51

(iso_date_time)
Related Information
See also the descriptions of the (iso_date), (date_time), and (time) command
functions. For a list of the time zones supported by OpenVOS, see the set_time_zone
command later in this manual.
1-52 Chapter 1: OpenVOS Command Functions

(language_name)
(language_name) 1-

Purpose
This command function returns the name of the language of your current process.

Syntax

(language_name)

Explanation
The (language_name) command function returns the name of the language of your current
process.

Example
The following example illustrates the use of the (language_name) command function.

set_library_paths message
%s1#d03>Sales>message_library>'(language_name)'

Related Information
See the description of the set_language command and the OpenVOS Commands User’s
Guide (R089) for more information on using languages.
OpenVOS Commands Reference Manual (R098) 1-53

(length)
(length) 1-

Purpose
This command function returns the length of a string.

Syntax

(length [S])
Explanation

The (length) command function returns the length of the string S. If S contains spaces, the
(length) command function treats S as a single string. If you omit S, the value of
(length) is 0.

Examples
For example, if you specify (length aabbcc.ddeeff), the command function returns the
value 13. If you specify (length abc.def), the command function returns the value 7.

You might use the (length) command function in a command macro, as follows:

&if (length &message&) = 0
&then &return

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (ltrim), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-54 Chapter 1: OpenVOS Command Functions

(lock_type)
(lock_type) 1-

Purpose
This command function returns the type of lock on a file.

Syntax

(lock_type path_name)

Explanation
The (lock_type) command function returns the type of lock on the file specified by
path_name. The command function returns one of the following values.

dirty_readers
implicit_lock
no_lock
read_lock
record_lock
region_locking
transaction_file
write_lock

Related Information
See also the description of the (locked) command function.
OpenVOS Commands Reference Manual (R098) 1-55

(locked)
(locked) 1-

Purpose
This command function indicates whether a file is locked.

Syntax

(locked path_name)

Explanation
The (locked) command function returns the value 1 if the file specified by path_name is
locked, and 0 if it is not locked.

Related Information
See also the description of the (lock_type) command function.
1-56 Chapter 1: OpenVOS Command Functions

(ltrim)
(ltrim) 1-

Purpose
This command function returns the longest final substring in a string whose first character is
not in a specified set of characters.

Syntax

(ltrim S [C])
Explanation

The (ltrim) command function returns the longest final substring of S whose first character
is not in the set C. If you omit C, the operating system trims leading spaces from S.

Example
For example, if you specify (ltrim aabbcc.ddeeff af), the command function returns
the value bbcc.ddeeff.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (quote), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-57

(master_disk)
(master_disk) 1-

Purpose
This command function returns the full path name of the master disk directory on a module.

Syntax

(master_disk [module_name])
Explanation

The (master_disk) command function returns the full path name of the master disk
directory on the module module_name, or on the current module when you omit the
argument.

Example
The following example illustrates the use of the (master_disk) command function.

display_disk_info (master_disk)
%s1#d01

Related Information
See also the descriptions of the (current_module), (module_name), (online), and
(system_name) command functions.
1-58 Chapter 1: OpenVOS Command Functions

(max)
(max) 1-

Purpose
This command function returns the larger of two specified values.

Syntax

(max N1 N2)

Explanation
The (max) command function returns the larger of the two values specified in the arguments
N1 and N2.

Example
For example, if you specify (max 33 36), this command function returns the value 36.

Related Information
See also the descriptions of the (abs), (calc), (ceil), (floor), (min), and (mod)
command functions.
OpenVOS Commands Reference Manual (R098) 1-59

(message)
(message) 1-

Purpose
This command function returns the text of a system message corresponding to a status code.

Syntax

(message status_code ¢S1 [S2 [S3]]£ [-number][-no_number])
Explanation

The (message) command function returns the text of a system message corresponding to
the value specified by status_code. The value of the status_code argument can be one
of the following:

 an integer specifying a system status code
 the command function (command_status)
 the name of a system status message, beginning with e$, m$, r$, or q$

If you specify any of the optional string arguments (S1, S2, and S3), they replace any
parameters defined in the text of the returned message. If there are no parameters defined in
the text of the message, the string arguments are ignored.

The -number argument displays the status code number of status_code. The
-no_number argument cancels the effect of a previous -number argument. If you specify
both arguments, the last one specified on the command line takes effect. The default value is
-no_number.

Examples
The following examples show the various ways that you can specify values for this command
function.

To return the text of the system message e$object_not_found, issue the command
function (message e$object_not_found). The command function returns the value
Object not found.

To determine a status code number, issue the command function (message
e$object_not_found -number). The command function returns the value 1032.

If you use the (command_status) command function as the value of status_code, the
(message) command function returns the text of the message corresponding to the code
returned by (command_status). Since none of the messages corresponding to codes
1-60 Chapter 1: OpenVOS Command Functions

(message)
returned by (command_status) have parameters, you do not need to specify the optional
string arguments. For example, if you specify (message (command_status)), the
command function might return the value Object not found.

The (message 1434 Smith Sales m2) sample command function uses the optional
string arguments. This command function returns the value Smith not registered for
group Sales on module m2.

Related Information
See also the description of the (command_status) command function.
OpenVOS Commands Reference Manual (R098) 1-61

(min)
(min) 1-

Purpose
This command function returns the smaller of two specified values.

Syntax

(min N1 N2)

Explanation
The (min) command function returns the smaller of the two values specified in the
arguments N1 and N2.

Example
For example, if you specify (min 30 43), the command function returns the value 30.

Related Information
See also the descriptions of the (abs), (calc), (ceil), (floor), (max), and (mod)
command functions.
1-62 Chapter 1: OpenVOS Command Functions

(mod)
(mod) 1-

Purpose
This command function returns the remainder of a division operation.

Syntax

(mod N1 N2)

Explanation
The (mod) command function returns the remainder of the division of N1 by N2.

Example
For example, if you specify (mod 14 4), the command function returns the value 2.

Related Information
See also the descriptions of the (abs), (calc), (ceil), (floor), (max), and (min)
command functions.
OpenVOS Commands Reference Manual (R098) 1-63

(module_info)
(module_info) 1-

Purpose
This command function returns particular status information about the current module.

Syntax

(module_info key)

Explanation
The (module_info) command function returns information about the current module,
depending on the value of key. The following table shows the kind of information returned,
based on the value of key.

Key Returned Value

bootload_time The date/time that the operating system started
running.

cache_mem_percent The percentage of memory over 128 MB to use for the
cache.

cate_write_limit A value shown for compatibility purposes only.

cpu_family The identification string for the CPU architecture.

cpu_type The identification string for the type of CPU that is in
use.

disk_mod_limit The maximum number of modified blocks per disk
that the cache manager is allowed to hold in cache
before initiating disk writes.

disk_write_limit The maximum number of write requests that the cache
manager is allowed to queue to each disk.

free_grace_time The length of time, in seconds, before an unreferenced
physical page is returned to the pool of physical pages
available for virtual memory management.

free_kernel_vm The number of 4096-byte pages of free kernel virtual
memory.

max_buffers The maximum number of physical disk cache buffers.
1-64 Chapter 1: OpenVOS Command Functions

(module_info)
max_events_per_module The maximum number of events allowed on the
module.

max_events_per_process The maximum number of user events, allowed per
process, on the module.

max_events_per_task The maximum number of events that a task can wait
for.

max_local_devices_per_module The maximum number of devices allowed on the
module.

max_login_processes The administrative limit on the maximum number of
processes that can be created.

max_processes The implementation limit on the maximum number of
processes that can be created.

max_resident_percent The percentage of the maximum cache size to make
available for memory-resident files.

max_virtual_pages The maximum number of virtual pages, used to map
the physical pages, in the cache.

min_buffers The minimum number of physical disk cache buffers.

min_cache_priority A minimum priority for processes that are entitled to
retain data in the cache.

modified_grace_time The length of time, in seconds, that a modified block is
left in memory before it is written to disk.

n_cpus The number of CPUs that are supported by this
module.

n_local_devices The number of devices that are in use by this module.

n_processes The number of processes that are in use by this
module.

os_release
system_release
vos_release

The identification string for the version of the
operating system that is in use.

recover_disk_priority The default priority level of any process created to
perform a recover_disk operation.

referenced_grace_time The length of time, in seconds, before a referenced
physical page is forcibly unreferenced.

total_kernel_vm The total number of 4096-byte pages of kernel virtual
memory.

Key Returned Value
OpenVOS Commands Reference Manual (R098) 1-65

(module_info)
Related Information
See also the descriptions of the (current_module), (master_disk), (module_name),
(online), and (system_name) command functions.

transient_mod_grace_time The length of time, in seconds, that the cache manager
waits after a block from a transient file is modified
before the cache manager writes the block to disk.

unreferenced_grace_time The length of time, in seconds, before an unreferenced
physical page is available for reuse, as a buffer, for a
different disk block.

unused_dir_timeout The number of seconds a directory can be unused
before its contents are written to disk.

used_kernel_vm The number of 4096-byte pages of used kernel virtual
memory.

Key Returned Value
1-66 Chapter 1: OpenVOS Command Functions

(module_name)
(module_name) 1-

Purpose
This command function returns the full path name of a module.

Syntax

(module_name module_name)

Explanation
The (module_name) command function returns the full path name of a module specified by
module_name. Examples of valid values for module_name include %s1#m2, #m2, and m2.

Example
For example, if you specify (module_name #m2), the command function might return the
value %s1#m2.

Related Information
See also the descriptions of the (current_module), (master_disk), (module_info),
(online), and (system_name) command functions.
OpenVOS Commands Reference Manual (R098) 1-67

(name_string)
(name_string) 1-

Purpose
This command function returns the strings S1 through Sn combined into one string, with each
component separated from the next by one space.

Syntax
(name_string S1...Sn)

Explanation
The (name_string) command function returns the strings S1 through Sn combined into
one string, with each component separated from the next by one space. You can use this
function to combine multiple arguments into a single character-string argument when one of
the arguments is a name containing one of the special command-line characters (embedded
apostrophes, exclamation points, semicolons, spaces, and left and right parentheses) that must
be quoted in the final result string.

Example
For example, if you specify (name_string 'a b' 'cde'), the command function would
return the value 'a b' cde.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (substr), (translate), (trunc), (unique_string),
(unquote), and (verify) command functions.
1-68 Chapter 1: OpenVOS Command Functions

(object_name)
(object_name) 1-

Purpose
This command function returns the name of an object.

Syntax

(object_name path_name [suffix])
Explanation

The (object_name) command function returns the name of the object specified by
path_name, with the specified suffix, if any, appended.

Example
For example, if you specify (object_name %sys#m1>sales>jones>abbreviations),
the command function returns the value abbreviations.

If you specify (object_name make_reports .cobol), the command function returns
the value make_reports.cobol.

Related Information
See also the descriptions of the (current_dir), (directory_name), (home_dir),
(path_name), (referencing_dir), and (where_path) command functions.
OpenVOS Commands Reference Manual (R098) 1-69

(online)
(online) 1-

Purpose
This command function indicates if a module is currently online.

Syntax

(online [module_name])
Explanation

The (online) command function returns the value 1 if the module specified by
module_name is currently online and available through the network. The command function
returns 0 if one of the following conditions exist:

 the specified module is not online
 the specified module does not exist
 the current user has no access to the specified module

If you do not specify a value for module_name, the command function returns the value 1.

Examples of valid values for module_name are %s1#m2, #m2, and m2.

Example
For example, if you specify (online #m5), the command function returns the value 1.

Related Information
See also the descriptions of the (module_info), (master_disk), (module_name), and
(system_name) command functions.
1-70 Chapter 1: OpenVOS Command Functions

(path_name)
(path_name) 1-

Purpose
This command function returns the full path name of an object.

Syntax

(path_name path_name [suffix])
Explanation

This command function returns the full path name of the object specified by path_name,
with the specified suffix, if any, appended.

Example
For example, if you specify (path_name make_reports .cobol), the command
function returns the value %s1#d01>Sales>Smith>make_reports.cobol.

Related Information
See also the descriptions of the (current_dir), (directory_name), (home_dir),
(object_name), (referencing_dir), and (where_path) command functions.
OpenVOS Commands Reference Manual (R098) 1-71

(person_name)
(person_name) 1-

Purpose
This command function returns your person name.

Syntax

(person_name)

Explanation
The (person_name) command function returns your person name.

Example
The following example illustrates the use of the (person_name) command function in a
command.

stop_process -user (person_name)
Smith

Related Information
See also the description of the (group_name) and (user_name) command functions.
1-72 Chapter 1: OpenVOS Command Functions

(posix_path)
(posix_path) 1-

Purpose
This command function converts an OpenVOS path name into a POSIX path name.

Syntax
(posix_path path_name)

Explanation
The (posix_path) command function converts the path_name argument, which is a
relative or full OpenVOS path name, into a full POSIX path name. The resultant POSIX path
name always begins with a slash character (/).

The command function expands path_name into a full OpenVOS path name, which
processes and removes any dot components (. or ..). In the following explanation, %sys is
the current system.

 If the expanded path name has the form %sys#null, the result is /dev/null.

 If the expanded path name has the form %sys#master_disk, and
%sys#master_disk is the current module’s master disk, the result is /.

 If the expanded path name has the form %sys#name, the result has the form
/%sys#name/.

 If the expanded path name has a form other than the preceding forms, it is processed to
remove the name of the master disk (if present) and to convert all greater-than
characters (>) to slash characters.
OpenVOS Commands Reference Manual (R098) 1-73

(posix_path)
Example
The following examples assume that the master disk is %s1#d01 and the current directory is
%s1#d01>SysAdmin.

display_line (posix_path Sales>Jones)
/SysAdmin/Sales/Jones

display_line (posix_path %s1#d01)
/

display_line (posix_path <Sales>Jones)
/Sales/Jones

display_line (posix_path %s1#null)
/dev/null

display_line (posix_path (master_disk))
/

display_line (posix_path (master_disk)>system)
/system

The following example assumes that the current directory is %s1#d02>Research.

display_line (posix_path .)
/%s1#d02/Research

Related Information
See also the description of the (vos_path) command function.
1-74 Chapter 1: OpenVOS Command Functions

(process_dir)
(process_dir) 1-

Purpose
This command function returns the full path name of the process directory of the current
process.

Syntax
(process_dir)

Explanation
The (process_dir) command function returns the full path name of the process directory
of the current process.

Example
The following example illustrates the use of the (process_dir) command function in a
command.

list (process_dir)>* -names_only
%se#m29>process_dir_dir>pd.011D889B is empty.

Related Information
See also the descriptions the (process_info), (process_type), and
(referencing_dir) command functions.
OpenVOS Commands Reference Manual (R098) 1-75

(process_info)
(process_info) 1-

Purpose
This command function returns particular process-specific information.

Syntax

(process_info key)

Explanation
The (process_info) command function returns various kinds of process-specific
information, depending on the value of key. The following table shows the allowed values for
key and the information returned by each value.
1-76 Chapter 1: OpenVOS Command Functions

(process_info)
2

Related Information
See also the descriptions the (process_dir), (process_type), and
(referencing_dir) command functions.

Key Returned Value

cpu_time The amount of time, excluding time for page faults, the processor has
spent running the process’s programs. The unit of time is 1/65,536 of
a second.

disk_reads The number of times the process has read data from the disk, except
for page faults, since the process was created

disk_writes The number of times the process has written data to the disk since the
process was created

language The name of the language of the current process.

login_time The time that the process logged in

page_fault_time The accumulated time the CPU has spent in page faults for the
process. The unit of time is 1/65,536 of a second.

page_faults The number of page faults the process has taken since it was created

parent_process_id The process ID of the parent process, converted into a hexadecimal
string

priority A number from 0 to 9 giving the priority of the process

privileged 1 if the process is privileged; 0 otherwise

process_id The current process ID, converted into a hexadecimal string

process_name The name of the process

program_name The entry name of the current program module, internal command,
or command macro. In cases where a command macro runs a
program module or internal command, the entry name refers to the
.pm or internal command in preference to the command macro. If no
.pm, .cm, or internal command is executing, the null string is
returned.

sub_process_level The current subprocess level. For a login process (created from
pre-login), the subprocess level is 0; for a subprocess created from a
login process or another subprocess, the level is the number of
subprocesses created.

subsystem The subsystem your process was created under when it logged in
OpenVOS Commands Reference Manual (R098) 1-77

(process_type)
(process_type) 1-

Purpose
This command function returns the type of the current process.

Syntax

(process_type)

Explanation
The (process_type) command function returns the type of the current process. The
possible returned values are as follows:

batch
interactive
sub_process

The value of (process_type) for your login process is interactive when the process is
created from pre-login, and sub_process when you log in a subprocess. The process type
of a started process is batch.

 Example
The following example illustrates the use of (process_type) in a command macro.

&if (process_type) = batch
&then &goto batch

Related Information
See also the descriptions the (process_dir), (process_info), and
(referencing_dir) command functions.
1-78 Chapter 1: OpenVOS Command Functions

(quote)
(quote) 1-

Purpose
This command function concatenates a set of strings and encloses them in apostrophes (') .

Syntax

(quote S1 ...Sn)

Explanation
The (quote) command function returns the strings S1 through Sn combined into one string,
with each component separated from the next by one space, and apostrophes (') added at the
beginning and the end.

If the arguments contain apostrophes, the command processor removes one level of
apostrophes before passing the arguments to the command function.

Examples
The following table illustrates how the (quote) command function concatenates strings.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (reverse), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.

Command Function Returned Value

(quote aa bb)
(quote 'aa bb')
(quote aa''bb)
(quote 'aa''bb')

'aa bb'
'aa bb'
'aabb'
'aa''bb'
OpenVOS Commands Reference Manual (R098) 1-79

(rank)
(rank) 1-

Purpose
This command function returns the integer rank in the ASCII collating sequence of a
character.

Syntax
(rank C)

Explanation
The (rank) command function returns the integer rank in the ASCII collating sequence of
the character specified by C. The command function (rank) is the inverse of the command
function (byte).

Example
For example, if you specify (rank a), the command function returns the value 97.

Related Information
See also the description of the (byte) command function.
1-80 Chapter 1: OpenVOS Command Functions

(referencing_dir)
(referencing_dir) 1-

Purpose
This command function returns the full path name of the directory containing a program
module, if the current process is running a program module.

Syntax
(referencing_dir)

Explanation
The (referencing_dir) command function returns the full path name of the directory
containing the currently loaded program module or command macro. If an internal command
is executing, the null string is returned.

If a command macro is running a program module, the referencing directory refers to the
program module; otherwise, it is the directory containing the command macro.

If no program module, internal command, or command macro is running, the referencing
directory is null, the error message (No program is currently loaded.) is printed,
and command_status is set to e$no_program_loaded (1805).

Example
The value of (referencing_dir) for the program module
%s1#d03>Sales>tools>quota.pm is %s1#d03>Sales>tools. The following illustrates
the use of the (referencing_dir) command function.

set_library_paths message '(referencing_dir)'

Related Information
See also the descriptions the (command_status), (message), (process_dir),
(process_info), and (process_type) command functions.
OpenVOS Commands Reference Manual (R098) 1-81

(reverse)
(reverse) 1-

Purpose
This command function returns the reversed character pattern of a string.

Syntax

(reverse S)

Explanation
The (reverse) command function returns the reversed character pattern of the string S.

Example
For example, if you specify (reverse loot), the command function returns the value
tool.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (rtrim), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-82 Chapter 1: OpenVOS Command Functions

(rtrim)
(rtrim) 1-

Purpose
This command function returns the longest initial substring in a string whose last character is
not in a specified set of characters.

Syntax

(rtrim S [C])
Explanation

The (rtrim) command function returns the longest initial substring of S whose last
character is not in the set C. If you omit C, the operating system trims trailing spaces from S.

Example
For example, if you specify (rtrim aabbcc.ddeeff af), the command function returns
the value aabbcc.ddee.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (search), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-83

(search)
(search) 1-

Purpose
This command function returns the leftmost position in a string that contains a character in a
specified set.

Syntax
(search S C)

Explanation
The (search) command function returns the leftmost position in the string S that contains
a character in the set C. If no member of C is in S, the value of this function is 0.

Example
For example, if you specify (search aabbcc.ddeeff .), the command function returns
the value 7. If you specify (search decipher code), the command function returns the
value 1.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (string),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
1-84 Chapter 1: OpenVOS Command Functions

(software_purchased)
(software_purchased) 1-

Purpose
This command function returns the value 1 if the product denoted by
software_purchased_bit has been purchased; otherwise, the command function returns
the value 0.

Syntax
(software_purchased software_purchased_bit)

Explanation
The (software_purchased) command function returns 1 if the product denoted by
software_purchased_bit has been purchased. Otherwise, this command function
returns 0.

Example
For example, assume that you have purchased the OpenVOS PL/I compiler, whose
software-purchased bit number is S024. If you specify the command display_line
(software_purchased s024), the command function returns the value 1.
OpenVOS Commands Reference Manual (R098) 1-85

(string)
(string) 1-

Purpose
This command function concatenates two or more strings.

Syntax

(string S1 ...Sn)

Explanation
The (string) command function returns the strings S1 through Sn combined into one
string, with each component separated from the next by one space. You can use this function
to combine multiple arguments into a single character-string argument that would otherwise
require an additional level of apostrophes.

The following paragraphs describe how the command processor processes quotes, and how
to use the (quote), (unquote), and (string) command functions.

Note: In the following examples, square brackets ([]) are used to delineate separate
arguments.

Using Quotes in Command Functions

If a command line contains three separate unquoted arguments, the arguments are returned as
separate and unquoted.

ready: display_line a b c

[a] [b] [c]
In the process of evaluating a command line and in evaluating the return value of a command
function, the command processor strips one level of quotes. The second example returns three
arguments, a b c, d e, and f.

ready: display_line ‘a b c’

[a b c]
ready: display_line ‘a b c’ ‘d e’ f

[a b c] [d e] [f]
The command processor regards quotes, semicolons, spaces, and left and right parentheses as
special characters that must be quoted if they appear in arguments. If you do not place
1-86 Chapter 1: OpenVOS Command Functions

(string)
semicolons in quotes, the command processor returns the message Parentheses are not
balanced.

The command processor replaces the instance of the command function by its return value.

ready: display_line (date)

[94-12-07]
All command functions, except (unquote), return their result as a single argument. A
quoted string is also a single argument. This protects any special characters present in the
return value, and makes the return value subsequently appear as a single argument. The
(unquote) command function allows a return value to be parsed as multiple arguments.

In the following examples, the return value is one argument.

ready: display_line (date_time)

[94-12-07 10:20:00]
ready: display_line ‘94-12-07 10:20:00’

[94-12-07 10:20:00]
In the following example, the return value is a special character which could be used as a
single argument in another command function. Note that ASCII character 41 is the right
parentheses.

ready: display_line (byte 41)

[)]
In the following example, the return value is one argument, and it contains a special character.

ready: display_line (translate ‘a b c’ ‘;’ ‘b’)

[a ; c]
Using the (string), (quote), and (unquote) Command Functions

The (string), (quote), and (unquote) command functions first concatenate all of their
input arguments and separate each argument by a single space. After this, each command
function performs the following actions:

Command Function Action

(string) Returns the result as a single argument

(quote) Adds a level of quotes, including doubling any internal quotes, then
returns the result as a single argument

(unquote) Returns the result as multiple arguments
OpenVOS Commands Reference Manual (R098) 1-87

(string)
In the following example, the (string) command function returns one argument.

ready: display_line (string a b c)

[a b c]
In the following example, the (quote) command function returns one argument.

ready: display_line (quote a b c)

[‘a b c’]
In the following example, the (unquote) command function strips off the quotes and returns
one argument. The command processor then tries to process the command line. This example
is equivalent to typing pl1; bind at the command line.

ready: display_line (unquote pl1 ‘;’ bind)

[pl1]
bind: A required argument is missing. One of the following required:

object_modules, -control.

The (unquote) command function is best used to return new commands to be executed and
to undo the effects of the (quote) command function. However, as shown the following
examples, the result of using the (unquote (quote)) command functions is the same as
the result of using the (string) command function. In both example, three arguments are
returned. In this case, using the (string) command function makes the command line more
easily readable.

ready: display_line (unquote (quote a ‘;’ c))

[a ; c]
ready: display_line (string a ‘;’ c)

[a ; c]
Using a $ (dollar sign) before a variable in a command macro is the same as using the
(string) command function. Using &$variable& is the same as
(string &variable&). The $ (dollar sign) allows a variable to contain special characters.

Example
The following example illustrates the use of the (string) command function in an
abbreviations file.

first ad by analyze_system -request_line (string display &1&)
1-88 Chapter 1: OpenVOS Command Functions

(string)
Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(substitute), (substr), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-89

(substitute)
(substitute) 1-

Purpose
This command function replaces one substring with another in a specified string.

Syntax

(substitute S1 S2 S3 [-ignore_quotes][-no_ignore_quotes])
Explanation

The (substitute) command function returns the string that results from locating each
occurrence of S2 within S1, then replacing each occurrence with S3.

The command processor removes one level of apostrophes in the string S1 before passing it
to the (substitute) command function. In the resulting string, no occurrence of S2 within
a part of S1 enclosed in apostrophes is replaced.

The -ignore_quotes argument causes every occurrence of S2 within S1 to be replaced
regardless of any part of S1 enclosed in apostrophes. The -no_ignore_quotes argument
cancels the effect of a previous -ignore_quotes argument. These two arguments are
mutually exclusive. The default value is -no_ignore_quotes.

Example
For example, if you specify (substitute 'aabbcc''aabbcc''' 'bb' 'BB'), the
command function returns aaBBcc'aabbcc'. If you specify (substitute
'aabbcc''aabbcc''' 'BB' 'BB' -ignore_quotes), the command function returns
aaBBcc'aabbcc'.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substr), (translate), (trunc), (unique_string), (unquote), and
(verify) command functions.
1-90 Chapter 1: OpenVOS Command Functions

(substr)
(substr) 1-

Purpose
This command function returns a substring contained in a string.

Syntax

(substr S I1 [I2])
Explanation

Returns the substring of the string S that begins in position I1 and extends for I2 characters
or, if you omit I2, to the end of S.

Example
For example, if you specify (substr aabbcc.ddeeff 3 4), the command function
returns bbcc.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (translate), (trunc), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-91

(system_info)
(system_info) 1-

Purpose
This command function returns information about object identifiers (OIDs).

Syntax

(system_info oid [-module module_name])
Explanation

The (system_info) command function returns information about OIDs.

The oid argument specifies a scalar, row, or table value for one or more OIDs. The command
function searches the system kernel for information about the specified OIDs.

The -module argument specifies the module whose kernel (system_info) searches for
OID information. By default, (system_info) searches the current module.

Table 1-3 lists scalar numeric values that may appear in the output.

3

If the value specified for the oid argument is a table, the resulting scalar values are
concatenated, separated by a space, in output. If the resulting scalar values exceed the
maximum length supported by the command processor, the values are truncated. Specify a
table value for the oid argument only when the table is a fixed size or is small.

Table 1-3. Scalar Numeric Values in (system_info) Output

Type Format Result

Integer Unsigned Formatted as an unsigned decimal number.

Integer Hex (unsigned) Formatted as a hexadecimal number.

Integer All other integer values Formatted as a signed decimal number.

Strings (N/A) Returned as strings.

Binary IP addresses Formatted with the inet_ntop function
(that is, in numeric format).

Binary All other binary values Formatted as 2N hex digits with no spacing.
1-92 Chapter 1: OpenVOS Command Functions

(system_info)
Related Information
See OpenVOS STREAMS TCP/IP Administrator’s Guide (R419) and OpenVOS STREAMS
TCP/IP Programmer’s Guide (R420).
OpenVOS Commands Reference Manual (R098) 1-93

(system_name)
(system_name) 1-

Purpose
This command function returns the name of the current system.

Syntax

(system_name)

Explanation
The (system_name) command function returns the name of the current system.

Example
For example, if you specify display_line (system_name), the command function might
return s1.

Related Information
See also the descriptions of the (current_module), (master_disk), (module_info),
(module_name) and (online) command functions.
1-94 Chapter 1: OpenVOS Command Functions

(terminal_info)
(terminal_info) 1-

Purpose
This command function returns specific information about the current terminal.

Syntax

(terminal_info key)

Explanation
The (terminal_info) command function returns various kinds of terminal-specific
information, depending on the value of key. If the process does not have a terminal port, the
command function returns a null string. The following table shows the allowed values for key
and the information returned by each value.
OpenVOS Commands Reference Manual (R098) 1-95

(terminal_info)
4

Related Information
For more information, see the description of the (terminal_name) command function and
the set_terminal_parameters command.

Key Returned Value

baud_rate The speed at which data is transmitted to the terminal

continue_chars The character(s) displayed to indicate a continued line

cursor_format The format of the cursor; possible values are blinking_block,
blinking_underline, steady_block, steady_underline, and
off

device_type The name of the device driver for this terminal; possible values are
terminal, window_term, or vterm

escape_char The escape character

flow_off_char The character used to stop a stream of output to the terminal

flow_on_char The character used to resume a stream of output to the terminal

line_length The number of characters in a line on the screen

pause_chars The message displayed on the pause line

pause_lines The number of lines displayed on the screen before a pause message

prompt_chars The message displayed to prompt for terminal input

screen_size The number of lines displayed on the screen

tabs The column positions where tabs are set for the terminal type

type The terminal type, such as v105. Use the list_terminal_types
command to list all possible values of type.
1-96 Chapter 1: OpenVOS Command Functions

(terminal_name)
(terminal_name) 1-

Purpose
This command function returns the full path name of the login terminal.

Syntax

(terminal_name)

Explanation
The (terminal_name) command function returns the full path name of the login terminal.
If the process does not have a terminal port, the command function returns a null string. If the
process is a noninteractive process, the command function returns a null string.

Example
The following example illustrates the use of the (terminal_name) command function in a
command.

update_channel_info (terminal_name)

Related Information
For more information, see the description of the (terminal_info) command function and
the set_terminal_parameters command.
OpenVOS Commands Reference Manual (R098) 1-97

(time)
(time) 1-

Purpose
This command function returns the current time in a 24-hour format.

Syntax

(time [time_string][-long][-standard])
Explanation

The (time) command function returns the current time in 24-hour format of the form
hh:mm:ss. However, if you specify the -long argument, the time returned is in 12-hour
format of the form hh:mm followed by either am or pm.

Note: When using the 12-hour time format, you must specify pm to indicate that the
hour is between noon and midnight. Otherwise, the returned time value is am.

The time_string argument represents a time to be returned; if you omit it, the (time)
command function returns the current time. Note that any integer form of the input time string
must include a colon to separate different elements of the time string.

If you specify the -standard argument, the (time) command function returns a time, and
accepts a time_string argument, in the form defined in the
system>configuration>languages.tin file.

The time_string argument can use any of the following keywords.

coming
absolute_time
relative_terms
time_zone

These keywords are described in Table 1-5.

For most time zones, this command function returns accurate values through December 31,
2048 (2048-12-31_23:59:59_gmt). However, because some local time zones can differ
from GMT by up to 13 hours, the last full day for which this command function returns an
accurate value is 2048-12-30 for those time zones.
1-98 Chapter 1: OpenVOS Command Functions

(time)
Example
Example 1.
The value of (time) could be 15:25:45. The value of (time -long) could be 3:25 pm
EST. The following example illustrates the use of the (time) command function in a
command.

print log_file -defer_until (time +1 hour)

Example 2.
When the (time) command function executes with time_zone as an argument, the value
returned is based on the current time in your own time zone. The value (time time_zone)
returns is the time it will be in your own time zone when the time in the time zone specified
by time_zone is the current time. The following example illustrates the (time) command
function using time_zone (pst, Pacific Standard Time) as an argument issued in the Eastern
Standard Time zone.

ready 14:36:55
display_line (time pst)
17:37:03
ready 14:37:03

The first ready prompt is the current time in Eastern Standard Time. The command function
returns 17:37:03, which is the time it will be in Eastern Standard Time when the current time
is 14:37:03 in Pacific Standard Time.

Example 3.
The following example illustrates the use of the (time) command function in the Eastern
Standard Time zone using the upper limit date.

ready 11:16:18
display_line (time 2048-12-31_23:59:59_gmt)
19:59:59
ready 11:16:53

The following example illustrates what happens when the upper limit is exceeded by a
second. If the upper limit is exceeded by more than a second, the system displays: Invalid
date or time.

ready 11:16:53
display_line (time 2049-01-01_00:00:00_gmt)
time: Invalid date or time.
ready 11:17:16

Related Information
See also the descriptions of the (date) and (date_time) command functions. For a list of
the time zones supported by OpenVOS, see the set_time_zone command later in this
manual.
OpenVOS Commands Reference Manual (R098) 1-99

(translate)
(translate) 1-

Purpose
This command function replaces one set of characters with another in a string.

Syntax

(translate S1 [S2 [S3]])
Explanation

The (translate) command function returns the character string S1 translated according to
the characters in strings S2 and S3. Each occurrence of a character in S3 that is also in the
string S1 is replaced by a character in S2 corresponding to the same position in S3.

If S3 is longer than S2, spaces are added on the right of S2 until the length of S2 equals that
of S3.

If you omit S3, S3 is assumed to be the ASCII collating sequence.

If you omit both S2 and S3, S2 is assumed to be the list of characters with ranks of 96
through 126 in the ASCII character set (for example, the lowercase letters), and S3 is assumed
to be the list of characters with ranks of 64 through 94 in the ASCII character set (for
example, the uppercase letters). In this case, the (translate) command function is used to
transpose lowercase letters to uppercase.

If S1 is the null string, the result is the null string.

Example
For example, if you specify (translate aabbcc.ddeeff ABCDEF abcdef), the
command function returns AABBCC.DDEEFF.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (substr), (trunc), (unique_string), (unquote), and
(verify) command functions.
1-100 Chapter 1: OpenVOS Command Functions

(trunc)
(trunc) 1-

Purpose
This command function returns the integer part of a specified number.

Syntax

(trunc N)

Explanation
The (trunc) command function returns the integer part of N.

Examples
For example, if you specify (trunc 1.5), the command function returns 1. If you specify
(trunc -1.5), the command function returns -1.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (substr), (translate), (unique_string), (unquote),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-101

(unique_string)
(unique_string) 1-

Purpose
This command function returns a unique character string.

Syntax

(unique_string)

Explanation
The (unique_string) command function returns a unique character string.

Example
For example, if you specify display_line (unique_string), the command function
may return the value _aaaaabbbckooxxxx.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (substr), (translate), (trunc), (unquote), and
(verify) command functions.
1-102 Chapter 1: OpenVOS Command Functions

(unquote)
(unquote) 1-

Purpose
This command function returns a string with any leading and trailing apostrophes removed
and with any doubled apostrophes within the string reduced to single apostrophes.

Syntax
(unquote S)

Explanation
The (unquote) command function returns the string S with any leading and trailing
apostrophes removed and with any doubled apostrophes within the string reduced to single
apostrophes. The command processor removes one level of apostrophes before passing the
argument to the command function.

Example
For example, if you specify (unquote '''aa bb'''), the command function
returns aa bb.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (substr), (translate), (trunc), (unique_string),
and (verify) command functions.
OpenVOS Commands Reference Manual (R098) 1-103

(user_name)
(user_name) 1-

Purpose
This command function returns your current user name.

Syntax

(user_name)

Explanation
The (user_name) command function returns your current user name.

Example
The following example illustrates the use of the (user_name) command function in a
command.

list_users (user_name)
* Smith.Sales

Related Information
See also the description of the (group_name) and (person_name) command functions.
1-104 Chapter 1: OpenVOS Command Functions

(verify)
(verify) 1-

Purpose
This command function returns the leftmost position of the character in a string that is not in
a specified set.

Syntax
(verify S C)

Explanation
The (verify) command function returns the leftmost position of the character in the string
S that is not in the set C. If all of the characters in S are in C, the returned value is 0.

Example
For example, if you specify (verify aabbcc.ddeeff af), the command function
returns 3.

Related Information
See also the descriptions of the (after), (before), (break), (concat), (copy),
(count), (index), (length), (ltrim), (quote), (reverse), (rtrim), (search),
(string), (substitute), (substr), (translate), (trunc), (unique_string),
and (unquote) command functions.
OpenVOS Commands Reference Manual (R098) 1-105

(vos_path)
(vos_path) 1-

Purpose
This command function converts a POSIX path name into an OpenVOS path name.

Syntax
(vos_path path_name)

Explanation
The (vos_path) command function converts the path_name argument, which is a relative
or full POSIX path name, into a full OpenVOS path name. The resultant OpenVOS path name
always begins with a percent-sign character (%).

If path_name has the form /dev/null, the result is %sys#null, where %sys is the current
system. Otherwise, path_name is expanded into a full OpenVOS path name, which
processes and removes any dot components (. or ..).

Example
The following examples assume that the master disk is %s1#d01 and the current directory is
%s1#d01>SysAdmin.

display_line (vos_path Sales/Jones)
%s1#d01>SysAdmin>Sales>Jones

display_line (vos_path /Sales/Jones)
%s1#d01>Sales>Jones

display_line (vos_path ../Sales/Jones)
%s1#d01>Sales>Jones

display_line (vos_path /dev/null)
%s1#null

display_line (vos_path /)
%s1#d01

The following example assumes that the current directory is %s1#d02>Research.

display_line (vos_path .)
%s1#d02>Research
1-106 Chapter 1: OpenVOS Command Functions

(vos_path)
Related Information
See also the description of the (posix_path) command function.
OpenVOS Commands Reference Manual (R098) 1-107

(where_path)
(where_path) 1-

Purpose
This command function returns specific information about the location of an object.

Syntax

(where_path path_name [type] [chase_code])
Explanation

The (where_path) command function returns the full path name, full module name, or
object type of the object specified by path_name.

The value for the argument type can be -path_name, -object_type, or -module_name.
If you omit type, the value -path_name is used.

The value of (where_path) is determined as follows.

 When path_name is a link, the information returned by (where_path) is related to
the ultimate target of the link, rather than to the link itself (unless you specify
-no_chase).

 When type is -path_name, (where_path) returns the full path name of the object
specified by path_name.

 When type is -object_type, (where_path) returns the object type of the object
specified by path_name. The object types that can be returned are device for an I/O
device, file for a file, directory for a directory, and link for a link (if you specify
-no_chase).

 When type is -module_name, (where_path) returns the name of the system and
module containing the object specified by path_name.

The value for the argument chase_code can be -chase or -no_chase. The -no_chase
value returns information about a link itself rather than its target when path_name is a link.
1-108 Chapter 1: OpenVOS Command Functions

(where_path)
Examples
The following are examples of the use of the (where_path) command function.

Related Information
See the descriptions of the (current_dir), (directory_name), (home_dir),
(object_name), (path_name), and (system_name) command functions. See also the
description of the where_path command.

Command Function Returned Value

(where_path smith_memos)
(where_path smith_memos -object_type)
(where_path smith_memos -module_name)
(where_path smith_memos -object_type

-no_chase)

%s1#d01>Sales>Smith>smith_memos
file
%s1#d01
link
OpenVOS Commands Reference Manual (R098) 1-109

Date and Time Keywords
Date and Time Keywords
Table 1-5 shows the keywords that can be used in the input strings for the (date),
(iso_date), (date_time), (iso_date_time), and (time) command functions. If you
use the -standard argument with any of these command functions, additional values for the
keywords, if defined, are accepted when your process has another language set (see the
set_language command).

5

Table 1-5. Date and Time Input Keywords

Keyword Description

absolute_date A date in one of the input formats that the (date_time) or
(iso_date_time) command function accepts. An absolute
date string can be partial or complete. A complete date explicitly
specifies a year, month, and day. A partial date is one that can be
interpreted unambiguously, such as friday, which is assumed
to be Friday in the current week, or 1/1,which is the first day of
the first month of the current year.

absolute_time A portion of the date/time string that the (date_time) or
(iso_date_time) command function accepts as representing
the time in hours and minutes. It can be complete or partial.

coming A keyword specifying that the input date/time is in the future

relative_terms A string in the form +N specifier or -N specifier, where
N is an integer and specifier is any of the terms listed below.
The value of N indicates the number of units by which the output
date/time is to be offset. The allowed specifier values are as
follows: sec, secs, second, seconds, min, mins, minute,
minutes, hr, hrs, hour, hours, day, days, wk, wks, week,
weeks, mo, mos, month, months, yr, yrs, year, years.

time_zone The portion of the date/time string that expresses the time zone.
1-110 Chapter 1: OpenVOS Command Functions

OpenVOS Commands Reference Manual (R098) 2-1

Chapter 2:
OpenVOS User and Programming Commands 2-

This chapter describes the commands available to OpenVOS users.

Note that it is possible that all users at your site may not have access to all commands
described in this chapter. If you are unable to invoke a particular command you need, you
should contact your system administrator to discuss obtaining access to that command.

Note: Where this manual refers to sequential files, it also refers to extended sequential
files, unless otherwise noted. The two are identical except that the maximum record
size, which is meaningless for normal sequential files, indicates record offset unit size
for extended sequential files, thereby allowing a greater growth potential. For more
information about extended sequential files, see the description of the create_file
command.

Note: Where this manual refers to stream files, it also refers to 64-bit stream files,
unless otherwise noted. The two are identical except that 64-bit stream files can be
sparse; they cannot contain indexes, cannot be pipe files, and cannot be SAE files; and
their size can grow beyond 2 GB. For more information about 64-bit stream files, see
the description of the create_file command.

add_entry_names
add_entry_names 2-

Purpose
This command looks for all the entry points in an object library and creates links to the object
modules that contain those entry points. These links are necessary for binding programs that
call entry points within the object modules. The binder locates the object modules containing
the entry points when it searches the object library.

Display Form

Command Line Form

add_entry_names [object_path_name]

[-no_unlink_first] [-no_entry_links] [-ext_data_links] [-long]
Arguments* object_path_name

The path name of a single object module or of a directory containing object modules
whose entry points are to be linked. If you give the file name of an object module, the
suffix .obj is optional. By default, the command operates on object modules in your
current directory.

* -no_unlink_first <CYCLE>

Retains all existing links to the entry points of the specified object module or modules,
and creates any additional links if necessary. By default, the command unlinks all links
created by previous add_entry_names commands and creates a new set of links.

* -no_entry_links <CYCLE>

Adds entry points without creating links to all the object modules in a library. By
default, the command creates the links.

-------------------------------- add_entry_names -------------------------------
object_path_name: urrent_dir
-unlink_first: yes
-entry_links: yes
-ext_data_links: no
-long: no

c

2-2

add_entry_names
* -ext_data_links <CYCLE>

Creates links to all external data names defined by the specified object module or
modules. This argument applies only to OpenVOS C programs. By default, the
command does not create links to external data names.

* -long <CYCLE>

Lists each link and its target as it is created. By default, the command does not list the
links it creates.

Explanation
The add_entry_names command creates a link name with the suffix .obj for each entry
name defined in the specified object module or modules. The command can create links to
the entries defined by a single object module as well as for all the object modules in a
directory (also called a library).

A compiler creates an object module whose file name has the suffix .obj. The object module,
however, may contain many different entry points, and other object modules may contain
external references to any of these entry points. Also, OpenVOS C programs may have
modules defining data only. To bind object modules into a program module, the binder must
find a definition for every entry point and external data definition referenced in the program
module.

To resolve such external references, the binder searches directories for path names that
correspond to each external reference in the object modules being bound together. To resolve
an external reference in one object module to an external name defined by another, the binder
must find a name of the form entry.obj in the object library. Thus, an external name must
be identified by a link to an object module, or by the object module itself.

The add_entry_names command adds the name of each entry point in an object module as
an additional name on the object module file. It adds a link to the object module using the
name of the entry point. This command should be run on any directory that is to be included
in the object library search paths. The binder searches each directory in the object library
search list by looking for an object module with the same name as the unresolved entry name.
This command guarantees that all entry names are visible to the binder.

The -unlink_first argument removes obsolete links. For example, when you replace an
object module or object modules, a replacement module might have fewer external definitions
than the existing version, or some object modules might have been deleted from the library.
Specifying the -no_unlink_first argument in cases where no obsolete links exist can
speed processing; for example, when you add a new object module to a library, or know that
no external names have been deleted from any object modules currently in the library.

When the object_path_name argument specifies a directory, the -unlink_first
argument unlinks at the start of processing all links whose targets are object modules in the
specified directory. Next, the command finds and unlinks all links whose targets are object
modules in other directories. The command then creates new links for external names defined
by object modules in the directory object_path_name. Finally, it creates links in the
directory object_path_name for external names defined by object modules in other
directories.
OpenVOS Commands Reference Manual (R098) 2-3

add_entry_names
When the object_path_name argument specifies a single object module, the
-unlink_first argument unlinks all links to the object module in the directory containing
it. Then the command creates links in that directory for external names defined by the current
version of the module.

The -entry_links and -ext_data_links arguments control the type of external data
definition that causes a link to be created. The -entry_links argument applies to all
languages; an entry name that differs from an object module name causes a link to be created.
The -ext_data_links argument applies to OpenVOS C and OpenVOS Standard C object
modules only; an external data definition that differs from the object module name causes a
link to be created. Note that message code symbols (those names beginning with e$, m$, q$,
and r$) do not cause links to be created. The binder treats these symbols as a special case,
and they do not require links.

Access Requirements
You need read access to the object modules and modify access to the containing directory to
create the links.

Examples
Consider a command macro named install_runtime.cm that updates the directory
>system>object_library from the master copies of the object modules in various >ldd
directories. It then updates >system>c_object_library. Finally, it executes
add_entry_names for each directory in order to guarantee that the links are up-to-date.

&begin_parameters
 module module: module_name,req,=''
 debug switch(-debug),=0
&end_parameters
&
&if ^ &debug&
&then &goto BEGIN
&
&mode no_execute
&echo command_lines macro_lines
&
&label BEGIN
&set_string release_base >ldd
&set_string object_library (master_disk
&module&)>system>object_library
&
&if (exists &object_library& -directory -chase)
&then &goto OBJECT_LIB_EXISTS
&
&display_line &object_library& does not exist.
&return
&
&label OBJECT_LIB_EXISTS

(Continued on next page)
2-4

add_entry_names
(Continued)

!copy_file &release_base&>basic>runtime>obj>* &object_library&
-delete
&
!copy_file &release_base&>cobol>runtime>obj>* &object_library&
-delete
!copy_file &release_base&>fms>runtime>obj>* &object_library& -delete
!copy_file &release_base&>fortran>runtime>obj>* &object_library&
-delete
!copy_file &release_base&>lang>runtime>obj>* &object_library&
-delete
!copy_file &release_base&>pascal>runtime>obj>* &object_library&
-delete
!copy_file &release_base&>pl1>runtime>obj>* &object_library& -delete
!copy_file &release_base&>tp>runtime>obj>* &object_library& -delete
&
!copy_file &release_base&>c>runtime>obj>* &+
(master_disk &module&)>system>c_object_library -delete
&
!copy_file &release_base&>runtime>obj>* &object_library& -delete
&
!add_entry_names &object_library& -unlink_first
!add_entry_names (master_disk &module&)>system>c_object_library &+
-unlink_first -ext_data_links
OpenVOS Commands Reference Manual (R098) 2-5

add_library_path
add_library_path 2-

Purpose
This command adds path names to the list of directories that define a specified library.

Display Form

Command Line Form

add_library_path library_name
library_path_names . . . [-before existing_library_path_name] [-after existing_library_path_name] [-first] [-no_check] [-ignore_duplicates]

Arguments* library_name <CYCLE> Required
The name of a library to which the path name of a directory is to be added. There are
four possible values for library_name.

 include
 object
 command
 message

By default, the command adds the directory to the include library.

* library_path_names Required
One or more directory path names to be added to the library. The path names can
include the command functions (current_dir) or (home_dir); if library_name
is message, the path names can also include (referencing_dir) and

------------------------------- add_library_path -------------------------------
library_name: nclude
library_path_names:
-before:
-after:
-first: no
-check: yes
-ignore_duplicates: no

i

2-6

add_library_path
(language_name). If enclosed in apostrophes, the command functions are evaluated
when the path name is used.

* -before existing_library_path_name
Inserts library_path_names in the library list before the specified
existing_library_path_name. You cannot use the -after or -first arguments
if you select -before. By default, the command adds the directories to the end of the
list.

* -after existing_library_path_name
Inserts library_path_names in the library list after the specified
existing_library_path_name. You cannot use the -before or -first
arguments if you select -after. By default, the command adds the directories to the
end of the list.

* -first <CYCLE>

Inserts library_path_names at the beginning of the library list. You cannot use the
-before or -after arguments if you select -first. By default, the command adds
the directories to the end of the list.

* -no_check <CYCLE>

Omits checking the existence of the ultimate target of each path name specified for
library_path_names. By default, the command checks that the ultimate target of
each name is an existing directory.

* -ignore_duplicates <CYCLE>

Ignores any library path names that are already present in the list of current library path
names. The command adds the remaining path names that are not duplicates. By
default, the command diagnoses attempts to add a library path name that is already
present and does not add any path names. The command checks for an attempt to add
a duplicate path name but does not check that the specified path name is in the
appropriate position.

Explanation
The add_library_path command allows you to add path names anywhere in the list of
directories that define a specified library.

A library is set of directories that the operating system searches for objects of a particular
type. Each module has the following libraries.

 include library
 object library
 command library
 message library

The compilers search the include library for include files; the binder searches the object
library for object modules; the command processor searches the command library for
commands and the message library for message files associated with individual commands.

A library is defined by an ordered sequence of path names. The order of the list reflects the
order in which the operating system searches the directories of a library.
OpenVOS Commands Reference Manual (R098) 2-7

add_library_path
For each library, the search for an object begins in the first directory on the library list. If the
object is not in that directory, the search proceeds to the second directory on the list, then to
the third, and so on. The module’s default list of directories for each library serves as the guide
to where to find objects. The add_library_path command enables you to insert path
names anywhere in the list of directories for a given library, so you can control the order in
which the operating system searches for an object. Use the -before, -after, or -first
argument to determine where in the list to place the additional path names (you can select
only one). If you use none of those arguments, path names are added to the end of the list. A
directory cannot appear twice on the library list, so to reorder an existing directory, use the
delete_library_path command first, or use the set_library_paths command.

If you specify the -before, -after, or -check argument, add_library_path checks the
specified library path name to see if it exists. If you specify the -no_check argument and do
not specify the -before or -after argument, add_library_path does not check for the
existence of the specified library path name; instead, the command checks that the library
path name has the correct format for a directory.

The path name of the directory library_path_names can include the command functions
(current_dir) or (home_dir); if library_name is message, the path name can also
include (referencing_dir) and (language_name). (Note that you must enclose a
command function in apostrophes in order to prevent its evaluation by the command
processor when the add_library_path command is executed.)

The list of libraries defined by the add_library_path command remains in effect only for
the life of your process.

Examples
Suppose you use the list_library_paths command to list your include library and the
following information is displayed.

include library directories:
 (current dir)
 %s1#d03>Sales>incl
 %s1#d04>system>include_library

To add your own work directory, execute the following command.

add_library_path include work -before >system>include_library

The system expands the relative path name. Now if you list your include library, the
following information is displayed.

include library directories:
 (current dir)
 %s1#d03>Sales>incl
 %s1#d03>Sales>Smith>work
 %s1#d04>system>include_library

Related Information
For information about other commands that can affect libraries, see
delete_library_path, list_library_paths, and set_library_paths in this
2-8

add_library_path
manual. See also add_default_library_path, delete_default_library_path,
and list_default_library_paths in the OpenVOS System Administration:
Administering and Customizing a System (R281). See the OpenVOS Commands User’s
Guide (R089) for information about search rules.
OpenVOS Commands Reference Manual (R098) 2-9

add_profile
add_profile 2-

Purpose
This command adds the profile information from two profile data files, accumulating the sum
in the second profile data file. This command is useful when multiple runs of the same
program are required to meter or test a program fully.

Display Form

Command Line Form

add_profile profile_file_name [output_file_name]
Arguments* profile_file_name Required

The path name of a profile file. Profile files can have either a fixed or stream file
organization. The name is the same as that of the program module compiled with -ql
or -qc (for an OpenVOS Standard C program) or with -profile or -cpu_profile
(for a program compiled with one of the other OpenVOS compilers), with the .pm
suffix replaced by .profile.

* output_file_name
The path name of another profile file from the same program module as
profile_file_name. It can also be the name of a non-existent file. If you provide
the name of a non-existent file, the command copies the file named by
profile_file_name to the file named by output_file_name. By default, the
system generates a name with the same name as profile_file_name, with the
.profile suffix replaced by .sum.profile.

Explanation
The add_profile command adds all of the counts, CPU times, and page fault values on a
statement-by-statement basis, in the profile_file_name and output_file_name files,
and writes the result to output_file_name.

Each profile file must have been made from the same version of the bound program, and must
represent the same type of profile.

---------------------------------- add_profile ---------------------------------
profile_file_name:
output_file_name:
2-10

add_profile
If an output file with the name output_file_name does not exist, it is created and the
profile_file_name file is copied to it. The resulting profile can be analyzed by the
profile command.

Note: If you stop add_profile command execution by typing <Control>-c, you should
consider the contents of the output file data invalid since the command will not have
finished adding the execution counts.

Access Requirements
You need read access to the profile files you specify as profile_file_name and
output_file_name, and modify access to the current directory.

Examples
This example shows how to use the profile and add_profile commands to examine the
execution history of the following sample.pl1 source module. Depending on input from the
user, this source module either converts a set of Celsius temperatures to Fahrenheit or a set of
Fahrenheit temperatures to Celsius. In performing either conversion, only part of the source
code is executed, and therefore, the contents of the .profile file is different for each type
of temperature conversion. The add_profile command enables you to combine these two
different .profile files.

1 sample:
2 procedure;
3
4 declare fahrenheit float bin;
5 declare celsius float bin;
6 declare degrees fixed bin;
7 declare option fixed bin;
8
9 put edit ('Type 1 (Celsius to Fahrenheit) or 2 (Fahrenheit to
Celsius): ')
10 (a (61));
11 get list (option);
12
13 if option = 1
14 then do;
15 put edit (' CELSIUS', ' FAHRENHEIT')
16 (a (12), x (1), a (11));
17 put skip;
18
19 do degrees = 0 to 100 by 10;
20 celsius = degrees;
21 fahrenheit = 9 * celsius / 5 + 32;
22 put edit (celsius, fahrenheit)
23 (f (10), x (1), f (11, 1));
24 put skip;
25 end;
26 end;
27

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-11

add_profile
(Continued)

28 else if option = 2
29 then do;
30 put edit (' FAHRENHEIT','CELSIUS')
31 (a (14), x (2), a (10));
32 put skip;
33
34 do degrees = 0 to 212 by 20;
35 fahrenheit = degrees;
36 celsius = 5 / 9 * (fahrenheit - 32);
37 put edit (fahrenheit, celsius)
38 (f (11), x (1), f (10, 1));
39 put skip;
40 end;
41 end;
42
43 end sample;

Perform the following steps to combine and examine the execution histories for the
sample.pl1 source module.

1. Compile the sample.pl1 source code using the -profile or -cpu_option option.

pl1 sample -profile

2. Bind the sample object module.

bind sample

3. Execute the sample.pm program module and when prompted, type 1 to convert a set
of Celsius temperatures to Fahrenheit. When you execute the sample.pm program
module, it generates a sample.profile file that contains the execution history for the
Celsius to Fahrenheit conversion.

sample

Type 1 (Celsius to Fahrenheit) or 2 (Fahrenheit to Celsius) 1
 CELSIUS FAHRENHEIT
 0 32.0
 10 50.0
 20 68.0
 30 86.0
 40 104.0
 50 122.0
 60 140.0
 70 158.0
 80 176.0
 90 194.0
 100 212.0
2-12

add_profile
4. Rerunning the sample.pm program module creates another sample.profile file
which will overwrite the first sample.profile file. Rename the first sample profile
file sample.sum.profile. You can rename the file in one of two ways.

move_file sample.profile sample.sum.profile

add_profile sample.profile

5. Execute the sample.pm program module again and when prompted, type 2 to convert
a set of Fahrenheit temperatures to Celsius. When you execute the sample.pm
program module, it generates a sample.profile file that contains the execution
history for the Fahrenheit to Celsius conversion.

sample
Type 1 (Celsius to Fahrenheit) or 2 (Fahrenheit to Celsius) 2
 FAHRENHEIT CELSIUS
 0 -17.8
 20 -6.7
 40 4.4
 60 15.6
 80 26.7
 100 37.8
 120 48.9
 140 60.0
 160 71.1
 180 82.2
 200 93.3

6. Issue the add_profile command to add the sample.pm execution histories
contained in the sample.sum.profile file (for Celsius to Fahrenheit conversions)
and the sample.profile file (for Fahrenheit to Celsius conversions).

add_profile sample.profile sample.sum.profile
OpenVOS Commands Reference Manual (R098) 2-13

add_profile
7. Issue the profile command to generate a sample.sum.plist file from the
sample.sum.profile file and then issue the display_file command to display
the contents of the sample.sum.plist file.

profile sample.sum.profile
display_file sample.sum.plist

Profile of: sample

 Number of statements: 23
 Statements Executed: 23 (100.00% of statements)

STATEMENT COUNT

 1 2
 9 2
 11 2
 13 2
 15 1
 17 1
 19 1
 20 11
 21 11
 22 11
 24 11
 25 11
 26 1
 28 1
 30 1
 32 1
 34 1
 35 11
 36 11
 37 11
 39 11
 40 11
 43 2

TOTALS: 128

Related Information
See also the profile command.
2-14

analyze_pc_samples
analyze_pc_samples 2-

Purpose
This command analyzes the program counter (PC) raw data file created by the
harvest_pc_samples command and generates a statistical report on the execution of one
or more specified program modules.

Display Form

----------------------------------analyze_pc_samples-------------------------------
pc_sample_file_paths:
-partition_number: 2
-master_disk: current_module
-pm_file_path:
-output_path: pc_analysis.current_date_and_time
-program_names: *
-process_names: *
-process_ids:
-modules_only: no
-percent_format: absolute
-ignore_percent_below: 0.01
-transactions_per_second:
-line_number_analysis: yes
-hex_granularity: 16
-start_code_ref: 0
-end_code_ref: 2147483647
-pm_offset_address:
OpenVOS Commands Reference Manual (R098) 2-15

analyze_pc_samples
Command Line Form
analyze_pc_samples pc_sample_file_paths path_name...[-partition_number number] [-master_disk module_name] [-pm_file_path path_name] [-output_path path_name] [-program_names name...] [-process_names name...] [-process_ids id...] [-modules_only] [-percent_format] [-ignore_percent_below percent] [-transactions_per_second number] [-no_line_number_analysis] [-hex_granularity byte_size] [-start_code_ref integer] [-end_code_ref integer] [-pm_offset_address offset]

Arguments* pc_samples_file_paths path_name... Required
The path names of one or more raw data files generated by the harvest_pc_samples
command. These are the files that you want to analyze with the
analyze_pc_samples command. The path names cannot contain extended names.

* -partition_number
Specifies the boot partition number of the OpenVOS release executing while the
harvest_pc_samples command was running. The default is the boot partition of the
module on which you issued the analyze_pc_samples command. If you give both
this argument and the -pm_file_path argument, the command ignores the value you
supply for this argument.

* -master_disk module_name
Specifies the name of the system module on which you issued the
harvest_pc_samples command. The default is the master disk of the module on
which you issued the analyze_pc_samples command. If you give both this
argument and the -pm_file_path argument, the command ignores the value you
supply for this argument.

* -pm_file_path path_name
Specifies the path name of a program module. You can specify only one program
module, such as vos.pm or test.pm. If you specify a value for this argument, the
command ignores the -partition_number and -master_disk arguments. The
path name cannot be an extended name. For a discussion of the relationship of this
argument to the -program_names, -process_names, and -process_ids
arguments, see the Explanation section.

* -output_path path_name
Specifies the path name of the file that will contain the report generated by the
command. The path name must not be an extended name. The default name of the file
is pc_analysis.current_date_and_time.
2-16

analyze_pc_samples
* -program_names name...
Specifies one or more program names. Program names cannot be extended names. The
command will only examine program counter samples collected from processes
running these programs. An example of a program name is office.pm. If you were to
specify that value, the command would analyze all processes running Office. For a
discussion of the relationship of this argument to the -pm_file_path,
-process_names, and -process_ids arguments, see the Explanation section.

* -process_names name...
Specifies one or more process names. The command will only examine program
counter samples collected from these processes. An example of a process name is
testing. If you were to specify that value, the command would analyze only the
testing process. For a discussion of the relationship of this argument to the
-program_names, -pm_file_path, and -process_ids arguments, see the
Explanation section.

* -process_ids id...
Specifies one or more process IDs. The command will only examine program counter
samples collected from these processes. An example of a process ID is 01002001x. If
you were to specify that value, the command would analyze only the process
01002001x. For a discussion of the relationship of this argument to the
-program_names, -process_names, and -pm_file_path arguments, see the
Explanation section.

* -modules_only <CYCLE>
Specifies that the command generate the list of program modules that are contained in
the PC raw data file. For each program module, the command calculates the percentage
of total samples. In addition, if you specify a value for the
-transactions_per_second argument, the command calculates the length of each
transaction (in microseconds) in each module. For a detailed description of the output
generated when you specify this argument, see the Sample Output section.

* -percent_format <CYCLE>
Specifies which method the analyze_pc_samples command uses to report the total
number of hits per program module function or statement. You can specify a
cumulative or absolute report. If you specify cumulative, the command adds the
previous line’s total percentage to the current line’s percentage. If you specify
absolute, the command reports the total number of hits per program module function
or statement as an absolute percentage of the total number of hits. The default value is
absolute. For a detailed description of the output generated when you specify this
argument, see the Sample Output section.

* -ignore_percent_below percent
Specifies the smallest percentage value that the command includes in the output data.
Use this argument to remove statistically insignificant data from the report. If you
specify a value of cumulative for the -percent_mode argument, the command
ignores any value you specify for this argument. The default value is 0.01 percent.

* -transactions_per_second number
Specifies the number of transactions per second processed by the target program
module while the harvest_pc_samples command was running. The
OpenVOS Commands Reference Manual (R098) 2-17

analyze_pc_samples
analyze_pc_samples command uses this value to estimate the execution time (in
microseconds) of each program module (associated with the target program module)
that helps process one transaction. For a sample of the output generated when you
specify this argument, see the Sample Output section. An example of a value for this
argument is 22.57. Typically, a program such as TPC-A or TPC-B returns a
transactions per second value that you can then specify as a value for this argument. If
you do not specify the -modules_only argument, the command ignores any value
that you specify for this argument.

Note: A transaction is a sequence of operations that is performed as a unit.
Typically, a transaction involves updating one or more pieces of data in a
database. If your target program module does not update a database or perform
similar transaction-oriented processing, specifying a value for this argument will
not provide any useful information.

* -line_number_analysis <CYCLE>
Specifies whether the command uses the available source code line number
information. If you specify yes, the command includes line numbers in the report when
they are available. If line numbers are not available (as is the case with assembly
language program modules), the command includes hexadecimal byte offsets in the
output. The default value is yes. If you specify the -modules_only argument, the
command ignores any value that you specify for this argument.

* -hex_granularity byte_size
Specifies a byte value that changes the byte interval between assembly language
program module analyses shown in the report. The specified byte value determines how
much address space is blocked in the same bucket. The default value is 16 bytes. If you
specify the -modules_only argument, the command ignores any value that you
specify for this argument.

* -start_code_ref integer
Specifies the record number in the raw data file at which the command will begin data
analysis. If you specify a record number for this argument, the command ignores all the
data before the record number. The default value is 0.

* -end_code_ref integer
Specifies the record number in the raw data file at which the command will stop data
analysis. If you specify a record number for this argument, the command ignores all the
data after the record number. The default value is 2147483647, which is the largest
signed integer value supported by OpenVOS.

* -pm_offset_address offset
Specifies the entry point for a relocatable program module located in the OpenVOS
kernel (these program modules are listed in
>system>kernel_loadable_library). Enter the address offset at which the target
program module was executed. You can determine the proper offset by using the
dump_eit (dump executable image table) request in the analyze_system command
on the same module on which you executed the harvest_pc_samples command.
You can find this value in the request’s base vm at: output field. For a description
of the dump_eit request, see the OpenVOS System Analysis Manual (R073).
2-18

analyze_pc_samples
Explanation
The analyze_pc_samples command reads the raw data file created by the
harvest_pc_samples command and selects information about one or more specified
program modules. It then computes statistics about the location and quantity of program
counter samples that reference the specified program module and places the results in a file.
See the Sample Output section for a description of the contents of this file.

The -pm_file_path, -program_names, -process_names, or -process_ids
arguments let you focus the analysis on OpenVOS, on an application program module, or on
the relationship of an application program module to OpenVOS. Figure 2-1 illustrates each
of these cases.

1

Figure 2-1. Analyzing Program Modules in the Kernel and User Address Space

To analyze the OpenVOS program module, do not specify a value for the
-program_names, -process_names, or -process_ids arguments, since
OpenVOS is the only program module which runs in the kernel address space. By
default, the command reads the OpenVOS program module directly from the boot
partition of the disk specified in -master_disk. If you copied the OpenVOS program
module from a boot partition to a file, specify the path name of the file in
-pm_file_path.

To analyze only a user program module, specify the program module’s name (for
example, office.pm) as the value for both the -pm_file_path and the
-program_names arguments. Note that instead of specifying a value for the
-program_names argument, you can specify the value of the process name or ID
(-process_names or -process_ids arguments) that executes the program module.

Note: If you specify the program module name as the -pm_file_path, but fail
to specify a corresponding -program_name, -process_name, or
-process_id value, the analyze_pc_samples command analyzes the
program counter samples from all user processes in the user address space. This
happens because all user programs execute in the same virtual address space.
The command needs a -program_name, -process_name, or -process_id
value in order to analyze a particular target program module in the user address
space.

To analyze the relationship of a user program module to OpenVOS, follow the steps in
A above, and specify the value of the -program_names argument as the name of the

 Kernel Address SpaceA

vos.pm

office.pm
test.pm

Part of OpenVOS
called on behalf of

test.pm

C

{
 User Address SpaceB {

}

A

B

C

OpenVOS Commands Reference Manual (R098) 2-19

analyze_pc_samples
target program module (for example, test.pm). Note that instead of specifying a value
for the -program_names argument, you can specify the value of the process name or
ID (-process_names or -process_ids arguments) that executes the program
module.

In case B or C, you can specify redundant values for the -process_names, -process_ids,
and -program_names arguments. For example, if the command module foo.cm calls the
program module test.pm, you could specify foo.cm as the value of the -process_names
argument and test.pm as the value of the -program_names argument.

Examples
The following examples show several different ways of specifying the arguments to the
analyze_pc_samples command.

Example 1. In this example, the raw data file is called pc_samples, and the output file is
called target.analysis. To analyze the execution of a target program module in the
OpenVOS user address space, both the -program_names and the -pm_file_path
arguments are specified with the same program module name. The analyze_pc_samples
command will generate a default report. For an example of this type of report, see the Sample
Output section.

analyze_pc_samples pc_samples
-output_path target.analysis
-program_names target.pm
-pm_file_path target.pm

Example 2. This example differs from the previous example in that it uses two raw data files,
which must have been created on the same machine and at the same sampling frequency.
Analyzing more than one raw data file lets you increase the accuracy of the analysis statistics
by concatenating two or more data files.

analyze_pc_samples pc_samples1 pc_samples2
-output_path target.analysis
-program_names target.pm
-pm_file_path target.pm

Example 3. In this example, the analyze_pc_samples command examines all the
program modules executing on OpenVOS (using the current module’s OpenVOS boot
partition as the target program module) and generates a default report.

analyze_pc_samples pc_samples
-output_path vos.analysis

Example 4. In this example, the analyze_pc_samples command examines the portions of
OpenVOS exercised by two target program modules executing in the OpenVOS kernel
address space and generates a default report.

analyze_pc_samples pc_samples
-output_path vos.analysis
-program_names user1.pm user2.pm
2-20

analyze_pc_samples
Example 5. In this example, the analyze_pc_samples command examines a target
program module executing in the OpenVOS user address space and generates a report
containing a list of program modules and an estimated transaction time for each program
module. For an example of this type of report, see the Sample Output section. The command
ignores functions that are executed less than one percent of the time, and uses a value of 28
transactions per second to estimate the execution time of each program module that helps
process the transaction.

analyze_pc_samples pc_samples
-output_path target.analysis
-pm_file_path target.pm
-program_names target.pm
-modules_only
-ignore_percent_below 1
-transactions_per_second 28

Example 6. This example differs from the previous example in that the
analyze_pc_samples command examines all the program modules executing on
OpenVOS. The command generates a report containing a list of program modules and an
estimated transaction time for each program module.

analyze_pc_samples pc_samples
-output_path vos.analysis
-modules_only
-ignore_percent_below 1
-transactions_per_second 28

Sample Output
The output file produced by analyze_pc_samples contains the following information:

 Specified, default, and environmental values used by the analyze_pc_samples
command to generate the report

 A summary of each raw data file used to generate the report. This summary includes
the following:

– specified, default, and environmental values used by the harvest_pc_samples
command to create the raw data file

– a list of all the processes and associated programs running on OpenVOS during
the period that the harvest_pc_samples command logged data

– a list of all the processes that executed different programs during the period that
the harvest_pc_samples command logged data. These processes failed
harvest_pc_samples program validation.

– a summary of the statistics and CPU usage contained in the raw data file

 If more than one raw data file is used to generate the report, the report adds the statistics
and CPU usage information from each raw data file and presents the cumulative
information.
OpenVOS Commands Reference Manual (R098) 2-21

analyze_pc_samples
 A detailed execution report. The default is a line, module, and function execution report
that shows the number of samples (hits) taken per source code line, program module
name, and function name. An alternative module summary report is generated if you
specify the -modules_only argument. This alternative report lists the percentage of
hits per program module.

Note: Unless you bind the specified program module with the -retain_all
argument of the bind command, the analyze_pc_samples command divides
its output only by program module (source file) names. If you also want the
analyze_pc_samples command to divide its output by function names and
source code line numbers, execute the bind command to rebind the program
module with the -retain_all argument set to yes before running the
harvest_pc_samples and analyze_pc_samples commands.

The following sections describe examples of each section of the report.

The analyze_pc_samples Command Argument and Environmental Values Section
This section of the report provides information about the analysis, including the time of
analysis, the version of analyze_pc_samples, the list of files that were analyzed, and the
specified analyze_pc_samples argument values.

Analysis Time : 91-08-02 11:13:20 EDT

analyze_pc_samples version : 1.1

PC Analysis of : %es#d01>Guest>User>new_sampler>vos_11.pm

PM Offset Address : 0x0

PC Sample File(s) : %es#d01>Guest>User>new_sampler>example.samples

Options -program_name(s) : *

-process_name(s) : harvest_pc_samples

-process_id(s) :

-modules_only : no

-percent_format : cumulative

-ignore_percent_below : 0.01

-transactions_per_second :

-line_number_analysis : yes

-hex_granularity : 16

-start_code_ref : 0

-end_code_ref : 2147483647

-pm_offset_address :
2-22

analyze_pc_samples
Raw Data File Summary Section
This section of the report provides information about each raw data file used by the
analyze_pc_samples command. This section of the report consists of four subsections.

The harvest_pc_samples Command Argument and Environmental Values Subsection
This subsection lists the specified, default, and environmental values used by the
harvest_pc_samples command to create the raw data file.

The Process List Subsection
This subsection lists the processes and associated programs running on OpenVOS during the
period that the harvest_pc_samples command logged data in the raw data file.

Statistics from : %es#d01>Guest>User>new_sampler>example.samples

Harvest Version : 1.1

VOS Version : VOS Release 11.p

Number of CPU's : 1

Requested Freq. : 85 samples/sec/cpu

Timing Jitter : 2

Program Validation: 30 sec

PROCESS LIST

PROCESS ID PROCESS NAME PROGRAM NAME

0x01113062 harvest_pc_samples harvest_pc_samples.pm
0x01113046 login office.pm
0x01112001 Idle
0x0111200C TPOverseer tp_overseer.pm
0x01113060 login emacs.pm
0x011120D5 login
0x0111200D LinkServer1 link_server.pm
0x01112030 inetd inetd.pm
0x011120FB login emacs.pm
0x011120F1 login xemacs.pm
0x011120F9 login emacs.pm
0x01112011 TheOverseer overseer.pm
0x01112004 Cache_Manager_Timer
OpenVOS Commands Reference Manual (R098) 2-23

analyze_pc_samples
The Changed Program Names (Program Validation) Subsection
This subsection lists the processes that executed different programs during the period
specified by the -program_validation_period argument of the
harvest_pc_samples command.

The PC Sample Statistics Summary and CPU Usage Subsection
This subsection provides a summary of the statistics and CPU usage derived from the raw data
file.

The following processes have changed program names

PROCESS ID PROCESS NAME PROGRAM NAME

0x011120D5 login list_users.pm
0x011120ED login login
0x011120D5 login emacs.pm
0x01113061 login copy_kernel.pm
0x011120F1 login
0x011120FB login
0x011120F1 login xemacs.pm
0x011120FB login emacs.pm
0x01113061 login
0x01113066 login office.pm
0x01113060 login
0x01113061 login list_users.pm
0x01113060 login emacs.pm
0x01113061 login

PC SAMPLE STATISTICS CPU USAGE

Total Code References : 25554 User CPU Time : 45.19 sec

OS Code References : 24814 System CPU Time : 30.04 sec

User Code References : 740 Server CPU Time : 7.51 sec

Target Region Refs : 55 Interrupts Time : 48.83 sec

Target Refs Missed PM : 7 Idle Time : 131.29 sec

Target Refs Hit PM : 48 Total CPU Time : 262.86 sec

PM Hits / Total Refs : 0.19 %

Harvest Duration : 300.02 sec

Actual Sampling Freq. : 85.18 samp/sec
2-24

analyze_pc_samples
The following fields appear in the PC sample statistics subsection.

Total Code References:
The total number of program counter samples contained in the raw data file(s).

OS Code References:
The total number of program counter samples in the raw data file(s) that map to
OpenVOS kernel address space. For an illustration of the OpenVOS kernel address
space, see Figure 2-1.

User Code References:
The total number of program counter samples in the raw data file(s) that map to the
OpenVOS user address space. For an illustration of the OpenVOS user address space,
see Figure 2-1.

Target Region Refs:
The total number of program counter samples used in the analysis. This value is equal
to the total number of program counter samples associated with processes having the
specified -program_name, -process_name, or -process_id value. It is also equal
to the sum of the Target Refs Hit PM and the Target Refs Missed PM fields.
If you did not specify a value for the -program_name, -process_name, or
-process_id arguments, the value of this field is the same as Total Code
References.

Target Refs Missed PM:
The total number of program counter samples in the target region which did not map
into the address space of the target program module. If this number is not close to zero,
either you specified a target program module name for -pm_file_path, but did not
specify a value for the -program_name, -process_name, or -process_id
arguments, or the target program module only executed for part of the time that the
harvest_pc_samples command was executing. For a description of the need to
specify a value for the -program_name, -process_name, or -process_id
arguments for user target program modules, see the description of part B of Figure 2-1.

Target Refs Hit PM:
The total number of program counter samples in the target region which mapped into
the address space of the target program module.

PM Hits / Total Refs:
The value of the Target Refs Hit PM field divided by the value of the Total Code
References field.

Harvest Duration:
The length of time that the harvest_pc_samples command executed. This number
should be equal to the specified harvest_pc_samples duration value. If the
difference between the Harvest Duration and the specified duration is more than
one second, harvest_pc_samples may not have been running at a high enough
priority.
OpenVOS Commands Reference Manual (R098) 2-25

analyze_pc_samples
Actual Sampling Freq.:
The value of the Total Code References divided by the value of the Harvest
Duration field. This number should be equal to the specified harvest_pc_samples
-sampling_frequency times the number of logical processors on the system on
which you ran harvest_pc_samples. If the difference between the Actual
Sampling Freq. and the specified -sampling_frequency value is greater than one
or two, the harvest_pc_samples command may have been running at too low a
priority.

The following fields appear in the CPU usage subsection.

User CPU Time:
The amount of CPU time used by user processes during the execution of
harvest_pc_samples.

System CPU Time:
The amount of CPU time used by OpenVOS processes during the execution of
harvest_pc_samples.

Server CPU Time:
The amount of CPU time used by the StrataNET network server processes during the
execution of harvest_pc_samples.

Interrupts Time:
The amount of CPU time spent handling interrupts during the execution of
harvest_pc_samples.

Idle Time:
The amount of CPU time in which no processes ran during the execution of
harvest_pc_samples.

Total CPU Time:
The sum of all the above times.

Total CPU Time = User CPU Time + System CPU Time + Server CPU
Time + Interrupts Time + Idle Time

This number should be equal to Harvest Duration times the number of logical
processors on the system on which the harvest_pc_samples command ran.
However, discrepancies in metering sometimes cause the two values to be quite
different.
2-26

analyze_pc_samples
Sample File Statistics Summary Section
If you specify more than one raw data file as input to the analyze_pc_samples command,
the command generates this section. It contains the sum of the PC Sample Statistics and CPU
Usage statistics from all the raw data files.

The Line, Module, and Function Statistics Section
By default, the analyze_pc_samples command generates sampling statistics by source
code line number, program module, and function name. In this example, the value of the
-percent_format argument has been specified as cumulative. Descriptions of the
columns in this example are given in Table 2-1.

Note: If you specified the value of the -line_number_analysis as no, the output
would look the same as this example, except that all line number references would be
hexadecimal offsets from the beginning of the program module address space.

SAMPLE FILE STATISTICS SUMMARY

PC SAMPLE STATISTICS CPU USAGE

Total Code References : 1210842 User CPU Time : 27.50 sec

OS Code References : 1209170 System CPU Time : 25.82 sec

User Code References : 1672 Server CPU Time : 6.30 sec

Target Region Refs : 1210842 Interrupts Time : 37.74 sec

Target Refs Missed PM : 3358 Idle Time : 4699.50 sec

Target Refs Hit PM : 1207484 Total CPU Time : 4796.86 sec

PM Hits / Total Refs : 99.72 %

Harvest Duration : 1200.02 sec

LINE# #HITS %TOTAL MODULE NAME FUNCTION NAME HITS/FN

359 1 2.08 cache_manager cache_manager 1

5498 3 8.33 cache_manager cm_post 2

5500 1 10.42
475 1 12.50 cache_manager_utils seq_get_block 1

484 1 14.58 disk_allocators withdraw_cate_pages 1

969 1 16.67 disk_allocators withdraw_file_pages_mdn0 2
OpenVOS Commands Reference Manual (R098) 2-27

analyze_pc_samples
1486 1 18.75
486 2 22.92 sched_queue_utils lock_sched_q 2

169 1 25.00 give_up_cpu_i thread_ready 1

554 1 27.08 lock_i unlock 1

134 1 29.17 sim_interrupt timer_runout 1

428 1 31.25 sim_interrupt rel_sim_int_check_real 1

364 1 33.33 update_load_meters meter_pf 1

260 1 35.42 pc_sampler s$$get_pc_sample 3

275 2 39.58
125 1 41.67 get_utils_i get_lock_word 1

20 1 43.75 rbreak rscaneq 1

89 1 45.83 mirrored_spin_lock_i unlock_mirrored_spin_loc 1

72 1 47.92 ass_even_to_vcs_pop assign_even_to_vcs 1

56 1 50.00 index_chars_1_pop index_chars_1 1

A0h 1 52.08 mod_int_pop mod_int 1

B0h 1 54.17 move_halfwords_pop move_halfwords 1

61 1 56.25 scanne_1_pop scanne_1 2
63 1 58.33
130h 1 60.42 ventnor_interrupt ventnor_interrupt 4

4C0h 1 62.50
540h 1 64.58
550h 1 66.67
50h 1 68.75 ventnor_waf_and_sis kernel_trap_handler 1

10h 1 70.83 ventnor_fast_timer s$$read_jiffy_clock 1

50h 1 72.92 ventnor_meter meter2_ssq_completion 1

250h 3 79.17 ventnor_switch_process switch_process 3

3220 1 81.25 process_control s$$get_process_meters 1

1959 1 83.33 dir_status s$match_star_name 2
2036 1 85.42
1010 1 87.50 file_io file_io 1

3777 1 89.58 file_io write_raw_file 3

8314 1 91.67
8885 1 93.75
D0h 3 100.00 kernel_trap_i validate_write_ptr 1
2-28

analyze_pc_samples
Table 2-1 describes the columns in the preceding example.

1

Table 2-1. Line, Module, and Function Statistics Columns of analyze_pc_samples

Column Description

LINE# Either the source code line number (displayed without a trailing letter h) in the
source file specified in MODULE NAME, or the hexadecimal byte offset from the
beginning of the assembly language routine named in FUNCTION NAME.

#HITS The number of samples collected at the line number or hexadecimal offset
specified in LINE#. To obtain an approximate idea of the accuracy of this value in
terms of a percentage, divide the square root of the value by the value, multiply
the quotient by 100, and subtract the product from 100. For example, if four hits
were harvested on a line, then the value is approximately 50% accurate
(100 - ((4 / 4) * 100)). If 1600 hits were harvested on a line, then the value is
approximately 98% accurate (100 - ((1600 / 1600) * 100)).

%TOTAL As specified by -percent_format cumulative, each value in this column
contains the cumulative total percentage of sample hits measured up to that point.
To determine the absolute percentage of sample hits measured for a function or
module, subtract the cumulative percentage on the previous line from the
cumulative percentage for the function or module. For example, if module B has
a cumulative percentage of 2.0, and module C has a cumulative percentage of 6.0,
the absolute percentage for module C is C’s percentage minus B’s percentage, or
4.0.

MODULE
NAME

The module name from the module map. The module map lists all of the files in a
program. Note that binding with -retain_all preserves the module map.

FUNCTION
NAME

The entry name from the entry map. The entry map lists all of the functions in a
program. Note that binding with -retain_all preserves the entry map.

HITS/FN The total number of samples collected from the function.
OpenVOS Commands Reference Manual (R098) 2-29

analyze_pc_samples
Program Module Summary Statistics Section
If you specify the value of the -modules_only argument as yes, the command generates a
program module summary statistics section instead of the default line, module, and function
statistics section. The module summary section lists the program module names and the
percentage of total hits for each module. This section is shorter and much less detailed than
the alternative line, module, and function statistics section.

In addition, for this example, a value for the -transactions_per_second argument is
specified. If you do not specify a value for this argument, the command cannot calculate the
MICROSECONDS PER TRANS. column and does not display it.

Note: The last line of output, sum of modules listed above, displays the total
number of microseconds per transaction spent by the modules in the list, and the
percent of total hits generated by all of the modules in the list.

MICROSECONDS PERCENT OF
PER TRANS. TOTAL REFS MODULE NAME

4995 +/- 36 42.55 idle_process
160 +/- 9 1.37 cache_manager
242 +/- 10 2.06 scheduling
254 +/- 11 2.16 sched_queue_utils
335 +/- 12 2.86 give_up_cpu_i

129 +/- 8 1.10 lock_i
184 +/- 9 1.57 sim_interrupt
203 +/- 10 1.73 mirrored_spin_lock_i
319 +/- 12 2.72 ventnor_interrupt
361 +/- 13 3.07 ventnor_waf_and_sis

229 +/- 10 1.95 ventnor_fast_timer
163 +/- 9 1.39 ventnor_meter
251 +/- 11 2.14 ventnor_cpu_hw_info_1
878 +/- 19 7.48 ventnor_switch_process
119 +/- 7 1.01 kernel_trap_i

151 +/- 8 1.28 sysdb_man
8972 76.42 sum of modules listed above
2-30

analyze_pc_samples
Table 2-2 describes the columns in the preceding example.

2

Figure 2-2 shows an example of a standard deviation. Standard deviation assumes a bell curve
distribution of data points. Most data points occur close to the mean; the further away from
the mean, the less likely an event is to occur. If the mean execution time for a module is 119
milliseconds, and the standard deviation is +/- 7 milliseconds, then, by definition, the shaded
area under the bell curve marked by the lower and upper standard deviation values is 66
percent of the area under the bell curve. In this example, this means that there is only a 33
percent chance that time spent by the program module on the transaction is either less than
112 milliseconds or greater than 126 milliseconds.

2

Figure 2-2. Example of Standard Deviation

Table 2-2. Module Summary Statistics Columns of analyze_pc_samples

Column Description

MICROSECONDS PER
TRANS.

An estimate of the microseconds spent by each program module
processing a transaction. The command also calculates the standard
deviation (+/-) of this value. In this case, 66 percent of the time, the
value in this column is within +/- X of the real value. Figure 2-2
illustrates the standard deviation. To increase confidence in a value,
collect more samples by rerunning the harvest_pc_samples
command at a faster sampling rate or for a longer period of time.

PERCENT OF TOTAL
REFS

The percent of the total samples collected from a module.

MODULE NAME The module name corresponding to the values calculated in the first
two columns.

The Mean

The Standard
Deviation

Example: -7 119 +7

AD0649
OpenVOS Commands Reference Manual (R098) 2-31

analyze_pc_samples
Related Information
For information on how to create the raw data file that this command analyzes, see the
description of the harvest_pc_samples command in this manual. For information on
related performance measuring tools, see the descriptions of the profile and add_profile
commands in this manual.
2-32

attach_default_output
attach_default_output 2-

Purpose
This command attaches your default_output port to a specified file or I/O device.

Display Form

Command Line Form

attach_default_output [path_name]

[-append]
Arguments* path_name

The path name of a file or output device. By default, the command attaches your
default_output port to the file default_output.out in your current directory,
creating it if it does not already exist.

* -append <CYCLE>

Appends the output to the file path_name. By default, the command truncates the file
before writing to it. If path_name is a device, -append is ignored.

Explanation
The attach_default_output command attaches the default_output port to the file or
output device path_name. You can nest up to eight attach_default_output commands.
(Each will use a different path_name.)

For an interactive process, the output of all commands you invoke is written to the
default_output port, which is connected to your terminal. For a batch process, the output
port is attached to a file, and the output of commands executed by the batch processor is
written to the file. When you invoke the batch command, any command output that normally
appears on the terminal is written to path_name, and does not appear on the terminal.

If you specify path_name, but it is not an existing file or output device, the
attach_default_output command creates a sequential file with that path name and
attaches the default_output port to it. In this case, the -append argument is redundant.

---------------------------- attach_default_output -----------------------------
path_name: efault_output.out
-append: no

d

OpenVOS Commands Reference Manual (R098) 2-33

attach_default_output
If you specify path_name, and it is an existing file, the attach_default_output
command attaches the default_output port to the file. In this case, if you do not specify
the -append argument, the command truncates the file before writing to it. If you specify the
-append argument, the command appends the output to the contents of the file.

Access Requirements
You must have write access to an existing file or output device to specify it as path_name.
By default, you have write access to all devices, unless your system administrator has
restricted that access.

Examples
Example 1.
The attach_default_output command creates a file named default_output.out in
your current directory, if none exists, and attaches your default_output port to it. If a file
with that name already exists, the attach_default_output command truncates it first and
then writes the output to the file. To append data to the file, use the -append argument.

In this example, the command writes the names of the objects in a directory to a file.

attach_default_output jones_customers
list %s1#d02>Sales>Jones>customers -all
detach_default_output

The first command attaches your default_output port to the file jones_customers in
your current directory. The second lists the contents of the directory
%s1#d02>Sales>Jones>customers. Because default_output is attached to a file, you
do not see the output from the list command. The last command detaches
default_output from the file and reattaches the port to its previous attachment, in this case
your terminal.

Example 2.
In the previous example, you could have attached your default_output port to a printer by
using the following commands.

attach_default_output %s1#p1.48
list %s1#d02>Sales>Jones>customers -all
detach_default_output

Related Information
See the description of the detach_default_output command for information about how
to detach the default_output port from the current file or output device and reattach it to
the original default output attachment. See the list_devices command for a list of output
devices to which you can attach your default_output file. You can use only the
attach_default_output and detach_default_output commands to change the
attachment of your process’s default_output port; it is an error to use the attach_port
and detach_port commands. See also the descriptions of the attach_port,
detach_port, start_logging, and stop_logging commands.
2-34

attach_port
attach_port 2-

Purpose
This command creates and names an I/O port and attaches it to a file or I/O device you specify.

Display Form

Command Line Form
attach_port port_name

path_name [-hold_open] [-high_port]
Arguments* port_name Required

The name of the new port.

* path_name Required
The path name of the file or I/O device to which the command is to attach the port.

* -hold_open <CYCLE>

Keeps the attached port open after the termination of the program doing I/O through the
port. By default, the command closes the port after the program terminates.

* -high_port <CYCLE>

Assigns the new port from the high port range. By default, the new port is assigned from
the low port range. See the description of the s$attach_port subroutine for more
information on low and high port ranges.

Explanation
The attach_port command creates and names a port in your process and attaches the port
to a file or an I/O device. You can then refer to the file or device through the port. The port
remains attached until you issue detach_port, or until your process stops.

For information about the maximum number of ports per module, see Appendix B, ‘‘General
OpenVOS Software Limits and Numerical Definitions.”

--------------------------------- attach_port ----------------------------------
port_name:
path_name:
-hold_open: no
-high_port: no
OpenVOS Commands Reference Manual (R098) 2-35

attach_port
The following tape commands can implicitly attach a port if you do not first explicitly attach
a port with the attach_port command.

 write_tape
 read_tape
 list_tape
 copy_tape
 save
 save_object
 restore
 restore_object
 list_save_tape

Access Requirements
By default, you have write access to a tape device. If your system administrator restricts
access to the tape device, you need read access to read from tapes, or write access to read from
and write to tapes.

Examples
Example 1.
The following command attaches the port magtape to the tape drive tape.1.0.

attach_port magtape %s1#tape.1.0

(Use the list_devices command to list the names of I/O devices, such as tape drives.)

Programming languages have conventions for resolving references to files and devices in
programs. If you create and name a port that represents a file or device, and execute a program
that references that port, the operating system uses the port name as an open connection to the
file or device.

Example 2.
Suppose you attach the port my_file to the file >Sales>Jones>reports>this_week
with the following command.

attach_port my_file >Sales>Jones>reports>this_week

Use the name my_file in a program to refer to a file. When you execute the program, a
reference to the port named my_file will be a reference to the file
>Sales>Jones>reports>this_week. You can detach the port named my_file and
attach it to another file before processing a second file with the program.

Related Information
See the description of the detach_port and attach_default_output commands.
2-36

batch
batch 2-

Purpose
This command places a request in a batch queue.

Display Form

Command Line Form

batch command_line [-process_name process_name] [-output_path output_path_name] [-process_priority process_priority] [-queue_priority queue_priority] [-privileged] [-no_restart] [-queue queue_name] [-module module_name] [-current_dir path_name] [-defer_until date_time] [-control control_file_name] [-after process_name. . .] [-cpu_limit cpu_time] [-notify]

------------------------------------ batch -------------------------------------
command_line:
-process_name:
-output_path:
-process_priority:
-queue_priority: 4
-privileged: no
-restart: yes
-queue: normal
-module:
-current_dir: current_dir
-defer_until:
-control:
-after:
-cpu_limit:
-notify: no
OpenVOS Commands Reference Manual (R098) 2-37

batch
Arguments* command_line Required
The command line to be executed by the batch process.

* -process_name process_name
Specifies the name of the batch process. By default, batch gives the process a name
derived from the first word in command_line. If it is a valid path name, the command
uses the file-name portion with any suffixes removed. If the resulting name is longer
than 32 characters, the command uses the first 32 characters. If the resulting file name
contains an apostrophe or is invalid, the command uses the name batch.

* -output_path output_path_name
Attaches the default output port of the batch process to the file or device specified by
output_path_name. If you do not specify this argument, the default output port is
attached to a file on the current directory. The command derives the name of the file
from the first word in the command_line argument. If it is a valid path name, the
command uses the file-name portion with any suffixes removed and appends the suffix
.out. If the resulting file name is too long, the command uses the first 28 characters
and appends the .out suffix. If the resulting file name contains an apostrophe (‘) or is
invalid, the command uses the name batch.out.

* -process_priority process_priority
Specifies the priority of the batch process. The range of process priorities is 0 to 9, with
9 being the highest. By default, the command assigns the process the same priority as
your current process.

* -queue_priority queue_priority
Specifies the queue priority of the batch request. The queue priority must be in the
range 0 to 9, with 9 being the highest. By default, the command assigns a queue priority
of 4.

* -privileged <CYCLE>

Makes the batch process a privileged process, which can execute privileged commands.
By default, the process is unprivileged. Only a privileged process can request a
privileged batch process.

* -no_restart <CYCLE>

Discontinues the batch process if the processing module stops and then starts again. By
default, the batch processor starts another batch process to execute command_line
from its beginning when the module restarts.

* -queue queue_name
Specifies the name of the batch queue that holds the batch request until its execution.
By default, the command puts your batch request in the normal queue, either on the
module module_name or on the current module.

* -module module_name
Specifies the name of the module containing the specified queue. By default, the
command uses the current module.
2-38

batch
* -current_dir path_name
Sets the current directory of the batch process to path_name. By default, the operating
system sets the current directory of the batch process to the current directory of the
calling process. Specifying a new current directory does not change the default location
of the output path.

* -defer_until date_time
Defers running the batch process until after date_time. The date_time term can be
a character string in the standard form:

yy-mm-dd_hh:mm:ss

The term can also be a character string in any form accepted by the (date_time)
command function. In this case, the string must be enclosed in apostrophes. See
Chapter 1, ‘‘OpenVOS Command Functions,” for examples of acceptable date/time
input strings.

By default, the batch processor starts the batch process as soon as possible.

* -control control_file_name
Specifies a batch control file to control the execution of the batch process. A batch
control file must have the suffix .batch, though you can omit this suffix when you
specify the file name. By default, the command uses the other command arguments to
determine how the batch process will run.

* -after process_name
Specifies one or more process names, or star names, of requests submitted by
(user_name).*. It does not refer to all requests in the queue. The newly issued batch
request is not executed until the processes identified by process_name have finished
executing. By default, the operating system executes the batch request after executing
requests that have a higher priority in the queue. In the command line form of the
command, command_line must precede -after.

* -cpu_limit cpu_time
Limits the amount of CPU time a batch process is allowed to consume. This value is
specified as hh:mm:ss, defaulting to seconds. Thus, a value of nn is interpreted as
seconds, and a value of nn:nn is interpreted as minutes and seconds. By default, the
command puts no limit on the amount of CPU time the batch process can use.

* -notify <CYCLE>

Notifies you when the batch process terminates by sending a message to the status line.
By default, the batch processor does not notify you when the batch process is done.

Explanation
The batch command puts the command line command_line in the batch queue
queue_name. The batch processor starts a process to execute command_line. That
executing process acquires its process priority, if unspecified, and its language from the
process submitting the batch request.

If the command line contains spaces, you must enclose the line in apostrophes.
OpenVOS Commands Reference Manual (R098) 2-39

batch
Batch requests are ordinarily added to the end of a batch queue. However, if you use the
-queue_priority argument with a queue priority higher than that of requests already in
the queue, the newly issued batch request enters the queue ahead of those requests with a
lower queue priority and behind requests with the same or higher queue priority. A batch
queue has 10 queue priorities, numbered 0 to 9, with 9 being the highest. When a batch
process can be started, the operating system starts the request at the head of the queue, which
is defined as the request whose queue priority is highest. If two or more requests in the queue
have the same queue priority, the operating system starts the oldest request first.

If you specify the -output_path argument, the batch processor attaches the
default_output port to the file or device output_path_name. If the file
output_path_name already exists, the batch processor truncates it before the batch process
writes to it; if the file does not exist, the batch processor creates it.

The -after argument has no effect on the position of the batch request in the queue, since
the position of the request in the queue is determined by its queue priority. However, it allows
a request with a queue priority of 6, for example, to be executed after a request with a priority
of 4. The request with the priority of 6 is inserted in the queue ahead of the request with the
priority of 4, but the lower priority request will execute first. Also, the -after argument does
not refer to all batch processes or requests, but only to those submitted by (user_name).*.

The -restart argument requeues your batch request if the batch process terminates without
signaling process completion (for example, if a system shutdown occurs during execution).
Thus, you must specify the -no_restart argument if you use the batch command to start
a process to execute the shutdown command. (See OpenVOS System Administration:
Starting Up and Shutting Down a Module or System (R282) for information on the
shutdown command.)

Examples
Example 1.
To submit a batch request for execution of the program module payroll.pm to a default
batch queue, issue the following command.

batch #accounting>pay>payroll.pm

The batch processor executes the program module.

Example 2.
To enter a COBOL compilation batch request in the batch queue named io_bound, issue the
following command.

batch 'cobol make_reports -list' -queue io_bound
2-40

batch
Example 3.
The following commands, used together, ensure that the specified files are bound after the
compilation.

batch 'cobol make_reports'
batch 'bind make_reports weekly_rpts' -after cobol

Related Information
For a detailed discussion of batch processing, see the OpenVOS Commands User’s
Guide (R089). For information about currently executing batch processes, specify the
display_batch_status command. To list the batch process you have submitted, specify
the list_batch_requests command. The batch processor gives each batch process a
queue sequence number, which is the position of the process in the batch queue. The
list_batch_requests command displays the queue sequence number. To cancel a batch
process request, specify the cancel_batch_requests command. See also the command
descriptions of update_batch_requests, reserve_device,
move_device_reservation, and cancel_device_reservation.
OpenVOS Commands Reference Manual (R098) 2-41

bind
bind 2-

Purpose
This command binds one or more object modules into one executable program module. One
of the compilers or the assembler translates a source module into an object module. You must
bind the object module or set of object modules into a program module before you can
execute the program.

Display Form

 ------------------------------------- bind -----------------------------------
 object_modules:
 -control:
 -search:
 -define:
 -entry:
 -load_point: default
 -max_heap_size: default
 -max_program_size: default
 -max_stack_size: default
-pm_name:

 -processor: default
 -size: default
 -stack_fence_size: default
 -stack_size: 65536
 -target_module: current_module
 -version: Pre-release
-align_mod16: no -define_main: no
-dynamic_tasking: yes -extended_names: default
-map: no -number_of_tasks: 1
 -private_heap: no -private_stack: yes
-profile_alignment_faults: no -retain_all: no
-shared: no -statistics: no
 -subroutines_are_functions: no -table: yes
2-42

bind
Command Line Form

bind Ç È
¢-search [path_name...]£
[-define variable_name...] [-entry entry_point] [-load_point load_point] [-max_heap_size maximum_heap_size] [-max_program_size maximum_program_size] [-max_stack_size maximum_stack_size] [-pm_name path_name] [-processor processor_string] [-size size] [-stack_fence_size stack_fence_size] [-stack_size size] [-target_module module_name] [-version version] [-align_mod16] [-define_main] [-no_dynamic_tasking] [-extended_names extended_names_string] [-load_in_kernel] [-map] [-number_of_tasks number] [-private_heap] [-private_stack] [-profile_alignment_faults] [-references_kernel] [-relocatable] [-retain_all] [-shared] [-statistics] [-subroutines_are_functions] [-no_table]

Arguments* object_modules
One or more path names or star names of object modules to be bound. If you do not
specify object_modules, you must use -control.

Note: Unlike object modules named in a control file, object_modules are not
subject to search path rules; they must be relative or full path names.

* -control control_file_name
Specifies a binder control file to control the binding. The name of the binder control file
must have the suffix .bind, though you can omit this suffix when you specify the path
name. If you do not specify -control, you must specify object_modules.

object_modules . . .[-control control_file_name]
-control control_file_name
OpenVOS Commands Reference Manual (R098) 2-43

bind
* -search [path_name]
Searches a specified directory or directories for object modules named as entry points
in the object modules being bound. The binder first searches any directories specified
in this argument, then any specified in the binder control file, and finally the directories
specified by the process’s current object library search rules. If you include -search
on a command line without specifying a directory, the binder first searches the current
directory. By default, the binder searches the directory
master_disk>system>object_library, unless you have redefined the object
library paths for your process. The binder allows as many command line and/or binder
control file search directories (whether specified or default) as memory allows.

See Using OpenVOS Dynamic Linking and Shared Libraries (R648) for more
information about the search rules for binding an object module or shared library.

* -define variable_name
Defines variables to be used during binder control file preprocessing. Preprocessor
variables can contain letters, digits, or the underline character (_), in any position. (See
the Explanation section of this command description or the description of the
preprocess_file command for details.)

* -entry entry_point
Enables you to define a main entry point of an executable program rather than to use
the first procedure in the first source module specified in the bind command.

Do not use this argument for a C program that defines a function called main. (That is,
do not specify bind -entry main.) Instead, bind in the main function first.

The -entry and -define_main arguments are mutually exclusive.

* -load_point load_point
Specifies the lowest address for the object modules. The value of -load_point can
be any unsigned 32-bit value. For example, if the default load point for the kernel is
80000000x, specify the following command to change the load point.

bind prog1 -load_point 80026000x

The default value is default, which is determined by the processor type and whether
you are building a user or kernel program. On an ftServer module, use the default value.

* -max_heap_size maximum_heap_size
Specifies the maximum byte size to which the heap can grow. Specify an integer value
from 0 to 32,768. The default value is default. If no value is specified, the value of
maximum_heap_size is 0.

Note: A zero value does not imply that the heap’s size is 0; instead, during
binding, the bind command assumes that the maximum heap size is equal to
32,768 bytes for the purpose of checking the size of the address space, and during
runtime, OpenVOS assumes that the heap size is unlimited.

* -max_program_size maximum_program_size
For user programs, specifies the maximum amount of code and data the program can
contain including its symbol tables. For kernel-loadable programs, specifies the
2-44

bind
maximum amount of code and data the program can contain excluding its symbol
tables. The value of this argument can be any unsigned 32-bit value. The default value
is default. If no value is specified, the binder checks the amount of code and data
against the address space specified in -size.

* -max_stack_size maximum_stack_size
Specifies the total amount of memory that all static tasks’ stacks and fences may
occupy. The value of maximum_stack_size cannot be less than 32,768. The default
value is default. If you use the default value, the binder calculates the maximum
stack size value.

* -pm_name path_name
Specifies the name of the generated program module (.pm file).

Note: The binder names the program module depending on which command line
arguments (object_modules, -control, or -pm_name are specified. See the
Explanation section for information on using these arguments to name a program
module.

* -processor processor_string <CYCLE>
Controls conditional-preprocessing symbol definition, and also validates that object
modules are compatible with the target processor. The following are values of
processor_string.

 default
 pentium4

These values are site-settable by your system administrator, so some of them might not
appear when you invoke the command’s display form. To determine the default
value, issue the display_error m$default_processor command. By default,
processor_string is the processor family of the current module. If you specify
default, the bound file will be of the same processor family as the module you are
running on. See the Explanation section for more information.

* -size size
Specifies the size of the address space for which the binder is to bind the object
modules. You can specify any numeric value for the -size argument, as well as the
values small (to specify a 2-megabyte address space), large (to specify an
8-megabyte address space), and default. The value of default depends on the target
architecture and the whether you are binding a user or kernel program. For an ftServer
module, the user program size is 128 megabytes, and the kernel program size is 4096
megabytes. See the Explanation section for a description of the syntax of the numerical
values that you can specify for the -size argument.

* -stack_fence_size stack_fence_size
Specifies the size, in bytes, of the fence to be placed after each static task’s stack. A
fence is an unmapped area of memory; its purpose is to prevent runaway stacks from
overwriting other data. The default value is default, which corresponds to a
4096 byte stack fence. If you do not want a stack fence, specify a value of 0. Note that
even if you specify a value of 0, the system still allocates a stack fence of 32,768 bytes
for the last static task.
OpenVOS Commands Reference Manual (R098) 2-45

bind
* -stack_size size
Specifies the number of bytes of storage to reserve for the stack. On ftServer modules,
the value of size must be divisible by 16. During bind-time error checking, the binder
uses this value to check that the program’s stack will fit in the defined address space.
During program execution, this value is the amount of space allocated to the stack. This
argument interacts with the -number_of_tasks argument as follows:

 If number_of_tasks is one, the stack size is the minimum stack size.

 If number_of_tasks is greater than one, the stack size is the maximum size of
the stack for each task.

By default, the binder allocates 65,536 bytes of stack space for each task.

* -target_module module_name
Specifies the name of a module on the current system or on another accessible system.
This is useful when binding for a different architecture or a different software release,
when the kernel entry points may not be the same, and the bind may result in undefined
system entry points. By specifying the -target_module argument, the binder checks
the spelling of all system subroutine names called by the object modules to ensure that
they match all known kernel entry points on the host system.

* -version version
Specifies the release string that appears in the program module header. By default, the
binder always initializes version to Pre-release.

* -align_mod16 <CYCLE>
Causes the binder to align the code from each object module on a 16-byte boundary,
which may produce faster code. By default, the binder aligns the code on an 8-byte
boundary for ftServer modules.

* -define_main <CYCLE>

Controls whether the binder creates a main function. By default, the binder does not
create a main function.

The value cc directs the binder to create a main function as if the VOS c, cc, or
OpenVOS vcc compiler had created the object module. Specify this value for
applications using the POSIX runtime environment, but not the GNU environment.

The value gcc directs the binder to create a main function as if the OpenVOS gcc or
g++ compiler had created the object module. Specify this value for applications using
both the POSIX runtime and GNU environments.

The -entry and -define_main arguments are mutually exclusive.

* -no_dynamic_tasking <CYCLE>
An argument that depends on whether the program is a dynamic tasking program. A
dynamic task is created anytime during program execution. Space for a dynamic task is
allocated from the heap. If a program module uses dynamic tasking, specify
-dynamic_tasking. The binder includes relocation information, which is needed by
a program module that uses varying numbers of tasks during execution. If a program
2-46

bind
module does not use dynamic tasking, specify -no_dynamic_tasking. The binder
effectively decrease the size of the program module and suppresses certain warnings.

* -extended_names extended_names_string <CYCLE>
Causes the binder to create a program module that enables extended-names support.
The supported values are default, version1, version2, and disabled. See
“Enabling Extended-Names Support for a Program Module” in the Explanation for
more information.

By default, the binder determines whether the program module supports extended
names, depending on the type of the application.

* -load_in_kernel <CYCLE>
Tells the binder to produce a program module that can be loaded with the
load_kernel_program command. The load_kernel_program command loads a
program module, such as a library of user programs, separately into the operating
system kernel. See OpenVOS System Administration: Administering and Customizing
a System (R281) for more information on the load_kernel_program command.

Note: The -load_in_kernel argument is used primarily for Stratus internal
development. Most users should not use this argument. If you need to use it, you
can specify it on the command line.

* -map <CYCLE>

Creates a bind map. The bind map lists the directories searched, minimum stack size,
main entry points, external name definitions, and the starting address and length of the
following regions.

 code
 symbol table
 unshared static storage
 shared static storage

By default, the binder does not create a bind map.

* -number_of_tasks number
Specifies the number of static tasks the binder is to create in the program module. Static
tasks are created when a program module begins execution and is not deleted until the
program module stops executing. Memory for a static task is allocated from the stack.
The number of static tasks is limited only by the total size of the program module. Each
static task has its own stack, its own fence (to prevent tasks from overwriting each
other), and its own copy of static storage. The last task’s stack always has a fence size
of at least 32,768 bytes. By default, the binder creates one static task.

See the description of tasking in any of the OpenVOS Transaction Processing Facility
Reference manuals for more information.

* -private_heap <CYCLE>
Enables you to move the process heap to the process’s private address space. This
allows the compiler to place the address spaces of otherwise identical processes into
OpenVOS Commands Reference Manual (R098) 2-47

bind
different cache locations, often resulting in better system performance by reducing the
amount of cache line contention. The default value is -no_private_heap.

You cannot use this argument if your program uses the s$connect_vm_region2 or
s$connect_vm_region3 subroutine to connect shared virtual memory to the
program’s heap area. If your program uses s$connect_vm_region2 or
s$connect_vm_region3 for this purpose and you specify -private_heap, the
subroutine will return an error message. This argument operates independently of the
-private_stack argument, which means that you can specify one argument or both
arguments simultaneously.

This argument is ignored when binding programs compiled for ftServer modules.

* -private_stack <CYCLE>

Enables you to move the process stack to the process’s private address space. This
allows the compiler to place the address spaces of otherwise identical processes into
different cache locations, often resulting in better system performance by reducing the
amount of cache line contention. For non-POSIX programs, the default value is
-no_private_stack; for POSIX programs, the default value is -private_stack.

You cannot use this argument if your program uses the s$connect_vm_region2 or
s$connect_vm_region3 subroutine to connect shared virtual memory to the
program’s stack area. If your program uses s$connect_vm_region2 or
s$connect_vm_region3 for this purpose and you specify -private_stack, the
subroutine will return an error message. This argument operates independently of the
-private_heap argument, which means that you can specify one argument or both
arguments simultaneously.

Note: Do not specify the -no_private_stack argument when you bind an
application that uses OpenVOS POSIX.1 support, as some POSIX features will
not work properly.

This argument is ignored when binding programs compiled for ftServer modules.

* -profile_alignment_faults <CYCLE>
Instructs the operating system to count the number of alignment faults that occur during
program execution. This data is reported by the profile command. The alignment
fault count replaces the page fault count in program modules that have been compiled
with the -cpu_profile argument (or the -qc option in OpenVOS Standard C).

This argument is ignored when binding programs compiled for ftServer modules.

By default, the binder does not instruct the operating system to count alignment faults.

For information about how alignment fault information is logged, see the description
of the profile command.

* -references_kernel <CYCLE>
Causes the binder to allow virtually all external references that can be resolved in the
kernel to be resolved. All external variables should be initialized if the
-references_kernel argument is used.
2-48

bind
Note: The -references_kernel argument is used primarily for Stratus
internal development. Most users should not use this argument. If you need to
use it, you can specify it on the command line.

* -relocatable <CYCLE>
Causes the binder to produce a program module that can be loaded at any address. Only
kernel-loadable programs should be bound with this argument.

Note: The -relocatable argument is used primarily for Stratus internal
development. Most users should not use this argument. If you need to use it, you
can specify it on the command line.

* -retain_all <CYCLE>

Places all external entry names in an entry map for the program module. This map
contains the entry value for each name.

* -shared <CYCLE>
Directs the binder to generate a shared library. You cannot specify this argument if you
also specify any of the following values of the options binder control-file directive:
kernel, load_in_kernel, or relocatable.

* -statistics <CYCLE>

Displays various statistics about the binding. By default, the binder displays no
statistics.

* -subroutines_are_functions <CYCLE>
Suppresses the message that can occur in OpenVOS C and OpenVOS Standard C
programs when a function is being called as a subroutine, or vice versa. This argument
is generally not used to bind PL/I or other programs.

* -no_table <CYCLE>
Omits symbol table information in the program module. If you specify -no_table,
you cannot use the OpenVOS Symbolic Debugger in a symbolic mode. If you do not
specify -no_table when binding and compile the source module using either -table
or -production_table, you can use the OpenVOS Symbolic Debugger in a
symbolic mode.

Other Options
In addition to the arguments that appear when you specify the bind command with the
-form or -usage argument, the bind command has other options that you can specify only
on the command line. Table 2-3 describes these options.
OpenVOS Commands Reference Manual (R098) 2-49

bind
3

Table 2-3. Command-Line Options of the bind Command

Option Description

--as-needed
--no-as-needed

Controls whether the binder checks to see if a shared library satisfies an
outstanding external symbol reference and then loads it only if it does.
This is called as-needed mode. By default, as-needed mode is turned
off (--no-as-needed).

Each option affects only those shared libraries that appear after it on
the command line.

-Bdynamic
-Bstatic

Controls whether -lname looks for libname.so before or after it
looks for libname.a in a given directory. This option affects only
subsequent -lname arguments, so the location of -Bdynamic and
-Bstatic on the command line is significant. You can specify these
options multiple times on the command line. When building a program
module, the default value is -Bstatic; when building a shared library,
the default value is -Bdynamic.

For example, the following command looks first for libfirst.a and
libsecond.so:

bind -Bstatic -lfirst -Bdynamic -lsecond. . .

See Using OpenVOS Dynamic Linking and Shared Libraries (R648)
for detailed information about these options.

-Bsymbolic Changes the way symbol resolution is handled within a shared library.
Normally, symbol precedence is based on the runtime load order of
shared libraries, with the main program module having the highest
precedence. If you specify this option when building a shared library,
the shared library itself has first precedence when resolving its own
symbol references.

This option has no effect if you are not building a shared library.

--export-dynamic
-export-dynamic

Forces a main program module to export all non-hidden global symbol
definitions. When a program module or shared library exports a
symbol, it makes its definition of that symbol visible to other shared
libraries in the program. A shared library normally exports all
non-hidden global symbol definitions. But a main program module, by
default, only exports global symbols referenced by the shared libraries
it was bound with. This could cause problems in some applications (for
example, those that call the OpenVOS POSIX dlopen function) unless
you specify this option.

This option has no effect on shared libraries because all non-hidden
symbols in a shared library are always exported.
2-50

bind
-lname Binds libname.so or libname.a into the specified program module.
The binder searches for these files as follows:

1. First, it searches all directories specified with bind -search.
2. Next, it searches all directories specified with the search: binder
control-file directive.
3. Finally, it searches all directories on the object library path list.

This is the same search order that the binder uses when searching
object libraries to satisfy undefined references.

Within each object directory, the binder looks first for libname.so if
-Bdynamic is in effect, or libname.a if -Bstatic is in effect. If
neither -Bdynamic nor -Bstatic is specified, the binder looks only
for libname.a and ignores libname.so.

See Using OpenVOS Dynamic Linking and Shared Libraries (R648)
for more information about the search rules for binding an object
module or shared library.

-rpath path[:path]...
-rpath=path[:path]...
--rpath path[:path]...
--rpath=path[:path]...

Specifies one or more directory path names for the dynamic linker to
look in for the shared libraries on which the resulting program module
or shared library depends. If you specify this option multiple times on
the command line, the path names are concatenated in the order in
which they appeared.

-soname name
-soname=name
--soname name
--soname=name

Specifies the name that the dynamic linker uses when looking for this
shared library at runtime. The name value can be a simple file name or
a path name. If you do not specify this option, the dynamic linker uses
the same file name that the binder was given.

This option has no effect if you specify it when binding a main
program module.

-version-script path
-version-script=path
--version-script path
--version-script=path

Specifies the path name of a version script file, a text file containing
symbol visibility and version directives. To specify multiple version
script files, repeat this option.

If the binder cannot locate path relative to the current directory, but
path is not an absolute path name, the binder looks in the object file
search directories for path.

Table 2-3. Command-Line Options of the bind Command (Continued)

Option Description
OpenVOS Commands Reference Manual (R098) 2-51

bind
Explanation
The bind command binds a specified set of object modules into one program module.

Resolution of Directive, Argument, and Default Values
For a given argument or binder control-file directive, the binder uses the following rules to set
the value.

 If the directive is specified, the binder uses the specified value.
 If the directive is not specified, the binder uses the value specified in the argument.
 If no value is specified, the binder uses a processor-specific default value.

-whole-archive
--whole-archive

-no-whole-archive
--no-whole-archive

Toggles whole-archive mode on and off. Normally, when the binder
processes an archive (.a) library file, it takes from it only what it needs
to satisfy outstanding undefined symbol references. If you specify
whole-archive mode (-whole-archive and --whole-archive),
the binder takes everything from an archive.

You can specify these options repeatedly on the command line. Each
option affects archives that appear after it on the command line.

-zdefs
-znodefs

Specifies whether the binder reports undefined symbol errors. When
the binder builds a program module, the -zdefs option is the default
(that is, the binder reports undefined symbol errors). When the binder
builds a shared library, the -znodefs option is the default (that is, the
binder does not report undefined symbol errors).

-ztext
-znotext

Specifies whether the binder reports non-position-independent code.
When the binder builds a program module, the -ztext option is the
default (that is, the binder reports non-position-independent code).
When the binder builds a shared library, the -znotext option is the
default (that is, the binder does not report non-position-independent
code).

Table 2-3. Command-Line Options of the bind Command (Continued)

Option Description
2-52

bind
Syntax of Numerical Binder Values
Many of the binder command-line arguments and control file directives accept numerical
values to represent addresses and sizes. By default, the binder assumes that any specified
numerical value is a decimal value. You can change the value’s base by specifying one of the
suffixes listed in the following table.

For example, if you specify -load_point 80026000x, the binder interprets 80026000 as
a hexadecimal value and changes the load point to that address.

The binder also allows you to use one of the suffixes in the following table to specify a
multiplier value.

For example, if you specify -size 8mb, the binder sets the size of the process address space
to 8,388,608 bytes.

You cannot specify a multiplier suffix and a base suffix for the same numerical value.

Specifying Object Modules
The object module or modules are specified in the command or in a binder control file. Each
object module name normally has the suffix .obj, which you can omit when you give the
object_modules argument or when you list the object modules in the binder control file.
Object modules can also have a .o, .a, or any other suffix, but in this case, you must
explicitly specify the suffix. If an explicitly named suffix is .obj, .o, or .a, bind uses the
file name as specified. If you specify a different suffix or no suffix, bind attempts to find the
file with the .obj suffix first, then it attempts to find the file with no suffix if the first attempt
fails.

If the main entry point of the program (usually the first object module specified) accepts
parameters, the binder issues a warning. Thus the binder alerts you if you inadvertently list a
subroutine instead of the main program as the main entry point.

Suffix Base

b or B binary

d or D decimal

o or O octal

x or X hexadecimal

Suffix Description

kb The binder multiplies the specified value by 1024.

mb The binder multiplies the specified value by 1,048,576.

gb The binder multiplies the specified value by 1,073,741,824.
OpenVOS Commands Reference Manual (R098) 2-53

bind
The binder also warns you if variables have been initialized to different values in different
object modules. Although the binder will generate the program module, you should edit and
recompile the object modules containing the incorrect initial value.

Binder Case Sensitivity
The bind command is case sensitive; it does not have a -mapcase argument. If you compile
a source module using -mapcase, you may not be able to bind the resulting object module.
In particular, if the source module contains an external variable name or entry name, and the
name has one or more uppercase letters, the binder will not recognize the original name and
its lowercase version as the same name. (References to the original name might appear in a
binder control file.)

Controlling Binder Directory Searches
The -search argument tells the binder where to find object modules that are entry points in
object_modules or object modules named in the binder control file. The binder first
searches any directories specified in this argument in the order in which they are listed. Next,
it searches any directories specified in the binder control file. Finally, it searches the
directories specified in the process’s object library paths.

The binder searches a directory only once, even if it is specified more than once.

If you include the -search argument on a command line without specifying a search
directory, the binder searches the current directory. This is a convenient way to search your
current directory before any directories specified in the binder control file. See Using
OpenVOS Dynamic Linking and Shared Libraries (R648) for more information about the
search rules for binding an object module or shared library.

How the Binder Initializes Unitialized External Variables
If your program declares as an external variable a name that is identical to a message name in
the current message file, and if the program does not assign an initial value to the variable,
the binder initializes it to the message code corresponding to the message name. For example,
if you declare e$end_of_file (1025) as an external 2-byte integer, and if you are using the
standard message file, the binder initializes the variable to 1025. In the same way, if you set
a nonstandard message file with the use_message_file command, the binder can assign
the status code number of a message in that message file to an external variable whose name
is the same as the status code name of a message in that file.

External variables whose names begin with e$, m$, q$, or r$ are shared in a dynamic tasking
program.
2-54

bind
Naming of Program Modules
The binder generates a program module (.pm file), puts it in your current directory by default,
and names it. The binder names the program module depending on which command line
arguments (object_modules, -control, and -pm_name) are specified. If more than one
of these arguments are specified, the binder names the program module according to the
following rules, which are specified in descending order (for example, rule 1 overrides any
other rule specified, rule 2 overrides rules 3 and 4 but is overridden by rule 1, and so on.).

1. If you use the -control argument with the name binder control file directive, the
binder names the program module with the name specified in name.

2. If you specify the -pm_name name argument, the binder names the program module
with the name specified in name.

3. If you use -control argument without the name binder control file directive, the
binder names the program module with the name of the binder control file.

4. If you specify neither the -pm_name argument nor the -control argument, the binder
names the program module with the first name specified in the object_modules
command line argument.

The binder searches nested links before forming a program module name from a file name.

Specifying an Entry Point
You can use the -entry argument (or the entry binder control-file directive) to define a
main entry point of an executable program rather than using the first procedure in the first
source module specified in the bind command. However, do not use this argument for a C
program that defines a function called main. (That is, do not specify bind -entry main.)
Instead, bind in the main function first. For more information, see the OpenVOS Standard C
User’s Guide (R364).

Preprocessing the Binder Control File
The -define argument defines variables to be used during preprocessing of the binder
control file. For example, the following command line defines __IA32__ in the control file
program1.bind as a preprocessor variable.

bind -control program1.bind -define __IA32__

You use preprocessor variables with preprocessor statements to conditionally preprocess the
binder control file. Conditional preprocessing enables you to switch on or off various
statements in a binder control file. There are six preprocessor statements.

 $define
 $undefine
 $if
 $else
 $elseif
 $endif

Preprocessor statements must begin in the first column of the control file. Therefore,
indentation of nested $if statements is not allowed.
OpenVOS Commands Reference Manual (R098) 2-55

bind
A preprocessor statement must be contained on a single line. A line containing a preprocessor
statement cannot contain comments or directives. (An exception is the $endif statement,
which ignores any text following it on the line, thus allowing you to comment on the
statements.)

To comment out a preprocessor statement, the comment delimiters must surround the
statement on the same line, or the comment delimiters must open and close on lines
surrounding the preprocessor statement. A comment delimiter cannot appear on the same line
as the statement if the corresponding comment delimiter appears on a different line.

Examples of valid and invalid comments follow.

For more information on the preprocessor, see the description of the preprocess_file
command.

Using the -processor Argument
The -processor argument performs two functions. First, it controls
conditional-preprocessing variable definition. Depending on the value specified in the
-processor argument or the processor binder control-file directive, the binder
automatically defines one or two preprocessor variables for the processor family. If the value
indicates a processor from the IA-32 family, the binder defines __IA32__ and __i386 as
preprocessor variables.

Second, -processor and processor validate object modules. If an object module is not
compatible with the specified processor value, the binder issues a warning.

Note that the processor binder control-file directive overrides the -processor command
line argument. This means that if the processor directive is specified, the preprocessor
variable automatically defined by the -processor argument is redefined to be the value
specified by the processor directive. (See the description of the processor directive later
in this command description for more information.)

Creating a Bind Map
If you specify the -map argument, the binder generates a bind map and puts it in your current
directory. The name of the bind map is the name of the program module with the suffix
changed from .pm to .map. For a description of the contents of the .map file, see the VOS
PL/I User’s Guide (R145) or the OpenVOS Standard C User’s Guide (R364).

Displaying Binder Statistics
If you specify the -statistics argument, the binder displays various statistics about the
binding of your object modules. The statistics are displayed in a table, as shown in the

Valid /*
$define pentium4
*/

/* $define pentium4 */

Invalid /*
$endif */
2-56

bind
following example. For a description of the binder statistics fields, see the VOS PL/I User’s
Guide (R145) or the OpenVOS Standard C User’s Guide (R364).

Binder Statistics

Phase Seconds Paging Disk I/O CPU
pass1 8 45 19 7 14:37:21
pass2 1 1 0 0 14:37:22
map 0 4 11 0 14:37:22
TOTAL 9 50 30 7 14:37:22

Total bytes: 33294
Bytes per minute: 285377
Bytes removed: 5236
Size of program: 11

Controlling Stack and Heap Growth in ftServer Modules
On ftServer modules, stack frames grow down and heaps grow up. Controlling stack and heap
growth is a safety measure. For example, programs with recursive algorithms could, through
a programming error, cause runaway use of stack or heap space. The result of this
uncontrolled growth could be an application or module interruption.

With ftServer modules, you can use the -size, -max_program_size, -load_point,
-stack_size, -stack_fence_size, -max_stack_size, and -max_heap_size
arguments (or corresponding binder control-file directives) to control the stack and heap
growth of your program module.

Note: You can change the program, heap, and stack space values for new processes on
an ftServer module with the update_default_cmd_limits command and display
them with the list_default_cmd_limits command. For a description of these two
commands, see the manual OpenVOS System Administration: Administering and
Customizing a System (R281). You can change the program, heap, and stack space
values for existing processes on an ftServer module with the
update_process_cmd_limits command and display them with the
list_process_cmd_limits command.

Figure 2-3 shows the relationships between the -size, -max_program_size,
-load_point, -stack_size, -stack_fence_size, -max_stack_size, and
-max_heap_size arguments and the elements of the process address space on ftServer
modules. Following the figure, each argument is explained.
OpenVOS Commands Reference Manual (R098) 2-57

bind
3

Figure 2-3. Process Address Space and Related bind Arguments

Note: Figure 2-3 shows the regions in the process address space as contiguous. In most
cases, they will not be contiguous.

Setting the Highest Boundary of a Process’s Address Space
Use the -size argument to set the process address space size. When you use the -size
argument to set the size of a user program, you are specifying the highest boundary of a
process’s address space. The value of size plus the address of the lowest boundary equals
the address of the highest boundary. The lowest boundary is the boundary between the user
and kernel address spaces. A program module can access addresses down to the lowest
boundary. The address of the lowest boundary can be equal to the load point. The load point
is the address at which the binder begins allocating code and data for a program module. The
load point and lowest boundary address differ, depending on the processor type. For example,

Code Region

Unshared Static Region

Shared Static Region

Symbol Table (Symtab)

Maps

Heap

Stack

Process Space

Fence

Default Load Point

-load_point

-max_program_size

-max_heap_size

-size

-stack_size

00002000x

Address of Highest Boundary

Dead Space

Address of Lowest Boundary00002000x
2-58

bind
on an ftServer module, the default load point is 0002000x, and the lowest boundary of the
process address space is 00000000x. If you specify a size of 40000000x (1 gigabyte) for a
program to run on an ftServer module, the highest boundary of the process’s address space is
40000000x.

If you do not specify a value for the -size argument or the size directive, the binder
determines the default value to be 128 megabytes for a user program and 4096 megabytes for
a kernel program.

Setting the Code and Data Size of a Process
As indicated in Figure 2-3, you set the code and data size of a process with the
-max_program_size argument. Code and data include the code region, the shared and
unshared static regions, the maximum heap size, and the maximum stack size. For user
programs, code and data include the symbol table. For kernel-loadable programs, code and
data exclude the symbol table. If you do not specify a value for the -max_program_size
argument or the max_program_size directive, the binder checks the amount of code and
data against the address space size (specified with -size).

Specifying the Load Point for an Object Module
The -load_point argument assigns a lowest address for the object module. The value of
-load_point can be any unsigned 32-bit value. For example, if the default load point for
the kernel is 80000000x, specify the following command to change the load point.

bind prog1 -load_point 80026000x

If you do not specify a value for the -load_point argument or directive, the binder
determines the default value to be 00002000x for either a user program or a kernel program.

Setting the Size of the Stack for a Process with One Static Task
As shown in Figure 2-3, you use the -stack_size argument or the stack_size directive
to specify the maximum size of a stack and fence for a program with one static task. The size
of the fence for a program with one static task is fixed at 65,536 bytes.

Setting the Size of the Stack for a Process with Multiple Static Tasks
Each static task has one stack. As shown in Figure 2-4, you use the -stack_size argument
or the stack_size directive to specify the maximum size of the stack for each static task.
By default, the binder allocates 65,536 bytes of stack space for each static task.

Also as shown in Figure 2-4, you use the -max_stack_size argument or the
max_stack_size directive to specify the maximum space allocated for all static tasks and
their fences.
OpenVOS Commands Reference Manual (R098) 2-59

bind
4

Figure 2-4. ftServer Modules: Stack and Fence Size for Programs with Multiple Static Tasks

Setting the Size of the Fence for a Process with Multiple Tasks
As shown in Figure 2-4, the -stack_fence_size argument specifies the size, in bytes, of
the fence to be placed after each static task’s stack. If you do not specify a value for the
-stack_fence_size argument or the stack_fence_size directive, the binder sets the
stack fence size to 4096 bytes except for the last fence, which it sets to 32,768 bytes. If you
specify a value larger than 32,768 bytes, the binder sets all stack fences equal to this size. If
you do not want a stack fence, specify a value of 0. Note that even if you specify a value of
0, the system still allocates a stack fence of 32,768 bytes for the last static task. For more
information on fences, see the VOS PL/I User’s Guide (R145) or the OpenVOS Standard C
User’s Guide (R364).

Setting the Heap Size
As shown in Figure 2-3, the -max_heap_size argument specifies the maximum byte size to
which the heap can grow. If you do not specify a value for the -max_heap_size argument
or the max_heap_size directive, the value of max_heap_size is 0.

Note: A a zero value does not imply that the heap’s size is 0. Instead, during binding,
the bind command assumes that the maximum heap size is equal to 32,768 bytes for
the purpose of checking the size of the address space, and during runtime, OpenVOS
assumes that the heap size is unlimited.

Source File Migration and Stack Size
When you recompile source programs to move them to a different architecture, it is
likely that the layout of automatic storage and the size of the stack frames will change.

Fence

-max_stack_size

Fence

Stack

Fence

Stack

Dead Space

Stack

-stack_fence_size

-stack_size

-stack_size

-stack_fence_size

-stack_size
2-60

bind
Each architecture has slightly different stack-frame overhead requirements, different data
alignment requirements, and, in some cases, different directions of growth. Also, depending
on the compiler optimization level that you select, and the capabilities of the particular code
generator in use, some automatic variables may not need storage. The opposite is also true:
some variables that did not need storage on the previous architecture may require storage on
the target architecture. The compilers also create hidden, temporary automatic variables to
hold the results of expressions. These temporary variables may also have different allocations
on each architecture.

The result of these compiler and machine architecture differences is that valid source code
and binder control files that have been fully tested and heavily used for many years may
nonetheless require changes when moving from one architecture to another. You should
develop and retain a comprehensive, automated test suite of your application code. The ability
to exercise all of the software functions at any performance level is crucial to a successful
transition and deployment.

Defining the main Function
The -define_main argument facilitates using legacy OpenVOS applications (written in
PL/I, COBOL, and so on) in POSIX and GNU runtime environments.

Legacy OpenVOS applications usually begin execution at the start of the user program (the
first subroutine or a location specified by the -entry argument). In POSIX and GNU runtime
environments, program execution always starts at a function named main. In releases prior to
OpenVOS Release 17.1.1, you needed to create a small main function to call the OpenVOS
application program. This needed to be done for each OpenVOS program in an application
suite of programs.

The -define_main argument directs the binder to create these small main functions and to
begin execution with them.

Legacy VOS programs set their exit status by calling s$error. In the POSIX runtime
environment, when a program terminates by exiting from main, the return value is the exit
status. To ensure legacy application compatibility, the binder-generated main function always
returns -1 as its exit status. This directs the VOS POSIX runtimes not to set the exit status of
main, but instead to leave the exit status set by s$error intact.

A program that uses the GNU runtime environment must be bound using the gcc or g++
command. It cannot be bound by invoking the binder directly. To pass the -define_main
argument through gcc or g++ to the binder, use the -Wl option as follows:

gcc userprogram.obj -Wl,-define_main,gcc

For more information about the gcc or g++ command, see GNU Tools for OpenVOS: User’s
Guide (R453).
OpenVOS Commands Reference Manual (R098) 2-61

bind
Enabling Extended-Names Support for a Program Module
A given release of the operating system supports one of the following combinations of name
types:

 Extended names (version 1 and version 2) and legacy names
 Version 1 extended names and legacy names
 Legacy names

Extended names can be longer than legacy names and can contain characters not allowed in
legacy names. Version 2 extended names support the greatest number of characters. See
Using OpenVOS Extended Names (R631) for detailed information about extended-names
support.

When you enable version 1 or version 2 extended-names support for a program module, the
program module can access objects with different levels of extended names.

If you want to enable extended-names support in a program module, you must first make sure
that extended-names support is enabled for the source module; see Using OpenVOS Extended
Names (R631) for more information. In addition, if you are binding a POSIX application, you
may need to use the binder’s -extended_names argument or extended_names binder
control-file option, depending on the application. The binder uses the following rules to set
the value.

 If the binder control-file option is specified, the binder uses the specified value.

 If the binder control-file option is not specified, the binder uses the value specified in
the command-line argument.

 If no value is specified, the binder uses the default value.

The values for the -extended_names argument and extended_names binder control-file
option are default, disabled, version1, and version2.

 If you specify default, the binder determines whether the resulting program module
supports extended names, depending on the type of program.

 If you specify disabled, the binder assumes that the resulting program module
supports legacy names only, the supports_xfn flag in the program-module header is
set to false, and the xfn_version field in the program-module header is set to 0.

 If you specify version1, the binder assumes that the resulting program module
supports version 1 extended names, the supports_xfn flag in the program-module
header is set to true, and the xfn_version field in the program-module header is set
to 1. However, for POSIX applications, the binder may issue warning messages for
every object module that it determines may not be able to handle extended names.

 If you specify version2, the binder assumes that the resulting program module
supports version 2 extended names, the supports_xfn flag in the program-module
header is set to true, and the xfn_version field in the program-module header is set
to 2. However, for POSIX applications, the binder may issue warning messages for
every object module that it determines may not be able to handle extended names.
2-62

bind
A program is considered a POSIX application if it contains a C or C++ function defined with
the name main and posix_object_library appears in the object library paths before
c_object_library. See OpenVOS POSIX.1 Reference Guide (R502) for information
about building POSIX applications.

For POSIX applications, the binder normally enables extended-names support if all object
modules are prepared for it (that is, if _VOS_EXTENDED_NAMES was defined during
compilation). Otherwise, the binder disables extended-names support when you specify
default. Alternatively, you can explicitly specify -extended_names version2 to force
the binder to enable version 2 extended-names support and to detect any inconsistencies.
Similarly, you can explicitly specify -extended_names version1 if you want a version 1
extended-names application to continue behaving in the same manner.

Table 2-4 summarizes the behavior of the -extended_names/extended_names values.
Their behavior depends on whether the object modules are POSIX or non-POSIX, and also
whether the object modules were compiled with _VOS_EXTENDED_NAMES defined or not.

4

You can use the display_program_module command to verify whether the resulting
program module supports extended names and, if so, which type. If it does not support them,
you can rebind with version1 or version2 specified to force the binder to enable version 1
or version 2 extended-names support.

Naming Conventions for Shared Libraries
Typically, a shared library has the .so suffix. However, because the binder does not use the
file-name suffix to decide an input file’s type, a shared or archive file name does not require
a particular prefix or suffix. In addition, a file name ending in .so does not necessarily
indicate that it is a shared library.

Table 2-4. Summary of the Behavior of -extended_names/extended_names Values

extended_names
Value

Non-POSIX
Application

POSIX
Application

All .obj files
compiled with
_VOS_EXTENDED_NAMES

Some .obj files
not compiled with
_VOS_EXTENDED_NAMES

default Legacy names Version 2 extended names Legacy names

disabled Legacy names Legacy names Legacy names

version1 Version 1
extended
names

Version 1 extended names Version 1 extended-names
with warning

version2 Version 2
extended
names

Version 2 extended-names Version 2 extended-names
with warning
OpenVOS Commands Reference Manual (R098) 2-63

bind
Creating Shared Libraries
The -shared argument directs the binder to create a shared library. It changes binder
behavior as follows:

 By default, the output file is named name.so instead of name.pm. However, if the
-pm_name argument or the name: binder-control-file directive is specified, the name
given is used as-is; the binder does not append the.so suffix to it.

 It sets the default value of load_point to zero.

 It sets -Bdynamic as the default value, which means that the binder selects a shared
version of a library, rather than an archive version, if it encounters both.

A shared library is an incomplete executable. This means that:

 By default, undefined symbols are not reported as errors.

 By default, global symbol resolution is deferred to runtime, even if the symbol is
defined in the shared library.

 The executable’s load point may be changed at runtime.

 There is no start address.

Aside from these differences, binding a shared library is similar to binding any other program
module: input can be OpenVOS object modules, ELF object modules, and/or other shared
libraries. You can use a binder control file. You can examine the output with the
display_program_module command and other OpenVOS tools.

See Using OpenVOS Dynamic Linking and Shared Libraries (R648) for more information
about binding a shared library.

Access Requirements
You need read access to all of the object modules you are binding. You need modify access
to the current directory.

Binder Control File

A binder control file is a text file containing control directives to the binder. If you specify the
-control argument, the binder takes its instructions from the file control_file_name.
The name of the control file must have the suffix .bind. In the file, you can specify the
content and the order of the program module’s components.

Syntax, Comments, and Empty Lines
The binder interprets a text line in a binder control file by first parsing the line into words.
The rules for forming an identifier or name are similar to the rules for forming an OpenVOS
path name. An identifier or name can contain any ASCII printable character, which includes
the 52 uppercase and lowercase alphabetic characters, the 10 decimal digits, and the
following 24 graphic characters.

" # % * $ + - . / < > @ ^ _ ' { | } ~ , :
2-64

bind

A number must begin with 0 through 9, +, or -. Subsequent characters in a number can be 0
through 9 and certain letters. For example, identifiers named 2mb and 0AFFx are processed
as numbers.

Adjacent words can be separated by space characters, a colon (:), semicolon (;), comma (,),
or parentheses (()). You need not enclose a path name or other word in apostrophes unless
the word contains one of these characters. (Note that, of these special characters, only a colon
or comma can be used to form a path name.)

In a binder control file, an empty line is not significant. You can use empty lines to improve
the readability of the control file. A comment begins with the characters /* and ends with the
characters */.

Directives
This section describes all of the directives. Every directive (except end) has a default value
or action, given in the descriptions of the directives, which the binder uses when you omit a
directive.

* define: definition_specifier . . .;
Attaches symbolic names to various constant locations in memory. This enables user
programs to use these definitions as external variables and have references to them
resolved to the proper region of memory. Specifiers must be separated by commas. The
definition_specifier has the following form.

symbol_name address (number)

* end;
Indicates the end of the binder control file. This directive must be the last one in the file.
If you specify more than one end directive, the first one in the file effectively ends the
binder control file.

* entry: identifier;
Defines the name of the main entry point of the program. The name identifier must
be the name of an entry point in one of the object modules being bound. By default, the
first non-null entry point the binder finds is used as the main entry point for the program
module. If you specify more than one entry directive, the binder disregards all but the
last one.

C programs that contain a function called main should not use the entry directive.
Instead, the module containing the main function should always be bound in first.

* extended_names: extended_names_string
Causes the binder to create a program module that enables extended-names support.
The supported values are default, version1, version2, and disabled.

By default, the binder determines whether the program module supports extended
names, depending on the type of the application.
OpenVOS Commands Reference Manual (R098) 2-65

bind
The extended_names directive overrides the -extended_names argument. See
“Enabling Extended-Names Support for a Program Module” in the Explanation for
more information.

* high_water_mark: address;
Specifies the address of the beginning of heap space for a process on an ftServer
module. By default, the address of the beginning of heap space for a process is
40000000x. Increase address to connect very large or very numerous shared virtual
memory regions; decrease address to maximize stack and heap space. For most
applications, however, you do not need to use this directive. For more information on
calculating the value for this directive, see Appendix C.

* load_point: number;
Assigns a lowest address for the object module. You can specify any unsigned 32-bit
value for number. For example, if the default load point for the kernel is 80000000x,
specifying the following directive changes the load point.

load_point: 80026000x;

The load_point directive overrides the -load_point command line argument. For
more information on setting a load point, see the Explanation section.

* max_heap_size: size;
Specifies the maximum byte size to which the heap can grow.

The max_heap_size directive overrides the -max_heap_size argument. For more
information on specifying the maximum heap size, see the Explanation section.

* max_program_size: number;
Specifies, in bytes, the maximum amount of code and data the program can contain,
excluding its symbol tables. You can specify any unsigned 32-bit value for number.

The max_program_size directive overrides the -max_program_size argument.
For more information on specifying the maximum size of a program, see the
Explanation section.

* max_stack_size: size;
Specifies the total amount of memory, in bytes, that all static tasks’ stacks and fences
can occupy. The value of size must be greater than 32,767.

The max_stack_size directive overrides the -max_stack_size argument. For
more information on allocating memory for static tasks, see the Explanation section.

* modules: module_specifier. . .;
Declares the object modules to be bound. The values for module_specifier identify
the path names of the object modules and how the object modules are to be bound.
Specifiers must be separated by commas. The module_specifier values have the
following form.

(module_term). . .[module_attribute]. . .
2-66

bind
A module_term is the path name of an object module followed by zero or more
module_attribute terms separated by spaces. Module terms are separated by
commas. You can factor common attributes from a series of object module terms and
put them outside the parentheses.

The path name of module_term can be a relative path name or a full path name.
Include or omit the suffix .obj.

Allowed values of module_attribute are compact, no_compact, table,
no_table, and page_aligned.

 The compact and no_compact attributes have no effect on programs running
on ftServer V Series or Continuum systems.

 The table and no_table attributes also have the same effect as previously
described, but only for the modules with which they are associated. When
specified as part of a binder control file, these attributes override the
corresponding command arguments.

 The page_aligned attribute tells the binder to put the first word in the code
region for this object module on a page boundary. This is useful in connection
with shared memory. As an example, see the description of the
s$connect_vm_region subroutine in the OpenVOS Subroutines manuals.

The module_attribute terms override the corresponding attributes set either by
command arguments or by the options statement.

You can specify more than one modules directive in the section_name argument of
the section directive.

* name: program_name;
Specifies the name the binder gives to the bound program module. If you do not specify
the name directive, the binder names the program module based on a series of rules (see
the Explanation section above).

If you include more than one name directive, the binder uses only the last one before
the end directive.

* number_of_tasks: number_of_tasks;
Specifies the number of static tasks the binder is to create in the program module. The
number of tasks is limited only by the total size of the program module. Each task has
its own stack and its own copy of static storage. By default, the binder creates one task.

See the description of tasking in any of the OpenVOS Transaction Processing Facility
Reference manuals for more information.

* options: options. . .;
Specifies binder options. See Table 2-5 for the possible values for options.
OpenVOS Commands Reference Manual (R098) 2-67

bind
5

Table 2-5. Values for the options Directive of the bind Command

Value Description

compact

no_compact

These values have no effect on programs running
on ftServer V Series or Continuum systems.

dynamic_tasking

no_dynamic_tasking

Same as the -dynamic_tasking command line
argument. The default value is
dynamic_tasking.

Same as the -no_dynamic_tasking command
line argument.

kernel

no_kernel

Tells the binder to create a kernel or, when
specified with the load_in_kernel,
relocatable, and no_library options, a
kernel-loadable program. The default value is
no_kernel. For more information, see the
description of the load_kernel_program
command in the manual OpenVOS System
Administration: Administering and Customizing a
System (R281).

Tells the binder not to create a kernel or a
kernel-loadable program in the kernel.

library

no_library

Tells the binder to try to resolve any unresolved
symbol references found while processing the
modules directive. To do this, the binder searches
for a module with the same name as the unresolved
symbol reference. The default value is library.

Tells the binder not to resolve any unresolved
symbol references.

load_in_kernel

no_load_in_kernel

Same as the -load_in_kernel command line
argument. The default value is
no_load_in_kernel.

Same as the -no_load_in_kernel command
line argument.

mod16

no_mod16

Same as the -align_mod16 command line
argument. The default value is no_mod16.

Same as the -no_align_mod16 command line
argument.
2-68

bind
private_heap

no_private_heap

Same as the -private_heap command line
argument. The default value is
no_private_heap.

Same as the -no_private_heap command line
argument.

These directives are ignored when binding
programs compiled for ftServer modules.

private_stack

no_private_stack

Same as the -private_stack command line
argument. The default value is
no_private_stack.

Same as the -no_private_stack command line
argument.

These directives are ignored when binding
programs compiled for ftServer modules.

references_kernel

no_references_kernel

Same as the -references_kernel command
line argument. The default value is
no_references_kernel.

Same as the -no_references_kernel
command line argument.

relocatable

no_relocatable

Same as the -relocatable command line
argument. The default value is no_relocatable.

Same as the -no_relocatable command line
argument.

require_external_static_def

no_require_external_static_def

Tells the binder to require that external static
variables be initialized. The default value is
no_require_external_static_def.

Tells the binder not to require that external static
variables be initialized.

subroutines_are_functions

no_subroutines_are_functions

Same as the -subroutines_are_functions
command line argument. The default value is
no_subroutines_are_functions.

Same as the
-no_subroutines_are_functions command
line argument.

Table 2-5. Values for the options Directive of the bind Command (Continued)

Value Description
OpenVOS Commands Reference Manual (R098) 2-69

bind
The options compact and no_compact have no effect on programs running on
ftServer V Series or Continuum systems. The options table and no_table have the
same effects as the command arguments described earlier in the Arguments section.
The dynamic_tasking option causes the binder to include relocation information.
Such information is needed by a program that may change the number of dynamic tasks
while it runs. Specifying no_dynamic_tasking decreases the size of the program by
removing relocation information. By default, the binder does include relocation
information. The subroutines_are_functions option suppresses the message
that can occur in C programs when a function is being called as a subroutine, or vice
versa.

You can insert several options directives in a binder control file. These options
override the arguments specified in the bind command. The binder reads the entire
binder control file before acting on any part; if an option is specified more than once,
the last value included in the binder control file will be acted upon.

* processor: processor_string;
Controls conditional-preprocessing variable definition, and validates object modules.
The following are the possible values for processor_string.

 default
 pentium4

The default value specifies the current module’s default system processor. If you do
not use the processor directive or the -processor command line argument, the
binder expects object modules that were compiled for the default system processor.

No more than one processor directive can be specified in a binder control file.

The processor directive overrides the -processor command line argument. For
more information, see the description of the -processor argument in the Explanation
section of this command description.

* region_load_point: section_name region_name: location
 [, section_name region_name: location]...;

Allows you to place sections and regions at specific addresses. By default, sections are
ordered by their first appearance in the binder control file, and regions appear in the
following order: code, unshared data, and shared data within a section.

table

no_table

Same as the -table command line argument. The
default value is table.

Same as the -no_table command line argument.

Table 2-5. Values for the options Directive of the bind Command (Continued)

Value Description
2-70

bind
The location can be an absolute address (such as 80000000x), or it can have the
following form, which assigns the section or region to a location following another
section or region.

after section_name region_name

The binder places any regions without explicit load points after all regions with explicit
load points. The binder then orders the regions without explicit load points according
to the default ordering.

Sections and regions with explicit load points should not overlap. Such an overlap
causes the binding to fail.

The following example demonstrates one use of region_load_point.

region_load_point:
mysect code : 00000000x,
mysect static : 40000000x,
mysect ext_static : after mysect static;

The preceding example assigns three regions in the user-named section mysect. The
code and static regions are assigned absolute addresses, while the ext_static
region is directed to follow the static region. Since no load point was specified for
the symtab region, the binder will place it after the other three regions. The binder will
place the maps section after the symtab region, by default.

Note: The region_load_point directive is used primarily for Stratus internal
development. Most users should not use this directive.

* retain ®: entry_name [as new_name] ¢, entry_name [as new_name] £ ¯.. .;

Specifies the external entry names for the binder to place in the program module’s entry
map. This map contains the entry value for each name. You can specify the names of
more than one entry point in a retain directive if you separate the names with
commas. If no names are specified, the binder places all entry point names in the map.
If no names are specified, omit the colon (:) after retain.

The as new_name option allows you to specify an alternate name under which the
entry point is retained.

* search: directory_name. . .;
Specifies the directory or directories the binder is to search when looking for object
modules. (The binder looks for object modules that are referred to by object modules
being bound.) The specified directories are added to the list of directories specified in
the -search argument of this command. You must separate multiple
directory_name values with commas.

You can include more than one search directive in a binder control file. Each directive
adds more directories to the search list.
OpenVOS Commands Reference Manual (R098) 2-71

bind
The binder allows as many command line and/or binder control file search directories,
whether specified or default, as memory permits.

See Using OpenVOS Dynamic Linking and Shared Libraries (R648) for more
information about the search rules for binding an object module or shared library.

* section: section_name;
Specifies the section of the address space in which the binder is to locate object
modules or variables. You can specify more than one section, modules, or
variables directive. The modules and variables directives are subject to the most
recent section directive. By default, all modules and variables for a user program will
be placed in the paged section; all modules and variables for a kernel program will be
placed in the wired section.

Possible values for section_name are wired, initialization, paged, maps, and
user-defined names.

For kernel programs, you can specify any section name except maps, as long as the
name follows the naming conventions described in ‘‘Syntax, Comments, and Empty
Lines,” earlier in this command description. The first four sections of the address space
are always the wired, initialization, paged, and maps sections, in that order.
Any additional section names that you specify will follow these sections in the section
map. You can specify up to 28 more sections in a binder control file. The
load_kernel_program command deletes the initialization section after
calling each retained entry point in the initialization section. (See OpenVOS
System Administration: Administering and Customizing a System (R281) for more
information on load_kernel_program.)

For user programs, you can specify the wired and paged section names. Any other
sections are ignored and are not loaded when the program executes.

Data or code placed in a wired or initialization section is not subject to page
faults. Data or code placed in the paged section is subject to page faults. All wired
and paged memory is released when the program terminates.

* size: size;
Specifies the size of the address space for which the binder is to bind the object
modules. You can specify any numeric value for the size directive, as well as the
values small (to specify a 2-megabyte address space) and large (to specify an
8-megabyte address space). This directive has the same effect as the bind command’s
-size argument.

If you include more than one size directive, the binder disregards all but the last one.
A size specified in a binder control file overrides a size given as a command line
argument.

In the following example, the size directive specifies a large address space of eight
megabytes.

size: large;
2-72

bind
See the Explanation section for more information on process address space.

* stack_fence_size: stack_fence_size;
Specifies the size, in bytes, of the fence to be placed after each static task’s stack. A
fence is an unmapped area of memory; its purpose is to prevent runaway stacks from
overwriting other data. The default value is default, which corresponds to a
4096 byte stack fence. If you do not want a stack fence, specify a value of 0.

* stack_size: stack_size;
Specifies the number of bytes of storage to reserve for the stack. On ftServer modules,
the value of stack_size must be divisible by 16. This directive interacts with the
number_of_tasks directive as follows:

 If number_of_tasks is one, the stack size is the minimum stack size.
 If number_of_tasks is greater than one, the stack size is the maximum size of

the stack for each task.

By default, the binder allocates 65,536 bytes for each static task.

* synonym: synonym_specifier...;
Specifies an entry name to which one or more names are resolved. Each value for
synonym_specifier is of the form:

old_name[*] for entry_name

All external references matching old_name are resolved to entry_name. The
old_name term can have an asterisk as its last character, representing any sequence of
zero or more valid identifier characters. Generally, old_name appears in a
variable_arg_count directive and old_name defines a set of declarations with
different numbers or types of arguments.

* variable_arg_count: identifier. . .;
Indicates that the program (entry point) named identifier can be called with an
indefinite number of arguments. Designating the program identifier suppresses the
warning message the binder normally writes on your terminal when you call a program
with the wrong number of arguments.

You can include more than one variable_arg_count directive in a control file. Each
directive adds more program names to the list of entry points that accept an indefinite
number of arguments.

* variables: variable_specifier. . .;
Modifies the attributes of an external variable, and, in some cases, can also be used to
define an external variable. An external variable has external scope and static storage
duration.

The variable_specifier argument tells the binder the name of an external
variable. It can also specify the number of bytes to allocate for the variable and an initial
value to give to the variable. In addition, one or more of the following attributes can be
associated with the variable: shared or unshared, page_aligned, and
flexible_length.
OpenVOS Commands Reference Manual (R098) 2-73

bind
name[(size)] [initial (initial_value)] ¢ £ [page_aligned] [flexible_length]

The name value must be the name of an external static variable in at least one of the
object modules being bound. The size value term must be an unsigned integer
indicating the number of bytes allocated for the variable. The initial_value
specifies an initial value for the variable. (You can shorten the word initial to init.)
The following is an example of a variables directive.

variables: num_records (4) init (100000);

This variables directive declares that the external static variable num_records has
been allocated 4 bytes, and that the binder is to initialize the variable to 100000.

The term initial_value can be either a character string or an arithmetic constant.
The binder initializes a character string as a nonvarying character string having the
length size. It initializes an arithmetic variable as a 16-bit or 32-bit signed integer. The
size value for an arithmetic variable must be either 2 or 4. An initial value that you
assign a variable in a binder control file overrides an initial value specified in a
program.

You can define external static variables in a tasking environment as shared variables.
The binder allocates external static variables in the program’s static region. Shared
variables are allocated in the shared static region, and unshared variables are allocated
in the unshared static region. If you define an external static variable with the same
name in different compilation units, compile those units into object modules, and then
bind the object modules into one program module, the operating system treats all
references to the variable in the object modules as a single variable. The binder
allocates storage for an external variable and puts the storage address in all references
to the variable in the object modules.

The qualifiers shared and unshared cannot appear in the same variable specifier.
Shared and unshared variables are allocated in the shared and unshared static regions
of the program module, respectively, regardless of whether the program is a tasking
program.

You can share a variable that is defined as external static data among tasks in a tasking
environment if you specify in the bind file that the variable is shared. When you tell the
binder that an external static variable is shared, the binder allocates storage for the
variable only once, instead of allocating it for each task.

For example, the following binder control directive makes variables shared variables.

variables: variable_name shared. . .;

When you specify more than one variable_name shared term, you must separate
them by commas.

When you tell the binder that an external static variable is unshared, the binder allocates
storage for the variable for each task.

shared
unshared
2-74

bind
It is possible to define a variable as page_aligned. The page_aligned attribute
tells the binder to allocate storage for a variable on a page boundary.

The flexible_length attribute suppresses warnings that two modules have declared
different lengths for an external variable. In the following example, assume that prog1
and prog2 have assigned different lengths to var_1.

variables: var_1 flexible_length;
modules: prog1, prog2;

In the example, the flexible_length attribute allows the binder to bind the modules
without issuing warnings, using the maximum length of var_1.

The length given for a variable in a binder control file overrides the length given in a
program.

If an external variable is declared as shared in one but not all modules that share it,
the binder issues a warning.

An attribute of shared (or unshared) assigned to a variable in a binder control file
overrides any object module attribute.

You can specify more than one variables directive in the section_name argument
of the section directive.

* visibility: visibility-specifier [, visibility-specifier...];
Specifies the symbol visibility for shared libraries.

The visibility-specifier argument has the following form:

symbol-name[*]

The default and global values make a symbol visible to all shared libraries, and
they also defer resolution of that symbol until runtime. These two values are
interchangeable.

The protected and symbolic values are identical to the default and global
values, except that references to the symbol from within the defining shared library are
resolved at bind time. These two values are interchangeable.

The hidden and internal values make a symbol local to the defining shared library.
All references to it are resolved at bind time. These two values are interchangeable.

As with other binder control-file directives, symbol-name can have a final asterisk (*),
making it a star name that affects all symbols matching that star name. If more than one
visibility-specifier argument applies to a single symbol, the last specifier given

{
default
global

protected
symbolic
hidden

internal
{

OpenVOS Commands Reference Manual (R098) 2-75

bind
applies and overrides any prior directives. This allows a whole class of symbols to be
given one visibility (for example, s$c_* hidden), and then certain exceptions can be
applied (for example, s$c_set_errno symbolic). Symbol visibility specified in the
binder control file overrides any symbol visibility specified in the source file.

Examples
The following binder control file is named make_reports.bind. It binds the program
make_reports.

name: make_reports;
entry: get_report_files;
size: small;
modules: get_report_files, update_reports_files, process_reports,
put_reports;
variables: version init ('2.1');
end;
2-76

break_process
break_process 2-

Purpose
This command causes a process or set of processes to go to break level.

Display Form

Command Line Form

break_process [process_name]

[-user user_name] [-module module_name] [-no_ask]
Arguments* process_name

The name or star name of the process to send to break level. The command signals the
break condition in any process whose name matches process_name, except for the
process issuing the command.

* -user user_name
Specifies a user name or star name whose processes are to be interrupted. Selecting
-user allows you to break only the processes named process_name that were started
by the specified user. By default, the command uses your user name. The command
does not break the process from which you issue the command. Your process must be
privileged to break another user’s process.

* -module module_name
Specifies the module on which the specified process is running. By default, the
command looks for the process on the module that is executing your login process.

* -no_ask <CYCLE>

Suppresses the prompt, issued when a specified process is a star name, asking whether
to break a process with a matching name. By default, the command prompts you to
verify the breaking of each process.

-------------------------------- break_process ---------------------------------
process_name:
-user: current_user
-module:
-ask: yes

*

OpenVOS Commands Reference Manual (R098) 2-77

break_process
Explanation
The break_process command sends to break level any process whose name matches
process_name except for the process from which you issue the command. If
process_name is a star name and you do not use -no_ask, the command prompts you
before breaking a process whose name matches process_name.

The break_process command directed to an interactive process has the same effect as
pressing the <CTRL><BREAK> keys at the terminal to which that process is attached. You can use
the break_process command even if the process has disabled the <CTRL><BREAK> keys.

The break_process command directed to a noninteractive process logs that process out.
The operating system generates a keep file that can be examined with the debugger later. A
keep file is a copy of the interrupted executable image. The file is created in the current
directory of the process to which the break_process command is directed, with the same
name as the interrupted program module except that the suffix is changed from .pm to
.process_id.kp (process_id is the program’s process ID, or PID).

Access Requirements
You must be privileged to break another user’s process.

Examples
If you have more than one process and you issue the break_process command using a star
name for process_name, the system issues the following prompt.

Verify processes to be broken.
 Smith.Sales(login)? (yes,no,info)

If you type yes at the prompt, the process goes to break level; if you type no, the process
continues uninterrupted. If you specify info, the system displays information about the
subprocess level, program name, PID (that is, the process identifier of the process), and login
time of the process. If the process is interactive, the system returns the terminal name from
which the process was started. The system does not return a terminal name if the process is
not interactive or if the process is logged in remotely from a module that is not running a
current version of the operating system.

The system then issues the prompt again.

Logged in at 90-02-19 07:33:26 EDT, sub-process level 0.
Running emacs.pm on %s1#t1.6, PID 011D88DDx.
 Smith.Sales(login)? (yes,no,info)

If your process is at command level, the system returns the following information.

Logged in at 90-02-19 07:33:26 EDT, sub-process level 0.
Running on %s1#t1.6, PID 011D88DDx.
 Smith.Sales(login)? (yes,no,info)

Related Information
See the descriptions of the start_process and logout commands.
2-78

bundle
bundle 2-

Purpose
This command packages a group of files for transfer to another location.

Display Form

Command Line Form

bundle source_star_name_or_dir [destination_file] [-exclude star_name...] [-no_save_subdirs] [-combine_using save_type] [-compress_using compression_type] [-output_format format] [-short_suffix] [-brief]
Arguments* source_star_name_or_dir Required

Either a star name that represents the files you want to send, or a directory that contains
the files you want to send. If you specify a star name, the files do not need to be in the
current directory. If you do not want to send all of the files that match your star name,
or if you do not want to send all of the files in the directory, use the -exclude argument
to exclude some of the files.

* destination_file
The path name of a file. The file does not need to be in the current directory. All of the
files specified in source_star_name_or_dir are bundled together into a single
destination file. The unbundle command expands the combined file back into
individual files. See the Explanation for more information.

---------------------------------- bundle -----------------------------------
source_star_name_or_dir:
destination_file:
-exclude:
-save_subdirs: yes
-combine_using: save
-compress_using: gzip
-output_format: for_ftp
-short_suffix: no
-brief: no
OpenVOS Commands Reference Manual (R098) 2-79

bundle
* -exclude star_name
Specifies the list of star names that you do not want included in the final package. They
must be object names, but you cannot specify a directory. If you specify more than one
star_name on the command line, separate the names with spaces and enclose the
whole list in quotes. (You do not need quotes when you enter the names into the display
form.) For example:

bundle mydir>special>* mydir>sendfile -exclude '*.backup *.test'

* -no_save_subdirs <CYCLE>
Specifies which files, links, and subdirectories to save.

By default (the value yes), the command saves the entire source directory tree,
including any subdirectories that may be present. If you enter a star name for the source,
the command includes both files and directories that match the star name. The
command also includes links that are in the source directory or that match the source
star name.

If you specify the value no, the command saves only the files in the source directory,
or only files that match the source star name. The command does not include
subdirectories in the source directory, nor does it include directories that match the
source star name. The command does not include links either in the source directory or
that match the source star name.

* -combine_using save_type <CYCLE>
Specifies whether to create a .save file before compression occurs. The values are
save and none.

If you specify save (the default), the command creates a .save file before
compression is applied. The command saves all objects, including subdirectories and
links, in the source directory. Specify the -no_save_subdirs argument if you want
to save only files (not links or subdirectories) in the source directory.

If you specify none, the command does not save anything. You can specify this value
only when you send a single file. The file must be a non-extent OpenVOS file with the
sequential, stream (but not 64-bit stream), relative, or fixed file format so that it can be
transported through non-OpenVOS systems without loss of the OpenVOS file-format
information. If you specify an extent file, it becomes a non-extent file after it is bundled
and therefore might not be able to grow large enough to hold the contents of the original
extent file. In addition, any attributes associated with the original file (for example,
open options, implicit locking, and so on) are not present on the bundled file.

* -compress_using compression_type <CYCLE>
Specifies which utility, if any, to use to compress the data. The values are gzip, bzip2,
and none.

If you specify gzip (the default), the command uses the gzip utility to compress the
data. This utility can achieve up to 90% compression (that is, a 100-block file would be
compressed to 10 blocks). Compression ratios of 60-70% are common.
2-80

bundle
If you specify bzip2, the command uses the bzip2 utility to compress the data. This
utility often compresses more efficiently than the gzip utility.

If you specify none, the command does not perform any compression.

* -output_format format <CYCLE>
Specifies the output format for the destination file. Different methods of transporting
the file can cause certain kinds of corruption in the file; these output formats help
protect against file corruption. The values are for_ftp, for_rsn, uuencode,
uuencode_stream, base64, and base64_stream. See the Explanation for more
information.

* -short_suffix <CYCLE>
Specifies whether the destination path has long or short suffixes.

By default (no), the destination path has a series of suffixes that show which processes
were used to produce that file (for example, sendfile.save.evf.gz.uue).

If you specify yes, all output formats other than for_ftp rename the destination path
so that only the final suffix is retained (for example, sendfile.uue). If you specify
the for_ftp output format, the command performs an additional encoding step and
then renames the suffix to .ftp (for example, sendfile.save.evf.gz becomes
sendfile.ftp).

* -brief <CYCLE>
Announces each step in the bundling process on the screen as it occurs. By default (no),
all output to the screen is suppressed except for error messages and a few messages
from the save command that cannot be turned off.

Explanation
The bundle command packages a group of files for transfer to another location. You can
perform optional compression with the bzip2 or gzip utility.

If the bundling operation results in a destination_file that is larger than 2 GB, the
command generates multiple compressed save files as well as a .toc file. Be sure to transfer
this .toc file to the target system along with the save files, or the unbundle command will
fail.

Destination-File Suffixes
The bundle command appends a specific suffix to destination_file, depending on what
type of processing occurs. If you specify -short_suffix, the command removes all but the
last of these suffixes, to simplify the handling of the file names.

For example, if you specify the value xxx for destination_file, Table 2-6 shows some
(but not all) of the possible destination names after processing occurs.
OpenVOS Commands Reference Manual (R098) 2-81

bundle
6

Output Formats
The bundle command allows you to specify different output formats for the destination file:

 If you specify for_ftp (the default), the destination file is the actual file that the gzip
utility outputs; it has a suffix of .gz. This is a binary file; therefore, you must specify
the binary file-transfer mode in ftp before getting or putting this file. If you also
specify the -short_suffix argument, the gzip output is re-encoded (which adds an
additional .evf suffix), and all of the suffixes are renamed to a single .ftp suffix.

 If you specify for_rsn, the output format is a sequential file composed of records,
each of which contains 61 bytes of binary data. This allows “problem” modems to
handle the file, even though they would not handle files with long records, such as
program modules (.pm files). This conversion is necessary because the output from
gzip is a “raw” stream file, without record separators. The gzip utility’s format is not
compatible with remote_request for transmission over the RSN. The destination file
has a suffix of .rsn when you specify for_rsn.

 If you specify uuencode, the output file is encoded in the UNIX uuencode format,
and the file has a suffix of .uue. This is useful when a binary file must be transferred
using a method that does not allow transmission of binary data. The output format is a
sequential file composed of records, each of which contains 61 printable characters.
Some Internet mail servers may still corrupt uuencoded files, because the character set,
although printable, includes punctuation characters that mail servers rarely filter.

Table 2-6. Possible Destination File Names After Bundling

Value of
-output_format

Is -short_suffix
Specified? Description Destination File Name

for_ftp (default) No Binary stream xxx.save.evf.gz

for_rsn No Binary sequential xxx.save.evf.gz.rsn

uuencode No ASCII sequential xxx.save.evf.gz.uue

uuencode_stream No ASCII stream xxx.save.evf.gz.uu

base64 No Alphanumeric
sequential

xxx.save.evf.gz.b64

base64_stream No Alphanumeric stream xxx.save.evf.gz.b

for_ftp Yes Binary stream xxx.ftp

for_rsn Yes Binary sequential xxx.rsn

uuencode Yes ASCII sequential xxx.uue

uuencode_stream Yes ASCII stream xxx.uu

base64 Yes Alphanumeric
sequential

xxx.b64

base64_stream Yes Alphanumeric stream xxx.b
2-82

bundle
Because of this, the base64 encoding scheme is recommended for use with Internet
mail applications. Using the uuencode format increases the size of the output file by
38%, which is more than base64 (33%).

 If you specify uuencode_stream, the output file is exactly like the one created by the
uuencode value, except that the file is a stream file instead of a sequential file, and the
file has a suffix of .evf. Many applications accept both sequential and stream files.
However, the remote_request command (put_file, get_file) does not accept
stream files. Some UNIX-oriented applications may require the stream file format,
although ftp appears to accept either (the file on the receiving end of ftp is a stream
file, but the transmitted file can be either stream or sequential).

 If you specify base64, the output file is encoded in the MIME base64 format, and the
file has a suffix of .b64. MIME is a standard developed for Internet mail transmission.
Base64 is the MIME standard for transmission of binary data in mail messages. The
output format is a sequential file composed of records, each of which contains 72
alphanumeric characters (plus the slash (/), plus-sign (+), and equals-sign (=)
characters). These characters were chosen because they are not corrupted by Internet
mail servers, even those that perform ASCII-to-EBCDIC conversion. Base64 encoding
increases the size of the output file by 33%, which is less than a uuencoded file (38%).

MIME base64 encoding is the most reliable format, because you can send files by
nearly any method: remote_request (put_file, get_file), ftp,
rsn_transfer, or email. When sending the file by ftp, you do not have to specify
the binary file-transfer mode. Likewise, you can specify rsn_transfer without the
-binary argument.

To email the file, pull it into the message; you may surround the file with regular
message text, if desired. To restore the file, edit it out of the mail message; the file
begins with a line containing OpenVOS and ends with a line containing EVF.

 If you specify base64_stream, the output file is exactly like the one created by the
base64 value, except that the file is a stream file instead of a sequential file, and the
file has a suffix of .evf. Many applications accept both sequential and stream files.
However, the remote_request command (put_file, get_file) does not accept
stream files. Some UNIX-oriented applications may require the stream file format,
although ftp appears to accept either (the file on the receiving end of ftp is a stream
file, but the transmitted file can be either stream or sequential).

Related Information
See the description of the unbundle command.
OpenVOS Commands Reference Manual (R098) 2-83

c

c 2-

Purpose
This command compiles an OpenVOS C source module.

Display Form

-------------------------------------- c ---------------------------------------
source_file_name:
definition_file_names:
-mapping_rules: default
-processor: default
-suppress_diag:
-list: no -xref: no
-table: no -production_table: no
-optimize: yes -mapcase: no
-profile: no -cpu_profile: no
-silent: no -statistics: no
-full: no -nesting: no
-system_programming: no -default_char: unsigned
-fixedoverflow: no -show_macros: unexpanded
-include_files: yes -linted: no
-optimization_level: 3 -check_uninitialized: no
-registers: yes -ansi_rules: no
-check_ansi: no -store_args: no
-check_arguments: no -type_checking:
-extension_checking: none -check_enumeration: no
2-84

c

Command Line Form

c source_file_name [definition_file_name...] [-mapping_rules mapping_string] [-processor processor_string] [-suppress_diag number] [-list] [-xref] [-table] [-production_table] [-no_optimize] [-mapcase]

¢ £
[-silent] [-statistics] [-full] [-nesting] [-system_programming] [-default_char string] [-fixedoverflow] [-show_macros string] [-no_include_files] [-linted] [-optimization_level number] [-check_uninitialized] [-no_registers] [-ansi_rules] [-check_ansi] [-store_args] [-check_arguments] [-type_checking level] [-extension_checking level] [-check_enumeration]

Arguments* source_file_name Required
The path name of an OpenVOS C source module with the suffix .c or .ex.c. You can
either supply or omit the .c suffix when you give source_file_name.

* definition_file_name...
One or more path names of definition files, each of which contains a set of #define
macros to be established before compilation begins.

-profile
-cpu_profile
OpenVOS Commands Reference Manual (R098) 2-85

c

* -mapping_rules mapping_string <CYCLE>
Specifies one of the following data alignment values for a given compilation.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. To determine the default value, issue the display_error
m$default_mapping command. By default, the compiler uses the data alignment
rules specified by default. (See the Explanation section of this command description
for details.)

* -processor processor_string <CYCLE>
Specifies the processor on which the program module (.pm) is to run. The display form
for the -processor argument restricts the values that you can choose to values for the
processor family of the current module.

If the current module uses a processor from the IA-32 family, or if you specify, on the
command line, the -processor argument with the pentium4 value, the allowed
processor_string values are as follows:

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors. To determine the default value, issue the display_error
m$default_processor command. By default, the compiler produces code intended
for the processor specified by default.

* -suppress_diag number
Suppresses any diagnostic having a number specified in number. Diagnostics having a
severity of 3 or greater are not suppressed. If you want multiple diagnostics to be
suppressed, separate each number in the list by a space. The default is to display
diagnostics.

* -list <CYCLE>
Creates a compilation listing. A compilation listing shows all source statements from
the source module and include files, as well as a summary of all data definitions and
the path names of include files used. You need not select -list when you specify
-full, -nesting, or -xref since those arguments create a compilation listing in
addition to other listings. By default, the compiler does not generate a compilation
listing.
2-86

c

* -xref <CYCLE>
Creates a compilation listing and an alphabetized cross-reference listing of all data
actually referenced in the program. By default, the compiler does not generate a
cross-reference listing.

* -table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger. The compiler also performs some related operations. (See the Explanation
section of this command description for details.) In addition, it suppresses
interstatement code optimization, which results in code that is slower than normal.
Specifying -table sets the maximum optimization level to 1, unless it has been set
to 0 with the -optimization_level argument. By default, the compiler does not
create a symbol table, suppress interstatement code optimization, or perform any
related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -production_table and -table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -production_table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger in a production environment. Only variables actually referenced in the source
module are placed in the symbol table. The compiler also performs some related
operations. (See the Explanation section of this command description for details.)
Unlike -table, -production_table does not suppress interstatement code
optimization; specifying -production_table sets the optimization level to 3, unless
you explicitly specify some other value. As a result, using the set and continue
requests of the debug command can lead to unpredictable results. Also, the contents of
variables in registers cannot be accurately displayed with the display request of the
debug command. In addition, if the optimization level is greater than 2, the contents of
any variables may not be accurately displayed with the display request of the debug
command. By default, the compiler does not create a symbol table, suppress
interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -production_table and -table, the compiler produces only a
production table and sets the optimization level to 3, unless you explicitly specify some
other value.

* -no_optimize <CYCLE>
Generates the object code without optimizing it. Optimization produces more compact
object code by removing unnecessary or redundant computations. Specifying
-no_optimize sets the optimization level to 0. This overrides any other specification
of the optimization level. By default, the compiler optimizes the object code.

* -mapcase <CYCLE>
Interprets all uppercase letters except those in character string constants as lowercase
letters. If you specify -mapcase, and the source module contains an external variable
OpenVOS Commands Reference Manual (R098) 2-87

c

name or entry name, you may not be able to bind the resulting object module. (See the
Explanation section of this command description.) By default, the compiler
distinguishes between uppercase and lowercase letters, and keywords must be in
lowercase.

* -profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement is executed when the program runs. (See the description of the profile and
add_profile commands.) By default, the compiler omits the counting code. You
cannot specify both -profile and -cpu_profile in the same command.

* -cpu_profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement is executed, the amount of CPU time (in milliseconds) spent executing each
statement, and the number of page faults taken executing each statement when the
program runs. (See the description of the profile and add_profile commands.) By
default, the compiler omits the counting code. The code inserted by this argument uses
much more CPU time, but provides more useful information, than the code inserted by
-profile. You cannot specify both -cpu_profile and -profile in the same
command.

* -silent <CYCLE>
Suppresses the warning messages of severity-1 or severity-0 errors on your terminal
during compilation. The compiler, nevertheless, puts the messages in an error file and
in any listing it produces. By default, the compiler writes all error messages on your
terminal.

* -statistics <CYCLE>
Displays statistics about the compilation as it proceeds. The compiler displays the
version number of the compiler as well as the following statistics for each phase:

 disk I/O information
 elapsed real time
 amount of storage used
 number of page faults taken
 elapsed CPU time
 time when the compiler completed the phase

The compiler also displays statistical information for the entire compilation, such as the
number of source lines and the symbol table size.

You can specify -statistics to see the progress of the compilation and to determine
the phase in which an error occurs. If the compiler produces a listing, it puts the
statistics in the listing. By default, the compiler does not display compilation statistics.

* -full <CYCLE>
Creates, from the compiled object code, an assembly language listing, with added
comments, in addition to a compilation listing. The compiler uses a disassembler to
produce the listing. By default, the compiler does not produce an assembly language
listing.
2-88

c

* -nesting <CYCLE>
Prints, immediately before each line, the nesting level of structure definitions and
compound statements in a listing. The top level is 1, the next level is 2, and so forth.
The compiler produces a listing if you specify this argument. By default, the compiler
does not put the nesting level on source statements in any listing it produces.

* -system_programming <CYCLE>
Checks for the presence of alignment padding within structures that are allocated using
the longmap alignment rules. In addition, the compiler diagnoses any function that is
declared or defined without a prototype if the function is referenced in the source
module. The -system_programming argument also diagnoses all occurrences of
unrecognized #pragma directives.

The -system_programming argument also returns a warning message when a
slash-asterisk (/* or */) style of comment contains a slash-asterisk comment start
sequence with no corresponding slash-asterisk comment end sequence. For example,
the following comment does not return a warning:

/* This comment is fine. */

However, the following comment does return a warning:

/* This comment generates a warning because
/* it contains an extra slash-asterisk. */

See the VOS C Language Manual (R040) for more information about
-system_programming.

* -default_char string <CYCLE>
Specifies whether char variables that are not explicitly defined as signed or
unsigned will default to unsigned or signed. By default, char variables default to
unsigned.

* -fixedoverflow <CYCLE>
Generates code to check for fixed-point overflow in arithmetic operations when the
program is run and to signal the fixedoverflow condition when it occurs. By default,
the OpenVOS C compiler ensures that fixed overflow exceptions are never detected in
arithmetic operations. In this case, if a fixedoverflow occurs, the high-order bits that
caused the overflow are lost, and the remaining bits appear as they normally would in
the result.

* -show_macros string <CYCLE>
Specifies the form in which the source of the macros is to be shown in the list file.
Possible values for string are expanded and unexpanded. By default, the compiler
does not expand macros in the list file.

* -no_include_files <CYCLE>
Suppresses, in the compilation listing, source text from files included into the source
module with an #include preprocessor directive and text from files specified in the
definition_file_names argument. By default, the compiler incorporates such text
in the compilation listing.
OpenVOS Commands Reference Manual (R098) 2-89

c

* -linted <CYCLE>
Specifies that the source has been verified by the UNIX® lint command. The lint
command can be used to process a number of OpenVOS C source modules and
diagnose various errors and misuses of the C language. If this argument is specified,
better code is generated for return statements. For example, the lint command
reports an error if one source module defines a function to return a particular data type,
and another source module calls that function assuming a different data type.

* -optimization_level number <CYCLE>
Specifies the degree of optimization. The possible values are 0, 1, 2, 3, and 4. See the
Explanation section of this command description for details. By default, the compiler
uses optimization level 3.

* -check_uninitialized <CYCLE>
Checks all variables for initialization and issues diagnostics for those that are
uninitialized if you also specify an optimization level of 3 or 4. This argument is useful
when verifying new code or checking for possible bugs, but it can return misleading
diagnostics, as in the case of variables that are initialized within a conditional
statement. The categories of uninitialized variables diagnosed by the compiler vary
depending on whether you choose both -check_uninitialized and an
optimization level of at least 3, or choose only an optimization level of at least 3.

* -no_registers <CYCLE>
Suppresses assignment of items defined with the register storage class to machine
registers. Specifying -no_registers allows you to avoid using registers for
register data items without having to alter their source declarations. By default, the
compiler attempts to allocate machine-register space to items defined with the
register storage class. See the VOS C Language Manual (R040) for information on
the register storage class.

* -ansi_rules <CYCLE>
Interprets certain constructs according to ANSI rules. Specifically, the compiler
suppresses macro expansion inside quoted strings that appear on macro definition lines.
By default, the compiler does not interpret these constructs according to ANSI rules.

* -check_ansi <CYCLE>
Checks whether the source module contains elements that are interpreted differently if
-ansi_rules is specified. By default, the compiler does not check.

* -store_args <CYCLE>
This argument has no effect on programs compiled for ftServer modules but has been
retained for compatibility with existing software build scripts.

* -check_arguments <CYCLE>
Issues a warning message when the value, rather than the address of the value, of a
char_varying string or struct longer than eight bytes is passed to a function with
no prototype or variable argument list. By default, argument checking does not occur.
2-90

c

* -type_checking level <CYCLE>
Checks for occurrences of implicit or unintended data-type conversions and for other
programming constructs that can cause error conditions to occur. There are four levels
of data-type checking.

 none
 minimum
 normal
 maximum

By default, the compiler uses the minimum level of checking. See the Explanation
section of this command description for descriptions of the four levels.

* -extension_checking level <CYCLE>
Checks for use of OpenVOS C language extensions that can affect program
transportability. OpenVOS C allows certain programming practices that are not
allowed in ANSI C. There are three levels of extension checking.

 none
 minor
 all

By default, the command uses a level of none.

* -check_enumeration <CYCLE>
Checks operations on enumeration data. The compiler ensures that an enumeration
item is only assigned or compared against another item of the same enumeration type
or one of its defined enumerators. Other usages are allowed, but the compiler issues a
warning message.

To make the compiler diagnose implicit conversions involving an enumeration item,
you must specify at least minimum for -type_checking. If you specify
-type_checking none, you disable the type checking performed as a result of
-check_enumeration.

Explanation
The c command compiles an OpenVOS C source module into an object module.

The name of the source module must have one of the suffixes .c or .ex.c; you can either
supply or omit the .c suffix when you give source_file_name. A source module with the
suffix .ex.c is assumed to be the output of the preprocessor and thus fully expanded. The
compiler generates an object module, puts it in your current directory, and names it. The name
of the object module is the name of the source file with the suffix changed from either .ex.c
or .c to .obj.

In general, values specified in a source module (using the #pragma preprocessor directive)
take precedence over values specified on the command line. The arguments
-mapping_rules, -type_checking, -extension_checking, -mapcase,
-processor, -default_char, -fixedoverflow, -show_macros, -no_registers,
-ansi_rules, and -check_enumeration have corresponding options that can be entered
as #pragma directives in the source code.
OpenVOS Commands Reference Manual (R098) 2-91

c

When you are compiling for an ftServer module at all optimization levels, the module on
which you are compiling must have at least 30,000 pages of paging partition available to
avoid running out of virtual memory. In addition, the module on which you are compiling
should have 64MB of physical memory available to achieve optimal compiler performance.

Using the -mapping_rules Argument
The -mapping_rules argument allows you to specify the default alignment rules for a
given compilation. The value default indicates the system-wide default. The default is
site-settable. The value shortmap specifies that the shortmap alignment rules are to be used
for the source module. The value longmap specifies that the longmap alignment rules are to
be used for the source module. The values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively, except
that they also diagnose alignment padding within structures. For example, if you specify
default/check, the compiler displays a diagnostic message stating how many bytes of
padding exist within a structure. A #pragma preprocessor control line indicating a data
alignment method overrides the alignment method specified in -mapping_rules, but
alignment padding within structures is still diagnosed if you specify one of the checking
values.

For more information on data alignment rules, see the VOS C Language Manual (R040).

Using the -processor Argument
The -processor argument allows you to specify the processor on which the program is to
run. The -processor argument also allows you to perform cross-compilation on a source
module if the C cross compiler is available on your system. Cross-compilation occurs when
a compiler running on one processor family translates a source module into object code for
another processor family. The IA-32 cross compiler generates code to run on ftServer
modules. Specify the value pentium4 for the -processor argument to target an ftServer
module.

Depending on the value specified in the -processor argument or the corresponding
#pragma option, the compiler automatically defines one preprocessor variable for the
processor family and one or more preprocessor variables corresponding to the processor
type(s), as shown in Table 2-7.

7

If you specify -processor pentium4 on the command line, the preprocessor variables
__PENTIUM4__, __IA32__, and __i386 are defined.

If the value specified in the -processor argument indicates the IA-32 processor, the
maximum number of bytes available for each function’s initial stack frame is 2,147,483,584
bytes.

Table 2-7. Predefined Preprocessor Variables

Processor Value Preprocessor Variable

default Varies, depending on the default system processor

pentium4 __PENTIUM4__, __IA32__, and __i386
2-92

c

The amount of automatic storage you can actually declare is somewhat less than these limits
because temporary variables generated by the compiler also count towards the limit. Note that
although the OpenVOS C compiler supports extremely large values (such as 2,147,483,646),
the operating system does not support them.

Using the -type_checking Argument
The -type_checking argument allows you to specify which level of data-type consistency
you would like the compiler to check and produce warnings for. You can specify one of the
following levels of data-type checking: none, minimum, normal, and maximum.

If you specify a type checking value of none, the compiler does no checking for data-type
consistency.

If you specify a type checking value of minimum, the compiler produces warnings for the
following occurrences.

 the following implicit data-type conversions involving char_varying data and
pointers to different objects:

– pointer to pointer with an object of a different data type
– non-char_varying to char_varying strings
– char_varying to non-char_varying strings

 other violations that affect program execution:

– omitting a level-one element in a structure or union reference

– returning a value in a void function

– use of a pointer to a function where a function is required

– use of an address expression to qualify a structure member that does not locate a
structure containing such a member

– inconsistent extern declaration and definitions

– an octal constant containing decimal digits

– omission of a required semicolon

– omission of an equals sign (=) before an initializer list

If you specify a type checking value of normal, the compiler performs all minimum type
checking as well as warnings for the following occurrences.

 all cases specified under minimum

 other implicit data-type conversions, such as constant conversion where the precision
is lost (for example, floating-point-to-integer conversion)
OpenVOS Commands Reference Manual (R098) 2-93

c

 other violations that affect program execution:

– use of expressions that do not produce code (for example, a == 0;)
– omission of braces surrounding an initializer list
– use of unknown #pragma directives
– implicit declarations of functions

If you specify a type checking value of maximum, the compiler performs all minimum type
checking as well as warnings for the following occurrences. You might find maximum type
checking too strict; for example, the compiler will issue a warming about the statement
a = a + 1 if a is of type char or short. However, you might find maximum type checking
useful if you are compiling a program that you plan to debug in order to locate all potential
type conversions.

 all cases specified under minimum and normal

 other implicit data-type conversions:

– signed to unsigned
– long to short or char
– short to char
– double to float
– non-float to float

 other violations that affect program execution, use of an obsolete compound
assignment operator (for example, use of a minus sign (-), asterisk (*), or ampersand
(&) immediately following an equals sign (=), without an intervening space).

Using the -extension_checking Argument
If you specify the -extension_checking argument, the compiler checks for use of
OpenVOS C language extensions. The three levels of extension checking are none, minor,
and all.

If you specify a type checking value of none, the compiler does no checking for OpenVOS
C language extensions.

If you specify a type checking value of minor, the compiler produces warnings for the
following OpenVOS C language extensions.

 declaration of an anonymous data item (for example, a struct or union with no
name)

 a. reference to a structure member in which all elements of the member’s name are not
explicitly stated

 two-byte character constants

 the address-of operator (&) with a non-lvalue in an argument list

 an external array definition for which the number of elements is not specified (thereby
implying an extern declaration)
2-94

c

 an expression yielding a non-address used in a context where an address is required

 an undeclared identifier implicitly defined as int

If you specify a type checking value of all, the compiler performs all minor extension
checking and produces warnings for the following OpenVOS C language extensions.

 use of a built-in function
 the Forms Management System accept or screen statement
 definition of char_varying data items
 reference to generic string functions

Using the -list, -full, -xref, or -nesting Argument
If you specify the -list, -full, -xref, or -nesting argument, the compiler creates a
compilation listing file and puts it in your current directory. The name of the compilation
listing is the name of the source file with the suffix changed from either .ex.c or .c to
.list. Any error messages produced or statistics requested are appended to the list file. The
-full argument creates an assembly language listing in addition to a program listing. The
-nesting argument adds numbers showing the nesting depth of each source statement in a
program listing. The -xref argument creates a list of cross-references in addition to a
program listing.

Optimizations for ftServer Modules
The -optimization_level argument allows you to optimize programs at different levels.
When you are compiling a source module to run on ftServer modules, the levels of
optimization are 0, 1, 2, 3, and 4. Specifying optimization level 3 or 4 causes the compiler to
perform level 3 optimizations.

If you specify optimization level 0, the compiler performs the following local optimizations.

 local register allocation
 elimination of unreachable code

If you specify optimization level 1, the compiler performs all level 0 optimizations plus the
following local optimizations.

 local pattern replacement
 short-circuit evaluation of Boolean expressions
 recognition of algebraic identities
 constant folding
 local combination of common subexpressions within a statement
 peephole optimizations within a single statement
 result incorporation

If you specify optimization level 2, the compiler performs all level 1 optimizations plus the
following global optimizations.

 branch retargeting
 global combination of common subexpressions
 removal of invariant expressions from loops
 subsumption
OpenVOS Commands Reference Manual (R098) 2-95

c

 peephole optimizations across statement boundaries
 global register allocation

If you specify optimization level 3, the compiler performs all level 2 optimizations plus the
following global optimizations.

 constant propagation
 removal of invariant assignments from loops
 strength reduction
 linear test replacement
 elimination of dead assignments
 elimination of useless loops
 detection of uninitialized variables
 elimination of dead code and dead stores
 inline expansion
 instruction scheduling
 no allocation of stack space by automatic variables whose values are kept in registers

As stated above, unreachable code is eliminated at all optimization levels on ftServer
modules. Sometimes, however, you might want your program to contain some code that will
be executed only during a debugging session, not during normal program execution. To
prevent the compiler from eliminating such unreachable code, you might consider changing
your program as follows.

volatile static int always_zero=0;

if (always_zero != 0) {
/* Code that should not be eliminated goes here */

If you delete the volatile attribute from the preceding declaration, the compiler will
eliminate the unreachable code. See the VOS C User’s Guide (R141) for more information on
volatile.

Specifying the Optimization Level
The arguments -no_optimize, -table, and -optimization_level determine the
optimization level. By default, the level is 3.

Table 2-8 describes how each of these compiler arguments affects the optimization level for
a source module.

8

Table 2-8. Arguments Affecting Optimization Level

Argument Optimization Level for a Source Module

-optimization_level Specifies the maximum level of optimization that the
compiler uses. Allowed values are 0, 1, 2, 3, and 4. The
default level is 3.

-no_optimize Specifies a maximum optimization level of 0.

-table Specifies a maximum optimization level of 1.
2-96

c

Note: If you compile a program with either the -profile or -cpu_profile
argument, you must specify an optimization level lower than 3. Otherwise, -profile
or -cpu_profile might not return accurate information, since high optimization
levels can cause code to be moved from one statement to another.

Using the -check_uninitialized Argument
The optimization level for a source module also affects the functionality of the
-check_uninitialized argument.

 If you select the -check_uninitialized argument and an optimization level of at
least 3, the compiler diagnoses all instances of uninitialized variables within the source
module. In this case, the compiler diagnoses variables that are initialized as part of code
executed conditionally.

 If you do not select the -check_uninitialized argument but do select an
optimization level of at least 3, the compiler diagnoses instances of variables within the
source module that it knows are uninitialized. In this case, the compiler does not
diagnose variables that are initialized as part of code executed conditionally.

 If you select an optimization level of less than 3, the compiler does not diagnose
uninitialized variables within the source module even if you select
-check_uninitialized.

Using the -table and -production_table Argument
If you specify the -table argument, the compiler creates a symbol table, and allocates
storage and generates addresses for all external references, including any that are not used.
Symbol-table capacity is 2,147,483,647 nodes. The compiler suppresses interstatement code
optimization. The compiler also assures that the generated code never uses a value in one
statement from a register that has been loaded in another. That is, all statements are
completely self-contained; identifiers can be “set” to any value before executing a statement,
and a continue request to branch to any statement will work as expected. Variables defined
with the register storage class are allocated and kept in memory locations. Code produced
with the -table argument executes more slowly than code produced with the
-production_table argument.

If you select the -production_table argument, the compiler performs all of the same
operations as it does with -table, except that the compiler does not suppress interstatement
code optimization or always keep register variables in memory, and places only variables
actually referenced in the symbol table (most unreferenced variables are from include files).
Code produced with -production_table may yield unpredictable results if you invoke the
OpenVOS Symbolic Debugger set and continue requests.

Using the -linted Argument
If you specify the -linted argument, the compiler assumes that source modules have been
“linted” — processed by the UNIX lint command — and that function declarations and
definitions are consistent. If you omit the -linted argument, the compiler generates extra
code for the return statement to load both the address and data registers, disregarding the
definition of the function containing the statement. You can use the -linted argument to tell
the compiler that the source module being compiled has been linted and any such additional
code may be eliminated (because all such mismatches have been “linted” out).
OpenVOS Commands Reference Manual (R098) 2-97

c

Using the -mapcase Argument
When you compile a source module using the -mapcase argument, and the module contains
an external variable name or entry name with one or more uppercase letters, you may not be
able to bind the resulting object module. If the binder encounters a reference to the original
name (for example, in a binder control file), it will not recognize the original name and its
lowercase version as the same name.

Interpreting Compiler Diagnostics
If the compiler discovers any errors in your source module, it displays an error message on
your terminal. Severity-1 and severity-0 messages are not displayed on your terminal when
you specify the -silent argument. The compiler also creates an error file in the current
directory and writes the error messages to the file. The name of the error file is the name of
the source file with the suffix changed from either .ex.c or .c to .error. The compiler also
appends error messages to a compilation listing if it produces one. Any .error file is deleted
by the system if a subsequent compilation of the same source module is successful (contains
no errors).

The OpenVOS C compiler diagnoses five types of errors.

SEVERITY 0: Advice
SEVERITY 1: Warning
SEVERITY 2: Correctable error
SEVERITY 3: Uncorrectable error: translation can continue
SEVERITY 4: Uncorrectable error: translation cannot continue

The text of the error message explains the cause of the error.

A severity-0 error, although valid C, indicates that improvement is possible, usually in the
area of performance. The source module is syntactically correct, so the compiled object
module can be bound and executed, but probably with less than optimum efficiency.

A severity-1 error, although valid C, is probably a programming error. Since the source
module is syntactically correct at the point of a severity-1 error, however, the compiler
continues to compile the source. The compiled object module can be bound and executed, but
the program probably will not perform as expected.

A severity-2 error is invalid C, but the compiler can reinterpret the source in such a way that
it can continue to compile the program. The compiler proceeds as if the faulty code were
replaced with the most likely syntactically correct code. The compiled object module can be
bound and executed, but it probably will not perform as expected.

A severity-3 error is invalid C, and the compiler cannot reinterpret the source in such a way
that it can continue to compile the program into a usable object module. Nevertheless, the
compiler continues to process the source module to detect additional errors. However, the
object module is not created.

A severity-4 error is invalid C, and the compiler cannot reinterpret the source in such a way
that it can continue to process the source module from the point of the severity-4 error. The
object module is not created.
2-98

c

Note: If the compilation results in more than 100 errors, in any combination (excluding
severity-0 errors), compilation terminates.

The compiler always overwrites an existing object module having the same name as the
object module it produces.

Access Requirements
You need read access to the source module to compile it. You need modify access to the
directory from which you are issuing the compile command, in which the .obj file will be
created.

Related Information
See the VOS C Language Manual (R040) for a complete description of the OpenVOS C
language. See the VOS C User’s Guide (R141) for information on using the OpenVOS C
command and its arguments.
OpenVOS Commands Reference Manual (R098) 2-99

c_preprocess
c_preprocess 2-

Purpose
This command produces a fully expanded OpenVOS C source module.

Display Form

Command Line Form

c_preprocess source_file_name [output_file_name] [-definition_files path_name . . .] [-processor processor_string] [-list] [-statistics] [-silent] [-ansi_rules] [-check_ansi]

Arguments* source_file_name Required
The path name of an OpenVOS C source module with the suffix .c; you can omit the
suffix when you give source_file_name.

* output_file_name
The path name of an output file. By default, the command names the output file
source_file_name.ex.c.

* -definition_files path_name
Specifies the path name of one or more definition files, each of which contains a set of
#define macros to be established before the start of normal preprocessing.

--------------------------------- c_preprocess ---------------------------------
source_file_name:
output_file_name:
-definition_files:
-processor: default
-list: no
-statistics: no
-silent: no
-ansi_rules: no
-check_ansi: no
2-100

c_preprocess
* -processor processor_string <CYCLE>
Controls conditional-preprocessing symbol definition. The following are values of
processor_string.

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors. By default, processor_string is the processor family of the current
module. See the Explanation section of this command description for more
information.

* -list <CYCLE>
Creates a list file named source_file.ex.list. A listing shows all source
statements from the source file and include files as well as the path names of include
files used.

* -statistics <CYCLE>
Displays the following statistics on processing as it proceeds.

 version number of the compiler
 elapsed CPU time
 elapsed real time
 number of page faults
 amount of storage used

You can use this argument to observe the progress of processing and to determine the
phase in which an error occurs. If the preprocessor produces a listing, it puts the
statistics in the listing as well. By default, the preprocessor does not display statistics.

* -silent <CYCLE>
Suppresses the warning messages of severity-1 errors on your terminal during
preprocessing. The preprocessor, nevertheless, puts the messages in an error file and in
any listing it produces. By default, the preprocessor writes all error messages on your
terminal.

* -ansi_rules <CYCLE>
Interprets certain constructs according to ANSI rules. Specifically, the preprocessor
suppresses macro expansion inside quoted strings that appear on macro definition lines.
By default, the preprocessor does not interpret these constructs according to ANSI
rules.

* -check_ansi <CYCLE>
Checks the source module’s conformance to the ANSI standard.

Explanation
The c_preprocess command expands a C source file named source_file_name.c into
a source file named output_file_name.ex.c.
OpenVOS Commands Reference Manual (R098) 2-101

c_preprocess
If you select the -list argument, the command creates a file named
source_file_name.ex.list, which contains a line-numbered listing of the expanded
source with statistics (if requested) and any diagnostics appended. Diagnostics are also
written to the file source_file_name.ex.error, which is produced only if errors occur.

The -processor argument controls conditional-preprocessing variable definition. When
you specify -processor, preprocessor variables corresponding to the value specified in
processor_string are automatically defined. If you specify -processor pentium4 on
the command line, the preprocessor variables __PENTIUM4__, __IA32__, and __i386 are
defined.

Related Information
See also the description of the c command and the preprocess_file command.
2-102

call_thru
call_thru 2-

Purpose
This command connects your login terminal to a remote host as a login terminal or as a slave
terminal.

Display Form

Command Line Form

call_thru [extension]

[-gateway network] [-address system_address] [-system name] [-slave_id string] [-rev_charge] [-line_speed_input]
Arguments* extension

The extension number for which the x25_exchange command is configured to
receive call_thru connections at the target system. The default extension is 255.

* -gateway network
Specifies an X.25 gateway configured on the local system. The network is the network
to which both the local and target systems are connected. If you specify -gateway, you
must also specify -address.

* -address system_address
Specifies the address of the target system within the chosen network. The value of
system_address is an integer up to 15 digits long. If you specify -address, you
must also specify -gateway.

---------------------------------- call_thru -----------------------------------
extension: 55
-gateway:
-address:
-system:
-slave_id:
-rev_charge: no
-line_speed_input: no

2

OpenVOS Commands Reference Manual (R098) 2-103

call_thru
* -system name
Specifies the system to which you want to connect. The StrataNET networking facility
automatically opens a connection with the X.25 gateway module on the target system.
If you wish to log in to a module other than the gateway module, use the -module
argument of the login command after calling through to the target system.

* -slave_id string
Specifies a slave ID from the list of those assigned to one or more slave virtual terminals
on the target system.

* -rev_charge <CYCLE>
Reverses the charge for the call.

* -line_speed_input <CYCLE>
Increases the asynchronous input/output buffer to its maximum size.

Explanation
The call_thru command connects your login terminal to a target system as either a login
terminal or a slave terminal.

Remote logins and slave attachments are available through the StrataNET networking facility
without requiring a special command. However, the call_thru command is intended
specifically for terminal-to-host connection, avoiding the overhead of more general
host-to-host communication used by the network.

You must specify either both or neither of the -gateway and -address arguments. If you
specify one of these arguments but not the other, the call_thru command displays the
following error message, and returns you to command level.

Missing gateway name or address.

If you select the -slave_id argument, the string must omit the prefix of the ID on the
target site list of IDs. If you omit the prefix, the operating system assumes a value of id=.

If you select the -line_speed_input argument, you increase the asynchronous I/O buffer
to its maximum size of 2K bytes. Once you have logged off the other system and the
call_thru program is completed, the buffer size returns to its default size.

The operation of the call_thru command is compatible with the X.29/X.25 protocol used
to support virtual terminals. Therefore, a target system must be properly configured to accept
virtual terminal connections before you can connect to it using the call_thru command. To
configure a target system, the x25_exchange command must be used by a system
administrator or network administrator. The choice of extension 255 as a default if you do not
give the extension argument eliminates the need to remember an extension number when
connecting to another system. You cannot omit the extension argument unless the target
system is configured with the x25_exchange command with the argument
-call_thru_ext 255.

The call_thru command is typically used for a login. Use of the command to log in a slave
terminal usually requires an application program designed to control slave terminals on the
target system.
2-104

call_thru
After connecting to the target system using the call_thru command, log in normally.
However, because the terminal type is determined by the device table entry for the virtual
terminal, you may need to change your terminal type. Use the set_terminal_parameters
command to set the terminal type to the correct value for the terminal you are using.

The call_thru command passes all input from your keyboard to the target system, and
passes all output from the target system to your terminal. Input editing is provided by the
terminal handler at your local system. Since call_thru is a single command on your local
system, the local terminal handler does not recognize any of the terminal input as command
lines. As a result, you can retrieve the last input line typed on the target system, but not the
last command line.

The call_thru command allows connections to non-Stratus systems across an X.25
network. The call_thru command emulates a packet assembler/disassembler (PAD) by
implementing the PAD side of X.29. To connect to any system on an X.25 network that
supports a host X.29, you must give the -gateway and -address arguments.

The call_thru command does not implement all PAD features. In particular, certain X.3
parameters have no effect on call_thru operation. Also, the idle timer (parameter 4) and
editing (parameter 15) are handled in a special way. There are limitations that affect the
call_thru command’s emulation of the PAD side of X.29. See VOS Communications
Software: X.25 and X.29 Programming (R028) for information about the Virtual Terminal
Facility.

Related Information
See also the command descriptions of list_gateways and set_terminal_parameters.
For additional information about StrataNET and X.25 networks, see VOS Communications
Software: X.25 and StrataNET Administration (R091).
OpenVOS Commands Reference Manual (R098) 2-105

cancel_batch_requests
cancel_batch_requests 2-

Purpose
This command removes an unstarted batch process or processes from a batch queue and stops
a batch process if it is currently executing.

Display Form

Command Line Form

cancel_batch_requests process_names . . . [-user user_name] [-queue queue_name] [-module module_name] [-no_ask]
Arguments* process_names Required

One or more names or star names of batch processes to be canceled. The command
cancels all processes with matching names.

* -user user_name
Specifies a user name or star name whose batch process you want to cancel. If you
specify a user_name value, the command cancels only the batch processes matching
the process_names value that the specified user has submitted. By default, the
command uses your user name and thus cancels only your batch requests. You can give
a user name other than your own only if you have write access to the queue file of the
batch queue.

* -queue queue_name
Specifies the batch queue holding the batch processes to be canceled. By default, the
command cancels the processes in the default batch queue, either on the module
specified in -module or on the current module.

---------------------------- cancel_batch_requests -----------------------------
process_names:
-user:
-queue: normal
-module:
-ask: yes
2-106

cancel_batch_requests
* -module module_name
Specifies the module containing queue_name. By default, the command uses your
current module.

* -no_ask <CYCLE>
Suppresses the prompt, when a process name is a star name, that asks before you cancel
any batch processes with a matching name. By default, the command asks you before
canceling any processes when the command is invoked with a star name.

Explanation
The cancel_batch_requests command removes any matching process from the batch
queue. If a process is executing when you cancel it, the batch processor stops execution of the
process.

You can specify the batch processes to be canceled by their process names and, if you have
write access to the queue file of the batch queue, by the name of the user who submitted the
processes.

When process_names is a star name, the command prompts you before canceling a batch
process with a matching name. The batch processor does not cancel any request in the set until
it has prompted you for all of them. If you cancel the command before answering prompts
about all requests in the set, none of the requests in the set are canceled. After you have
answered prompts for all the names that match one process_names term, however, the
batch processor cancels the requests in that set before the command asks you about the next
set of names. To suppress the prompts and cancel the batch requests without user intervention,
issue the -no_ask argument.

Access Requirements
You can cancel a batch request by the name of the user who submitted it if you have write
access to the queue file of the batch queue.

Examples
The following command cancels the batch process named accts_recv in the batch queue
io_bound.

cancel_batch_requests accts_recv -queue io_bound

Related Information
For a detailed discussion of batch processing, see the OpenVOS Commands User’s
Guide (R089). To see the names and queue sequence numbers of the batch processes in a
queue, specify the list_batch_requests command. See also the command descriptions
of batch, display_batch_status, update_batch_requests, reserve_device,
move_device_reservation, and cancel_device_reservation.
OpenVOS Commands Reference Manual (R098) 2-107

cancel_device_reservation
cancel_device_reservation 2-

Purpose
This command frees a device for use by other processes.

Display Form

Command Line Form

cancel_device_reservation device_path_name [-force]
Arguments* device_path_name Required

The device for which the reservation is to be canceled.

* -force <CYCLE> (Privileged)
Forces the device reservation to be canceled if the device is reserved for some process
other than your current one. To use -force you must be privileged. By default, this
command cancels reservations only for your current process.

Explanation
The cancel_device_reservation command frees a reserved device so that it can be used
by other processes. (Devices are usually reserved for the execution of a batch process.)

Devices can be reserved by the reserve_device command. It is not necessary to use the
-force argument to cancel the reservation of a device reserved for the current process. If
some other process has reserved a device with the reserve_device command, you can
cancel it using the -force argument if your process is privileged.

If another person attaches a port to a device to reserve it, you cannot release the device.

Related Information
For information about attaching and detaching a port, see the descriptions of the
attach_port and detach_port commands. See also the command descriptions of batch,
cancel_batch_requests, display_batch_status, list_batch_requests,
reserve_device, and move_device_reservation.

-------------------------- cancel_device_reservation ---------------------------
device_path_name:
-force: no
2-108

cancel_print_requests
cancel_print_requests 2-

Purpose
This command cancels one or more previously queued print requests.

Display Form

Command Line Form

cancel_print_requests file_names . . . [-user user_name] [-queue queue_name] [-module module_name] [-no_ask]
Arguments* file_names Required

One or more names or star names of files whose printing is to be canceled. The
command cancels print requests for all files in the print queue that have matching
names and were submitted by the specified user.

* -user user_name
Specifies a user name or star name, whose print requests are to be canceled. The
command cancels only the print requests matching file_names that the specified
users have submitted. By default, the command uses your user name and thus cancels
only your print requests. You can give a user name other than your own only if you have
write access to the queue file of the print queue.

* -queue queue_name
Specifies the print queue containing the print requests to be canceled. By default, the
command cancels the print requests in the default print queue, either on the module
specified in -module or on the current module.

* -module module_name
Specifies the module containing the specified queue. By default, the command looks
for the queue on your current module.

---------------------------- cancel_print_requests -----------------------------
file_names:
-user:
-queue: standard
-module:
-ask: yes
OpenVOS Commands Reference Manual (R098) 2-109

cancel_print_requests
* -no_ask <CYCLE>
Suppresses the prompt, when there is more than one print request in the print queue that
matches a specified file name, that asks whether to cancel a request with a matching
name. By default, when more than one request in the queue matches a specified file
name, the command asks you before canceling each request with a matching name.

Explanation
The cancel_print_requests command cancels previously entered print requests. If a
print request is in the print queue when you cancel it, the command removes the request from
the queue. If the operating system is printing the file when you cancel the print request,
printing stops.

Specify the print requests to cancel by giving the names of the files in the print queue. If more
than one print request in the print queue matches a specific file_names term, the command
asks you before canceling each matching request.

When file_names matches more than one print request in the print queue, unless you
specify -no_ask the command prompts you before canceling a request with a matching
name. The cancel_print_requests command does not cancel any request in the set until
it has prompted you about all of them. If you cancel the command before answering prompts
about all requests in the set, no requests are canceled. After you have answered prompts about
all requests in the current set, however, the command cancels the requests in that set before
asking you questions about any other set.

Access Requirements
You can cancel a print request by the name of the user who submitted it if you have write
access to the queue file of the batch queue.

Examples
The following command cancels the printing of the file old_memos in the sales_printer
print queue.

cancel_print_requests old_memos -queue sales_printer

Related Information
See the description of the print command for general information about printing a file. To
see the queue of files submitted for printing, use the list_print_requests command. See
also the display_print_status command.
2-110

cc
cc 2-

Purpose
This command compiles an OpenVOS Standard C source module.

Display Form

------------------------------------- cc ------------------------------------
source_file_name:
->option_help: cycle for available options...
option_selection:
-suppress_diag:
-include:
-processor: default
-mapping_rules: default
-type_checking: default -extension_checking: minor
-check_uninitialized: no -default_char: unsigned
-check_enumeration: no -truncate_to: default
-check_incompatible: no -mapcase: no
-check: no -nesting: no
-system_programming: no -fixedoverflow: no
-table: no -compress: no
-list: no -xref: none
-statistics: no -full: no
-show_include: local -show_macros: unexpanded
-store_args: no -check_arguments: no
OpenVOS Commands Reference Manual (R098) 2-111

cc
Command Line Form
cc source_file_name [->option_help string] [option_selection...] [-suppress_diag number...] [-include include_file_name...] [-processor processor_string] [-mapping_rules mapping_string] [-type_checking level] [-extension_checking level] [-check_uninitialized] [-default_char string] [-check_enumeration] [-truncate_to string] [-check_incompatible] [-mapcase] [-check] [-nesting] [-system_programming] [-fixedoverflow] [-table] [-compress] [-list] [-xref string] [-statistics] [-full] [-show_include string] [-show_macros string] [-store_args] [-check_arguments]

Arguments * source_file_name Required
The path name of an OpenVOS Standard C source module with the suffix .c. You can
either supply or omit the .c suffix when you give source_file_name.

* ->option_help <CYCLE>
Provides help for the short options used with this command. (See the description of the
option_selection argument.) Use the arrow keys to cycle through brief
descriptions of the short options.
2-112

cc
* option_selection
Specifies one or more of the short options. Short options are similar to those often
found on the C compilers of other operating systems. These options are preceded by a
hyphen (-) and are composed of one character that defines the option and, in some
cases, one or more other characters that further specify the option. Table 2-9 briefly
summarizes each of the short options.

See the Explanation section of this command description for more information on
short-option syntax and the -O, -g, -Xa, -Xc, and -Xt short options. For a complete
explanation of each short option, see the OpenVOS Standard C User’s Guide (R364).

9

Table 2-9. cc Command: Short Options

Short Option Description

-A Undefines the __STDC__ macro as well as all predefined macros, such as
__VOS__, that are OpenVOS Standard C extensions.

-Dname[=[def]] Predefines a macro from the command line.

-E Preprocesses the file only, without compiling.

-g Creates a production symbol table for use in debugging.

-Idir Specifies a directory path name in which to search for include (header) files. The
directory specified in dir is searched before the directories in the process’s
include library paths list. You can specify more than one directory to search by
using the -I option more than once. The directories are searched in order,
beginning with the one specified in the leftmost -I option.

-M Compiles without preprocessing the file. If-M is specified, the compiler ignores
all preprocessing-related options.

-O[n] Specifies an optimization level. Valid values for the optimization level given in n
are 0 through 4. See the Explanation section of this command description for
information on the -O option and optimization.

-opath Changes the file name of the output file (object module or permanent
preprocessor output file, if any, or both) to the file name given in path. Or, causes
the compiler to write all files it generates to the directory specified by the path
name given in path.

-P[sf] If you specify the -E option or -compress argument, produces a permanent file
having the suffix given in sf and containing preprocessed output. The source file
name must be in the form file_name.c, and preprocessed output will be in the
form file_name.sf.c. If you omit sf when specifying -P, the default suffix of
.ex is used. If you give a leading or trailing period in sf, it is ignored.

-qc
-ql

Adds code to track CPU time per statement if you specify -qc, or to track
statement coverage if you specify -ql. For more information, see the descriptions
of the profile and add_profile commands.

-Uname Undefines a specified predefined compiler macro. The compiler does not issue a
diagnostic if the given name is not a predefined macro.
OpenVOS Commands Reference Manual (R098) 2-113

cc
* -suppress_diag number
Suppresses any diagnostic having the severity level specified in number. Severity
levels range from 0 through 4, but the compiler never suppresses diagnostics having a
severity of 3 or greater. If you want multiple diagnostics to be suppressed, separate each
number in the list by a space. The default is to display all diagnostics.

* -include include_file_name
Specifies one or more path names for include (header) files. The compiler treats the
files specified with the -include argument as the first include files. If the compiler
does not find the file, it displays an error message.

-u Converts UNIX-style path names for header file names (specified in #include
directives) into OpenVOS-style path names. That is, the compiler converts / to >,
and converts a leading ./ to (current_dir)>. In addition, the -u option
changes the order in which directories are searched to match typical UNIX
behavior: for header files specified with quotation marks, the referencing
directory (the directory containing the source module or header file that holds the
current #include directive) is the starting place for the search.

-W Causes the compiler to display verbose diagnostic messages on the terminal.
Verbose messages are always displayed in the .error file and the .list file.
The -W option affects only the format of diagnostics displayed on the terminal’s
screen.

-w[n] Suppresses diagnostics of severity level n and less. Valid values for the severity
level given in n are 1 and 2. If you omit n, the default level is 1. The compiler
never suppresses diagnostics of severity-3 or severity-4.

-Xa Specifies the degree of ANSI-C conformance that the compiler will use.
By default or if you specify -Xa, the compiler uses the default conformance
mode. In this mode, the compiler is ANSI-C compliant with two exceptions: it
does not recognize trigraphs and it defines several keywords not defined by the
ANSI C Standard.

-XC If you specify -XC, the compiler uses the default conformance mode but also
allows C++-style comments.

-Xc If you specify -Xc, the compiler uses strict ANSI-C conformance mode. In this
mode, the compiler recognizes trigraphs and restricts all language extensions. In
addition, the compiler issues diagnostics for programming constructs that violate
the ANSI C Standard’s rules. The compiler also disables all long long int
functionality. In this mode, the compiler does not produce an object module if it
generates any warning or error messages.

-Xt If you specify -Xt, the compiler use a transitional conformance mode, allowing
certain usages and programming constructs that were common in some older,
“traditional” (pre-ANSI) C compilers.

Table 2-9. cc Command: Short Options (Continued)

Short Option Description
2-114

cc
* -processor processor_string <CYCLE>
Specifies the processor on which the program module (.pm) is to run. The display form
for the -processor argument restricts the values that you can choose to values for the
processor family of the current module.

If the current module uses a processor from the IA-32 family, or if you specify, on the
command line, the -processor argument with the pentium4 value, the allowed
processor_string values are as follows:

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors. To determine the default value, issue the display_error
m$default_processor command. By default, the compiler produces code intended
for the processor specified by default.

* -mapping_rules mapping_string <CYCLE>
Specifies the data alignment values for a given compilation. The allowed values for
mapping_string are as follows:

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. To determine the default value, issue the display_error
m$default_mapping command. By default, the compiler uses the data alignment
rules specified by default. See the Explanation section of this command description
for more information on the -mapping_rules argument.

* -type_checking level <CYCLE>
Specifies the level of type checking that the compiler uses to diagnose occurrences of
implicit data-type conversions and other programming constructs that can cause error
conditions to occur. You can specify one of five levels of data-type checking in level.

 default
 none
 minimum
 normal
 pedantic

Note: If you use the -type_checking argument and also use the -Xc option,
you should specify minimum as the level of type checking so that the -Xc option
will work correctly.
OpenVOS Commands Reference Manual (R098) 2-115

cc
The default value causes the compiler to use the normal level of checking unless
you specify the -Xc option. If you specify -Xc, the compiler uses the minimum level.
See the Explanation section of this command description for information on the five
levels.

* -extension_checking level <CYCLE>
Checks for the use of OpenVOS Standard C language extensions that can affect
program transportability. OpenVOS Standard C allows certain programming practices
that are not allowed by the ANSI C Standard. You can specify one of three levels of
extension checking in level.

 none
 minor
 all

By default, the compiler uses a level of minor. See the Explanation section of this
command description for information on the three levels.

* -check_uninitialized <CYCLE>
Checks for uninitialized variables if you also specify the value of -O (optimization
level) as 3 or 4. If you specify this argument and a value for -O that is less than 3, the
compiler issues an error. The -check_uninitialized argument and the -O option
determine how the compiler checks for uninitialized variables. The categories of
uninitialized variables diagnosed by the compiler vary depending on whether you
choose both -check_uninitialized and an optimization level of at least 3, or
choose only an optimization level of at least 3. See the Explanation section of this
command description for information on checking for uninitialized variables.

* -default_char string <CYCLE>
Specifies whether char data items that are declared without an explicit signed or
unsigned keyword are signed or unsigned. The allowed values for string are
signed and unsigned. By default, char data items that are declared without an
explicit signed or unsigned keyword are unsigned.

* -check_enumeration <CYCLE>
Checks operations on enumeration data. The compiler ensures that an enumeration
item is only assigned or compared against another item of the same enumeration type
or one of its defined enumerators. Other usages are allowed, but the compiler issues a
warning message.

By default, the compiler does not check operations on enumeration data. To make the
compiler diagnose implicit conversions involving an enumeration item, you must
specify at least the minimum value for -type_checking. If you specify
-type_checking none, you disable the type checking performed by the
-check_enumeration argument.
2-116

cc
* -truncate_to string <CYCLE>
Causes the compiler to truncate externally visible objects. The allowed values for
string follow.

 default
 28/warn
 28
 32/warn
 32

By default, the compiler uses the default value, which maintains all names internally
as specified. See the Explanation section of this command description for information
on the -truncate_to argument.

* -check_incompatible <CYCLE>
Checks for programming constructs that the OpenVOS Standard C compiler (the cc
command) treats differently from and the OpenVOS C compiler (the c command). The
command checks for the following incompatibilities.

 appearance of trigraphs (if you also specify -Xc)

 use of signed bit fields

 declarations with unnamed bit fields in a structure having an initializer list

 hexadecimal escape sequences whose value would be interpreted differently by
the two compilers

 use of macro definitions in which parameter names appear within character
constants or character-string literals in macro-definition lines

By default, the compiler does not check for these programming constructs.

* -mapcase <CYCLE>
Interprets all uppercase letters except those in character constants and character-string
literals as lowercase letters. If you specify -mapcase and the source module contains
an external variable name or entry name, you may not be able to bind the resulting
object module.

By default, the compiler distinguishes between uppercase and lowercase letters, and
keywords must be in lowercase. See the Explanation section of this command
description for more information on the -mapcase argument.

* -check <CYCLE>
Checks for out-of-bounds array subscript errors. If the error is caused by an array
subscript that is a constant value, the compiler may detect the error at compile time.
Otherwise, the error is detected at run time. By default, the compiler does not check for
out-of-bounds array subscript errors.

* -nesting <CYCLE>
Creates a compilation listing and prints, immediately before each line, the nesting level
of structure definitions and compound statements. The top level is 1, the next level is 2,
OpenVOS Commands Reference Manual (R098) 2-117

cc
and so forth. By default, the compiler does not put the nesting level on source
statements in any listing it produces.

* -system_programming <CYCLE>
Performs checks that are useful both in system programming and application
programming. The compiler issues a diagnostic when it detects the following:

 alignment padding within structures that are allocated using the longmap
alignment rules

 a function that is declared or defined without a prototype if the function is
referenced in the source module

 an unrecognized #pragma directive

The -system_programming argument also returns a warning message when a
slash-asterisk (/* or */) style of comment contains a slash-asterisk comment start
sequence with no corresponding slash-asterisk comment end sequence. For example,
the following comment does not return a warning:

/* This comment is fine. */

However, the following comment does return a warning:

/* This comment generates a warning because
/* it contains an extra slash-asterisk. */

By default, the compiler does not perform the system programming checks. See the
OpenVOS Standard C Reference Manual (R363) for information on #pragma
directives.

* -fixedoverflow <CYCLE>
Generates code to check for fixed-point overflow in arithmetic operations when the
program is run, and to signal the fixedoverflow condition when it occurs. By
default, the OpenVOS Standard C compiler ensures that fixed overflow exceptions are
never detected in arithmetic operations. When you do not select the -fixedoverflow
argument and fixed-point overflow occurs, the high-order bits that caused the overflow
are lost, and the remaining bits appear as they normally would in the result.

* -table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger. The compiler also performs some related operations. (See the Explanation
section of this command description for details.) In addition, it suppresses
interstatement code optimization, resulting in code that is slower than normal.
Specifying -table sets the maximum optimization level to 1 unless it has been set to 0
with the -O option. By default, the compiler does not create a symbol table.

Note: A symbol table greatly increases the size of an object module.

* -compress <CYCLE>
Enables the preprocessing and compiling of a source module containing more than the
compiler limit of 2,147,483,647 lines of input (in the source module itself as well as
2-118

cc
lines in any include files). By default, a source module can contain no more than
2,147,483,647 lines of input.

The preprocessor always outputs only nonblank lines. That is, the preprocessor does
not output blank lines, lines with comments, lines containing preprocessor directives
(other than #pragma directives and unknown directives), and lines not incorporated as
a result of conditional inclusion. When you use -compress, the compiler refers to the
line numbers of the preprocessor’s output (which contains only nonblank lines) rather
than to the line numbers of the original source file. Thus, with the -compress
argument, a source module can contain up to 2,147,483,647 nonblank lines. With the
-no_compress argument, the line numbers in the original source code are
communicated to the compiler. The line numbers shown on a compilation listing are
accurate whether the -compress or -no_compress argument is used. If the
-compress argument is used, the compilation listing is the only way to determine what
line number corresponds to what line of source code. Also, using the -compress
argument eliminates all include file boundaries and changes the line numbers. Thus, it
is more difficult to debug a progam compiled with the -compress argument.

* -list <CYCLE>
Creates a compilation listing. A compilation listing shows all source statements from
the source module and, by default, from local include files. The listing also contains a
summary of all data definitions and the path names of include files used. You need not
select -list when you specify -full, -nesting, or -xref, since those arguments
create a compilation listing in addition to other listings. By default, the compiler does
not generate a compilation listing.

* -xref <CYCLE>
Creates a compilation listing and an alphabetized cross-reference listing of all data
actually referenced in the program. The following are the allowed values for this
argument.

 none
 referenced
 all

The default value is none. If you specify referenced, the command includes in the
listing only functions and objects referenced in the program. If you specify all, the
command includes in the listing all function and object identifiers in the program.

* -statistics <CYCLE>
Displays statistics about the compilation as it proceeds. The compiler displays the
version number of the compiler as well as the following statistics for each phase:

 disk I/O information
 elapsed real time
 amount of storage used
 number of page faults taken
 elapsed CPU time
 time when the compiler completed the phase
OpenVOS Commands Reference Manual (R098) 2-119

cc
The compiler also displays statistical information for the entire compilation, such as the
number of source lines and the symbol table size.

You can specify -statistics to see the progress of the compilation and to determine
the phase in which an error occurs. If the compiler produces a listing, it puts the
statistics in the listing. By default, the compiler does not display compilation statistics.

* -full <CYCLE>
Creates, from the compiled object code, an assembly language listing, with added
comments, in addition to a compilation listing. The compiler uses a disassembler to
produce the listing. By default, the compiler does not produce an assembly language
listing.

* -show_include string <CYCLE>
Controls which include (header) files the compiler shows in the compilation listing
.list file. The allowed values for string are shown in the following table.

* -show_macros string <CYCLE>
Specifies the form in which the source code for macros is shown in the compilation
listing. The allowed values for string are shown in the following table.

* -store_args <CYCLE>
This argument has no effect on programs compiled for ftServer modules but has been
retained for compatibility with existing software build scripts.

Value Description

local Only show files included by an #include directive that uses the
delimiters " and ". This value is the default.

standard Only show files included by an #include directive that uses the
delimiters < and >.

all Show all include files.

none Do not show any include files.

Value Description

unexpanded Macros are shown in unexpanded form in the .list file. This
value is the default.

expanded Macros are shown in expanded form in the .list file.

both_ways Macros are shown in both the original and in the unexpanded form
in the .list file.
2-120

cc
* -check_arguments <CYCLE>
Issues a warning message when the value, rather than the address of the value, of a
char_varying string or struct longer than eight bytes is passed to a function with
no prototype or variable argument list. By default, argument checking does not occur.

Explanation
The cc command compiles an OpenVOS Standard C source module into an object module.
For a full explanation of the arguments and options that are available with the cc command,
see the OpenVOS Standard C User’s Guide (R364).

Note: Many people use cc as an abbreviation for the OpenVOS C command, c. That
is, they have a line similar to the following in their abbreviations file:

first cc by c

If you have such a line in your abbreviations file, you must either remove the line
or you must precede the cc command with an exclamation point when you issue it
(!cc). Otherwise, you will invoke the c command instead of the cc command (the
OpenVOS Standard C compiler).

The name of the source module must have the .c suffix. You can either supply or omit the .c
suffix when you give source_file_name. The compiler generates an object module, puts
it in your current directory, and names it. By default, the name of the object module is the
name of the source file with the suffix changed from .c to .obj.

In general, a value specified in a source module (using the #pragma preprocessor directive)
takes precedence over values specified on the command line. The arguments
-default_char, -check_enumeration, -extension_checking, -fixedoverflow,
-mapcase, -mapping_rules, -processor, -show_macros, -system_programming,
and -type_checking have corresponding #pragma options that can be entered in the
source code.

When you are compiling for an ftServer module at all optimization levels, the module on
which you are compiling must have at least 30,000 pages of paging partition available to
avoid running out of virtual memory. In addition, the module on which you are compiling
should have 64MB of physical memory available to achieve optimal compiler performance.

Syntax for the Short Options
For the short options, the syntax is somewhat different from that for arguments to other
OpenVOS commands.

 You can specify short option names individually, separating each option with a space.
For example:

cc my_file -g -u -w
OpenVOS Commands Reference Manual (R098) 2-121

cc
 You can combine most short options into one or more option strings, each beginning
with a hyphen. For example:

cc -guw my_file
cc -g my_file -uw

A space must appear before each new option string, and no space can appear between options
when you concatenate them. Only those short options that take no arguments (-A, -E, -g, -M,
-u, and -W) or take single-character arguments (-O, -q, -X, and -w) can be combined into
option strings.

The -O Short Option and Optimization
The compiler optimizes the object code during compilation unless you explicitly specify
optimization level 0. The cc options and arguments shown in Table 2-10 determine the
optimization level that the compiler uses for a source module. If you do not specify an
optimization level, the default optimization level is 3 unless you select the -table argument.

Note: If you compile a program with either the -ql or -qc option, you must specify
an optimization level lower than 3. Otherwise, -ql and -qc might not return accurate
information, because high optimization levels can cause code to be moved from one
statement to another.

10

† If you specify both the -table argument and the -g option, the compiler produces
only a production symbol table and sets the optimization level to 3 unless you explicitly
specify some other optimization level with the -O option. Unlike -table, -g does not
suppress interstatement code optimization. As a result, the set and continue requests
of the debug command can lead to unpredictable results. Also, the contents of register
variables cannot be accurately displayed with the display request of the debug
command. In addition, if the optimization level is greater than 1, the contents of any
variables may not be accurately displayed with the display request of the debug
command.

Although compilation time may be longer, the object code produced when you specify -O4
should be significantly more efficient and will bind and execute faster than the code produced
at a lower optimization level.

Table 2-10. cc Command: Optimization-Related Options and Arguments

Option or Argument Optimization Level for the Source Module

-O Specifies the level of optimization that the compiler uses. Allowed
values for level are 0, 1, 2, 3, and 4. The default value is 3 if you do
not use the -O option. If you specify -O without specifying a level, the
optimization level is 4.

-table† Specifies optimization level 1. This argument overrides the -O option
if that option is used.
2-122

cc
While you are developing a program and, thus, repeatedly modifying and recompiling it, you
might not want to use optimization level 4 for the following reasons.

 Much more compilation time is required for optimization level 4 than for any of the
lower levels. At optimization level 4, compilation time can increase by a factor of two
or even more for source modules with functions having many lines of code.

 The code generated is often much harder to follow in machine-mode debugging
because the values currently in registers may have been set far away from where they
are used. Also, a variable’s value is less likely to be in storage for source-mode
debugging.

Optimizations for ftServer Modules
The -optimization_level argument allows you to optimize programs at different levels.
When you are compiling a source module to run on ftServer modules, the levels of
optimization are 0, 1, 2, and 3. Specifying optimization level 3 or 4 causes the compiler to
perform level 3 optimizations.

If you specify optimization level 0, only the following optimizations are performed:

 local register allocation
 the elimination of unreachable code

If you specify optimization level 1, the compiler performs all level-0 optimizations plus the
following other local optimizations.

 local pattern replacement
 short-circuit evaluation of Boolean expressions
 recognition of identity constants
 constant folding
 result incorporation
 peephole optimizations within a single statement
 local combination of common subexpressions within a statement

If you specify optimization level 2, the compiler performs all level-1 optimizations plus the
following global optimizations.

 branch retargeting
 global combination of common subexpressions
 removal of invariant expressions from loops
 subsumption
 peephole optimizations across statement boundaries
 global register allocation

If you specify optimization level 3, the compiler performs all level-2 optimizations plus the
following global optimizations.

 constant propagation
 removal of invariant assignments from loops
 strength reduction
 linear test replacement
OpenVOS Commands Reference Manual (R098) 2-123

cc
 elimination of dead assignments
 elimination of useless loops
 detection of uninitialized variables
 elimination of dead code and dead stores
 inline expansion
 instruction scheduling
 no allocation of stack space by automatic variables whose values are kept in registers

As stated above, unreachable code is eliminated at all optimization levels on ftServer
modules. Sometimes, however, you might want your program to contain some code that will
be executed only during a debugging session, not during normal program execution. To
prevent the compiler from eliminating such unreachable code, you might consider changing
your program as follows.

volatile static int always_zero=0;

if (always_zero != 0) {
/* Code that should not be eliminated goes here */

If you delete the volatile attribute from the preceding declaration, the compiler will
eliminate the unreachable code. See the OpenVOS Standard C User’s Guide (R364) for more
information on volatile.

If you specify optimization level 4, the compiler performs the same optimizations that it
performs for level 3.

The -X Short Options and ANSI-C Conformance
You can use the -X short options to specify the degree of ANSI-C conformance that the
compiler uses. By default or if you specify -Xa, the OpenVOS Standard C compiler is ANSI
C compliant with two exceptions: it does not recognize trigraphs (three-character sequences,
beginning with the characters ??, that represent single characters), and it defines several
keywords not defined by the ANSI C Standard.

When you select -Xc (strict ANSI-C conformance), the compiler does the following:

 does not recognize char_varying, ext_shared, and accept, which are extensions
to OpenVOS Standard C, as keywords. With -Xc, the compiler treats these items as
undefined identifiers and issues a warning when one is used.

 requires that all variables be defined

 recognizes trigraphs

 diagnoses all of the constructs diagnosed by -extension_checking all. In
addition, the compiler diagnoses the following ANSI C Standard violations, some of
which are harmless and can typically be ignored.

– incrementing or decrementing a type-casted pointer

– conversions between a pointer to void and pointer to a function, and vice versa

– conversions between a pointer to long and a pointer to int
2-124

cc
– incomplete types, even if not allocated

– two union members having the same name, even if the member is not referenced

– octal and hexadecimal escape sequences producing a value too large to fit in
wchar_t (greater than 255 decimal)

– using the comma operator in a constant expression

– any attempt to modify a string constant (if you do not specify -Xc, this is detected
at run time)

Finally, with -Xc, unknown or syntactically incorrect #pragma options are not diagnosed
and are ignored, even if you specify -system_programming, which normally causes these
to be diagnosed.

The -Xt option causes the compiler to allow certain usages and constructs common in some
older, “traditional” (pre-ANSI) C compilers, such as the OpenVOS C compiler (the c
command). When you select -Xt, the compiler does the following:

 suppresses the definition of the __STDC__ predefined macro

 suppresses diagnostics for extraneous data on #else and #endif preprocessor
directive lines

 expands macro parameter names that appear within character constants and
character-string literals in macro-definition lines

 interprets external object definitions in the same manner as they were interpreted by the
OpenVOS C compiler

 allows relational operators to be used with structures and unions

 recognizes the #options, #page, #list, and #nolist preprocessor directives

 limits values in a case label to between -32,768 through 32,767 or 0 through 65,535

 recognizes certain #pragma options that were associated with the OpenVOS C
compiler

The -processor Argument
The -processor argument allows you to specify the processor on which the program is to
run. The -processor argument also allows you to perform cross-compilation on a source
module if the C cross compiler is available on your system. Cross-compilation occurs when
a compiler running on one processor family translates a source module into object code for
another processor family. The IA-32 cross compiler generates code to run on ftServer
modules. Specify the value pentium4 for the -processor argument to target an ftServer
module.

Depending on the value specified in the -processor argument or the corresponding
#pragma option, the compiler automatically defines one preprocessor variable for the
OpenVOS Commands Reference Manual (R098) 2-125

cc
processor family and one or more preprocessor variables corresponding to the processor
type(s), as shown in Table 2-11.

11

If you specify -processor pentium4 on the command line, the preprocessor variables
__PENTIUM4__, __IA32__, and __i386 are defined.

If the value specified in the -processor argument indicates the IA-32 processor, the
maximum number of bytes available for each function’s initial stack frame is 2,147,483,584
bytes.

The amount of automatic storage you can actually declare is somewhat less than these limits
because temporary variables generated by the compiler also count towards the limit. Note that
although the OpenVOS Standard C compiler supports extremely large values (such as
2,147,483,646), the operating system does not support them.

See the OpenVOS Standard C User’s Guide (R364) for more information on the
-processor argument and these initial stack frame limits.

The -mapping_rules Argument
The -mapping_rules argument allows you to specify the default alignment rules for a
given compilation.

 The value default indicates the system-wide default. The default is site-settable.

 The value shortmap specifies that the shortmap alignment rules are to be used for the
source module.

 The value longmap specifies that the longmap alignment rules are to be used for the
source module.

In the -mapping_rules argument, the values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively, except
that they also diagnose alignment padding within structures. For example, if you specify
default/check, the compiler displays a diagnostic message stating how many bytes of
padding exist within a structure. A #pragma preprocessor control line indicating a data
alignment method overrides the alignment method specified in -mapping_rules, but
alignment padding within structures is still diagnosed if you specify one of the checking
values in the -mapping_rules argument. For more information on data alignment rules, see
the OpenVOS Standard C Reference Manual (R363).

The -type_checking Argument
The -type_checking argument allows you to specify the level of type checking that the
compiler uses to diagnose occurrences of implicit data-type conversions and other

Table 2-11. Predefined Preprocessor Variables

Processor Value Preprocessor Variable

default Varies, depending on the default system processor

pentium4 __PENTIUM4__, __IA32__, and __i386
2-126

cc
programming constructs that can cause error conditions to occur. The four levels of data-type
checking are none, minimum, normal, and pedantic. The normal level of type checking
is the level most programmers will want for a typical program.

If you specify none as the level of type checking, the compiler does not perform any checks
for data-type consistency.

If you specify minimum as the level of type checking, the compiler produces warnings for the
following implicit data-type conversions involving pointer and char_varying conversions:

 pointer to pointer when the pointed-to types are incompatible
 non-char_varying to char_varying string
 char_varying string to non-char_varying

If you specify normal as the level of type checking, the compiler includes all minimum
diagnostics and produces warnings for the following occurrences:

 use of an expression that does not produce code (for example, a == 0;)

 failure to declare or define a function before it is invoked

 failure to supply a value in a return statement for a function defined with a non-void
return type

 implicit data-type conversion where precision is lost (for example, float or double
or long double to int conversion)

If you specify pedantic as the level of type checking, the compiler includes all minimum
and normal diagnostics and produces warnings for the following implicit data-type
conversions where precision or value can be lost:

 signed to unsigned
 int or long to short or char
 short to char
 double or long double to float
 int or long to float

The -extension_checking Argument
The -extension_checking argument allows you to specify whether and how the compiler
checks for OpenVOS Standard C language extensions. The three levels of extension checking
are none, minor, and all.

If you specify none as the level of extension checking, the compiler does not perform any
checks for OpenVOS Standard C extensions.

If you specify minor as the level of extension checking, the compiler produces warnings
when you use the following OpenVOS Standard C language extensions:

 an undeclared identifier implicitly defined as int
 a partially qualified reference to a structure or union member (for example, referring to

a structure member ex_struct.name as name)
OpenVOS Commands Reference Manual (R098) 2-127

cc
If you specify all as the level of extension checking, the compiler includes all minor
diagnostics and produces warnings when you use the following OpenVOS Standard C
language extensions:

 the invocation of a function-like macro with missing arguments
 a value less than 1 or greater than 32,767 with a #line directive
 the declaration of an anonymous data item (for example, a struct with no name)
 the declaration of a char_varying data item
 the declaration of a bit field having a type other than int or unsigned int
 two or more identical type definitions with the same name in the same scope
 an extern object declaration that appears in a block and that contains an initializer
 a static function declaration that appears within a block
 the ext_shared storage-class specifier
 a linkage specification, such as "pl1"
 a built-in function, such as $substr
 the Forms Management System accept or screen statement
 the address-of operator (&) with a non-lvalue in an argument list

The -extension_checking argument diagnoses extensions, but it does not prevent their
use. For example, while it diagnoses the use of keywords, such as char_varying, that are
extensions to those allowed by the ANSI C Standard, it does not prevent their use. To prevent
the use of extensions, use the -Xc command-line option. When you use the -Xc
command-line option and also use the extension_checking option, the -Xc option
overrides any value given in the extension_checking option.

The -check_uninitialized Argument
The optimization level for a source module also affects the functionality of the
-check_uninitialized argument.

 If you specify the -check_uninitialized argument and an optimization level of at
least 3, the compiler diagnoses instances of variables that it knows are uninitialized as
well as some instances of variables that may be uninitialized (that is, variables that are
initialized as part of code executed conditionally).

 If you do not specify the -check_uninitialized argument but do select an
optimization level of at least 3, the compiler diagnoses instances of variables within the
function definition that it knows are uninitialized. In this case, the compiler does not
issue a diagnostic for a variable that is initialized as part of code executed conditionally.

 If you specify an optimization level of less than 3, either explicitly or implicitly (such
as by specifying the -table argument), the compiler issues an error and does not
diagnose uninitialized variables even if you select -check_uninitialized.

The -table Argument and -g Short Option
If you specify the -table argument, the compiler creates a symbol table, and allocates
storage and generates addresses for all external references, including any that are not used.
The compiler suppresses interstatement code optimization. The compiler also assures that the
generated code never uses a value in one statement from a register that has been loaded in
another. That is, all statements are completely self-contained; identifiers can be “set” to any
value before executing a statement, and a continue request to branch to any statement will
2-128

cc
work as expected. Variables defined with the register storage class are allocated and kept
in memory locations.

If you select the -g short option, the compiler creates a production table for use in debugging.
With -g, the compiler performs all of the operations that it does with the -table argument
except that it does not suppress interstatement code optimization, register variables are not
always kept in memory, and only variables actually referenced are placed in the symbol table
(most unreferenced variables are from include files). Code produced with the -table
argument executes more slowly than code produced with the -g short option. Code produced
with -g may yield unpredictable results if you invoke the OpenVOS Symbolic Debugger set
and continue requests. Also, in this case, the contents of register variables cannot be
accurately displayed with the display request.

The -truncate_to Argument
The -truncate_to argument controls whether and how the compiler truncates externally
visible identifiers. By default, the compiler maintains all names internally as specified.
However, when the compiler enters the name of an externally visible object into the object
file, it is truncated to 32 characters. Such truncation can cause inconsistent results in that the
compiler will treat two long object names as distinct while the binder treats them as the same.
For example, if your program contains two external variables with 35-character-long names
that only differ in the final character, the compiler treats these as two separate variables. The
binder, however, since it only sees the first 32 characters, treats them as the same variable.

If you specify default, the compiler will not truncate the names of the externally visible
objects to 32 characters until it enters them into the object file. If you specify any of the values
other than default, the compiler truncates external names to the specified number of
characters and optionally issues a warning (indicating that compile-time truncation has
occurred). When a name is referenced, if no existing identifier is found, an attempt is made
to look for the truncated name. If the reference is resolved via the truncated name and a warn
option has been given, the compiler issues a message indicating the line number and the name
before and after every truncation. Thus, it is possible to have both external and internal names
without conflict, even though the first 28 or 32 characters are not unique.

The compiler issues a severity-3 error (regardless of whether warn is part of the option) if two
different external names are truncated and result in an identical name (that is, the first n
characters are identical). This situation will generally cause incorrect program behavior and
must be corrected.

The -mapcase Argument
When you compile a source module using the -mapcase argument, and the source module
contains an external variable name or entry name with one or more uppercase letters, you may
not be able to bind the resulting object module. If the binder encounters a reference to the
original name (for example, in a binder control file), it will not recognize the original name
and its lowercase version as the same name.

Compilation Listings
If you specify the -list, -full, -nesting, or -xref argument, the compiler creates a
compilation listing file and puts it in your current directory. The name of the compilation
listing is the name of the source file with the suffix changed from .c to .list. Any error
messages produced or statistics requested are appended to the list file. The -full argument
OpenVOS Commands Reference Manual (R098) 2-129

cc
creates an assembly language listing in addition to a compilation listing. The -nesting
argument adds numbers showing the nesting depth of each source statement in a compilation
listing. The -xref argument creates a list of cross-references in addition to a compilation
listing.

Interpreting Compiler Diagnostics
If the compiler discovers any errors in your source module, it displays an error message on
your terminal. The compiler also creates an error file in the current directory and writes the
error messages to the file. The name of the error file is the name of the source file with the
suffix changed from .c to .error. The compiler also appends error messages to a
compilation listing if it produces one. Any .error file is deleted by the system if a
subsequent compilation of the same source module contains no errors.

The OpenVOS Standard C compiler diagnoses five types of errors.

SEVERITY 0: Advice
SEVERITY 1: Warning
SEVERITY 2: Correctable error
SEVERITY 3: Uncorrectable error: translation can continue
SEVERITY 4: Uncorrectable error: translation cannot continue

The text of the error message usually explains the cause of the error.

A severity-0 error, although valid C, indicates that improvement is possible, usually in the
area of performance. Because the source module is syntactically correct, the compiled object
module can be bound and executed, but probably with less than optimum efficiency.

A severity-1 error, although possibly valid C, is most likely either a programming error or an
implicit data-type conversion if you selected a level of type checking other than none. Since
the source module is syntactically and semantically correct at the point of the error or
conversion, the compiler continues to compile the source and produces an object module.

A severity-2 error is invalid C, but the compiler can reinterpret the source in such a way that
it can continue to compile the program. The compiler proceeds as if the faulty code were
replaced with the most likely syntactically and semantically correct code and produces an
object module.

A severity-3 error is invalid C, and the compiler cannot reinterpret the source in such a way
that it can continue to compile the program into a usable object module. Nevertheless, the
compiler continues to process the program to detect additional errors.

A severity-4 error is invalid C, and the compiler cannot continue to process the program from
the point of the error.

If there are one or more errors but there is no error of severity 3 or greater, the compiler creates
an object module that you can bind, but the program may not perform as expected. If a
severity-3 or a severity-4 error occurs, the object module is not created.

The compiler always overwrites an existing object module having the same name as the
object module it produces.
2-130

cc
Access Requirements
You need read access to the source module to compile it. You need modify access to the
directory from which you are issuing the compile command, in which the .obj file will be
created.

Related Information
See the OpenVOS Standard C Reference Manual (R363) for a complete description of the
OpenVOS Standard C language. See the OpenVOS Standard C User’s Guide (R364) for
information on using the OpenVOS Standard C command and its arguments.
OpenVOS Commands Reference Manual (R098) 2-131

change_current_dir
change_current_dir 2-

Purpose
This command changes the current directory to a new directory.

Display Form

Command Line Form

change_current_dir [new_directory]
Arguments* new_directory

The new current directory. By default, the command returns you to your home
directory.

Explanation
The change_current_dir command changes your current directory to a new directory.
You can specify the new directory using either a full path name or a relative path name.

Access Requirements
If you have status access to the directory that becomes your new current directory, you can
display its contents. You must have modify access to a directory to create files in it or copy
files to it. If you have null access to the new directory and modify or status access to its parent
directory, you can change directories to the new directory, but you cannot perform any
operations on its contents.

Examples
Example 1.
To change the current directory to your home directory, use this command.

change_current_dir

------------------------------ change_current_dir ------------------------------
new_directory: ome_dir h
2-132

change_current_dir
Example 2.
To change the current directory to the directory with path name %s1#d02>Sales>Jones,
use this command.

change_current_dir %s1#d02>Sales>Jones

A new current directory can be on another disk, processing module, or system.

Related Information
For more information about directory management, see the command descriptions of
compare_dirs, copy_dir, create_dir, delete_dir, display_current_dir, and
move_dir. See also Introduction to VOS (R001) for a description of relative and full path
names.
OpenVOS Commands Reference Manual (R098) 2-133

change_password
change_password 2-

Purpose
This command changes your password.

Display Form — Prelogin

Display Form — Post-Login

Command Line Form — Prelogin
change_password user_name [-password current_password] [-module module_name]

Command Line Form — Post-Login
change_password [-module module_name]

Arguments* user_name Required
A person name or a full user name as registered in the system’s registration file. This
argument is case-insensitive. You can use an alias instead of your person name. If the
value of the -require_full_person argument of the login_admin command is
no, you can use a word of your person name if the word is unique on your system. For
example, if you are registered as Tom_Clark and no one else named Clark is
registered on your system, you can use Clark for your user name. However, if the
value of the -require_full_person argument of the login_admin command is
yes, you must use your person name, full user name, or an alias. In this case, you must
use Tom_Clark as your person name.

You may specify an optional group name, in which case it will be validated. You do not
need to specify a group name to change your password.

 -------------------------- change_password -------------------------
 user_name:
 -password:
 -module:

 -------------------------- change_password -------------------------
-module:
2-134

change_password
* -password current_password
Specifies your current password. If you omit this argument, you are prompted to enter
it, and the password is not displayed on your terminal. If you supply your password on
the command line, it is displayed.

Note: Abbreviations are not expanded.

* -module module_name
Changes your password on a specific module. Valid forms of module_name are
%system#module, and #module. The #module format specifies a module on the
current system. Primarily, you use this argument to change your password on a remote
system. If you do not specify this argument, your password is changed using the current
module.

Explanation
The change_password command changes your password, either at prelogin or post-login
time. This command is particularly useful if your site only allows SSH connections instead
of TELNET connections.

The following sections explain the differences between specifying change_password
before and after you are logged in.

Specifying change_password Before You Are Logged In
If you specify this command at prelogin time, all of the arguments are available.

This command first validates your current password. If it is correct, the command prompts
you for your new password and then prompts you a second time for your new password. You
must specify the same new password at each prompt.

Your system administrator can establish certain criteria that your passwords must meet, such
as minimum length, presence of punctuation characters, non-reuse of previous passwords,
non-use of null passwords, and so on.

If the new password passes the administrative criteria, it replaces the old password on all
modules in the system. If the new password is rejected, the change_password command
prompts you again for a new password.

Note: If the new password contains certain punctuation characters that the operating
system recognizes as delimiters, neither the login nor the change_password
command will allow you to specify the password on the command line. You must either
specify it in the command form or wait for the prompt.

Password changes are replicated to all modules in a system, so you need to change your
password only once per system.

When the command finishes, it returns you to the prelogin prompt, and you can enter another
prelogin command.

Specifying change_password After You Are Logged In
If you specify this command at post-login time, only the -module argument is available.
During this time, you can “force” a password change instead of actually changing your
OpenVOS Commands Reference Manual (R098) 2-135

change_password
password. When you force a password change, the command invalidates your password and
prompts you to change your password the next time you log in.

This command is effective at post-login time only if the current module and the module on
which the system’s registration database files reside (if they are different modules) have their
password expiration times set to a nonzero value. A system administrator sets the password
expiration time with the login_admin -password_exp_time command.

Access Requirements
Your user name must have access to the terminal that you are using to change your password.
If you attempt to change your password on a remote system, and the remote system requires
a password to access it, you will be prompted to provide a password to verify your access to
the remote system.

Examples
The following example illustrates how to use the change_password command.

change_password Tom_Clark
Current password:

 New Password (first attempt):
 New Password (second attempt):
 ready

Related Information
For information about logging in, see the description of the login command. For additional
information about changing passwords, see the OpenVOS Commands User’s Guide (R089).
For information about setting login parameters for a module, see the description of the
login_admin command in the manual OpenVOS System Administration: Registration and
Security (R283). For information about how an OpenVOS system administrator can change
the password of a specific user, see the description of the set_registration_info
command in the manual OpenVOS System Administration: Registration and Security (R283).
2-136

check_posix
check_posix 2-

Purpose
The check_posix command checks that the current module’s configuration meets
constraints imposed by the OpenVOS POSIX.1 implementation.

Display Form

Command-Line Form
check_posix [-no_check_legacy_inodes]

Arguments* -no_check_legacy_inodes <CYCLE>
Does not check whether local logical disks are configured such that 32-bit inode
numbers can overflow. By default, the command performs this check.

Explanation
The check_posix command checks that the current module’s configuration meets
constraints imposed by the OpenVOS POSIX.1 implementation. The following table lists the
constraints and the type of error that occurs if the constraint is not met.

 --------------------------------- check_posix --------------------------------
-check_legacy_inodes: yes

Constraint Type of Error If Constraint Not Met

The POSIX kernel is present. Fatal error

root.root and nobody.nobody are registered
in the user database; each has a valid POSIX
UID, a group ID, and a home directory.

Error

POSIX error codes are available. Warning

Local logical disks are not configured so that
32-bit inode numbers can overflow.

Warning

The system number is less than 128. Advice
OpenVOS Commands Reference Manual (R098) 2-137

check_posix
A fatal error indicates that POSIX programs either will not execute, or if they execute, will
not execute properly.

An error indicates that POSIX programs will execute but may not execute properly.

A warning indicates that some POSIX features may not work properly.

An advice message indicates that all POSIX features work properly. Some OpenVOS
extensions may not work.

Since a module’s configuration can change over time due to normal system administration
activity, such as adding additional disk space, you should run this command at regular
intervals.

This command does not check remote modules; you must run it independently on each
module in a system.
2-138

clone_dir
clone_dir 2-

Purpose
This command creates a directory that is a clone of another directory.

Display Form

Command Line Form
clone_dir source_dir

target_dir [-delete] [-brief]
Arguments* source_dir Required

The name or star name of the directory to be cloned.

* target_dir
The path name of a directory to which the command is to clone the directory. By
default, the command creates a directory of the same name as source_dir in the
current directory. If you specify target_dir and if source_dir is a star name and
target_dir is not, then target_dir is the name of the directory that will contain
the cloned directories. Otherwise, target_dir is the name of the cloned directory.

* -delete <CYCLE>
By default, the command asks you to confirm whether to delete a directory if its name
conflicts with the name specified in target_dir. If you specify -delete, the
command deletes a specified directory without first asking for confirmation.

* -brief <CYCLE>
By default, if you specify a star name for source_dir, the command displays a list of
the directories that it cloned. If you specify -brief, the command does not display this
list.

 ---------------------------------- clone_dir --------------------------------
 source_dir:
 target_dir:
 -delete: no
 -brief: no
OpenVOS Commands Reference Manual (R098) 2-139

clone_dir
Explanation
The clone_dir command has the same effect as copying a directory except that the
clone_dir command creates an empty directory. Access and default access lists, and all
attributes of the directory such as default open options, expandability, and both size and
default size limits are identical. In other words, the cloned directory has all of the original
directory’s attributes but none of its data.

If both target_dir and source_dir are star names, the command issues a message for
each directory cloned if the source and target names are not identical. If the containing path
name is the current directory, the command displays a partial directory name, rather than a
full path name.

See the copy_file command for a description of how star names function.

Examples
Assume that the current directory contains two directories, x1 and x2.

clone_dir x* y*
 Cloning y* from x*.
 y1 cloned from directory x1.
 y2 cloned from directory x2.

In the preceding example, the command displays a message for each directory, since the
source and target names are not the same. The command displays partial path names because
the directories are in the current directory.

change_current_dir x1
clone_dir <x*
 Cloning x* from %s#raid8>Smith>x*

In the preceding example, the command does not display any individual messages because
the source and target names are identical. The full path name of the source directory is
identified because it is not located in the current directory.

clone_dir x* y
 clone_dir: Some directory in the path name does not exist. Error in
 'target_dir'. %s#raid8>Smith>x1>y

In the preceding example, the command fails because y is the name of the directory into
which x1 and x2 would be cloned, and it does not exist.

clone_dir x* <y1
 Cloning %s#raid8>Smith>y1>x* from x*.

In the preceding example, the command creates x1 and x2 in %s#raid8>Smith>y1.

clone_dir x2 <y2
 Do you really wish to delete %s#raid8>Smith>y2? (yes, no)
2-140

clone_dir
In the preceding example, the source directory (x2) does not have a star name. Because the
target directory (<y2) exists, the command replaces it with the cloned directory after
verifying that this is the desired behavior.

Related Information
clone_file, copy_dir, copy_file
OpenVOS Commands Reference Manual (R098) 2-141

clone_file
clone_file 2-

Purpose
This command creates a file that is a clone of another file.

Display Form

Command Line Form
clone_file old_file

new_file [-delete]
Arguments* old_file Required

The name or star name of the file or files to be cloned.

* new_file
The path name of a file or existing directory into which the command is to copy the
cloned files. A file name can be a star name. If you specify a directory, the command
creates the cloned files in that directory. If you specify a file name, the command
creates the cloned files with that name.

* -delete <CYCLE>
By default, the command asks you to confirm whether to delete a file if its name
conflicts with the name specified in new_file. If you specify -delete, the command
deletes a specified file without first asking for confirmation.

Explanation
The clone_file command has the same effect as copying a file except that the
clone_file command creates an empty file. Access lists, indexes, expiration date, and all
attributes of the file such as safety-switch settings, implicit locking, allocation size, open
options, and so on are identical. In other words, the cloned file has all of the original file’s
attributes but none of its data.

See the copy_file command for a description of how star names function.

 ---------------------------------- clone_file --------------------------------
 old_file:
 new_file:
 -delete: no
2-142

clone_file
Related Information
clone_dir, copy_dir, copy_file
OpenVOS Commands Reference Manual (R098) 2-143

cobol
cobol 2-

Purpose
This command compiles an OpenVOS COBOL source module.

Display Form

------------------------------------- cobol ------------------------------------
source_file_name:
-default_sign: trailing_embedded
-define:
-processor: default
-mapping_rules: default
-language: compatible -level: none
-list: no -full: no
-xref: no -xref_format: standard
-table: no -production_table: no
-optimize: yes -optimization_level: 3
-check_uninitialized: no -check: no
-format: no -mapcase: no
-profile: no -cpu_profile: no
-statistics: no -silent: no
-default_comp: none -debugging_mode: no
-default_class: static -main: no
-segmentation: no -ansi_replace: no
2-144

cobol
Command Line Form

cobol source_file_name [-default_sign sign_type] [-define variable_name...] [-processor processor_string] [-mapping_rules mapping_string] [-language language_string] [-level number] [-list] [-full] [-xref] [-xref_format format] [-table] [-production_table] [-no_optimize] [-optimization_level number] [-check_uninitialized] [-check] [-format] [-mapcase]

¢ £
[-statistics] [-silent] [-default_comp number] [-debugging_mode] [-default_class class] [-main] [-segmentation] [-ansi_replace]

Arguments* source_file_name Required
An OpenVOS COBOL source module.

* -default_sign sign_type <CYCLE>
Sets the default sign for a compilation. Possible values for sign_type are
leading_separate, trailing_separate, leading_embedded, and
trailing_embedded. By default, the command sets the default sign to
trailing_embedded.

* -define variable_name
Defines variables to be used by the preprocessor. These variables are used during the
preprocessor phase of the compilation. Preprocessor variables can contain letters,
digits, or the underline character (_), in any position. (See the Explanation section of
this command description or the description of the preprocess_file command for
details.)

-profile
-cpu_profile
OpenVOS Commands Reference Manual (R098) 2-145

cobol
* -processor processor_string <CYCLE>
Specifies the processor on which the program module (.pm) is to run. The display form
for the -processor argument restricts the values that you can choose to values for the
processor family of the current module.

If the current module uses a processor from the IA-32 family, or if you specify, on the
command line, the -processor argument with the pentium4 value, the allowed
processor_string values are as follows:

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors.To determine the default value, issue the display_error
m$default_processor command. By default, the compiler produces code intended
for the processor specified by default.

* -mapping_rules mapping_string <CYCLE>
Specifies one of the following data alignment rules for a given compilation.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. To determine the default value, issue the display_error
m$default_mapping command. By default, the compiler uses the data alignment
rules specified by default. (See the Explanation section of this command description
for details.)
2-146

cobol
* -language language_string <CYCLE>
Specifies one of the following levels of ANSI COBOL at which the program is to be
compiled.

For more information on the differences between these levels, see the VOS COBOL
User’s Guide (R142) or the VOS COBOL Language Manual (R010).

By default, the program is compiled at the compatible level.

* -level number <CYCLE>
Determines the level of error to report, depending on the value of language_string.
If you specify ansi74 in the -language argument, this displays a message whenever
the compiler detects a language element whose 1974 Federal Information Processing
Standard (FIPS) level exceeds number. If you specify any other value for
language_string, the level of errors reported is based on the 1985 ANSI standard.
The compiler also puts the messages in any listing it produces. By default, the compiler
does not check for validation levels.

* -list <CYCLE>
Creates a compilation listing. A compilation listing shows all source statements from
the source module and include files, as well as a summary of all data definitions and
the path names of include files used. You need not specify -list if you specify -full
or -xref, since those arguments create a compilation listing in addition to other
listings. By default, the compiler does not generate a compilation listing.

* -full <CYCLE>
Creates from the compiled object code an assembly language listing (with added
comments) in addition to a compilation listing. By default, the compiler does not
produce an assembly language listing.

* -xref <CYCLE>
Creates a compilation listing and a cross-reference listing of all data actually referenced
in the program. The cross-reference information is sorted for Level-1 group identifiers,
unless you specify otherwise with -xref_format. By default, the compiler does not
generate a cross-reference listing.

compatible Provides COBOL-85 functionality that is compatible with
COBOL-74, except for the introduction of new reserved words.

ansi85 Provides complete COBOL-85 support, except for the use of call
and cancel statements to reference nested programs and static
reinitialization of end-of-perform ranges.

ansi74 Provides full ANSI COBOL-74 support and some operating system
extensions.

full_ansi85 Provides complete COBOL-85 support.
OpenVOS Commands Reference Manual (R098) 2-147

cobol
* -xref_format format <CYCLE>
Specifies one of the following formats for the cross-reference listing.

This argument is ignored unless you also specify -xref.

* -table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger. The compiler also performs some related operations. (See the Explanation
section of this command description for details.) In addition, -table suppresses
interstatement code optimization, which results in code that is slower than normal.
Specifying -table sets the maximum optimization level to 1, unless you explicitly set
the level to 0. By default, the compiler does not create a symbol table, suppress
interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -production_table and -table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -production_table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger in a production environment. Only variables actually referenced in the
program are placed in the symbol table. The compiler also performs some related
operations. (See the Explanation section of this command description for details.)
Unlike -table, -production_table does not suppress interstatement code
optimization. As a result, the set and continue requests of the debug command can
lead to unpredictable results. Also, the contents of variables in registers cannot be
accurately displayed with the display request of the debug command. In addition, if
the optimization level is greater than 2, the contents of any variables may not be
accurately displayed with the display request of the debug command. Specifying
-production_table sets the maximum optimization level to 3, unless you explicitly
specify some other value. By default, the compiler does not create a symbol table,
suppress interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

standard The cross-reference information is sorted for Level-1 group
identifiers. If you specify -xref without specifying
-xref_format, the information is displayed in this format.

sorted The cross-reference information is sorted for all names in the
program rather than only by Level-1 group identifiers. This value
gives no allocation information; it gives only lines on which an
identifier is defined and lines on which it is referenced.

all_sorted The cross-reference information is sorted for all names in the
program, whether or not they are referenced.
2-148

cobol
If you specify both -production_table and -table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -no_optimize <CYCLE>
Generates the object code without optimizing it. Optimization produces more compact
object code by removing unnecessary or redundant computations. Specifying
-no_optimize sets the optimization level to 0. This overrides any other specification
of the optimization level. By default, the compiler optimizes the object code.

* -optimization_level number <CYCLE>
Specifies the degree of optimization. The possible values are 0, 1, 2, 3, and 4. (See the
Explanation section of this command description for details.)

* -check_uninitialized <CYCLE>
Issues diagnostics for all references to uninitialized variables if you also specify an
optimization level of 3 or 4. If you specify this argument and an optimization level of
less than 3, the compiler issues an error. This argument is useful when verifying new
code or checking for possible bugs, but it can return misleading diagnostics, as in the
case of variables that are initialized within a conditional statement. The categories of
uninitialized variables diagnosed by the compiler vary, depending on whether you
choose both -check_uninitialized and an optimization level of at least 3, or
choose only an optimization level of at least 3. By default, the compiler does not check
variables for initialization.

* -check <CYCLE>
Checks for out-of-bounds array subscripts, indexes, and reference modifiers. The
compiler performs these checks while compiling and inserts code to check further
when the program is run. By default, the compiler does not check or insert checking
code.

* -format <CYCLE>
Compiles a source module whose textual format differs from the standard COBOL
format. By default, the source module must conform to the COBOL indentation rules.

* -mapcase <CYCLE>
Interprets all uppercase letters, except those in nonnumeric literals that are not the first
operand of a call statement, as lowercase letters. If you specify -mapcase, and the
source module contains an external variable name or entry name, you may not be able
to bind the resulting object module. (See the Explanation section of this command
description for details.) By default, the compiler distinguishes between uppercase and
lowercase letters, and reserved words must be in lower case.

* -profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement is executed when the program runs. (See the description of the profile and
add_profile commands.) By default, the compiler does not insert the counting code.
You cannot specify both -profile and -cpu_profile in the same command.
OpenVOS Commands Reference Manual (R098) 2-149

cobol
* -cpu_profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement executes, the amount of CPU time spent executing each statement, and the
number of page faults taken executing each statement when the program runs. (See the
description of the profile and add_profile commands.) By default, the compiler
does not insert the counting code. Note that the code inserted by this argument uses
much more CPU time, but provides more useful information, than the code inserted by
-profile. You cannot specify both -cpu_profile and -profile in the same
command.

* -statistics <CYCLE>
Displays the following statistics about the compilation as it proceeds:

 version number of the compiler
 elapsed CPU time
 elapsed real time
 number of page faults taken
 amount of storage used

You can specify -statistics to see the progress of the compilation and to determine
the phase in which an error occurs. If the compiler produces a listing, it puts the
statistics in the listing. By default, the compiler does not display compilation statistics.

* -silent <CYCLE>
Suppresses the warning messages of severity-1 or severity-0 errors on your terminal
during compilation. The compiler, nevertheless, puts the messages in an error file and
in any listing it produces. By default, the compiler writes all error messages on your
terminal.

* -default_comp number <CYCLE>
Produces data in the specified comp format where number is an integer from 1
through 6. By default, the compiler selects the most efficient computational type for
each variable defined with computational usage that is compatible with the
variable’s picture.

* -debugging_mode <CYCLE>
Compiles the program as though the debugging-mode clause were specified in the
special-names paragraph.

* -default_class class <CYCLE>
Specifies how uninitialized working-storage data should be allocated. The possible
values are static and auto. By default, the compiler allocates all uninitialized
working-storage data as static.

* -main <CYCLE>
Compiles the source module in a form that identifies the program as a main program,
thereby allowing the setting of external switches. By default, the source module is not
compiled as a main program. This argument is infrequently used.

* -segmentation <CYCLE>
Inserts code in the object module that initializes every independent segment each time
control is transferred to it, if required. An independent segment requires initialization
2-150

cobol
if it contains, for example, an alterable go to statement. By default, the compiler does
not insert the code. This argument is infrequently used.

* -ansi_replace <CYCLE>
Processes replace statements as defined by ANSI X3.23-1985. By default, simple
replace statements are treated as %replace compiler directives.

Explanation
The cobol command compiles an OpenVOS COBOL source module into an object module.

The name of the source module must have the suffix .cobol; you can either supply or omit
the suffix when you give source_file_name. The compiler generates an object module,
puts it in your current directory, and names it. The name of the object module is the name of
the source file with the suffix changed from .cobol to .obj.

When you are compiling programs for an ftServer module at all optimization levels, the
module on which you are compiling must have at least 30,000 pages of paging partition
available to avoid running out of virtual memory. In addition, the module on which you are
compiling should have 64MB of physical memory available to achieve optimal compiler
performance.

Using the -define Argument
The -define argument defines variables to be used during the preprocessor phase of the
compilation. For example, if you specify the following on the command line, the preprocessor
variables var_a and var_b will be initially defined during the preprocessing phase of the
compilation:

cobol prog1 -define var_a var_b

You use preprocessor variables with preprocessor statements to perform conditional
compilation on a program. Conditional compilation enables you to switch on or off various
statements in a program. This is useful, for example, if you want your program to compile
different lines of source code on different processors. There are six preprocessor statements.

 @define
 @undefine
 @if
 @else
 @elseif
 @endif

Preprocessor statements must begin in the first column of the source program. Therefore,
indentation of nested @if statements is not allowed.

A preprocessor statement must be contained on a single line. A line containing a preprocessor
statement cannot contain comments or parts of the source language. (An exception is the
@endif statement, which ignores any text following it on the line, thus allowing you to
comment on the source code.)
OpenVOS Commands Reference Manual (R098) 2-151

cobol
For more information on the preprocessor, see the description of the preprocess_file
command.

Using the -processor Argument
The -processor argument allows you to specify the processor on which the program is to
run. The -processor argument also allows you to perform cross-compilation on a source
module if the COBOL cross compiler is available on your system. Cross-compilation occurs
when a compiler running on one processor family translates a source module into object code
for another processor family. The IA-32 cross compiler generates code to run on ftServer
modules. Specify the value pentium4 for the -processor argument to target an ftServer
module.

Depending on the value specified in the -processor argument, the compiler automatically
defines one preprocessor variable for the processor family and one or more preprocessor
variables corresponding to the processor type(s), as shown in Table 2-12.

12

If you specify -processor pentium4 on the command line, the preprocessor variables
__PENTIUM4__, __IA32__, and __i386 are defined.

If the value specified in the -processor argument indicates the IA-32 processor, the
maximum number of bytes available for each function’s initial stack frame is 2,147,483,584
bytes.

The amount of automatic storage you can actually declare is somewhat less than these limits
because temporary variables generated by the compiler also count towards the limit.

Note: Although the OpenVOS COBOL compiler supports extremely large values (such
as 2,147,483,646), the operating system does not support them.

Using the -mapping_rules Argument
The -mapping_rules argument allows you to specify the data alignment rules for a given
compilation. The value default indicates the system-wide default. The default is
site-settable. The value shortmap specifies that the shortmap alignment rules are to be used
for the source module. The value longmap specifies that the longmap alignment rules are to
be used for the source module. The values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively, except
that they also diagnose alignment padding within records. For example, if you specify
default/check, the compiler displays a severity-0 message stating how many bytes of
padding exist between fields within a record. The using longmap/shortmap clause
overrides -mapping_rules values, but alignment padding within records is still diagnosed
if you specify one of the checking values.

Table 2-12. Predefined Preprocessor Variables

Processor Value Preprocessor Variable

default Varies, depending on the default system processor

pentium4 __PENTIUM4__, __IA32__, and __i386
2-152

cobol
For more information on data alignment rules, see the VOS COBOL Language
Manual (R010).

Using the -full, -list, or -xref Argument
If you specify the -full, -list, or -xref argument, the compiler creates a compilation
listing file and puts it in your current directory. The name of the compilation listing is
source_file_name.list. The -full argument creates an assembly language listing in
addition to a program listing. The -xref argument creates a list of cross-references in
addition to a program listing.

Normally, data defined as computational in COBOL gets a type based on the picture
description. The compiler selects the best data type for the picture description. However, with
the -default_comp argument, you can specify explicit computational values. For
example, computational-3 and computational-6 are reasonable defaults because they
can store data having any valid numeric picture; computational-3 data is packed.

Using the -table or -production_table Argument
If you specify the -table argument, the compiler creates a symbol table, and allocates storage
and generates addresses for all external references, including any that are not used.
Symbol-table capacity is 2,147,483,647 nodes. The compiler generates internal subroutines
that calculate size, offset, and bound expressions that determine the characteristics of
adjustable data. This allows the OpenVOS Symbolic Debugger to display and modify
variable-length data according to its current length. In addition, the compiler suppresses
interstatement code optimization. Code produced with -table executes more slowly than
code produced with -production_table.

If you specify the -production_table argument, the compiler performs all of the same
operations, except that it does not suppress interstatement code optimization, and only
variables actually referenced in the program are placed in the symbol table (most
unreferenced variables are from include files). Code produced with -production_table
can yield unpredictable results if you invoke the OpenVOS Symbolic Debugger set and
continue requests.

Optimizations for ftServer Modules
As mentioned in the previous section, the -optimization_level argument allows you to
optimize programs at different levels. When you are compiling a source module to run on
ftServer modules, the levels of optimizations are 1, 2, 3, and 4. Specifying optimization level
3 or 4 causes the compiler to perform level 3 optimizations.

If you specify optimization level 0, the compiler performs the following local optimizations.

 local register allocation
 elimination of unreachable code
OpenVOS Commands Reference Manual (R098) 2-153

cobol
If you specify optimization level 1, the compiler performs all level 0 optimizations plus the
following other local optimizations.

 local pattern replacement
 short-circuit evaluation of Boolean expressions
 recognition of algebraic identities
 constant folding
 local combination of common subexpressions within a statement
 peephole optimizations within a single statement
 result incorporation

If you specify optimization level 2, the compiler performs all level 1 optimizations plus the
following global optimizations.

 branch retargeting
 global combination of common subexpressions
 removal of invariant expressions from loops
 subsumption
 peephole optimizations across statement boundaries
 global register allocation

If you specify optimization level 3, the compiler performs all level 2 optimizations plus the
following global optimizations.

 constant propagation
 removal of invariant assignments from loops
 strength reduction
 linear test replacement
 elimination of dead assignments
 elimination of useless loops
 check for uninitialized variables
 elimination of dead code and dead stores
 inline expansion
 instruction scheduling

Using the -no_optimize, -table, or -optimization_level Argument
The level of optimization is determined by the arguments -no_optimize, -table, and
-optimization_level. Specifying -no_optimize sets the optimization level to 0.
Specifying -table sets the level to 1, unless you explicitly set the level to 0. The
-optimization_level argument sets the level to any of the permitted levels: 0, 1, 2, or 3.
The compiler sets the actual level to the lowest level set by any of the three arguments. By
default, the level is 3.

Note: If you compile a program with either the -profile or -cpu_profile
argument, you must specify an optimization level lower than 3. Otherwise, -profile
or -cpu_profile might not return accurate information, since high optimization
levels can cause code to be moved from one statement to another.
2-154

cobol
Using the -check_uninitialized Argument
The optimization level for a source module also affects the functionality of the
-check_uninitialized argument.

 If you specify the -check_uninitialized argument and an optimization level of at
least 3, the compiler diagnoses instances of variables that it knows are uninitialized as
well as some instances of variables that may be uninitialized (that is, variables that are
initialized as part of code executed conditionally).

 If you do not specify the -check_uninitialized argument but do select an
optimization level of at least 3, the compiler diagnoses instances of variables within the
function definition that it knows are uninitialized. In this case, the compiler does not
issue a diagnostic for a variable that is initialized as part of code executed conditionally.

 If you specify an optimization level of less than 3, either explicitly or implicitly (such
as by specifying the -table argument), the compiler issues an error and does not
diagnose uninitialized variables even if you select -check_uninitialized.

Using the -mapcase Argument
When you compile a source module using the -mapcase argument, and the module contains
an external variable name or entry name with one or more uppercase letters, you may not be
able to bind the resulting object module. If the binder encounters a reference to the original
name (for example, in a binder control file), it will not recognize the original name and its
lowercase version as the same name.

Interpreting Compiler Diagnostics
If the compiler discovers any errors in your source module, it displays an error message on
your terminal. Severity-1 and severity-0 messages are not displayed on your terminal when
you specify the -silent argument. The compiler also creates an error file named
source_file_name.error in the current directory and writes the error messages to the
file. The compiler also appends error messages to a compilation listing if it produces one. Any
.error file is deleted by the system if a subsequent compile to the same source file is
successful (contains no errors).

The OpenVOS COBOL compiler diagnoses five types of errors.

SEVERITY 0: Advice
SEVERITY 1: Warning
SEVERITY 2: Correctable error
SEVERITY 3: Uncorrectable error: translation can continue
SEVERITY 4: Uncorrectable error: translation cannot continue

The text of the error message explains the cause of the error.

A severity-0 error, although valid COBOL, indicates that improvement is possible, usually in
the area of performance. The source module is syntactically correct, so the compiled object
module can be bound and executed, but probably with less than optimum efficiency.

A severity-1 error, although valid COBOL, is probably a programming error. Since the source
module is syntactically correct at the point of a severity-1 error, however, the compiler
OpenVOS Commands Reference Manual (R098) 2-155

cobol
continues to compile the source. The compiled object module can be bound and executed, but
the program probably will not perform as expected.

A severity-2 error is invalid COBOL, but the compiler can reinterpret the source in such a way
that it can continue to compile the program. The compiler proceeds as if the faulty code were
replaced with the most likely syntactically correct code. The compiled object module can be
bound and executed, but it probably will not perform as expected.

A severity-3 error is invalid COBOL, and the compiler cannot reinterpret the source in such
a way that it can continue to compile the program into a usable object module. Nevertheless,
the compiler continues to process the program to detect any additional errors. However, the
object module is not created.

A severity-4 error is invalid COBOL, and the compiler cannot reinterpret the source in such
a way that it can continue to process the program from the point of the severity-4 error. The
object module is not created.

Note: If the compilation results in more than 100 errors, in any combination (excluding
severity-0 errors), compilation terminates.

The compiler always overwrites an existing object module having the same name as the
object module it produces.

Access Requirements
You need read access to a source module to compile it. You need modify access to the
directory from which you are issuing the command, in which the .obj file will be created.

Examples
This command compiles the OpenVOS COBOL source module make_report.cobol in the
current directory, using three arguments.

cobol make_report -list -table -mapcase

The compiler interprets uppercase letters according to the description of the -mapcase
argument. The object module make_report.obj is created and put into the current
directory. A symbol table is produced. The compiler creates the compilation listing
make_report.list and puts it in the current directory. If the compiler finds any errors, it
creates the error file make_report.error, writes error messages to it, and puts the file in
the current directory.

Related Information
See the VOS COBOL User’s Guide (R142) for more information on compiling OpenVOS
COBOL programs. See the VOS COBOL Language Manual (R010), for a complete
description of the OpenVOS COBOL language.
2-156

compare_dirs
compare_dirs 2-

Purpose
This command compares two directories and reports the differences.

Display Form

Command Line Form

compare_dirs directory_A
directory_B [-output_path output_path_name] [-data_compares compare_type] [-start_record start_record] [-end_record end_record] [-no_check_acls] [-check_block_count] [-check_times] [-check_author]

Arguments* directory_A Required
The path name of one directory to be compared. The directory is referred to as the
A-directory.

* directory_B Required
The path name of the other directory to be compared. The directory is referred to as the
B-directory.

* -output_path output_path_name
Directs the command output to the sequential file or device specified by
output_path_name. If output_path_name does not exist, the command creates

--------------------------------- compare_dirs ---------------------------------
directory_A:
directory_B:
-output_path:
-data_compares: logical
-start_record: 1
-end_record:
-check_acls: yes
-check_block_count: no
-check_times: no
-check_author: no
OpenVOS Commands Reference Manual (R098) 2-157

compare_dirs
that file in the specified directory. By default, the command directs output to your
default_output port.

* -data_compares compare_type <CYCLE>
Compares directories by different categories of data. Possible values for
compare_type are logical, by_block_first, by_block_only, and none. By
default, the command makes a logical comparison.

* -start_record start_record
Starts comparing the files in the two directories at the records numbered
start_record. By default, the command starts at the first record in each file. This
argument lets you disregard insignificant header information, such as a date that may
vary from file to file.

* -end_record end_record
Stops comparing the files in the two directories at the records whose numbers are
end_record. By default, the command stops after the last record.

* -no_check_acls <CYCLE>
Omits comparing the access control lists of files and subdirectories in the two
directories. By default, the command compares the access control lists of a pair of files
as it compares the files, and it compares the access control lists and default access
control lists of subdirectories. It also compares the default access control lists of the
A-directory and the B-directory.

* -check_block_count <CYCLE>
Compares the number of storage blocks occupied by files in the two directories. By
default, the command does not compare the block counts as it compares the files.

* -check_times <CYCLE>
Compares the times that all objects in the two directories were created, last modified,
last saved, and last used. By default, the command does not compare the times.

* -check_author <CYCLE>
Compares the authors of files in the two directories. By default, the command does not
compare the authors as it compares the files.

Explanation
The compare_dirs command compares the contents of two directories you specify and
reports on the differences in a selected set of attributes.

The compare_dirs command truncates an output file before writing the differences to it.
No message is sent if the objects are equal.

See the description of the compare_files command for an explanation of file comparison.
2-158

compare_dirs
The -data_compares argument allows you to specify one of several methods of comparing
the files in the directory.

 By default, the value is logical. In this case, comparison is by logical records.

 If you select the value by_block_only, the comparison is by disk blocks
(4096 bytes). The comparison in this case is faster than in the logical case; however,
logically identical files can have different disk block contents.

 If you select the by_block_first value, the comparison is first between disk blocks
and, if the files differ, between logical file content. If they still differ, it is a reportable
difference.

Comparison by block first is intended to permit a faster comparison than that permitted by the
logical value alone. However, if there are a great many differences in the logical content of
the directories compared, the by_block_first value is slower than the logical value. If
you select the none value, data in indexes and files are not compared; only file attributes are
compared.

Access Requirements
You need status access to the A-directory and the B-directory and either read access to a file
being compared or modify access to a superdirectory of the A-directory or the B-directory
containing a file to be compared. The latter allows the compare_dirs command to override
any access on the file for you while it compares the files; access is always left in its original
state when the command finishes.

Examples
This command compares the two specified directories.

compare_dirs customers <Smith>prospects

The compare_dirs command reports the differences to the default_output port, which
is normally attached to your terminal.

Related Information
For more information about directory management, see the command descriptions of
change_current_dir, copy_dir, create_dir, delete_dir,
display_current_dir, and move_dir.
OpenVOS Commands Reference Manual (R098) 2-159

compare_files
compare_files 2-

Purpose
This command compares one or more files with another file and reports the differences.

Display Form

-------------------------------- compare_files ---------------------------------
file_A:
path_B:
-ascii_records: yes
-ignore_blank_lines: yes
-binary_records: no
-index_for_A:
-index_for_B:
-check_block_count: no
-check_times: no
-check_author: no
-use_random_access: no
-compare_blocks: no
-compare_all_blocks: no
-continue: no
-output_path:
-start_record: 1
-end_record:
-difference_count:
-line_numbers: yes
-file_A_is_template: no
2-160

compare_files
Command Line Form

compare_files file_A [path_B] [-no_ascii_records] [-no_ignore_blank_lines] [-binary_records] [-index_for_A index_for_A] [-index_for_B index_for_B] [-check_block_count] [-check_times] [-check_author] [-use_random_access] [-compare_blocks] [-compare_all_blocks] [-continue] [-output_path output_path_name] [-start_record start_record] [-end_record end_record] [-difference_count difference_count] [-no_line_numbers] [-file_A_is_template]
Arguments* file_A Required

The name or star name of a file or files to be compared with the file or files specified
by path_B. The file is referred to as an A-file.

* path_B
Specifies the file or files to be compared with the A-files by giving either their file
names or the name of the containing directory. A file selected by this argument is
referred to as a B-file. If you specify a directory, the command compares each file in
that directory whose name matches the name of some A-file with the A-file it matched.
A path_B term that is a file name can be a star name. When path_B is a star name,
the command compares each B-file whose name matches an A-file with that A-file,
using star name pairs to determine matches where appropriate. By default, the
command proceeds as if you have specified the name of your current directory.

* -no_ascii_records <CYCLE>
Suppresses the display of ASCII data in any records in the compared files that differ.
By default, the command displays the records as ASCII text.

* -no_ignore_blank_lines <CYCLE>
Includes empty lines and trailing spaces in a record when comparing files. By default,
empty lines and trailing spaces are disregarded when comparing the files.

* -binary_records <CYCLE>
Displays as hexadecimal integers the data in any records in the compared files that
differ. By default, no_ascii_records defines the way the command displays the
differing records.
OpenVOS Commands Reference Manual (R098) 2-161

compare_files
* -index_for_A index_for_A
Specifies an index for the designated A-files. The command uses the index to define the
order of the records in the A-file. By default, the command accesses the records in the
order in which they were written to the file.

* -index_for_B index_for_B
Specifies an index for the B-files. The command uses the index to define the order of
the records in the B-file. If you specify an equal sign (=) for index_for_B, the
command uses index_for_A. By default, the command accesses the records in the
order in which they were written to the file.

* -check_block_count <CYCLE>
Compares the block counts of the compared files. By default, the command disregards
the block counts when comparing the files.

* -check_times <CYCLE>
Compares the times when the compared files were created, last modified, last saved,
and last used. By default, the command disregards these times when comparing the
files.

* -check_author <CYCLE>
Compares the authors of the files. By default, the command disregards the authors
when comparing the files.

* -use_random_access <CYCLE>
Accesses the files being compared in random access mode. By default, the command
accesses the files in sequential access mode or indexed access mode.

* -compare_blocks <CYCLE>
Compares files block-by-block. This argument is useful for comparing files containing
binary data. By default, the comparison stops at the first block of the files being
compared that contains differences. If you specify -compare_blocks and
-continue, the file comparison does not stop after the command finds a difference.

Note: Structured files (that is, files other than stream files) may be logically
identical, but their blocks are not necessarily identical.

* -compare_all_blocks <CYCLE>
Compares all blocks in the two files, including unallocated blocks in sparse files.

* -continue <CYCLE>
Determines whether the command continues to compare files after finding a difference.
If you do not specify this argument, a stream file that contains records longer than
32,767 is considered to contain binary data, and the file comparison stops after the first
difference that follows the occurrence of a long record.

If you specify -compare_blocks or -compare_all_blocks, -no_continue is
the default. Otherwise, -continue is the default.

You can specify -no_continue to stop any type of file comparisons after the first
difference. This argument produces different behavior than if you specify
-difference_count with a value of 1. With -difference_count 1, if the
2-162

compare_files
command finds a difference, it displays that difference and continues to compare the
files and shows the totals. With -no_continue, if the command finds a difference, it
stops without analyzing the remainder of the file.

* -output_path output_path_name
Directs the output from the command to the sequential file or I/O device
output_path_name. If the file does not exist, the operating system creates it. By
default, the command writes the output to your default_output port.

* -start_record start_record
Starts comparing the files at the records numbered start_record. By default, the
command starts comparing the files at the first record in each file.

* -end_record end_record
Stops comparing the files at the records numbered end_record. By default, the
command compares the files through the last record.

* -difference_count difference_count
Sets the maximum number of differences the command displays. This argument allows
you to restrict the amount of output the command produces when comparing large files.
Specify the value zero to print the number of differences when comparing files, if that
is the only information that is needed. By default, the command displays all records in
the compared files that differ.

* -no_line_numbers <CYCLE>
Suppresses the display of line numbers with the differences between the files.

* -file_A_is_template <CYCLE>
Indicates that records in the file specified by file_A contain templates that do pattern
matching when comparing against similar records in path_B.

Explanation
The compare_files command allows you to compare several sets of files simultaneously.
The first argument, specifying a set of A-files, can be a star name. The optional second
argument, path_B, can be the name of a file or directory; a file name can be a star name.

See the Explanation of the copy_file command for a description of how star names
function.

If path_B specifies the name of a file or set of files, those files are the B-files for all the
comparisons; star name pairs are used where necessary to determine name matches. If
path_B specifies the name of a directory, either explicitly or by default, the compare_files
command looks in that directory for files with names matching the selected A-files to use as
the B-files.

If you specify a link for path_A and specify a star name for path_B, be careful that the link
does not point to a file that is identified by the star name, or the command may determine that
path_A and path_B are identical. For example, if you have a subdirectory called subd, a
OpenVOS Commands Reference Manual (R098) 2-163

compare_files
link called xxx to subd>yyy, and two files in subd called xxx and yyy, the compare_file
command behaves as follows when you specify path_A as a link and path_B as a star name.

compare_files xxx subd>*
Warning: Comparing %sys#m1>Sales>Joe_Smith>subd>yyy against itself.

The command expands the link xxx to subd>yyy and uses the expanded link name to
resolve the star name to subd>yyy. However, if you specify path_A as a link and path_B
as a directory name, the command behaves as follows.

compare_files xxx subd
A (%sys#m1>Sales>Joe_Smith>subd>yyy) does not match B
(%sys#m1>Sales>Joe_Smith>subd>xxx).

The command expands the link xxx to subd>yyy and uses the unexpanded link name to
resolve the star name to subd>xxx.

You can specify the -ascii_records and -binary_records arguments together. In that
case, the compare_files command displays records that differ both as hexadecimal
numbers and as ASCII text.

If you specify the arguments -no_ascii_records and -no_binary_records, the
compare_files command displays file attributes, but does not display any records that
differ. It stops comparing the files when it finds a difference, and returns to the command line.

The output file shows the differences in file attributes such as file type, locking mode, record
size, etc. Any records that do not match are printed in full. The records are numbered
according to file; A1 is the first record of the first file. If the length of the record is less than
150 characters, the record wraps; see the first example. If the length of the record is greater
than 150 characters, each line begins with the record number and the hexadecimal number of
the first character’s position within the record.

No message is displayed if the objects are equal. When the comparison is completed, you
return to command level.

If compare_files sees a record longer than 32,767 bytes, it assumes that the files contain
binary data. If you specify -ascii_records, the command displays binary data as well (as
if you had specified both -ascii_records and -binary_records). When the command
finds a difference, it stops comparing the files, returns to the command line, and returns the
error code e$long_stream_file_record (7843).

Even with long records, compare_files continues its comparison as long as it does not find
any differences. If the files are identical, the command returns 0 (as command_status). You
can specify the -continue argument to continue the comparison when stream files contain
records longer than 32,767 bytes or after the first mismatched block when the
-compare_blocks argument is specified.

When comparing binary stream files, you should specify -no_ignore_blank_lines.
When compare_file encounters a record longer than 32,767 bytes, the command will no
longer ignore blank lines, even if you specified -ignore_blank_lines (the default).
2-164

compare_files
The -compare_blocks argument compares allocated blocks. This argument is useful when
comparing binary stream files, since 4096-byte disk blocks are compared and the
discrepancies are reported in terms of the block number. You can also specify the -continue
argument if you want to continue comparing blocks after the first difference. Doing so allows
you to see the total number of blocks that are different as well as their ranges.

The -compare_all_blocks argument compares all blocks, treating unallocated blocks in
sparse files as either blocks of binary zeros (for 64-bit stream files) or binary ones (for all
other file types). This is guaranteed to produce accurate results despite differences in the
underlying extent structure of the files. This comparison can take significantly longer than a
comparison using-compare_blocks if the file is sparsely allocated, but it is still faster than
a record-by-record comparison.

If you specify the -file_A_is_template argument, the records in file_A may consist of
ordinary data bytes and metasymbols. All metasymbols begin with the characters {~ and end
with the characters ~}. The metasymbols tell the command how to match zero or more bytes
in the corresponding record in path_B. The command currently cannot perform metasymbol
matching while doing differential file comparisons. When differences are found, the
metasymbols appear as differences in the output. In the unlikely situation that
compare_files can resynchronize before reaching the end of the file, it resumes
metasymbol processing.

If you specify the -file_A_is_template argument, the compare_files command
recognizes the metasymbols listed in Table 2-12.

Table 2-12. Metasymbols Used by compare_files

Metasymbol Description

{~~} Escape convention: Matches {~.

{~ANY_NAME~} Matches any alphanumeric name.

{~CURRENT_DIR~} Matches the path name for the current directory.

{~CURRENT_DISK~} Matches the disk name from the path name for the current directory.

{~HOME_DIR~} Matches the path name for the home directory.

{~HOME_DISK~} Matches the disk name from the path name for the home directory.

{~MASTER_DISK~} Matches the path name of the master disk.

{~MODULE~} Matches the current module name.

{~SYSTEM~} Matches the current system name.

{~USER~} Matches the current user name.

{~GROUP~} Matches the current group name.

{~MONTH~} Matches the current month name.

{~WEEK~} Matches the current week name.

{~INTEGER~} Matches an integer: 1 or more digits (0-9).\
OpenVOS Commands Reference Manual (R098) 2-165

compare_files
In the preceding table, picture consists of one or more picture characters. Each picture
character matches one character in path_B. The following table lists the picture characters.

Access Requirements
You need read access to any files you compare.

Examples
The following examples illustrate some of the various ways in which you can invoke the
compare_files command.

{~FIXED~} Matches a fixed-point number: digits.digits.

{~FLOAT~} Matches a floating-point number: fixed exponent.

{~PIC: picture~} Matches a specified picture.

Character Description

Space Matches a space character.

, Matches , or a space character.

- Matches - or a space character. If - occurs at the beginning of the
picture and is followed by Z, ., or 9, it is a leading sign and will also
match + or a digit (0-9).

. Matches . or a space character.

/ Matches / or a space character.

9 Matches a single digit (0-9).

: Matches : or a space character.

A Matches an alphanumeric character (A-Z, a-z, 0-9, . _ $).

D Matches an exponent character (DEde) followed by an optional sign.

E Matches an exponent character (DEde) followed by an optional sign.

F Matches a single hex digit (0-9, a-f, A-F).

H Matches a hex digit or a space.

X Matches any single character.

Z Matches a digit (0-9), a space, or a sign.

Table 2-12. Metasymbols Used by compare_files (Continued)

Metasymbol Description
2-166

compare_files
Example 1.
To compare the two files customers.old and customers in the current directory, use this
command.

compare_files customers.old customers

The following output might result.

A (%s1#d02>Sales>Smith>customers.old) does not match B
(%s1#d02>Sales>Smith>customers).
 - Some attributes of the two files do not match:
 file organization relative file sequential file
 transaction file switch yes no
 record size 60 0
 - Some attributes of the index ix1 do not match:
 separate key switch no yes
A1 #01442912340876542876 Davis, M. L. 123 Riverside Drive
+Sheraton Ma 02000 413 555-0002
changed to
B1 #01442912340876542876 Davis, M. L. 456 Hill Street
+Oakley Ma 01000 617 555-0001

1 data difference(s).

Example 2.
Note that the length of each of the records in the output file is less than 150 characters.
Suppose you invoke the same command, but the records that differ are both longer than
150 characters. In this case, the following output file might result.

A (%s1#d02>Sales>Smith>customers.old) does not match B
(%s1#d02>Sales>Smith>customers).
 - Some attributes of the two files do not match:
 file organization relative file sequential file
 record size 100 0
A1 0000 #01442912340876542876 Davis, M. L. 123 Riverside Drive
A1 0040 Sheraton Ma 02000 413 555-0002 M
A1 0080 S 123 45 6789 IA
changed to
B1 0000 #01442912340876542876 Davis, M. L. 456 Hill Street
B1 0040 Oakley Ma 01000 617 555-0001 M
B1 0080 S 123 45 6789 IA

1 data difference(s).

The four-digit hexadecimal number following the record number is the character position of
the first character on that line.

Example 3.
To compare all OpenVOS COBOL source modules in the directory
>east>Smith>source_progs with source modules in the current directory having the
same names, use this command.
OpenVOS Commands Reference Manual (R098) 2-167

compare_files
compare_files >east>Smith>source_progs>*.cobol

Related Information
For a description of how to compare program modules, see the description of the
compare_pm_var_file in the manual OpenVOS System Administration: Administering
and Customizing a System (R281). See also the description of the compare_dirs command.
2-168

consolidate_dir
consolidate_dir 2-

Purpose
This command consolidates a directory’s blocks or author data.

Display Form

Command Line Form
consolidate_dir directory_names [-no_trim] [-no_authors] [-brief] [-revert] [-no_ask]

Arguments* directory_names Required
The name or star name of the directory or directories to be consolidated. You must have
modify access to directory_names.

* -no_trim <CYCLE>
By default, the command removes unused blocks at the end of a directory. If you
specify -no_trim, -authors must be set to yes.

* -no_authors <CYCLE>
By default, the command compacts an author’s data. If you specify -no_authors,
-trim must be set to yes.

* -brief <CYCLE>
Displays information about the block/author status for each directory, both before and
after the command executes. By default, the command does not display this
information.

------------------------------- consolidate_dir ------------------------------
directory_names:
-trim: yes
-authors: yes
-brief: no
-revert: no
-ask: yes
OpenVOS Commands Reference Manual (R098) 2-169

consolidate_dir
* -revert <CYCLE>
Reverts expandable directories to standard directories after the consolidation occurs, if
possible. A standard directory can contain no more than 527 data blocks and cannot
have author entries. (Author entries are created in expandable directories when the
author list has been filled.) If you specify this argument for a standard directory, the
command ignores this argument unless you specify an explicit directory or if the star
name expands to a single directory. In either case, the command displays a warning if
it cannot revert the directory. If a directory is reverted, the command displays a message
if you specify multiple directories or if you specify the -no_brief argument.

* -no_ask <CYCLE>
By default, asks you for confirmation before attempting to consolidate a large directory
that may require significant time to consolidate. If you specify -no_ask, the command
does not ask you for confirmation first.

Explanation
The consolidate_dir command reduces the size of a directory (without any impact to
subdirectories or files) by trimming unused blocks at the end. The command relocates the
author list entry, which tends to migrate toward the end of the directory as it becomes full, to
a lower block, if possible. Otherwise, no compaction occurs. This means that it is possible
that the size of a sparsely populated directory cannot be effectively reduced, since
consolidation success depends on entry distribution within the blocks. However, a directory
consolidation takes only a few seconds, whereas a directory copy can take many minutes or
longer. In addition, directory consolidation is nondisruptive and eliminates any concern about
the contents of the new and old directory being identical.

This command does not reduce a directory size to less than 16 blocks.

When you move, copy, or save/restore a directory, the space used is compacted, since the
directory is completely rebuilt and thus uses only as many blocks as needed. However,
copying a high-level directory with many subdirectories has some disadvantages:

 It can be very time-consuming.

 It may have a negative impact on performance.

 Because a directory’s contents may be changing, the copy may not be identical to the
original.

 You can use a save/restore operation to get an identical copy (and to retain author
information), but the directory must not be modified after the save finishes and before
the restore is complete.

Using the consolidate_dir command avoids the preceding issues.

Note: Because the directory is inaccessible during consolidation, avoid consolidating
a directory that is very large or has many authors when other processes require ongoing
time-critical access to the directory.
2-170

consolidate_dir
Examples
Consider the following example:

consolidate_dir .
 Size of %s#raid8>mydir (12943 entries) may lead to access delays.
 Proceed? (yes, no) y
 Last block in %s#raid8>mydir cannot be reduced to lower than 823.
 ready 13:32:28 0.004 5

In the preceding example, the current directory’s last block number (823) contained data, and
the command could not reduce the directory’s block usage because the command can trim
only unused blocks at the end of a directory.

In the following example, dir is an expandable directory that is less than 16 blocks long (and
thus will not be reduced) and has no author entries (and thus none to eliminate). If a directory
is not eligible for a reduction in block usage or number of authors, the command does not
display information about block usage/number of authors.

consolidate_dir dir -revert
 Expandable directory %s#raid8>dir reverted to standard.

In the following example, the command displays a message for reverted directories unless
you specify -brief or only one directory is applicable.

In the next example, dir1, dir2, and dir3 are expandable directories. The last block of
dir1 is numbered 20, and the size cannot be reduced; dir2 and dir3 are larger. The last
directory, dir4, is an empty standard directory.

consolidate_dir dir* -revert
 Last block in %s#raid8>dir1 cannot be reduced to lower than 20.
 Expandable directory %s#raid8>dir1 reverted to standard.

 Size of %s#raid8>dir2 (17801 entries) may lead to access delays.
 Proceed? (yes, no) y
 Last block in %s#raid8>dir2 cannot be reduced to lower than 1186.
 Expandable directory %s#raid8>dir2 cannot be reverted to

standard.

 Size of %s#raid8>dir3 (17725 entries) may lead to access delays.
 Proceed? (yes, no) n

 Last block in %s#raid8>dir4 reduced from 501 to 15.

Because -revert did not apply, the command did not display a message for dir4. If the
request had been made explicitly for dir4, however, the command would have displayed a
message:

consolidate_dir dir4 -revert
 Directory %s#raid8>dir4 is already standard.
 ready 13:34:22 0.012 4
OpenVOS Commands Reference Manual (R098) 2-171

consolidate_dir
The following examples show the use of authors.

consolidate_dir . -no_trim
 Size of %s#raid8>exp (3702 authors) may lead to access delays.
 Proceed? (yes, no) y
 Authors in %s#raid8>exp cannot be reduced to less than 3702.
 ready 16:37:37 0.012 5

 consolidate_dir . -no_ask
 Authors in %s#raid8>exp cannot be reduced to less than 3702.
 Last block in %s#raid8>std2 reduced from 1186 to 277.
 ready 16:42:43 0.000 5

Note: The last block number of a directory (as shown in the preceding command) is the
zero-based number of the highest data block used by the directory. Directory growth is
limited, based on the number of data blocks; the number of data blocks in a directory
(shown in display_dir_status output as current_blocks) is always one more
than the last block number. The display_dir_status and list commands display
the value blocks used, which represents all blocks used by the directory, including
indirect blocks (that is, blocks that hold the address of other blocks, not data).

Related Information
See the descriptions of the copy_dir, locate_expandable_dirs, move_dir,
restore_object, and save_object commands.
2-172

convert_stream_file
convert_stream_file 2-

Purpose
This command converts the organization of an existing file to the specified file organization.

Display Form

Command Line Form
convert_stream_file source_file[destination] [-to value] [-extent_size [size]] [-no_ask] [-check] [-no_safe_only] [-brief] [-long]

Arguments* source_file Required
The path name or star name of the file to be converted.

* destination
The path name of the converted file. If you do not specify destination, the converted
file replaces source_file. The destination must not be the same name as
source_file.

* -to value <CYCLE>
Specifies the file organization to which to convert source_file. Values are
stream64 (the default), stream, sequential, and ext_sequential.

------------------------------ convert_stream_file ----------------------------
source_file:
destination:
-to: stream64
-extent_size:
-ask: yes
-check: no
-safe_only: yes
-brief: no
-long: no
OpenVOS Commands Reference Manual (R098) 2-173

convert_stream_file
* -extent_size [size]
Specifies the size, in blocks, of the extents used by the converted file. Extents are
dynamically allocated and are a value between 8 and 256 that is also a power of two.
See the Explanation for more information.

If you specify -extent_size with a value for size, the converted file’s extent size is
the specified value. The size must be a valid DAE value, or it must be 1 (or 0, meaning
no extents). If the converted file will be extended sequential, size must be 8 or greater.

If you specify -extent_size with no value1, the command uses a default value:

 For sequential and stream files, the extent size is 1 (that is, no extents).

 For extended-sequential files, the extent size is 8.

 For 64-bit stream files, the extent size is the target module’s default value:
normally flex (or 8 for modules running a release earlier than OpenVOS
Release 18.x). Flexible extents do not have a fixed size; rather, the blocks in an
extent increase as the size of the file increases. See the create_file
description for more information about flex 64-bit stream files.

If you do not specify-extent_size, the converted file’s extent size is the extent size
of source_file, with the following exceptions:

 For 64-bit stream files, the extent size will be 8 or greater. (A 64-bit stream file
with the same extent as the source file is always large enough to hold its
contents.)

 For extended-sequential files, the extent size will be 8 or greater and will be large
enough to hold the contents of the source file, if possible, or 256.

* -no_ask <CYCLE>
Specifies whether the command asks before overwriting existing files with the same
name. By default (yes), the command asks before overwriting existing files with the
same name. This argument is meaningful only when you also specify destination.

* -check <CYCLE>
Displays a message for each file without converting it. This argument is useful for
determining which files are convertible.

* -no_safe_only <CYCLE>
Attempts to convert source_file even if a failure may occur. This argument may
often be successful in non-worst-case scenarios. By default (-safe_only), the
command attempts to convert source_file only in cases where conversion will be
successful even in worst-case situations. See the Explanation for more information.

* -brief <CYCLE>
Suppresses all successful conversion messages and messages indicating that
source_file is neither stream or sequential. However, the command always displays

1 In this case, the value -1 appears in the display form. Explicitly specifying -1 on the command
line has the same effect as not specifying size.
2-174

convert_stream_file
messages indicating that a stream, 64-bit stream, sequential or extended-sequential file
has not been converted. If you specify a star name with the -no_brief argument, the
command displays a message for each file converted; -brief suppresses these
messages. By default (no), the command displays all messages.

* -long <CYCLE>
Displays successful conversion messages even if only one file is converted. By default
(no), the command does not display successful conversion message if only one file is
converted.

Explanation
The convert_stream_file command converts an existing file whose organization is
stream, 64-bit stream, sequential, or extended sequential to the specified file organization,
optionally changing extent size. Specifically, the command performs the following types of
conversions:

 Any type of stream file to another
 Sequential files to stream files, and vice versa
 Sparse 64-bit stream files to normal stream files
 Sequential files to extended sequential files, and vice versa

If you specify a star name, the command converts all stream, 64-bit stream, sequential, or
extended sequential files matching the star name. If the file organization and extent size for
source_file match the values specified in the -to and -extent_size arguments, no
conversion occurs.

When converting between files of different extents, the size of source_file determines if
it is convertible to the selected target type and extent size. The command cannot convert
stream files with records longer than 32,767 to sequential files. Similarly, the command
cannot convert sequential files containing records with a stream file delimiter (0x0A) to
stream files. Pipe files, either stream or sequential, cannot be converted to 64-bit stream files.
Files containing indexes cannot be converted to other types.

When converting between stream and sequential file organizations, the command often
cannot predict with certainty whether the conversion will succeed. The uncertainty occurs
because the additional overhead required for sequential files is dependent on the size of the
records, which is variable. Fortunately, there is a certain capacity that always results in
successful conversion regardless of record-size variability, while another capacity always
results in failure.

When the command converts a file from stream to sequential, the converted file grows by
three or more bytes per record. The convert_stream_file command first analyzes the
source file’s current size to calculate best- and worst-case growth ratios, and then selects a
target extent size that allows for the worst-case expansion. (The worst case would represent a
stream file containing all null-length records.) Unless you specify -no_safe_only, the
command returns an error if the converted file may not be able to hold all bytes in the
worst-case expansion. If you do specify -no_safe_only, the command attempts the
conversion, even though it might not succeed.
OpenVOS Commands Reference Manual (R098) 2-175

convert_stream_file
Failure occurs when the target file’s capacity is actually exceeded, resulting in the error
message e$max_file_exceeded (2630). However, the command never attempts to convert
a file if the target file’s capacity is insufficient for source_file’s current size, even in
best-case record-size scenarios. In this case, even if you do not specify destination and a
conversion failure occurs, source_file is not affected.

Access Requirements
You need modify access for any directory in which the converted file will reside (unless you
specify the -check argument), and you must have at least read access to source_file.

Examples
The following command shows the results of attempting to convert files with the prefix
report.

convert_stream_file report*
 %sales#m3>Sales>Brown>report1 converted to stream64:8.
 %sales#m3>Sales>Brown>report1a requires no conversion.
 %sales#m3>Sales>Brown>report3 requires no conversion.
 %sales#m3>Sales>Brown>reportm requires no conversion.
 %sales#m3>Sales>Brown>reportm1 requires no conversion.
 %sales#m3>Sales>Brown>reports1 converted to stream64:8.
 %sales#m3>Sales>Brown>reports2 requires no conversion.
 %sales#m3>Sales>Brown>reportxx requires no conversion.
 %sales#m3>Sales>Brown>reportss3 converted to stream64:8.

The following command shows the results of attempting to convert files with the prefix
report while specifying the -check argument.

convert_stream_file -check report* -to sequential
 %sales#m3>Sales>Brown>report1 would be converted to sequential.
 %sales#m3>Sales>Brown>report1a would be converted to sequential.
 %sales#m3>Sales>Brown>report3 would be converted to sequential.
 %sales#m3>Sales>Brown>reportm is too big to be converted to

sequential.
 %sales#m3>Sales>Brown>reportm1 would be converted to sequential.
 %sales#m3>Sales>Brown>reports1 would be converted to sequential.
 %sales#m3>Sales>Brown>reports2 would be converted to sequential.
 %sales#m3>Sales>Brown>reportss3 may be too big to be converted
 to sequential.

In the preceding example, if the -no_safe_only argument had been specified, the last
message regarding reportss3 would change to indicate that it would be converted or at least
that an attempt would be made to convert it.

Related Information
See the description of the set_stream_files command in OpenVOS System
Administration: Disk and Tape Administration (R284).
2-176

convert_text_file
convert_text_file 2-

Purpose
This command converts the contents of an existing text file to conform to the specified default
character set and shift mode.

Display Form

Command Line Form

convert_text_file file_name [-character_set character_set] [-shift_mode shift_mode]
Arguments* file_name Required

The path name or star name of a file.

* -character_set character_set <CYCLE>
Assigns one of the following default character sets to the file.

 none
 ascii
 latin_1
 latin_9
 kanji
 katakana
 hangul
 simplified_chinese
 chinese1
 chinese2
 user_dbcs

By default, a value of none is assigned to the file. Specify a character set only for a
fixed, relative, sequential, or extended sequential file.

------------------------------ convert_text_file ------------------------------
file_name:
-character_set: none
-shift_mode: all
OpenVOS Commands Reference Manual (R098) 2-177

convert_text_file
* -shift_mode shift_mode <CYCLE>
Specifies the shift combinations allowed in the file. The values for shift_mode are
single, locking, all, and none. By default, both single- and locking-shift
combinations (all) are allowed. If the value of character_set is none,
-shift_mode is ignored.

Explanation
The convert_text_file command converts the contents of an existing text file to conform
to the newly specified default character set and shift mode. Character sets that are supported
for fixed, relative, sequential, or extended sequential files include ascii, latin_1,
latin_9, kanji, katakana, hangul, simplified_chinese, chinese1, chinese2,
and user_dbcs. Indexes on files having one of these default character sets are allowed only
if the file’s shift mode allows no shifts; indexes are not allowed for files with double-byte
default character sets. If the shift mode is all, file data is stored as compactly as possible at
the expense of I/O execution speed.

The default character set and shift mode of a file are attributes used by file and I/O services
to store and present text file data in a compatible format. At times, changing needs regarding
the contents of a text file or the use of a text file may necessitate altering the file’s default
character set or allowed shift modes. This command performs the necessary data conversions
to allow these attributes to be changed without loss of data.

This command should not be used to convert binary files to text files without specific
knowledge of the contents of the original file. During conversion, binary file data will be
interpreted as having a default character set of Latin alphabet No. 1 and allowing single shifts.
To convert a binary file containing locking shifts or some other default character set data to a
text file, first use the set_text_file command to set the correct default character set with
-shift_mode all and the -force arguments. Then use the convert_text_file
command to convert the file to any other desired text file format.

Access Requirements
To convert a text file, you need modify access to its containing directory, and write access to
the file.

Examples
The following command converts a text file named European_report.

convert_text_file European_report -character_set latin_1
-shift_mode single

The default character set becomes Latin alphabet No. 1, and the shift mode allows single
shifts.

If no shifts are allowed then the file can only contain one character set as specified with the
character set attribute.
2-178

convert_text_file
Related Information
See the descriptions of the create_file command for information on creating a text file,
and the set_text_file command for information on setting text attributes for an existing
file.
OpenVOS Commands Reference Manual (R098) 2-179

copy_dir
copy_dir 2-

Purpose
This command copies a directory and its contents from one place to another.

Display Form

Command Line Form

copy_dir source_directory [destination] [-pack] [-delete] [-no_files] [-no_dirs] [-no_links] [-no_translate_links] [-keep_dates] [-keep_safety_switch] [-brief] [-pacing pacing_value]

Arguments* source_directory Required
The path name or star name of the directory or directories to be copied.

* destination
The path name of the new copy of the directory. By default, the command makes
source_directory a subdirectory of your current directory.

----------------------------------- copy_dir -----------------------------------
source_directory:
destination:
-pack: no
-delete: no
-files: yes
-dirs: yes
-links: yes
-translate_links: yes
-keep_dates: no
-keep_safety_switch: no
-brief: no
-pacing: disk_type
2-180

copy_dir
* -pack <CYCLE>
Packs any files being copied and discards deleted records. You cannot specify -pack
if any file to be copied has separate-key or item indexes, or if the source directory
contains any type of queue file. An error message is returned for each file that cannot
be packed; those files are not copied. This argument is ignored if -no_files is also
specified. By default, the command does not pack files.

* -delete <CYCLE>
Deletes a directory if its path name matches the path name of the new directory. By
default, the command prompts you before deleting a directory with a conflicting path
name.

* -no_files <CYCLE>
Suppresses the copying of all files in the specified directory. By default, the command
copies all files in the directory.

* -no_dirs <CYCLE>
Suppresses the copying of all subdirectories in source_directory. By default, the
command copies all subdirectories in source_directory.

* -no_links <CYCLE>
Suppresses the copying of all links in the specified directory. By default, the command
copies all links in the directory.

* -no_translate_links <CYCLE>
Suppresses the translation of links whose targets specify objects in the directory tree
subsidiary to source_directory. This argument is ignored if -no_links is also
specified. By default, the command translates all links in source_directory. (See
the Explanation for more information.)

* -keep_dates <CYCLE>
Assigns the creation, modification, and last-used dates of the source directory and each
of its subordinate objects to the target directory and its corresponding subordinate
objects. The initial last-saved date of all objects is never, indicating that the directory
and its subordinate objects have never been saved. By default, the time that copy_dir
was given is used for the creation, modification, and last-used dates.

Note: If you have set an expiration date for files in source_directory, this
command removes the expiration date from the copied files in the destination
directory, even if you specify -keep_dates. For more information, see the
description of the set_expiration_date command.

* -keep_safety_switch <CYCLE>
Keeps the safety switch of files being copied if the safety switch for a file is set on. By
default, a file’s safety switch is off.

* -brief <CYCLE>
Suppresses the display of each directory name that matches a star name before the
directory is copied. By default, the command displays the names.
OpenVOS Commands Reference Manual (R098) 2-181

copy_dir
* -pacing pacing_value
Determines the pacing behavior of the copy operation. Possible values are disk_type
(the default value), yes, and no. Pacing occurs during the copy operation if either of
the following is true:

 If you specify disk_type and the source or target disk is optimized for fast response
time

 If you specify yes

If you specify no, pacing does not occur, regardless of the type of the source or target disk.
Only privileged users can specify the no value. See the Explanation section for more
information about pacing.

Explanation
The copy_dir command copies a directory, including any contained files, subdirectories,
links, and access control lists (ACLs). If the source directory contains a pipe file, the
command creates an empty pipe file.

Specify the path name of the directory to be copied with the source_directory argument.
The destination argument gives the path name of the new directory. The destination
directory should not match the name of an existing directory unless you want to delete the
existing directory and replace it with the copied directory. If you give the name of an existing
directory for destination, the copy_dir command asks you before deleting the existing
directory. All objects in a directory and in all of its subdirectories must be able to be deleted,
or the directory cannot be deleted. For example, you cannot delete files that have the safety
switch set, nor can you delete hidden files. (See Using OpenVOS Extended Names (R631) for
information about hidden files.) If it is not possible to delete the existing destination
directory, copy_dir returns an error message and does not copy any objects into that
directory. However, copy_dir will delete all objects in the destination directory that can
be deleted.

The copy_dir command copies the contents of directories in the following manner unless
the current execution environment does not allow the name of the directory being copied or
the name of the target directory.

If the directory being copied contains objects with extended names, those objects are copied
only if both the module on which copy_dir is invoked and the module containing the
destination directory supports them.

Depending on the module you are logged in to, different results can occur if objects with
extended names are not copied:

 If you are logged in to a module that supports only legacy names, no error is returned.

 If you are logged in to a module that supports version 1 or version 2 extended names,
hidden objects are ignored and are not diagnosed individually. Otherwise, an error is
reported for all other objects that cannot be copied. If no error has been reported, the
operating system returns the error e$all_objects_not_copied (7771).
2-182

copy_dir
When you copy a directory, copy_dir also copies its type and limit attributes. However, if
the destination module is running a release that does not support expandable directories, the
result is a normal directory without limits.

If the directory being copied (or any of its subdirectories) is expandable or has nonstandard
limits, the type and limit information is retained only if both the module on which copy_dir
is issued and the module containing the destination directory support expandable directories.

If you attempt to copy a directory that is expandable or has nonstandard limits to a disk that
is either set with restricted expand mode or is on a module running an OpenVOS (or VOS)
release that does not support expandable directories, the result is a copy into a standard
directory (assuming standard capacity is sufficient), with the type and limit information
removed, along with a warning message issued for the top-level directory (only) affected. For
more information about restricted expand mode, see the description of the
set_dir_expand_mode in OpenVOS System Administration: Disk and Tape
Administration (R284).

If the directory contains more entries than will fit in a normal directory, an error occurs after
the command copies all objects that will fit. Since the maximum number of entries in a normal
directory is based on blocks used, the number of entries that will fit depends on various
factors, including the order in which the objects are copied. Before you copy an expandable
directory or a directory containing expandable directories to a module that does not support
them, first convert them to normal directories to ensure that copy_dir does not result in an
error. To identify such directories, use the locate_expandable_dirs command. Use
set_dir_type or consolidate_dir with the -revert argument to convert them to
normal if it is possible to do so.

If you omit the destination argument, source_directory and all its contents are built
as a subdirectory of the current directory. The command uses the directory name portion of
the path name specified in the source_directory argument as the name of the copied
directory. If a subdirectory of that name already exists in the current directory, for example as
the result of a previous use of the copy_dir command, copy_dir asks if you really want to
delete the existing directory.

If you specify the destination argument, and no directory with that path name exists, the
copy_dir command creates the directory destination.

If you omit the destination argument, and source_directory is an existing
subdirectory in your current directory, copy_dir tells you that both source_dir and
destination name the same object.

The value of source_directory and destination can be a star name. See the
copy_file command for a description of how star names function.

If you specify a link for source_directory and specify a star name for destination,
be careful that the link does not point to a directory that is identified by the star name, or the
command may determine that source_directory and destination are identical. For
example, if you have a subdirectory called subd, a link called xxx to subd>yyy, and two
OpenVOS Commands Reference Manual (R098) 2-183

copy_dir
subdirectories in subd called xxx and yyy, the copy_dir command behaves as follows
when you specify source_directory as a link and destination as a star name.

copy_dir xxx subd>*
Copying xxx to %sys#m1>Sales>Joe_Smith>subd>xxx.
Do you really wish to delete %sys#m1>Sales>Joe_Smith>subd>xxx?

(yes, no) n

The command does not expand the link and uses the unexpanded link name to resolve the
star name to subd>xxx. The command behaves in a similar fashion if you specify
source_directory as a link and destination as a directory name.

copy_dir xxx subd
copy_dir: Either source or destination directory is a subdirectory

of the other. %sys#m1>Sales>Joe_Smith>subd.

When you specify the -pack argument, all indexes are re-created regardless of file
organization, though in some cases the resulting indexes are empty. It is not possible to delete
a record from a fixed file with no record index. If you ask the operating system to delete a
record from such a file, it updates embedded-key and deleted-record indexes appropriately,
but does not actually delete the record. Therefore, such records reappear if their file is packed.

If you specify the -delete argument, the copy_dir command deletes a directory whose
path name matches the path name of the new directory. When you specify the -delete
argument and destination is a link, the command replaces the target of the link with the
copied directory.

During the copying process, links to targets in the directory being copied become links to the
copy of that target in the new directory. Links to targets outside the directory being copied are
copied exactly. If you specify the -no_translate_links argument, all links are copied
exactly, regardless of their targets.

Any file with its safety switch turned on is protected against operations that could destroy or
damage it. For additional information about the safety switch, see set_safety_switch
later in this manual.

Pacing prevents the copy operation from dominating the disks, and it allows other processes
to access other files on the disks involved (both source and target) without long delays. Pacing
is relevant only to block-mode copies; the value of the -pacing argument is ignored for
record-mode copies (that is, those for which the -truncate or -pack argument has been
specified).

The copy_dir command assigns ownership of any copied files to the user name of the
person doing the copying.

Access Requirements
To copy a directory, you need status access to the directory source_directory, status
access to all its subdirectories, and read access to all the files contained in all the copied
directories.
2-184

copy_dir
Examples
The following examples show a variety of ways that you can invoke the copy_dir command.

Example 1.
Suppose that this is the current directory.

%s1#d02>Sales>Jones

The following command copies the directory %s1#d02>Sales>Clark>orders into the
current directory.

copy_dir >Sales>Clark>orders clarks_orders

The copy of the directory has the following path name.

%s1#d02>Sales>Jones>clarks_orders

Example 2.
Again, assume that this is the current directory.

%s1#d02>Sales>Jones

The following command copies the directory %s1#d02>Sales>Clark>orders into the
current directory.

copy_dir >Sales>Clark>orders

The copy of this directory has the following path name.

%s1#d02>Sales>Jones>orders

Example 3.
Again, assume that this is the current directory.

%s1#d02>Sales>Jones

The following command copies all of the subdirectories of >Sales>Clark>orders into the
current directory hierarchy.

copy_dir >Sales>Clark>orders>*

When given with a star name, the command displays the names of the objects being copied.

Copying %s1#d02>Sales>Clark>orders>* to *
 new_accounts
 new_orders
 closed_accounts

The directory %s1#d02>Sales>Jones now has three new subdirectories: new_accounts,
new_orders, and closed_accounts.
OpenVOS Commands Reference Manual (R098) 2-185

copy_dir
Related Information
For more information about directory management, see the command descriptions of
change_current_dir, compare_dirs, consolidate_dir, create_dir,
delete_dir, display_current_dir, give_default_access, move_dir,
locate_expandable_dirs, remove_access, set_dir_type, and
set_safety_switch.
2-186

copy_file
copy_file 2-

Purpose
This command copies the contents of a file or set of files to another file or set of files.

Display Form

Command Line Form

copy_file source_file [destination] [-pack] [-parallel] [-truncate] [-delete] [-keep_dates] [-keep_acl] [-no_keep_extents] [-brief] [-keep_safety_switch] [-keep_audit] [-pacing pacing_value] [-avoid_fragmentation]

Arguments* source_file Required
The name or star name of the file or files to be copied.

---------------------------------- copy_file -----------------------------------
source_file:
destination:
-pack: no
-parallel: no
-truncate: no
-delete: no
-keep_dates: no
-keep_acl: no
-keep_extents: yes
-brief: no
-keep_safety_switch: no
-keep_audit: no
-pacing: disk_type
-avoid_fragmentation: no
OpenVOS Commands Reference Manual (R098) 2-187

copy_file
* destination
The path name of a file or existing directory into which the command is to copy the
files. A file name can be a star name; if the character strings that replace the asterisks
cause a destination file name to exceed the maximum length of a file name, the leftmost
characters beyond that limit are truncated. If you specify a directory, the command
copies the files into the directory. If you specify a file name, the command copies the
file into the current directory and names the copy destination. By default, the
command copies the files into the current directory without changing their names, as
long as the current directory is not the source directory.

* -pack <CYCLE>
Packs a file being copied and discards deleted records. You cannot specify -pack if the
file to be copied has separate-key or item indexes, or if the file is a queue or pipe file.
By default, the command does not pack the file.

* -parallel <CYCLE>
Used with the -pack argument; when both arguments are set to yes, the command
simultaneously rebuilds all indexes for each file being copied. By default, the command
has no effect.

* -truncate <CYCLE>
Truncates an existing destination file before copying an input file to it. If you
specify -truncate and the file named by destination is an existing file, then the
command preserves the file’s attributes and indexes but deletes its contents (that is, its
data records). Any embedded key indexes previously defined on the destination are
rebuilt from the new records. However, if the file named by destination does not
exist, the command creates an output file with the same organization, maximum record
length, and allocation size as the file to be copied but creates no indexes on the new file.
If you specify -truncate, the file is packed regardless of the value of the -pack
argument. You cannot specify -truncate if the file to be copied has separate-key or
item indexes, or if the file is a queue or pipe file. By default, -delete determines what
happens if there is a name conflict.

* -delete <CYCLE>
Deletes a file if it has the same path name as the destination path name of the copied
file. By default, the command asks you whether to delete a file that has a conflicting
path name.

* -keep_dates <CYCLE>
Assigns to the new file the creation date, modification date, and last-used date of the
file being copied. The initial last-saved date of all objects is never. By default, the
current time of the copy is used for the creation date, modification date, and last-used
date.

Note: If you have set an expiration date for source_file, this command
removes the expiration date from the file specified by destination, even if you
specify -keep_dates. For more information, see the description of the
set_expiration_date command.
2-188

copy_file
* -keep_acl <CYCLE>
Keeps the access control list with the file. If you specify -keep_acl, the default access
of the directory is not saved; only the specific access control list on the file (if one
exists) is saved. By default, access is not moved with the file.

* -no_keep_extents <CYCLE>
Specifies that the command does not copy the source file’s extent characteristics to the
target file. By default, the target file has the same extent characteristics as the source
file, which means that if the source file is extents-based, the target file will also be
extent-based with the same extent size and, in the case of statically-allocated
extents (SAE) files, with the same number of blocks initially allocated. This argument
is meaningless for non-extents files. See the Explanation section for more information
about how extents are copied.

Specify this argument with the -truncate argument to migrate non-extents-based
files to dynamically-allocated extents (DAE) files (that is, files that allocate and
initialize extents as the file grows). See the Explanation section for more information
about DAE files.

* -brief <CYCLE>
Suppresses the display of each file name that matches a star name before the file is
copied. By default, the command displays the name.

* -keep_safety_switch <CYCLE>
Keeps the safety switch of files being copied if the safety switch for a file is set on. By
default, a file’s safety switch is off.

* -keep_audit <CYCLE>
Specifies that the new file retains the audit options of the source file. By default, the
command does not retain the audit options of the source file.

* -pacing pacing_value
Determines the pacing behavior of the copy operation. Possible values are disk_type
(the default value), yes, and no. Pacing occurs during the copy operation if either of
the following is true:

 If you specify disk_type and the source or target disk is optimized for fast
response time

 If you specify yes

If you specify no, pacing does not occur, regardless of the type of the source or target
disk. Only privileged users can specify the no value. See the Explanation section for
more information about pacing.

* -avoid_fragmentation <CYCLE>
Allocates the target file in nonfragmented portions of the disk, if possible. This means
that if N contiguous blocks are available on the disk, they are used first, then N/2, and
so on, where N starts at 256. By default, the target of copy_file is not allocated in
such a way as to avoid fragmentation.
OpenVOS Commands Reference Manual (R098) 2-189

copy_file
The command uses noncontiguous blocks as long as disk space is available. Therefore,
the success of producing a defragmented file (that is, a file with few gaps between
blocks) depends on the allocation patterns currently existing on the disk. (Note that you
can use software tools to analyze allocation patterns.) This affects striping on
multi-disk volumes, in that N blocks are allocated in each member. The resulting file
has the same attributes as source_file. This argument affects only non-extent files,
since extent files are always allocated based on their extents. Also, this argument has
no affect if you specify -truncate and the target file exists. In that case, allocation is
dictated by the attributes of the existing target file.

Explanation
The copy_file command copies the contents of a file or set of files to another file or set of
files. If the source is a pipe file, the command creates an empty pipe file.

The copy_file command assigns ownership of any copied files to the user name of the
person doing the copying.

Note: The display_file_status command shows index names in order of the
index address inside the file. This order may change if the file is specified as the subject
of the copy_file, move_file, restore_object, or save_object command.

Specifying the Source File and Destination
You can give a star name for source_file and destination. Star names function in the
following manner.

 An asterisk can be in any position in a star name.

 In a path name, a star name can be in the final name position only.

 When the operating system matches non-star names to a star name, each asterisk
represents zero or more characters.

 A name cannot contain consecutive asterisks; there must always be an intervening
character.

The command also allows the destination to match the name of the source.

If you omit the destination argument, the copy_file command copies all of the files
whose names match source_file into your current directory, using the same file names. If
the files to be copied already reside in your current directory, the operating system displays
this message.

Both the source and destination name the same object.

If you give a directory name for the destination argument, you can also give a star name
for source_file that matches more than one file name. The copy_file command copies
all the files whose names match the source_file argument into the specified directory
using the same file names.

If you give a path name for destination that is not the path name of an existing directory,
the copy_file command assumes that destination is a file name. If this file name is not
2-190

copy_file
a star name, then source_file must match only one file path name. In this case, the
copy_file command copies the file and names the copy as specified in destination.
Unless you specify this last argument, the copy retains its name.

If you specify a link for source_file and specify a star name for destination, be careful
that the link does not point to a file that is identified by the star name, or the command may
determine that source_file and destination are identical. For example, if you have a
subdirectory called subd, a link called xxx to subd>yyy, and two files in subd called xxx
and yyy, the copy_file command behaves as follows when you specify source_file as
a link and destination as a star name.

copy_file xxx subd>*
Copying %sys#m1>Sales>Joe_Smith>xxx to

%sys#m1>Sales>Joe_Smith>subd>xxx.
%sys#m1>Sales>Joe_Smith>subd>xxx already exists.

Delete the old one? (yes, no) n

The command does not expand the link and uses the unexpanded link name to resolve the
star name to subd>xxx. The command behaves in a similar fashion if you specify
source_file as a link and destination as a directory name.

copy_file xxx subd
%sys#m1>Sales>Joe_Smith>subd>xxx already exists.

Delete the old one? (yes, no) n

Specifying the -pack and -parallel Arguments
When you specify the -pack argument, all indexes are re-created, regardless of file
organization; however, in some cases, the resulting indexes are empty. If an index that is
re-created is large, temporary files are required for sorting. The temporary files are created in
the process_dir directory (if the user has access) or the current working directory.

If you specify the -pack argument, copy_file attempts to discard deleted records.
However, you cannot delete a record from a fixed file that has no record index. If you ask the
operating system to delete a record from such a file, it updates embedded-key indexes and
deleted-record indexes appropriately, but does not actually delete the record. Therefore, such
records can reappear if their file is packed. To prevent this, copy_file ignores records that
consist entirely of hexadecimal FF when packing a fixed file without a record index.

The -parallel argument is used with the -pack argument; when both arguments are set to
yes, the command simultaneously rebuilds all indexes for each file being copied, enabling
the specified files to be packed and copied faster. The default value for the -parallel
argument is no, in which case, the command rebuilds the indexes individually. The
-parallel argument has no effect if the -pack argument is set to no.

You cannot copy a transaction-protected file if you specify the -pack argument. See
s$copy_file in the OpenVOS Subroutines manuals for more information.

Specifying the -truncate Argument
If you specify the -truncate argument and the destination file is an existing fixed file, all
records in the source file must have a length equal to the fixed record size of the destination
file.
OpenVOS Commands Reference Manual (R098) 2-191

copy_file
Warning messages are displayed if indexes are not copied or rebuilt. If you specify
-truncate and the target file exists, copy_file checks the indexes and displays a message
for each embedded index that is not on the target file and for each non-embedded index. If
you specify -truncate and the target file does not exist, copy_file displays a message for
each index that is on the source file. If you specify -no_truncate and -pack, copy_file
displays a message for each embedded-separate-key index that is on the source file.

You cannot copy a transaction-protected file if you specify the -truncate argument. See
s$copy_file in the OpenVOS Subroutines manuals for more information.

Copying Files with Extents
By default, when you copy a file, the extent allocation is copied.

Statically-allocated extents (SAE) files cannot be created across the network and therefore
cannot be copied, unless the target file exists and you specify the -truncate argument. If
you want to copy such a file across the network and the target file does not exist, you must
specify the -no_keep_extents argument. In this case, the newly created file is a non-extent
file. You cannot copy an SAE extended-sequential file across the network in this way, because
this type of file is always extent-based. To duplicate an SAE file on another module, create an
identical empty file with the create_file or clone_file command while running on that
module, and specify the -truncate argument of copy_file.

If you specify -no_keep_extents for a dynamically-allocated extents (DAE) file, the
newly created file is a non-extent file, with two exceptions:

– If you specify -no_keep_extents for an extended-sequential file, the extent value is
reduced to the maximum record size specified when the file was created, or 8 if that is
larger.

– If you specify -no_keep_extents for a 64-bit stream file and the size of the file
requires extents, the value is the minimum needed to hold the current contents of the
source file.

– If you specify -no_keep_extents for a flex 64-bit stream file and copy that file to a
module running a release prior to OpenVOS Release 18.x, and if a non-extent file is too
small to hold the contents of the source file, the new file is created with large enough
extents to hold the contents.

If you copy a sparse 64-bit stream file that has grown and that may contain blocks containing
all binary zeros, copy_file may eliminate those blocks in destination, which means that
the resulting file may become smaller.

You can copy 64-bit stream files that have not grown larger than 2 GB to modules running
releases prior to OpenVOS Release 17.2.x. These files become normal stream files on the
module running the earlier release. You can copy the files regardless of whether your current
module is running the earlier release or Release 17.2.x or later.

If your current module is running an earlier release and you copy a 64-bit stream file to a
module running Release 17.2.x, the file becomes a normal stream file, even on the module
running Release 17.2.x.
2-192

copy_file
If you copy a flex 64-bit stream file to a module running OpenVOS Release 17.2.x, the
destination file is a normal (that is, non-flex) 64-bit stream file with no extents as determined
by the module default (normally, 8).

A 64-bit stream file that is 2 GB or greater cannot be copied to a release prior to OpenVOS
Release 17.2.x; any attempts to do so results in an error message. This is also true if you
execute the copy_file command running on an older release. However, you can copy sparse
files that are less than 2 GB, except that the resulting normal stream file will not be sparse and
therefore may require far more disk space (and more time to copy).

To migrate a non-extent-based file to a DAE file, create an empty DAE file, and then specify
the copy_file command with the destination and -truncate arguments
(destination should be the empty DAE file). This procedure copies the data from
source_file into destination while keeping the extent attributes of destination
intact. For more information about DAE files, see the description of the create_file
command.

Using the Safety Switch
When a file’s safety switch is on, the file is protected against operations that could destroy or
damage it. For additional information about the safety switch, see set_safety_switch
later in this manual.

Copying RAM Files
If a non-empty RAM file is copied, the newly created file does not have RAM file usage. This
allows you to copy a RAM file while it is activated in order to capture its contents; when a
RAM file is deactivated, its contents are discarded. If the target of copy_file is a RAM file,
it would be truncated immediately after being copied. Specifying an existing RAM file as the
target and using the -truncate or -pack argument is not allowed, since the result of the
copy would always be an empty file.

When a server queue has RAM usage, the new server queue retains RAM usage and is thus
always empty. The contents of a server queue are never copied.

If a RAM file’s containing directory is being copied or moved, the RAM file in the newly
created directory retains its RAM usage and is always empty. See the description of
set_ram_file for more information about RAM files.

Using the -pacing Argument
Pacing prevents the copy operation from dominating the disks, and it allows other processes
to access other files on the disks involved (both source and target) without long delays. Pacing
is relevant only to block-mode copies; the value of the -pacing argument is ignored for
record-mode copies (that is, those for which the -truncate or -pack argument has been
specified).

Access Requirements
You must have read access to a file that you want to copy, status access to the source directory,
and modify and, by default, write access to the directory that is to contain the copied file. You
will be given write access to the destination.
OpenVOS Commands Reference Manual (R098) 2-193

copy_file
Examples
The following three examples show a variety of ways that you can invoke the copy_file
command.

Example 1.
To copy all OpenVOS COBOL source modules in the current directory into the directory
>east>Clark, use this command.

copy_file *.cobol >east>Clark

The object names of the copies are the same as the original files.

Example 2.
The following command copies all OpenVOS COBOL source modules in the current
directory into the directory >east>Clark>save and changes the suffix .cobol to the suffix
.old for each file copied.

copy_file *.cobol >east>Clark>save>*.old

Example 3.
This command makes a copy of the file make_reports.pm in the current directory, names
the copy make_reports.old.pm, and puts the copy in the current directory.

copy_file make_reports.pm make_reports.old.pm

When you give the copy a different name from the original (as in this example) you can copy
only one file; that is, destination must be the path name of a file.

Related Information
See also the command descriptions of compare_files, copy_dir, create_file,
delete_file, display_file_status, locate_files, move_dir, move_file,
set_file_allocation, set_ram_file, set_safety_switch, and truncate_file.
2-194

copy_tape
copy_tape 2-

Purpose
This command makes logical copies of all tape formats.

Display Form

Command Line Form

copy_tape source_tape_device_or_port
destination_tape_devices_or_port [-create_destination_volume] [-simultaneous_rewind]

Arguments* source_tape_device_or_port Required
The name of the tape device, or the name of the port attached to the tape drive, holding
the tape to be copied. You can attach the port or mount the tape before using the
copy_tape command. If copy_tape implicitly attaches the port or implicitly mounts
the tape, copy_tape also implicitly dismounts the tape or implicitly detaches the port.

* destination_tape_devices_or_port Required
The names of ports attached to tape drives, or the names of tape drives that will contain
the copies. You can attach the ports and mount some or all of the tapes before using the
copy_tape command.

After copy_tape is executed, any destination tapes that were already mounted remain
mounted, and any destination ports that were already attached remain attached.

If a port is not attached, copy_tape implicitly attaches a port. If copy_tape
implicitly attaches a port, it implicitly detaches the port after execution.

If a tape is not mounted and -create_destination_volume is set to no (the
default), copy_tape attempts to mount the tape implicitly, using the tape’s volume
label. If an error occurs during this process, or if the tape does not have a volume label,
the command is aborted. If, however, the command succeeds in mounting the tape
implicitly using the volume label, the command is executed, and overwrites any data

---------------------------------- copy_tape -----------------------------------
source_tape_device_or_port:
destination_tape_devices_or_port:
-create_destination_volume: no
-simultaneous_rewind: no
OpenVOS Commands Reference Manual (R098) 2-195

copy_tape
currently contained on the destination tape. If copy_tape implicitly mounted the tape,
it implicitly dismounts the tape after execution.

If a tape is not mounted and -create_destination_volume is set to yes,
copy_tape automatically mounts the tape, issuing the mount_tape prompts for
creating and mounting a tape. The copy_tape command prompts you to mount the
destination tapes in the order that you specified the ports or devices in the
destination_tape_devices_or_port argument. You must respond to each of
these prompts. If copy_tape implicitly attached a port for this tape before it
automatically mounted the tape, copy_tape implicitly detaches the port and unloads
the tape after execution. Otherwise, if the port was already attached, the command
dismounts the tape after execution, and the port remains attached.

* -create_destination_volume <CYCLE>
Specifies whether copy_tape is to create the volumes on destination tapes. This
argument affects only destination tapes, not the source tape. The default setting is no.
The operating system ignores the setting of this field for any destination tapes that you
mounted with the mount_tape command before issuing the copy_tape command.
Otherwise, if you cycle to yes, any destination tapes that were not yet mounted will
have volumes created on them.

For information about the state of the tape after copy_tape is executed, see the
destination_tape_devices_or_port argument.

* -simultaneous_rewind <CYCLE>
Makes many copies simultaneously. If you set this argument to yes, you must switch
reels or cartridges on all the destination tapes whenever any one reaches the end-of-tape
mark. The command prompts you to switch reels or cartridges. This setting saves time
because all the drives wind together. You waste a small amount of tape on the end of
the reels and cartridges that are forced to switch before they reach their end-of-tape
marks. When tape drives rewind at different times, the copying process stops on all
tapes until you load a new tape.

You cannot use -simultaneous_rewind if all the destination tape drives do not use
the same density. If you attempt to use the argument when the densities are different,
the command displays an error message. By default, copy_tape does not make
destination tapes rewind simultaneously.

Note: You can mix the destination tape devices between cartridge and reel tapes,
but it is recommended that you not do this if you use -simultaneous_rewind.
Depending on the type of reel and cartridge tape drives you use, much tape could
be left unused.

Explanation
The copy_tape command makes logical copies of all tape formats, including ANSI; IBM;
UNIX tar, cpio, and cpioc; and unlabeled formats. Use this command to create multiple
copies of an entire tape volume or multivolume set. The copies are logical, meaning that the
file IDs and data are identical on each copy, but the volume IDs are different and the physical
mapping of data can vary between tapes.
2-196

copy_tape
If you want to copy an entire tape volume or multivolume set without having to intervene, you
must do the following:

1. Give the create_tape_volumes command to establish the destination volumes.
2. Give the mount_tape command with the -unattended argument to mount the tapes.
3. Give the copy_tape command.

Note: You must give this combination of commands in the order listed above, since
you cannot explicitly invoke copy_tape in unattended mode.

For more information about tape mounting, see Explanation in the mount_tape command
description.

Access Requirements
By default, you have write access to all devices. If your system administrator restricts access
to a device, you need read access to read from tapes, or write access to read from and write
to tapes.

Related Information
See also the command descriptions of create_tape_volumes, dismount_tape,
display_tape_params, dump_tape, list_save_tape, mount_tape,
position_tape, read_tape, restore_object, save_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape. For information about the save and restore commands,
see OpenVOS System Administration: Backing Up and Restoring Data (R285).
OpenVOS Commands Reference Manual (R098) 2-197

cpp, vcpp
cpp, vcpp 2-

Purpose
This command produces a fully expanded OpenVOS Standard C source module.

Note: The OpenVOS GNU Tools layered product also supplies a command named
cpp. When the GNU Tools product is installed and used as directed, the GNU Tools
version of this command is found before the OpenVOS version, depending upon
command library paths. Since the OpenVOS and GNU Tools commands behave
differently, you can use the alternate name (vcpp) to ensure that you invoke the
OpenVOS version of the command.

Display Form

Command Line Form
cpp source_file_name [option_selection...] [-suppress_diag number...] [-include include_file_name...] [-processor processor_string] [-check_incompatible] [-extension_checking string] [-system_programming] [-default_char string] [-list] [-mapcase] [-statistics] [-nesting] [-show_include string] [-show_macros string] [-compress]

------------------------------------- cpp -----------------------------------
 source_file_name:
->option_menu: cycle for available options...
option_selection:

 -suppress_diag:
 -include:
 -processor: default
 -check_incompatible: no -extension_checking: minor
 -system_programming: no -default_char: unsigned
 -list: no -mapcase: no
 -statistics: no -nesting: no
 -show_include: local -show_macros: unexpanded
 -compress: no
2-198

cpp, vcpp
Arguments
The arguments are a subset of those to the cc command. Refer to the description of the cc
command for argument definitions.

Explanation
The cpp command preprocesses an OpenVOS Standard C source module and produces a
fully expanded source module.

The arguments to this command are a subset of those to the cc command and produce results
that are nearly identical to those produced by the corresponding arguments of the cc
command. For the short options, you can use only those options that are applicable to
preprocessing.

When you invoke cc with the -E option, the cpp command duplicates the functionality of the
cc command, except that cpp makes no assumptions about the suffix of either the input or
output file. On input, cpp does not assume that the input file has the suffix .c. On output, if
you use the -o option to name the output file, cpp does not append .ex.c to the name you
specify.

For example, the command cc -E my_file preprocesses the file my_file.c and creates
the output file my_file.ex.c. On the other hand, the command cpp my_file produces a
“file not found” error. Therefore, you would have to specify the command as
cpp my_file.c.

See the description of the cc command for more information.
OpenVOS Commands Reference Manual (R098) 2-199

create_data_object
create_data_object 2-

Purpose
This command creates an object module of a specified size to be used by processes that share
virtual memory.

Display Form

Command Line Form

create_data_object object_name
data_length

Arguments* object_name Required
A data object module to be bound into program modules that use the subroutine
s$connect_vm_region3 to access a file. The object name cannot be an extended
name.

* data_length Required
The size, in bytes, of the data object module.

Explanation
The create_data_object command supports the sharing of virtual memory by different
programs. It creates an object module, that, when bound, has the specified name and size. By
binding this object module at the same virtual address in each program, and by passing this
address to s$connect_vm_region3 in each process, the region of virtual memory can be
shared among all of the executing programs.

Note: The size of the object module file itself bears no relation to the size of the data
object when bound; the former is always 1 block long while the latter can be arbitrarily
large.

Because entire 4096-byte pages are shared, you will generally want to define the
data_length in multiples of 4096 bytes and use the page_aligned directive in the
corresponding binder control files to start the data object on a page boundary.

------------------------------ create_data_object ------------------------------
object_name:
data_length:
2-200

create_data_object
See the description of the s$connect_vm_region3 subroutine in the OpenVOS
Subroutines manuals for details.

Examples
The following sequence of commands creates two files, region1.obj and region2.obj
that define 8192 and 4096 bytes of space, respectively.

create_data_object region1 8192
create_data_object region2 4096

You can bind the resulting object modules by including them in a binder control file of the
form.

name: example;

modules: region1 page_aligned,
 region2 page_aligned,
 example, /* other user code */
 .
 .
 .
end;

Note that the object created by create_data_object contains a variable of the same name
as the object name. You must give the external variable in your program the same name as the
data object in order for your program to reference it.

An OpenVOS PL/I user program might reference the data objects by declaring them as
follows:

dcl region1 char (8192) external static;
dcl region2 char (4096) external static;

Related Information
For information about the modules and high_water_mark bind control directives, see the
description of the bind command and Appendix C. See also the description of the
s$connect_vm_region3 subroutine in the OpenVOS Subroutines manuals.
OpenVOS Commands Reference Manual (R098) 2-201

create_deleted_record_index
create_deleted_record_index 2-

Purpose
This command creates a list of records deleted from a file as potential locations for new
records.

Display Form

Command Line Form
create_deleted_record_index path_name[-unpack] [-detail]

Arguments* path_name Required
The path name of the file for which an index of deleted records is to be maintained.

* -unpack <CYCLE>
Prevents adjacent deleted records from being merged into a single record before they
are added to the deleted record index. This argument is especially important when you
are building a deleted record index for an existing sequential file with data. By default,
the command causes adjoining deleted records to be combined into a larger record
entry in the index. Note that you can use the -detail argument in conjunction with
-unpack for use in debugging the deleted records in the sequential file.

* -detail <CYCLE>
Provides information you can use to debug the index of deleted records. Note that you
can use the -detail argument in conjunction with the -unpack argument to debug
the deleted records in the sequential file.

------------------------- create_deleted_record_index -------------------------
path_name:
-unpack: no
-detail: no
2-202

create_deleted_record_index
Explanation
The create_deleted_record_index command creates a list of all reusable locations in
a particular file. (A location is reusable when a record is deleted from that location.) A deleted
record index enables more efficient file space use, since the space taken up in the file by
deleted records is reused for new records.

Note: You should not create deleted record indexes for fixed files. If you attempt to do
so by issuing the create_deleted_record_index command, the command returns
the error e$ve_no_sequential_dri (7331). To avoid this error, issue the
create_record_index command for fixed files.

When you create a deleted record index for a file, the file system reads through the file and
creates deleted record entries for all records currently deleted from the file. This index stores
the size and location of deleted records in the file. The next time the file system writes a new
record to the file, it writes it in place of a deleted record of the same size or smaller, instead
of at the end of the file. The file system also reuses the deleted record’s record number (in
contrast to what happens with a record index created by the create_record_index
command). In addition, the file system tracks subsequent deletions from the file, adding new
deleted record entries to the list of reusable locations in the file.

Use the create_deleted_record_index command when you need to save file space and
do not need to keep track of record numbers; for example, when you use a key to access an
indexed file.

In order for the file to include separate entries for adjacent deleted records from a sequential
file, invoke the command with the -unpack argument. By default, adjacent deleted records
are merged into a single, larger entry in the index. In this situation, record space may not be
used as efficiently as possible in applications using sequential files with fixed length records.
However, use of the -unpack argument will ensure that record space is not wasted.

When you specify the -unpack argument, the create_deleted_record_index
command opens the file for DIRTY_INPUT_TYPE, thus allowing other processes to have the
file open in other opening modes. Any deleted records found during the normal file scan are
entered into the index. A record that is deleted after the command processes that part of the
file is not entered into the index. For this reason, you should not “purge” the file of old data
while this command is executing. After the index is created, the
create_deleted_record_index command closes the file and tries to reopen it for
exclusive input. If this attempt fails, the command displays the following message:

create_deleted_record_index: file_name. path_name

In order for the _deleted_record_index to be rebuilt, you must
shutdown the application(s) that are using this file. If you
answer stop the temporary files will be deleted and the command
will have to be re-issued. Is the application shutdown? (yes, no,
stop)

If you see this message, shut down the application or applications that are using this file, and
then type yes. After the command converts the deleted record index and threads it into the
file entry in the directory, the command terminates. This step is generally much faster than
OpenVOS Commands Reference Manual (R098) 2-203

create_deleted_record_index
the sequential reading of the entire file (seconds versus hours). You can then restart the
application processes.

Example
Consider a relative file named %s1#d02>Sales>Jones>discounts, with 10 records.
Create a deleted record index by issuing this command.

create_deleted_record_index %s1#d02>Sales>Jones>discounts

Suppose you subsequently delete record number 2 from discounts. The next record written
to the file could be written at position 2, reusing that space; the new record would also become
record number 2.

Related Information
See the description of the create_record_index command for information about another
way to save file space.
2-204

create_dir
create_dir 2-

Purpose
 This command creates one or more directories.

Display Form

Command Line Form

create_dir directory_name . . . [-parents]
Arguments* directory_name Required

One or more path names of new directories.

* -parents <CYCLE>
Creates any missing intermediate directories. By default (no), the command does not
create any intermediate directories.

Explanation
The create_dir command creates one or more directories. The directory_name
argument is a path name or set of path names of a new directory or directories.

If a path name for a new directory conflicts with that of an existing object, the create_dir
command does not create the directory unless the existing object is a link whose target does
not exist. In this case, the create_dir command creates the directory and locates it so that
it becomes the target of the link.

The access control list of the new directory is a copy of the access control list of its containing
directory. The default access control list for files in the new directory is a copy of the default
access control list for files in its containing directory.

Access Requirements
To create a directory, you need modify access to the containing directory of the new directory.

---------------------------------- create_dir ----------------------------------
directory_name:
-parents: no
OpenVOS Commands Reference Manual (R098) 2-205

create_dir
Examples
Example 1.
To create a directory named reports in your current directory, use this command.

create_dir reports

Example 2.
The following command creates a directory named new_customers in the person directory
Jones in the group directory Sales.

create_dir %s1#d02>Sales>Jones>new_customers

Example 3.
The following command creates a directory named reports, as well as the intermediate
directories sales and q2.

create_dir -parents sales>q2>reports

Related Information
See also the command descriptions of change_current_dir, compare_dirs,
copy_dir, delete_dir, display_current_dir, and move_dir.
2-206

create_file
create_file 2-

Purpose
This command creates and names an empty file.

Display Form

Command Line Form

create_file file_name [-organization organization] [-record_size record_size] [-num_records number] [-extent_size[size]] [-dynamic_extents] [-character_set character_set] [-shift_mode shift_mode]
Arguments* file_name Required

The path name of the new file. The file name must conform to the rules for valid file
names on the module where the file is being created.

--------------------------------- create_file --------------------------------
 file_name:
 -organization: sequential
 -record_size:
 -num_records:
 -extent_size: 1
 -dynamic_extents: no
 -character_set: none
 -shift_mode: all
OpenVOS Commands Reference Manual (R098) 2-207

create_file
* -organization organization <CYCLE>
Specifies one of the following types of file organization for the new file.

 sequential
 stream
 relative
 fixed
 server_queue
 message_queue
 one_way_server_queue
 ext_sequential
 stream64

By default, the command creates a sequential file.

* -record_size record_size
Specifies the maximum record size, in bytes. If you specify fixed, relative, or
ext_sequential for -organization, record_size is required. If you specify
stream64 for -organization, record_size is optional. The command ignores
the value if you specify sequential, stream, or one of the queue types for
-organization. See the Explanation section for more information.

* -num_records number
Specifies the number of records to be pre-allocated in the created file. For a fixed or
relative file, the operating system uses number and record_size to determine the
number of blocks to allocate to hold these records. For other file types, the operating
system allocates number blocks. If the file is extent-based, this value is the number of
records or blocks stored in the extents. See the Explanation section for more
information on how to calculate the maximum number of records in extent-based files.
This argument is optional for DAE files and required for SAE files.

* -extent_size [size]
Specifies the size, in blocks, of the extents used by the file. A file extent is a contiguous
group of blocks represented by a single disk address. The use of extents allows a file to
grow beyond the capacity of the file map, allowing one map entry to represent multiple
blocks, and causes allocation of the blocks in each extent to be contiguous, often
resulting in better performance. Queue files cannot be extent-based. The number of
extents in a file and the maximum size in blocks to which a file may grow depends on
the file organization, extent size, record size, and number of records. For information
on calculating the maximum number of file blocks, see the Explanation section.

If size is a value other than 1, create_file uses the values specified for
-extent_size and -dynamic_extents to create the file.

Extents may be dynamically allocated (DAE) or statically allocated (SAE), depending
on the value of the -dynamic_extents argument. The allowable values of size, if it
is specified, depend on the value of -dynamic_extents. A size value of 1 indicates
a non-extent file (that is, there is one block per file map entry).
2-208

create_file
For statically-allocated extents, you must specify the -num_records argument to
indicate the initial size of the file. Only this initial, pre-allocated portion of the file uses
the specified extent size. Further file growth is non-extent.

Note: If size is greater than the actual number of blocks needed to store the
specified number of records, only one extent of size blocks is actually allocated.
For example, if you create a relative file with a record size of 4094 bytes (one
block) and 100 records, requiring 100 blocks of storage, but specify an extent
size of 128 blocks, the create_file command allocates one extent of 128
blocks even though only 100 blocks is needed.

For dynamically allocated extents, the -num_records argument is optional,
indicating the portion of the file to be pre-allocated. The specified extent size applies
to all subsequent file growth. If you specify size, it must be either 1 or a value from 8
to 256 that is a power of 2. If you do not specify size, the operating system sets the
extent size to 64, except for 64-bit stream files. In that case, variable flexible extents are
used. The value of -record_size for both extended sequential and 64-bit stream files
can affect size.

If you specify -extent_size with no value2, the command uses a default value:

 For sequential and stream files, the extent size is 1 (that is, no extents).

 For extended-sequential files, the extent size is 8.

 For 64-bit stream files, the extent size is the target module’s default value:
normally, flex (or 8 for modules running a release earlier than OpenVOS
Release 18.x). Flexible extents do not have a fixed size; rather, the blocks in an
extent increase as the size of the file increases.

 For DAE files that are not 64-bit stream files, the extent size is 64.

 For SAE files, the extent size is 128.

If you do not specify-extent_size, the file’s extent size is the extent size of
source_file, except that for extended-sequential files, the extent size must be 8 or
greater and must be large enough to hold the contents of the source file, if possible, or
256.

* -dynamic_extents <CYCLE>
Creates a dynamically-allocated extents (DAE) file. By default, the create_file
command does not create DAE files.

DAE files offer the following features.

 No pre-initialization of the entire file, which is costly with very large files
 Maximum extent size of 256
 Dynamic file growth by extent size

2 In this case, the value -1 appears in the display form. Explicitly specifying -1 on the command
line has the same effect as not specifying size.
OpenVOS Commands Reference Manual (R098) 2-209

create_file
 A transparent network model: you can create DAE files across networks

DAE files grow by extent size units. Extent sizes are a power of 2 between 8 and 256.
DAE files can support fixed, relative, extended sequential files larger than 2 GB, up to
512 GB, depending on file characteristics. With DAE, you can specify zero-length files
at file creation, thus allowing for the file to grow dynamically over time.

The extent size is given at file creation, but an extent is not initialized until a block
within the extent is first written. When you access a given block in a DAE file, the
corresponding extent is examined. If the disk address has not been assigned, it is
calculated on the extent-size boundary, and all blocks in the extent are allocated.

See the Explanation for more information about creating DAE files.

* -character_set character_set <CYCLE>
Specifies one of the following default character sets to be assigned to the file.

 none
 ascii
 latin_1
 latin_9
 kanji
 katakana
 hangul
 simplified_chinese
 chinese1
 chinese2
 user_dbcs

By default, a value of none is assigned to the file. Specify a character set only for a
fixed, relative, or sequential file.

* -shift_mode shift_mode <CYCLE>
Specifies the shift combinations allowed in the new file. Possible values for
shift_mode are all, none, locking, and single. By default, both single- and
locking-shift combinations (all) are allowed. The -shift_mode argument is ignored
if the value of character_set is none. If the shift mode is locking or all, file data
is stored as compactly as possible at the expense of execution speed. For more
information on shift modes, see the National Language Support User’s Guide (R212).

Explanation
The create_file command does not create the new file if the path name of a new file
conflicts with that of an existing object. There is one exception to this: if the existing object
is a link whose target does not exist, the create_file command creates the file and locates
it so that it becomes the target of the link.

File Organization Characteristics
This section describes the main characteristics of the file organizations supported by the
create_file command. A file is a named, logical unit of storage containing a sequence of
records. You can use the create_file command to create the following types of files:
2-210

create_file
 sequential files
 extended sequential files
 stream files
 64-bit stream files
 flex files (a type of 64-bit stream file)
 relative files
 fixed files
 queue files

Note: You can create pipe files with the set_pipe_file command. You can
create paging files with this command and the add_paging_file command.
For a description of the add_paging_file command, see the manual
OpenVOS System Administration: Disk and Tape Administration (R284).

Sequential Files
A sequential file contains records that can vary in length from 0 to 32,767 bytes. The disk
space allocated for each record also varies. As shown in the following illustration, records
start and end with two bytes (one word) that contain the length of the record.

When you delete a record in a sequential file, OpenVOS does not delete the data in the record.
Instead, it changes the record length to a negative number to indicate that the record has been
deleted. The space from logically deleted records can be regained by using the copy_file
command and specifying the -pack or -truncate argument.

The value sequential is the default value of the create_file command’s
-organization argument.

Record size is not meaningful for sequential files. The value of the -record_size argument
must not be less than or equal to zero; all positive values are ignored.

Extended Sequential Files
An extended sequential file is a sequential SAE or DAE file defined in such a way that it can
grow larger than 231-1 bytes. The records within an extended sequential file are formatted like
those in a sequential file.

The difference between a sequential file and an extended sequential file is that when you use
the latter file organization, records always begin on a byte boundary corresponding to the
value of -record_size. A record size of 8 indicates that each record begins on a 0 mod 8
byte boundary. A record size of 64 indicates that each record begins on a 0 mod 64 byte
boundary.

The -organization and -record_size arguments control extended sequential file
creation as follows:

This is a 16-byte long record.

This is a 34-byte long record.34

16 16

34
OpenVOS Commands Reference Manual (R098) 2-211

create_file
 The value of -record_size indicates the boundary granularity and must be a power
of two between 2 and 256, inclusive.

 The command creates a DAE or SAE extended sequential file, based on the value of
-extent_size. If the value is 1, create_file creates a DAE extended sequential
file. In this case, the extent size corresponds to the value of -record_size, except that
the values 2 and 4 result in an extent size of 8, the minimum DAE extent size.

You cannot use create_file to create an extended sequential file without extents. Instead,
you must use the s$create_extent_file subroutine, as documented in the OpenVOS
Subroutines manuals. The s$create_extent_file subroutine description also provides
information about accessing extended sequential files across modules.

Note: Where this manual refers to sequential files, it also refers to extended sequential
files, unless otherwise noted. The two are identical except that the maximum record
size, which is meaningless for normal sequential files, indicates record offset unit size
for extended sequential files, thereby allowing a greater growth potential.

A text file cannot have the extended sequential file format.

Stream Files
A stream file contains either binary data or records that can vary in length from 0 to 32,767
bytes. The disk space allocated for each record also varies. As shown in the following
illustration, the end of each record is marked by an ASCII line-feed character (0A
hexadecimal). If you insert a line-feed character in a record, the record becomes two records.

You cannot physically delete a record in a stream file; however, you can truncate and zero
extend stream files containing binary data.

The -record_size argument is ignored if you specify the -organization stream
argument.

64-bit Stream Files
A 64-bit stream file is a stream file that has certain capabilities that a normal stream file does
not have, along with certain limitations. It can grow larger than 231 bytes if it is defined as an
extent file. The extent size determines the limit of its growth. It cannot be defined with
statically-allocated extents (SAE).

If the value of -organization is stream64, create_file creates a 64-bit stream file,
based on the following:

 If you specify -record_size, the extent size is assumed to be the value of
record_size, and it must be a value that is a power of 2 in the range of 8 to 256,
inclusive. In this case, a DAE 64-bit stream file is created. If you also specify
-extent_size, it must be the same as the value of record_size.

This is a record. ‘0A This is another, longer record. ‘0A

‘0A = line-feed character
2-212

create_file
 If you do not specify -record_size, the extent size corresponds to the value of
-extent_size, if specified. If the specified size is 1 or if you do not specify
-extent_size, the command creates a non-extent file. If you specify size with
-extent_size, size must be either 1 or a value that is a power of 2 between 8 and
256. If you do not specify size, extents are flexible, increasing as the file becomes
larger. Files with flexible extents are called flex files.

A 64-bit stream file can be sparse (that is, no actual disk space is required for blocks that
consist of all binary zeros) and can grow to the size allowed by its extents. If a 64-bit stream
file is larger than 2 GB, it cannot be copied or moved to modules running releases earlier than
OpenVOS Release 17.2.x. However, such a file can be accessed across the network from a
module running an earlier release as long as byte-positioning operations are not attempted.

Note: Where this manual refers to stream files, it also refers to 64-bit stream files,
unless otherwise noted. The two are identical except that 64-bit stream files can be
sparse; they cannot contain indexes, cannot be pipe files, and cannot be SAE files; and
their size can grow beyond 2 GB.

Flex Files
A flex file is identical to a 64-bit stream file, except that the size of its extents varies in
different regions of the file. Each size depends on the offset of the block that begins the extent
within the file. Only 64-bit stream files can be flex files.

The maximum size of a flex file is 546,704,523,264 bytes.

You create a flex file by specifying -organization stream64 and -extent_size
without specifying size. The extent size is the target module’s default value: normally, flex
(or 8 for modules running a release earlier than OpenVOS Release 18.x).

Relative Files
A relative file contains fixed-length records whose size you specify. Although all records on
the disk are the same length, the amount of data in each record can vary in length. As shown
in the following illustration, each record starts with two bytes (one word) that contain the
length of the data in the record. Thus, the physical record is two bytes longer than the
specified record size.

OpenVOS only allocates those file blocks containing records that are accessed by a read or
write operation.

When you delete a record in a relative file, OpenVOS does not delete the data in the record.
Instead, it changes the record length to -1 to indicate that the record has been deleted. The
space from logically deleted records can be regained by using the copy_file command and
specifying the -pack argument.

This record contains 16-bytes of data.

This record contains 34-bytes of data.34

16
OpenVOS Commands Reference Manual (R098) 2-213

create_file
For a relative file, you must specify the -record_size argument, and the value must be
between 1 and 32,767. You must specify the -num_records argument if you specify a value
other than 1 for -extent_size.

Fixed Files
A fixed file contains fixed-length records whose size you specify. As shown in the following
illustration, each record contains the same amount of data.

You cannot physically delete a record in a fixed file.

For a fixed file, you must specify the -record_size argument, and the value must be
between 1 and 32,767. You must specify the -num_records argument if you specify a value
other than 1 for -extent_size.

Queue Files
A queue is a special kind of file that one process can use to communicate with another
process. A process or task that sends a message to the queue is called a requester. A process
or task that reads a message from the queue is called a server. With a one-way queue, a
requester can send a message but the server cannot reply to the message. With a two-way
queue, a requester can send a message and the server can reply to the message. Each message
unit in queue consists of a header and a message. The message is the character string sent by
a process or task. The header contains information such as the message priority, message ID,
the process IDs of both the requester and the server programs, and time and date data. The
create_file command supports message queues, one-way and two-way server queues,
and one-way and two-way direct queues.

 A message queue is the least restrictive in terms of the actions that can be performed
on the queue. Message queues are always one-way queues. Since both the header and
the message reside on disk, message queues are the slowest type of queue. You can
create a message queue by specifying the message_queue value for the
-organization argument of the create_file command.

 One-way and two-way server queues are more restrictive than message queues in terms
of the actions that can be performed on a queue. The header and message are not written
to permanent storage; rather, they reside in kernel memory, which is managed by the
operating system. Server queues are faster than message queues, but slower than direct
queues. You can create a one-way server queue by specifying the
one_way_server_queue value for the -organization argument of the
create_file command. You can create a two-way server queue by specifying the
server_queue value for the -organization argument of the create_file
command.

 One-way and two-way direct queues are the fastest type of queue, but also the most
restrictive in terms of actions that can be performed on a queue. Both the header and
the message reside in wired memory. Each requester can handle only one message at a

This record contains 16 bytes of data.

This record also contains 16 bytes of data.
2-214

create_file
time. You can create a one- or two-way direct queue by specifying the sequential
value for the -organization argument of the create_file command. The file
becomes a direct queue when it is opened by the s$msg_open_direct subroutine.

For more information on the file organizations supported by the create_file command,
see the VOS Reference Manual (R002). For information about queue file organizations, see
the VOS Transaction Processing Facility Guide (R215).

File Entries and Extent-based Files
Files are allocated and stored on disks in units of blocks. A block contains 4096 bytes. When
a file is created, storage is allocated on a disk to hold information about the file, such as its
organization, maximum record size, and disk addresses for file data blocks. This stored
information is called the file map. A file map can contain a maximum of 523,792 disk
addresses.

An extent is a contiguous group of blocks represented by a single disk address. Subject to the
limits described later in this Explanation in ‘‘File Size Limits,” extents permit files larger than
523,792 blocks. OpenVOS provides two types of extent-based files:

 Statically-allocated extents (SAE) files have their extent region entirely allocated and
initialized when the file is created.

 Dynamically-allocated extents (DAE) files allocate and initialize extents as the file
grows.

Table 2-13 lists advantages and disadvantages to using extent-based files.

13

Table 2-13. Extent-based Files: Advantages and Disadvantages

Extent File Type Advantages Disadvantages

Both SAE and DAE Fewer disk addresses are
required to represent a file.
Sequential access may be
optimized on the disk. Extents
allow you to create larger files
than you could create without
extents. The system can often
read the file map into the cache,
improving performance.

Fragmentation could cause
file-creation failure or growth
failure.

SAE Provides a larger extent size
that is required for paging files.

The entire extent region must
be allocated and initialized at
file creation, which can take a
long time. Subsequent growth
occurs one block at a time. You
cannot create SAE files over
the network.
OpenVOS Commands Reference Manual (R098) 2-215

create_file
If the file is an extent-based file, the first n disk addresses in the file map are extents, rather
than individual blocks. The number of extents in the file (the value of n) depends on the values
of the -extent_size, -dynamic_extents, -record_size, and -num_records
arguments, all of which are described in this Explanation.

When the extent space allocated during file creation is filled with data, the file continues to
grow one block at a time (for SAE files) or by extent size units (for DAE files), in combination
with the arguments specified for the set_file_allocation command. In either case, the
address of each new block or extent is stored in a separate disk address in the file map.

File Extents
The create_file command can set three types of file extents at file creation: simple files,
SAE files, or DAE files.

 Simple files—The default -extent_size value is 1. The -extent_size value
specifies the size, in blocks, of the extents used by the file. The number of records at
creation time can be zero or more. If you enter a zero at creation time, a zero-length file
is created. If you specify a nonzero number in the -num_records argument, a single
block at a time is allocated for the desired number of records. Disk blocks are allocated
but not initialized. File growth occurs in single blocks.

 SAE files—At file creation, you must specify an -extent_size value that is a
multiple of 8 and a -num_records value that is greater than zero. For fixed, relative,
and extended sequential files, the value specified in -num_records should be the
maximum number of records in your file; for sequential and stream files, the value
specified in -num_records should be the maximum number of blocks in your file.
The -extent_size value multiplied by the number of extents determines the initial
size of the file. All disk blocks are allocated and initialized for this file. After the initial
area has been used, the file grows in single blocks. By default, OpenVOS creates extent
files as SAE files. Note that you cannot use the create_file command with
non-local SAE files if the -extent_size size argument is greater than 1.

 DAE files—At file creation, you must specify an -extent_size value that is a power
of 2 between 8 and 256, and specify the -dynamic_extents argument. You may also
specify a -num_records value of zero or greater. If zero is entered, a zero-length file
is created. The file grows in extent-size units as long as enough contiguous space is
available.

DAE Optional extent allocation at
file creation. Extents are
initialized only as needed.
Provides a transparent network
model (that is, a DAE file looks
like any other file).

Cannot use for paging files.

Table 2-13. Extent-based Files: Advantages and Disadvantages (Continued)

Extent File Type Advantages Disadvantages
2-216

create_file
Creating Extent-based Files
The create_file command uses the arguments -extent_size and -num_records to
control the creation of extent-based files. The -extent_size value multiplied by the
number of extents determines the size of the file. You do not need to specify the number of
records to create DAE files.

The -dynamic_extents and -extent_size arguments control the type of file that is
created, as follows:

 If you specify the -dynamic_extents argument with a value of no and specify the
-extent_size argument with a value of 1, the command creates a simple file.

 If you specify the -dynamic_extents argument with a value of no and specify the
-extent_size argument with a value that is a multiple of 8, the command creates an
SAE file.

 If you specify the -dynamic_extents argument with a value of yes and specify the
-extent_size argument with a size other than 1, the command creates a DAE file. If
you specify size with the -extent_size argument, it must be either 1 or a value
from 8 to 256 that is a power of 2. If you do not specify size, the command uses an
extent size of 64 for all file types except for 64-bit stream files, for which extents are
flexible, increasing as the file becomes larger.

Extent Files and Disk Fragmentation
If you attempt to create or grow an extent file but sufficient contiguous space for an extent is
not available, the error e$insufficient_extent_space (4720) is returned, and the
action fails. This situation can occur if the disk is low on space or is significantly fragmented.
The following sections describe how to address these issues in order to successfully create an
extent file.

Handling Disk Fragmentation
Handle disk fragmentation as follows:

 When you create a file, specify the minimum extent size necessary to satisfy your
requirements. If future fragmentation is a concern, preallocate the required blocks at
file creation (block preallocation at file creation always occurs for SAE files and is
optional for DAE files).

 Defragment the disk by saving files (especially simple files), deleting the files, and then
restoring them. If there is not enough disk capacity to save these files to another disk,
you can save the files to tape and restore them from tape. You can perform this process
on a wider scale so that the entire disk is saved, and the files are deleted and then
restored. For non-extent files, specify the copy_file command with the
-avoid_fragmentation argument. Doing so relocates a file so that as many as
possible of its disk blocks are contiguous. The success of this as a defragmentation tool
depends on the disk’s current allocation patterns. This technique is more effective if you
first free up significant disk space.
OpenVOS Commands Reference Manual (R098) 2-217

create_file
SAE Failures
If SAE file creation fails on a particular disk volume, try to reclaim excess disk space on the
volume in an attempt to alleviate the failure. To reclaim excess disk space, log in as privileged,
and then use analyze_system to examine the excess disk space for a volume, as follows:

as> list_disks
as> dump_ldte ldtep

The list_disks request lists each disk and its associated ldtep. The output of the
dump_ldte request includes Total fp excess, the number of excess blocks available. If
excess disk space is available, reclaim it with the following OpenVOS command:

set_partition_size disk_name excess size

The excess partition is not a true disk partition but rather a collection of excess disk space.
The value of size is the amount of excess disk space, in blocks, that should remain. A value
of 0 returns all excess disk space to the disk free space. A size value greater than the excess
disk space has no effect.

DAE Failures
When you issue a request to create or grow a DAE or simple file and the request fails, a
free-space emergency occurs. This situation is usually caused by low disk space or
fragmentation issues. At this point, the free-space emergency recovery may be able to free
enough space, and the request eventually succeeds. In other cases, however, the request will
completely fail.

If the system variable disk_space_emergency_warn$ is enabled (set to 1), the system
writes the following error message to the system error log, regardless of whether the request
has failed or eventually succeeded.

disk_allocators: space shortage on disk disk_name,
extent_size=number, total_excess_blocks=number

The system variable disk_space_emergency_warn$ has no effect on SAE files.

By default, the system variable disk_space_emergency_warn$ is disabled (set to 0),
which means that the system will not log the preceding error message if a free-space
emergency occurs. If you want to receive this error message during free-space emergencies
(regardless of whether the request fails or eventually succeeds), contact the CAC, and they
will set the variable for you.

File Size Limits
File growth is limited by the following:

 the maximum number of records and the size of the extents for fixed, relative, or
extended sequential files

 the maximum record byte offset for sequential or stream files

 the maximum number of blocks that can be allocated to a file by the file map
2-218

create_file
The following sections describe these limits.

Maximum -num_records Value for Relative and Fixed Files
The -num_records argument specifies the number of records in a relative or fixed file, and
the number of 4096-byte blocks for a sequential or stream file. The maximum possible value
of -num_records is 2,147,483,647 (231 – 1), although this is typically limited by other file
characteristics, such as extent size, record size, and, in the case of extended sequential files,
allocation unit size. In addition, file growth is limited from the theoretical maximum due to
the reservation of the last 16 file-map entries and, in the case of sequential and stream files,
the last seven blocks.

Maximum Record Byte Offset for Sequential and Stream Files
Records in sequential files and lines in stream files occupy a varying amount of space. The
operating system uses the record byte offset to locate a record in a sequential or stream file.
A record byte offset is the byte location of a record from the beginning of a file. The first
record or first line in a file has a record byte offset of 0. The maximum record byte offset for
a non-extent file is 2,145,452,032 (that is, 523,792 blocks). For a sequential file, growth may
be limited to 2,145,415,168 (that is, 523,783 blocks), depending on the size of the last record
written.

Maximum Number of Blocks for Files without Extents
Given enough disk space, an OpenVOS file with a relative, fixed, sequential, or stream
organization that does not use extents can grow to the maximum file-map offset of
2,145,452,032 bytes or 523,792 data blocks (a total of 524,304 blocks, including the file
map). Sequential files are limited to 9 blocks less than the maximum file-map offset
(523,783).

Maximum Number of File Blocks for Sequential Files with Extents
The maximum size of an OpenVOS extended sequential file is based on whichever is less: the
maximum file-map offset multiplied by the extent size, or the allocation unit size (as specified
in the -record_size argument) multiplied by 2,147,483,648 (231). The maximum number
of data blocks in an extended sequential file is this value divided by 4096, minus 9, which is
the number of blocks needed to hold a record of maximum size.

The maximum size of a sequential file with extents is the same as without extents. For
extended sequential files, create_file, by default, selects an extent size that allows the file
to grow approximately as large as the limit imposed by the allocation unit size.

Maximum Number of File Blocks for Stream Files with Extents
An OpenVOS 64-bit stream file that uses extents may grow as large as the maximum file-map
offset of 2,145,452,032 bytes (523,792 blocks) multiplied by the extent size, or in the case of
flexible extents, 131,870,736 blocks.

The maximum size of an ordinary (32-bit) stream file with extents is the same as without
extents.

Pre-allocating Disk Space for Stream and Sequential Files
Use the -num_records argument to specify the initial number of blocks in a stream or
sequential file. The file may grow beyond this initial size, as described in ‘‘File Entries and
OpenVOS Commands Reference Manual (R098) 2-219

create_file
Extent-based Files” earlier in this command description. For files with dynamically allocated
extents, pre-allocation reserves blocks on disk but does not write to them.

To determine the number of extents that the create_file command allocates, divide the
-num_records value by the -extent_size value. For example, to create a sequential file
of 512 blocks with extents of 256 blocks, issue the following command. Note that the file will
initially contain two (512 / 256 = 2) extents.

create_file seq_ex -organization sequential -num_records 512
-extent_size 256

To create a large 64-bit stream file with or without pre-allocating disk space, reset its
end-of-file, as shown in the following example. Extents for 64-bit stream files are always
dynamically allocated.

create_file flex -organization stream64 -extent_size
reset_eof flex 540142534656

The preceding example creates a 64-bit stream file consisting of approximately 500 GB of
binary zeros, but it uses virtually no disk space until a record is written that requires a disk
block. If you do not specify a value for -extent_size, the command creates a file with
flexible extents; a flex file can hold up to 540,142,534,656 bytes. Using -num_records to
pre-allocate disk space creates an empty file but guarantees sufficient disk space for file
growth, up to the specified amount. For example:

create_file str64 -organization stream64 -num_records 8380672
-extent_size 16

reset_eof str64 34327232512

The preceding example first creates a 64-bit stream file requiring approximately 32 GB of
disk space. It then sets the file to contain 34,327,232,512 of binary zeros; 323,223,512 is the
maximum number of bytes that fits in a file with extent size 16 (that is, 16 * 2,145,452,032).
The operating system reserves disk space but does not write blocks, resulting in a fast
operation.

Maximum Number of File Blocks with SAE for Relative Files
Given enough disk space, an OpenVOS relative file with extents may grow larger than an
OpenVOS relative file without extents. The maximum blocks for a relative file are determined
by the -extent_size, -record_size, and -num_records arguments. Use the formulas
described in the following paragraphs to calculate the maximum number of records that a
relative file with extents can contain.

Use the following formula to calculate the number of extent blocks in a relative file, first by
adding 2 bytes to the specified -record_size byte value. OpenVOS appends two bytes to
each relative record to store the actual record length. Multiply this sum by the specified
-num_records value to obtain the number of bytes stored in the extents. When you specify
the -num_records value for a relative file with extents, you are actually specifying the
2-220

create_file
number of records contained by the extents, not the number of records contained by the entire
relative file. To convert the byte value into a block value, divide the product by 4096.

extent_blocks = num_records * (record_size + 2) / 4096

Use the following formula to calculate the number of extents in a relative file by dividing the
extent_blocks value determined by the previous formula by the specified -extent_size
block value.

extents = extent_blocks / extent_size

Use the following formula to calculate the maximum number of blocks in a relative file. The
maximum number of blocks in a relative file includes both the blocks not in extents and the
blocks in extents. To calculate the number of blocks not in extents, subtract the extents
value determined by the previous formula from 523,792 blocks. The value 523,792 is the
maximum number of block addresses that can be stored in a file map. One block address is
needed to store the address of each extent. To the number of blocks not in extents, add the
number of extent_blocks as calculated in the first formula.

max_num_blocks = (523,792 - extents) + extent_blocks

Use the following formula to calculate the maximum number of records that can be stored in
a relative SAE file. This value always exceeds the specified -num_records value because it
includes the blocks that are not in the extents. However, the value cannot exceed
2,147,483,647, as described in the section ‘‘Maximum -num_records Value for Relative
and Fixed Files” earlier in this command description.

max_num_records = max_num_blocks * 4096 / (record_size + 2)

In the following example, the command creates a relative file with 500,000 records in file
extents, with 8190 byte records, and with an extent size of 1000 blocks.

create_file ex_rel -organization relative -record_size 8190
-num_records 500000 -extent_size 1000

extent_blocks = num_records * (record_size + 2) / 4096
= 500,000 * (8190 + 2) / 4096 = 1,000,000

extents = extent_blocks / extent_size
= 1,000,000 / 1,000= 1000

max_num_blocks = (523,792 - extents) + extent_blocks
= (523,792 - 1000) + 1,000,000 = 1,522,792

max_num_records= max_num_blocks * 4096 / (record_size + 2)
= 1,522,792 * 4096 / (8190 + 2) = 761,396

Note that the max_num_records value of 761,396 exceeds the specified -num_records
value of 500,000.
OpenVOS Commands Reference Manual (R098) 2-221

create_file
Maximum Number of File Blocks with DAE for Relative Files
Use the following formula to calculate the maximum number of records that can be stored in
a relative DAE file.

max_num_records = 523792 * 4096 * extent_size / (record_size + 2)

Maximum Number of File Blocks with SAE for Fixed Files
File block limits for fixed files are very similar to the file block limits for relative files. The
only difference is that a record in a fixed file is not preceded by length bytes. OpenVOS
determines the maximum file blocks for a fixed file by using the -extent_size,
-record_size, and -num_records arguments. Use the formulas described in the
following paragraphs to calculate the maximum number of records that a fixed file with
extents can contain.

Use the following formula to calculate the number of extent blocks in a fixed file by
multiplying the specified -record_size byte value by the specified -num_records value.
When you specify the -num_records value for a fixed file with extents, you are actually
specifying the number of records contained by the extents, not the number of records
contained by the entire fixed file. To convert the byte value into a block value, divide the
product by 4096.

extent_blocks = num_records * record_size / 4096

Use the following formula to calculate the number of extents in a fixed file by dividing the
extent_blocks value determined by the previous formula by the specified -extent_size
block value.

extents = extent_blocks / extent_size

Use the following formula to calculate the maximum number of blocks in a fixed file. The
maximum number of blocks in a fixed file includes both the blocks not in extents and the
blocks in extents. To calculate the number of blocks not in extents, subtract the extents
value determined by the previous formula from 523,792 blocks. The value 523,792 is the
maximum number of block addresses that can be stored in a file map. One block address is
needed to store the address of each extent. To the number of blocks not in extents add the
number of extent_blocks as calculated in the first formula.

max_num_blocks = (523,792 - extents) + extent_blocks

Use the following formula to calculate the maximum number of records that can be stored in
a fixed SAE file. This value always exceeds the specified -num_records value because it
includes the blocks that are not in the extents. However, the value cannot exceed
2,147,483,647, as described in the section ‘‘Maximum -num_records Value for Relative
and Fixed Files” earlier in this command description.

max_num_records = max_num_blocks * 4096 / (record_size + 2)
2-222

create_file
In the following example, the command creates a fixed file with 1,500,000 records in file
extents, with 4096 byte records, and with an extent size of 1000 blocks.

create_file ex_fixed -organization fixed -record_size 4096
-num_records 1500000 -extent_size 1000

extent_blocks = num_records * record_size / 4096
= 1,500,000 * 4096 / 4096 = 1,500,000

extents = extent_blocks / extent_size
= 1,500,000 / 1,000 = 1,500

max_num_blocks = (523,792 - extents) + extent_blocks
= (523,792 - 1,500) + 1,500,000 = 2,022,292

max_num_records= max_num_blocks * 4096 / record_size
= 2,022,292 * 4096 / 4096 = 2,022,292

Note that the max_num_records value of 2,022,292 exceeds the specified -num_records
value of 1,500,000.

Maximum Number of File Blocks with DAE for Fixed Files
Use the following formula to calculate the maximum number of records that can be stored in
a fixed DAE file.

max_num_records = 523792 * 4096 * extent_size / record_size

Initial Maximum Extent-based File Size and Index Size
You can create an extent-based index for an extent-based file by using the create_index
command and specifying the -extent_size argument. The size of the index for an
extent-based file, whether or not the index is extent-based, does not affect the initial
maximum extent-based file size.

Converting between Stream and Sequential Files
To convert between stream files, 64-bit stream files, sequential files, and extended sequential
files, you can use the convert_stream_file command. This command allows conversion
among these types and any desired extent value. Not all files can be converted. For example,
stream files may not be convertible to sequential files due to record-size limits, and stream
files containing an index may not be convertible to 64-bit stream files. In general, files may
not be convertible due to size limits together with extent size changes.

You can also use convert_stream_file to check whether files can be converted, without
actually converting them.

Converting Non-extent-based Files to Extent-based Files
To convert a non-extent-based file to an extent-based file, first use the save command to save
the file to tape. Then use the restore command and specify the number of records in the
file, the type of extent file, and the size of the extents with the -extent_num_records,
-dynamic_extents (if you are creating a DAE file), and -extent_new_size arguments,
respectively. For SAE files, depending on the size of the extent file, it may take more than an
hour just to create the new extent file.
OpenVOS Commands Reference Manual (R098) 2-223

create_file
Default Character Set and Shift Mode
The default character set and shift mode of a file are used by file and I/O services to store and
return text file data in an appropriately translated format. The character sets that are supported
for fixed, relative, or sequential files include ascii, latin_1, latin_9, kanji,
katakana, hangul, simplified_chinese, chinese1, chinese2, and user_dbcs.
Indexes on files having one of these default character sets are allowed only if the file’s shift
mode allows no shifts; therefore, specify a value of none for shift_mode if you expect to
create indexes for the text file. Indexes are not allowed for files with a multiple-byte default
character set.

Access Requirements
To create a new file, you need modify access to the directory containing the new file.

Examples
The following examples show a variety of file characteristics that you can specify when you
invoke the create_file command.

Example 1
To create a sequential file named memos in the current directory, use this command.

create_file memos

Example 2
The following command creates a relative file named this_week in the current directory.

create_file this_week -organization relative -record_size 7

The maximum size of a record in the file this_week is 7 bytes. That is, each record can have
any size from 0 to 7 bytes.

Example 3
The following command creates a fixed file named this_month in the current directory.

create_file this_month -organization fixed -record_size 508

The size of each record in the file this_month is 508 bytes.

Example 4
The following command creates an extended sequential file where each record begins on a
0 mod 32 byte boundary.

create_file big_file -organization ext_sequential -record_size 32

The record size indicates the type that corresponds to the granularity of the record boundaries.
The higher the value, the larger the file can grow; however, a higher value increases the
potential of unused space between records. The file created here can grow to approximately
64 GB if it is an extent-based file. Because non-extent-based files are limited to
approximately 2 GB, there would be no reason to create an extended sequential file without
extents. For this reason, the default values applied in this example are -dynamic_extents
yes and -extent_size 32.
2-224

create_file
Example 5
The following command creates a DAE 64-bit stream file with 1000 blocks preallocated and
a maximum record size of 16 bytes.

create_file filex -organization stream64 -record_size 16 -num_records 1000

In the preceding example, filex can grow to approximately 32 GB. The following command
provides information about filex.

display_file_status filex
name: %abcd_user>Stratus>JLS>filex
file organization: stream file (64-bit)
last used at: 13-02-15 15:29:58 est

.

.

.
dynamic extents: yes
extent size: 16
next byte: 0
blocks used: 1009
sparse: no
mode: w

The designation (64-bit) indicates that filex is a 64-bit stream file. The field next byte
shows that the file is empty. The field blocks used shows that 63 extents were reserved
(1008 blocks, which is 1000 rounded up to extent size), plus the indirect file map block. The
field sparse indicates that filex does not use unallocated disk blocks to represent 4096 zero
bytes. (A preallocated file is not sparse unless unallocated blocks occur before the end of the
file.)

Related Information
See the command descriptions of compare_files, copy_file, create_index,
delete_file, display_file_status, dump_file, locate_files, move_file,
set_file_allocation, set_ram_file, set_pipe_file, set_text_file, and
truncate_file for more information on files. For descriptions of the save and restore
commands, see the manual OpenVOS System Administration: Backing Up and Restoring
Data (R285). For a description of the add_paging_file command, see the manual
OpenVOS System Administration: Disk and Tape Administration (R284). For detailed
descriptions of each type of file organization, see the VOS Reference Manual (R002).
OpenVOS Commands Reference Manual (R098) 2-225

create_index
create_index 2-

Purpose
This command creates an index to a file.

Display Form

Command Line Form

create_index path_name [index_name] [key_components] . . . [-type index_type] [-collation collation_code] [-order order_code] [-max_key_len length] [-extent_size size] [-dynamic_extents] [-num_blocks number] [-no_duplicates] [-null_keys] [-no_automatic_update] [-work_dir path_name] [-duplicate_path path_name]
Arguments* path_name Required

The path name of the file to be indexed.

 --------------------------------- create_index -------------------------------
 path_name:
 index_name:
 key_components:
 -type: embedded_key
 -collation: ascii
 -order: ascending
-max_key_len: 64
 -extent_size: 1
 -dynamic_extents: no
 -num_blocks: 0
 -duplicates: yes
 -null_keys: no
 -automatic_update: yes
 -work_dir:
 -duplicate_path:
2-226

create_index
* index_name
The name of the index. This argument is optional only for an embedded-key index. An
embedded-key index derives its name from the starting position of the initial-key
component if you do not explicitly specify a name.

* key_components
One or more key components. You must give the key components if you are creating
an embedded-key index. You cannot give any key components when creating an item
index or a separate-key index. A key component is defined by the position in a record
of the first byte of the component and by the length of the component. Specify the
position and length of a component as a pair of integers separated by a comma, and
separate component definitions by spaces. For example, 1,6 80,1 defines a
two-component key. A key component for a varying length record is defined by the
starting position of the length word of the record and the maximum record minus the
length word. A varying string can have only one key component.

* -type index_type <CYCLE>
Specifies the type of index to be created. Possible values for index_type are
embedded_key, separate_key, embedded_separate_key, and item. By default,
the command creates an embedded-key index, and you must define a key with the
key_components argument. You cannot create an embedded-key index on a stream
file.

* -collation collation_code <CYCLE>
Specifies the data type of the keys, which determines the collating sequence for sorting
the keys. The following are the possible values for collation_code.

 ascii
 alphabetic
 numeric
 ascii_varying
 alphabetic_varying
 numeric_varying

If you select ascii, the command interprets the data in the keys as ASCII characters
and sorts the keys according to the ASCII collating sequence. If you select
alphabetic, the command interprets the data in the keys as ASCII letters, treating
uppercase and lowercase as one case, and sorts the keys into alphabetical order. If you
select numeric, the command interprets the data in the keys as numbers (the data type
is actually either fixed-length character string, or varying-length character string for
numeric_varying, but each string is converted to an 8-byte integer), and sorts the
keys into numerical order. An index sorted numerically usually requires approximately
half the space of one collated in ASCII sequence. By default, the command uses the
ascii collation code.

Note: If the value of -type is separate_key, embedded_separate_key, or
item, the collating type is always varying. Even if you specify ascii or
alphabetic, it is translated as ascii_varying or alphabetic_varying.
OpenVOS Commands Reference Manual (R098) 2-227

create_index
* -order order_code <CYCLE>
Specifies the order in which to sort the keys. Possible values for order_code are
ascending and descending. By default, the command sorts the keys in ascending
order.

* -max_key_len length
Specifies the maximum key length, in bytes, that is allowed in the index. For length,
specify a value in the range 64 (the default) through 1280. The index type determines
the value of length:

 For the embedded_key and embedded_separate_key index types,
length should be the total size of the specified key components.

 For the item and separate_key index types, length is 64 bytes, by default.

 An index that allows duplicate keys must not have keys longer than 1268 bytes.
For separate-key indexes, length must be 1268 or less. For embedded or
embedded-separate-key indexes, the total length of the components that make up
the key must not exceed 1268. The -max_key_len argument has no effect on
embedded keys, except that if specified, the value must be between 64 and 1280.

* -extent_size size
Specifies the extent characteristics of the index. The permitted values are 1, positive
multiples of 8 (up to 524,280), or a power of 2 between 8 and 256. If the size is 1 (the
default value), the index is not extent-based.

Note: Only extent-based files can have extent-based indexes.

* -dynamic_extents <CYCLE>
Creates a DAE index. By default, the create_index command does not create DAE
indexes.

For more information about creating DAE indexes, see the Explanation.

* -num_blocks number
Specifies the number of blocks to preallocate for the index. The operating system uses
this number to determine how many extents to create. If -extent_size is greater
than 1, then -num_blocks must be greater than 0 (the default value). The maximum
number of blocks is 231-1.

* -no_duplicates <CYCLE>
Suppresses duplicate keys in the index. By default, the command allows duplicate keys.

* -null_keys <CYCLE>
Ignores keys consisting entirely of blanks. By default, the command treats blank keys
as significant.

* -no_automatic_update <CYCLE>
Disables automatic update of indexes when you write or rewrite a record to a file with
embedded keys or embedded separate keys. By default, the command adds new keys to
indexes automatically.
2-228

create_index
* -work_dir path_name
Specifies a directory to be used by the process using the index. If a work directory is
not specified, the process directory is used. The work directory is used primarily by the
disk sort subroutines.

* -duplicate_path path_name
Logs invalid duplicate keys in the specified file but does not insert them into the index.
This argument requires the path name of a file that contains the log of records with
invalid duplicate keys. This file contains information enabling you to locate the records
containing the invalid duplicate keys, as well as information about the record that the
key locates and about the specific file and index being created. If no invalid duplicate
keys exist or if the index allows duplicate keys, the file is deleted when the command
terminates. If the file already exists, the command overwrites it.

If you do not specify this argument and the index contains duplicate keys,
create_index terminates.

Explanation
The create_index command creates an index to the specified file. If the file is a text file
with a default character set of ASCII, Latin alphabet No. 1 or katakana, you can add an index
only if the shift mode is no; indexes are not allowed for files with a multiple-byte default
character set. You cannot add an index if implicit locking is set on the file, and you cannot
add an index to a 64-bit stream file.

The create_index command manages four types of indexes: embedded-key, separate-key,
embedded-separate-key, and item. An index to a file is an ordered list of keys; one record in
the file is associated with each key or, in the case of an item index, one item is associated with
each key.

After creating an embedded-key or embedded-separate-key index, the command reads the file
and adds to the index one key for each record. Thus, an embedded-key or
embedded-separate-key index is not empty upon creation if the file itself is not empty. The
added key is the concatenation of substrings of a record. Use the key_components argument
to define the substrings.

In contrast, when the command creates a separate-key index or an item index, it does not add
any keys.

For an embedded-key or embedded-separate-key index, the file system adds a key to the index
when you add a record to the file, unless you select the -no_automatic_update argument.
You must explicitly add keys to update a separate-key index. You can add keys to a
separate-key index or an embedded-separate-key index by using programming language
routines or by calling the s$add_key subroutine. To update an item index, call the
s$add_item subroutine to add key-item pairs.

A varying string consists of two bytes that represent the current length of the record, followed
by that number of bytes of data. The key component specification for a varying string should
use the starting position of the two bytes that represent the length of the record (the length of
the word) and the maximum length of the data itself.
OpenVOS Commands Reference Manual (R098) 2-229

create_index
Use the collation argument to specify the data type of the keys and the collating sequence
used to sort the keys. The values for collation and their meanings are shown in the
following table.

Note: This distinction between varying-length and fixed-length keys applies only to
embedded keys. Separate keys are always varying-length keys.

When the collating sequence is alphabetic, the command does not distinguish between
uppercase and lowercase letters. When the collating sequence is numeric, the command
converts the key (which is a character string) to an 8-byte integer, using the OpenVOS PL/I
rules for conversion. For example, the value '12'is converted to the integer 12.

You can specify an ASCII, alphabetic, or numeric collating sequence of the character-varying
data type for an embedded-key or embedded-separate-key index.

A key can contain up to 1280 characters (or bytes). If a numeric key is used, it can contain up
to 18 digits.

If the collating sequence is alphabetic or alphabetic_varying, uppercase letters are
translated to lowercase letters, and each character in Set 1 below that appears in a key is
translated to the corresponding character in Set 2.

An extent is a contiguous group of blocks represented by a single disk address. Subject to the
limits described in the section‘‘File Size Limits” (in the create_file command
description), extents permit indexes larger than 523,792 blocks. OpenVOS provides two types
of extent-based indexes:

 Statically-allocated extents (SAE) indexes have their extent region entirely allocated
and initialized when the index is created.

 Dynamically-allocated extents (DAE) indexes allocate and initialize extents as the
index grows.

Value Data Type Collating Sequence

ascii
alphabetic
numeric
ascii_varying
alphabetic_varying
numeric_varying

Fixed-length character string
Fixed-length character string
Fixed-length character string
Varying-length character string
Varying-length character string
Varying-length character string

 ASCII
 Alphabetic
 Numeric
 ASCII
 Alphabetic
 Numeric

Set 1
Set 2

[
{

‘
|

]
}

³^
~

2-230

create_index
The -dynamic_extents and -extent_size arguments control the type of index that is
created, as follows:

 If you specify the -dynamic_extents argument with a value of no and specify the
-extent_size argument with a value of 1, the operating system creates a simple
index.

 If you specify the -dynamic_extents argument with a value of no and specify the
-extent_size argument with a value that is 8 or a multiple of 8, the operating system
creates an SAE index.

 If you specify the -dynamic_extents argument with a value of yes and specify the
-extent_size argument with a value that is a power of 2 between 8 and 256, the
operating system creates a DAE index. If you do not specify a value for the
-extent_size argument, the error e$invalid_dae_extent_size (7629) is
returned.

Note: See the create_file command for more information about DAE and
SAE files.

Access Requirements
You need write access to the file path_name and modify access to the directory containing
the file to create an index to the file. You also need write default access to this directory so the
index can be created.

Examples
Example 1.
Assume the file sales in the current directory contains records of sales with the name of the
customer in a 16-character field starting at the 11th character in the record. The following
command creates an embedded-key index named customers for the file sales.

create_index sales customers 11,16 -collation alphabetic

The embedded key has one component; it begins at character (byte) 11 in a record and has a
length of 16. The collating sequence is alphabetic, so the index sorts the keys in
alphabetical order.

Example 2.
The following command creates an item index named dictionary for a file named empty
in the current directory.

create_index empty dictionary -type item -collation alphabetic
-no_duplicates

The keys in the index are dictionary words, and each item gives the valid positions for
hyphenation of the associated word. The index can only be filled by using the subroutine
s$add_item.
OpenVOS Commands Reference Manual (R098) 2-231

create_index
Example 3.
The following is a sample file created by specifying the -duplicate_path argument.

file: %foo#m5>dir_1>dir_2>dir_3>huge_seq
index: index_1

duplicate key:
00000000 494E4445 585F315F 4B45595F 37 |INDEX_1_KEY_7 |
ignored in record number 4417 [1141x] at position 4417 [1141x] (block 2 [2x] offset 320
[140x]):
00000000 494E4445 585F315F 4B45595F 37202020 |INDEX_1_KEY_7 |
00000010 20202049 4E444558 5F325F4B 45595F37 | INDEX_2_KEY_7|
00000020 30202020 20202049 4E444558 5F335F4B |0 INDEX_3_K|
00000030 45595F37 30202020 20202020 |EY_70 |
existing key locates record 385 [181x] at position 385 [181x] (block 1 [1x] offset 384
[180x]):
00000000 494E4445 585F315F 4B45595F 37202020 |INDEX_1_KEY_7 |
00000010 20202049 4E444558 5F325F4B 45595F37 | INDEX_2_KEY_7|
00000020 20202020 20202049 4E444558 5F335F4B | INDEX_3_K|
00000030 45595F37 20202020 20202020 |EY_7 |

In the preceding example, the command first identifies the file and then identifies the index.
Next, the command identifies each invalid duplicate key with the following information.

 A dump of the duplicate key
 The position of the record where the duplicate key was found
 A dump of the record containing the invalid duplicate key
 The position of the record currently identified by the key
 A dump of the record currently identified by the key

Related Information
See the OpenVOS Subroutines manuals for descriptions of types of keys and indexes. See the
description of the create_file command for information about DAE and SAE files.
2-232

create_record_index
create_record_index 2-

Purpose
This command keeps a list of all record numbers in a file, as well as the actual location of the
records in the file.

Display Form

Command Line Form
create_record_index path_name

Arguments* path_name Required
The file for which a record index is to be maintained.

Explanation
The create_record_index command enables the operating system to reuse file space.

The record index manages file space by tracking the record numbers and locations of each
record of the file, and reusing the space made available by deletions. File I/O operations are
unchanged but may occur more slowly, since the operating system must refer to the record
index each time a record is accessed. File size is kept to a minimum, however, because space
in the file is used efficiently.

The create_record_index command tracks the numbers assigned to each record written
to the file. Generally, the numbers ascend sequentially, beginning with 1 (although the
increment and first record number are dependent on the file organization). The file space of
deleted records is reused, but the record numbers of deleted records are not (in contrast to
what happens with a deleted record index where the record numbers can be reused). Thus, the
writing of a new record occurs logically at the end of the file, but the actual storage of the
record may be somewhere else.

Once a file has a record index, the index is updated for the life of the file. The index itself
cannot be deleted.

Use this command when you want records stored efficiently, but also want the record numbers
of new records to reflect their being written at the logical (not necessarily the physical) end
of the file. It is most useful for files from which many records are deleted.

----------------------------- create_record_index ------------------------------
path_name:
OpenVOS Commands Reference Manual (R098) 2-233

create_record_index
Note: The record index increments the record number regardless of a file’s physical
space; therefore, when using the record index, you should use the
locate_large_files command to identify how full a file is, rather than checking
the number of blocks allocated to the file. See the description of the
locate_large_files command for more information.

You cannot specify this command for a 64-bit stream file.

Examples
Consider a relative file named %s1#d02>Sales>Jones>discounts, with 10 records.
Create a record index by issuing this command.

create_record_index %s1#d02>Sales>Jones>discounts

Suppose you subsequently delete record number 2 from discounts. The next record written
to the file could be written at position 2, reusing that space. However, the new record would
become record number 11; attempts to read record number 2 would report
e$deleted_record (1269).

Related Information
See the description of the create_deleted_record_index command for information
about another way to save file space.
2-234

create_tape_volumes
create_tape_volumes 2-

Purpose
This command initializes one or more tapes.

Display Form

Command Line Form

create_tape_volumes tape_device_or_port_name [first_volume_id] [number_of_tapes] [-tape_format tape_format] [-first_cartridge_no cartridge_number] [-owner_id owner_id] [-message message] [-overwrite] [-no_unattended]
Arguments* tape_device_or_port_name Required

The name of the tape device or port attached to a tape drive.

* first_volume_id
The volume ID of the first tape to be initialized. The tape facility disregards this
argument when the tape is unlabeled, although it is printed as part of the mount requests
message. By default, the command creates tapes with blank volume IDs.

* number_of_tapes
The number of tapes to be initialized.

-------------------------------create_tape_volumes-------------------------------
tape_device_or_port_name:
first_volume_id:
number_of_tapes: 1
-tape_format:
-first_cartridge_no:
-owner_id:
-message:
-overwrite: no
-unattended: yes
OpenVOS Commands Reference Manual (R098) 2-235

create_tape_volumes
* -tape_format tape_format <CYCLE>
Specifies the default format of tape volumes created on this tape drive. The possible
values for tape_format are ansi for ANSI-labeled tapes, ibm for
IBM OS/VS -labeled tapes, ibm_mvs for tapes to be used on MVS/RACF systems,
unlabeled for unlabeled tapes, and unix for tapes that have UNIX tar, cpio, or cpioc
formats. The operating system also sets the default translation mode according to the
tape format you specify. When you choose the format ansi or unix, the default
translation mode is ascii; when you choose the format ibm or ibm_mvs, the default
translation mode is ebcdic; and when you choose the value unlabeled, the default
translation mode is binary. If you do not specify a value, the system initializes the tape
as ANSI format.

* -first_cartridge_no cartridge_number
The cartridge number to position the tape drive to before creating the first volume. By
default, the tape drive does not position to a different cartridge before initializing the
first tape.

* -owner_id owner_id
Specifies an owner ID for tape volumes to be created on this tape drive.

When you attach a port to a tape drive, the operating system sets the default value of
this parameter to your person name.

* -message message
Specifies a default message to be sent to the operator when you mount or dismount a
tape volume. When a port is attached to a tape drive, the operating system sets the
default value of this parameter to an empty string. If you reset this value, the operating
system issues operator messages when volumes are mounted and dismounted. By
default, the command does not issue operator messages.

* -overwrite <CYCLE>
Specifies that any existing tape labels are to be overwritten. By default, the command
does not overwrite the tape.

* -no_unattended <CYCLE>
Specifies that an operator be prompted before creating each tape volume. By default,
the command does not prompt the operator. This argument has no effect on tape devices
for ftServer modules.

Explanation
The create_tape_volumes command initializes a tape or series of tapes by performing a
mount_tape -create_volume, and dismount_tape on each tape.

The first_volume_id is the volume ID assigned to the first tape. The volume IDs for the
second and succeeding tapes are automatically incremented. For example, if you give an ID
of 001 for the first tape, the second tape will automatically be numbered 002. If you give an
ID of az00 for the first tape, the second tape will automatically be numbered az01. Finally,
if you give an ID of zz98, the second tape will automatically be zz99, and the third and
fourth tapes will automatically be numbered aaa00, and aaa01, respectively.
2-236

create_tape_volumes
If the tape to be initialized has already been initialized, the system displays the current volume
ID and format and asks if you want to overwrite the tape. If you have specified -overwrite,
the system displays the current volume ID and format and then overwrites the tape without
asking for confirmation.

Related Information
See the manual OpenVOS System Administration: Disk and Tape Administration (R284) and
the commands mount_tape and dismount_tape.
OpenVOS Commands Reference Manual (R098) 2-237

cvt_fixed_to_stream
cvt_fixed_to_stream 2-

Purpose
This command converts fixed files to stream files.

Display Form

Command Line Form
cvt_fixed_to_stream in_path

Arguments* in_path Required
The path name of a fixed file to be converted. The file name can be a star name. There are no
restrictions on the name of the file.

Explanation
The cvt_fixed_to_stream command converts a fixed file of any record size to a stream
file. The command overwrites the existing fixed file with the converted stream file.

If you attempt to convert a file that is not a fixed file, the operating system displays the
following message:

Skipped path_name. Not a fixed file.

Access Requirements
To convert a file, you need modify access to the directory containing it, and write access to
the file itself.

Examples
The following example converts a fixed file to a stream file:

cvt_fixed_to_stream perl.pm

The following example converts all *.profile files to stream files:

cvt_fixed_to_stream *.profile

---------------------------- cvt_fixed_to_stream ----------------------------
in_path:
2-238

cvt_stream_to_fixed
cvt_stream_to_fixed 2-

Purpose
This command converts stream files to fixed files.

Display Form

Command Line Form
cvt_stream_to_fixed in_path

-record_size record_size
-force

Arguments* in_path Required
The path name of a stream file to be converted. The file name can be a star name. If you
specify the -record_size argument, the stream file to be converted does not require
a suffix. If you do not specify the -record_size argument, the stream file to be
converted must have one of the following suffixes:

.obj

.pm

.tto

.dump

* -record_size record_size
Specifies the record size. The value must be between 1 and 32767.

* -force <CYCLE>
Overwrites the default record size. By default (no), the command does not overwrite
the default record size.

Explanation
The cvt_stream_to_fixed command converts a stream file to a fixed file. The command
overwrites the existing stream file with the converted fixed file.

---------------------------- cvt_stream_to_fixed ----------------------------
in_path:
-record_size:
-force: no
OpenVOS Commands Reference Manual (R098) 2-239

cvt_stream_to_fixed
If the path name has the suffix .pm, .tto, or .dump, the default record size is 4096. If the
path name has the suffix .obj, the default record size is 1024. You can specify a file without
any suffix, but if you do, you must specify the -record_size argument. If the path name
contains one of the previously mentioned suffixes and you specified a value for
record_size other than the default value for that suffix type, you can specify the -force
argument to overwrite the default value.

If you attempt to convert a file that is not a stream file, the operating system displays the
following message:

Skipped path_name. Not a stream file

If you attempt to convert a stream file without a suffix and you did not specify a value for
record_size, the system displays the following message:

Skipped path_name. Suffix unknown

Access Requirements
To convert a file, you need modify access to the directory containing it, and write access to
the file itself.

Examples
The following example converts a stream file to a fixed file:

cvt_stream_to_fixed update_database.pm

The following example converts all the stream files with .tto suffixes to fixed files:

cvt_stream_to_fixed *.tto
2-240

debug 2-

Purpose
This command invokes the debugger from both command level and break level.

Display Form
There is no display form for the debug command.

Command Line Form
debug

From command level:

debug program

From break level:

debug

Arguments* program
A command, program module, or saved image. You can use a path name or a file name
to name a program module. The path name can be a full path name or a relative path
name. If you use a file name, the debugger searches the current directory and the
command library paths for a .pm file matching the file name.

If program expects arguments, supply them after program, as shown in the following
example:

debug program arg1 arg2 arg3 . . .

When you are in the debugger, you can start program execution under control of the
debugger with the start request.

If program is a saved executable image (keep module), you must include the suffix
.kp. A keep module is a program that was interrupted and stored in its interrupted state
in a file. If the system automatically generates a keep module, the file name has the
suffix .process_id.kp (process_id is the program’s process ID, or PID). If you
manually create a keep module (for example, via the debugger’s command line), the file
name usually has the suffix .kp. When you specify a .kp module, the debugger uses
both the .kp file and the corresponding .pm file that was executing when the keep
OpenVOS Commands Reference Manual (R098) 2-241

debug
module was created. Therefore, the .pm file must exist, unmodified, in the same
directory that it was in when the .kp file was created.

Note: When the system automatically generates a keep module, it creates a new
keep module each time, rather than overwriting the old files. To prevent the disk
from filling up with old keep modules, a system administrator should be aware
of this issue and develop a plan for deleting these files.

You can use the debugger to examine a keep module. The debugger disregards any
attempt to start or execute a keep module.

You must give a program argument when you invoke the debugger from command
level. You cannot supply an argument when you invoke the debugger from break level.

Note that program cannot be a first token abbreviation. For example, if you have an
abbreviation first pqr by print_quarterly_report, you cannot use debug
pqr. Since the program name is not the first token of the command line, the
abbreviation pqr is not expanded.

Explanation
The debug command invokes the debugger. You can invoke the debugger in two ways.

From command level, you can invoke the debugger to control program execution or to
examine a saved image. The operating system loads the named program module or saved
image and puts your process at debugger request level.

From break level, you can invoke the debugger by typing debug. Your process goes to
debugger request level. At debugger request level, you can issue the requests described in the
‘‘Source-Mode Requests” section and the ‘‘Machine-Mode Requests” section later in this
command description.

You can use the debugger on programs written in OpenVOS COBOL, OpenVOS PL/I,
OpenVOS FORTRAN, OpenVOS Pascal, OpenVOS C, OpenVOS Standard C, or assembly
language.

You can do any of the following in the debugger:

 start running a program
 set breakpoints in the program
 see the values of program variables and the contents of stack frames
 set the values of variables
 step through the program
 call procedures, subroutines, or OpenVOS C or OpenVOS Standard C functions with

arguments

Debugger requests or the program being debugged can modify variables that are shared
between processes.

One request, the quit request, returns your process to command level. The debugger discards
the image of the executing program and all frames on the stack.
2-242

debug
If you press the <CTRL><BREAK> keys while your process is in the debugger, the operating system
puts you at break level. From break level, you can issue one of the break-level requests. When
you go to break level from within the debugger, you can continue debugging the same
program by issuing the debug request.

You can use either commas or spaces to separate a request’s arguments. A debugger request
line cannot extend over more than one line; the maximum line length is 300 characters. Use
semicolons to separate more than one debugger request in a request line. The following
example contains two debugger requests, set and continue.

set d_amt = 4005; continue

Press the <RETURN> key to terminate a request line.

The debugger replaces first token abbreviations in your debugger requests if you enable
abbreviation replacement in your process. However, the debugger uses only the first word of
the output of the abbreviation directive. You can thus use abbreviations in debugger requests
only to abbreviate the names of the debugger requests. See the OpenVOS Commands User’s
Guide (R089) for more information on using abbreviations.

In a #replace statement, the debugger knows how to resolve the synonym for a literal
constant or declared name. However, in an OpenVOS C or OpenVOS Standard C #define
compiler directive, the debugger does not know how to resolve the token name or macro.

While your process is in the debugger, you can issue operating system internal commands as
if you were at command level. To issue an internal command from debugger request level,
you enter the name of the command preceded by two periods. For example, enter ..list to
issue the list command. The set of internal commands may change in subsequent releases
of the operating system. To display a list of internal commands, enter the following command.

..help -type internal

Note that you can use abbreviations for internal commands (for example, ..l for list).

A command line or command macro can contain multiple operating system commands. The
following command line contains two commands.

debug print_reports; display_error (command_status)

From command level, commands on the same command line or in a command macro after
the debug command may or may not execute, depending on whether the program being
debugged terminates abnormally or normally.

 If the program being debugged terminates abnormally, commands following the debug
command do not execute. For example, if you issue a quit request before the program
terminates normally, the program has, in effect, terminated abnormally. Therefore, any
commands on the same command line or in a command macro after debug do not
execute.

 If the program being debugged terminates normally, commands following the debug
command do execute. For example, if you issue a quit request after the program being
OpenVOS Commands Reference Manual (R098) 2-243

debug
debugged terminates normally, any commands on the same command line or in a
command macro after debug do execute.

It is possible to use the debugger to debug programs running in tasking mode. When an error
causes such a program to go to break level, the break message appears on the process
terminal. You can enter the debugger and debug the program from the process terminal. Other
terminal I/O is still handled through the terminals that belong to specific tasks.

When you enter the debugger to debug a program running in tasking mode, the environment
of the debugger is set up to debug the task that invoked the debugger. To switch the
environment of the debugger to a different task, enter env -task task_id, where task_id
is a task ID number designating a different task. A task ID of 0 designates the task invoking
the debugger. A task ID of 1 designates the master task.

When you set a breakpoint in a program running in tasking mode, any task may hit the
breakpoint. It is not possible to force the debugger to allow only one task to stop executing at
the breakpoint.

Stopping at a breakpoint will cause the debugger to reset the terminal. One result is that in
programs with raw terminal input, the program’s input buffer is flushed.

Debugging Optimized Code
Optimized code is difficult to debug. You might encounter various problems if you attempt to
debug code compiled at optimization levels 3 and 4.

When you compile using the -table argument, the optimization level defaults to 1 and
cannot be overridden. Therefore, the -table argument always ensures that you have optimal
use of all of the debugger’s capabilities.

When you compile using the -production_table argument, the optimization level is not
affected. The optimization level is the same as if you compiled using the -no_table
argument.

If you experience problems associated with optimization, try to isolate the object module that
contains the problem, and then recompile that module using a lower optimization. You can
bind objects that have different optimization levels together into the same .pm file. Refer to
the appropriate compile command description in this manual for more information on the
arguments that affect optimization levels. (The compile commands are c, cc, cobol,
fortran, pascal, and pl1.)

The following list describes some of the effects that optimized code might have on debugging.

 Optimization causes some variables to be saved in registers, instead of in memory
locations. When variables are saved in registers, the set and display requests cannot
read or change the current values of the variables. Those requests access memory
locations, not registers.

When you are debugging optimized code, the debugger issues one warning message
telling you that expressions may not evaluate correctly, to remind you that current
values might be saved in registers.
2-244

debug
 Optimization removes useless statements, such as those that perform operations on
local variables that are never referenced again. Removed statements are not executable.

 Optimization rearranges code into more efficient sequences. For example, optimization
moves a statement out of a loop if the statement only needs to execute once. As a result,
it might be difficult to relate source code to execution sequences. If code that was
moved from a loop causes a fault, error messages indicate that the fault occurred in the
first statement of the loop rather than in the statement the code originally came from.

 Optimization rearranges machine instructions, making it difficult for the debugger to
know which source statement is being executed.

Source-Mode Debugging
The source modes of the debugger correspond to the OpenVOS high-level languages
OpenVOS COBOL,OpenVOS FORTRAN, OpenVOS Pascal, OpenVOS C, OpenVOS
Standard C, and OpenVOS PL/I. You can debug a program written in one of these languages
in the corresponding debugger mode. The requests that change the mode of the debugger to
the source modes are cobol, fortran, pascal, c, and pl1. Use the c mode for both
OpenVOS C and OpenVOS Standard C.

The mode determines how the debugger interprets your requests and how it displays
information about the program you are debugging. For example, when the debugger displays
the data type of a variable, the form is in the language associated with the mode.

To debug a program in a source mode, you must have compiled the program with a symbol
table. The symbol table contains information about the names of variables and their locations
in the compiled program. Use the compiler’s -table or -production_table argument to
incorporate a symbol table into the program module.

Terminology
Throughout the explanation of the debug command and its requests, the following terms are
used.

The block is the program unit currently in execution. The current block environment or
current environment is the latest activation of the block that is executing. The current
environment has an associated stack frame as well as source code in a program block.
Table 2-14 lists the possible environments for each mode of the debugger.

14

Table 2-14. Block Environments

Debugging Mode Current Block Environment

c Function or block

cobol Run unit or compile unit

fortran Main program, a subprogram, or a statement function

pascal Program, procedure, or function

pl1 Begin block or a procedure
OpenVOS Commands Reference Manual (R098) 2-245

debug
In all source modes, the debugger maintains the value of the current block environment and
the current source line. The debugger also maintains the current code address, used in
machine mode.

The debugger may reset the current environment when you issue a request that resets the
current line. For example, when you issue the position or source request and enter a block
of code other than the current block, the debugger resets the current environment to the new
block. If several stack frames for a block are active on the stack, the debugger uses the most
recent block activation. In addition, the debugger uses the block and stack pointer where the
current line resides.

The current line is a line in the source module. The debugger resets the current line when it
reaches a breakpoint while executing the program, or when you issue one of the following
debugger requests: env, position, source, or step. The debugger resets the current line
as follows:

 When it stops for a breakpoint, the debugger resets the current line to the source line of
the breakpoint.

 When you issue an env request, the debugger resets the current line in the following
manner.

– When you issue an env request and specify a block environment that has not
started or has ended, the debugger resets the current line to the first line in the
specified block.

– When you issue an env request and specify the block environment that is
executing, the debugger resets the current line to the line following the last line
executed in the current block.

– When you issue an env request and specify a block environment where execution
is suspended because program control was transferred to a called block, the
debugger resets the current line to the last line executed in the suspended block.

 When you issue a position request, the debugger resets the current line to the new
position.

 When you issue a source request, the debugger resets the current line to the last source
line it displays.

 When you issue a step request, the debugger resets the current line to the line
containing the statement following the last statement executed.

Note: The env, source, and position requests do not affect program
execution. However, the step request does affect program execution.
2-246

debug
The current line can be a line in an OpenVOS FORTRAN, OpenVOS Pascal, OpenVOS C,
OpenVOS Standard C, or OpenVOS PL/I include file or an OpenVOS COBOL copy file.
Every source line, including the current line, has a line number that is determined by its
position in its source module. The number of a line in an include or copy file is in the
following form.

file_number - line_number

The file_number value is the number of the include or copy file. The line_number value
is the line number within the include or copy file. For example, the first line in a source
module is 1. The first line in the first include file is 1-1. The second line in the first include
file is 1-2. The first line in the second include file is 2-1, and so forth.

The current statement is a source statement, a then clause of an if statement, or an else
clause of an if statement. The debugger usually determines the current statement from the
current line. The current statement is the first source statement, then clause, or else clause
that starts on the current line. When such a statement does not start on the current line, the
current statement is the first source statement, then clause, or else clause on the nearest line
preceding the current line that contains the start of such a statement or clause.

The first and last lines in a program module are always possible current statements, although
they may not be defined as executable statements. In all cases, the current statement is a
source statement for which the compiler has generated some code. In all cases, the debugger
informs you of the line number of the current statement when it stops for a breakpoint.

When a source line contains more than one statement, it is usually difficult to designate any
but the first statement on the line as the current statement. For instance, although you can
specify a statement in a position request that is not the first statement on a line, the
debugger sets the current statement to the first statement on the line.

You can use the step request to set the current statement to any statement for which the
compiler generates code, or to any source statement by setting a breakpoint on the statement
in machine mode and then hitting the breakpoint while in source mode. To avoid the
difficulties of setting breakpoints on a statement, you should write your programs so that no
line contains more than one statement, then clause, or else clause.

The debugger updates the current statement only when execution stops at a breakpoint or
when you issue one of the following requests: env, position, source, or step. The
debugger always updates the current block environment when it updates the current
statement. Therefore, the current block environment always contains the current statement.

The current task is the task you are currently debugging. The debugger updates the current
task when you issue the env request with the -task argument, or when execution stops at a
breakpoint.

Frequently-Used Arguments
When you enter the source-mode requests, certain arguments are frequently used as part of
the requests. This section describes the following arguments.

 number
 substring
OpenVOS Commands Reference Manual (R098) 2-247

debug
 request_list
 line
 label
 variable
 expression

The number argument is an unsigned integer constant.

The substring argument is a reference to the OpenVOS PL/I or OpenVOS Pascal substr
built-in function, to the OpenVOS C or OpenVOS Standard C substr operator, or to an
OpenVOS FORTRAN variable reference followed by (expression : expression).

The request_list argument is one or more debugger requests separated by semicolons and
enclosed in parentheses. For example:

(source 1; display report(4).header; set report(4).header=0)

This request displays the current line, displays the value of the variable report(4).header,
and assigns the value 0 to that variable.

You can give a request_list in a then clause or an else clause of an if request or in a
break request. A request_list cannot contain any of the language-mode requests:
machine, cobol, fortran, pascal, c, and pl1.

The line argument is a source statement line number. It must be the number of a source line
on which a statement begins, on which a then clause begins, or on which an else clause
begins. Thus, if a statement (other than an if statement) extends over more than one line, only
the number of the first line can be specified as a value of line. For a source statement in an
include or copy file, the line argument is in the form file_number - line_number.

The label argument is any valid entry point constant or label constant. To distinguish
statement labels from line numbers, you must append a colon (:) to a statement label. For
example, loop:, 100:, and 100 are valid values for label and line. The value 100: is a
label; however, the value 100 is a line number. In fortran mode, a statement label must be
preceded by a dollar sign ($).

Any label argument can have a colon appended to it to act as a terminator for the reference.
The use of a colon as the explicit terminator for label is optional in the following requests:
with a break request that does not include a request_list, or with the clear, continue,
and disassemble requests.

Notes:

1. With the break request, you must use a colon to separate a label from a
request_list.

2. Do not use a colon as the terminator for line. In this case, using a colon causes
the debugger to interpret the number as a label, not as a line number.

The variable argument stands for a variable reference as defined by the language that
corresponds to the debugger mode. The debugger uses the same rules the languages use for
interpreting partially qualified variable references. Thus, the interpretation of variable
2-248

debug
depends on the current environment. For example, the OpenVOS PL/I variable reference
report(4).header refers to the member header in the fourth element of the array of
structures report. Often, variable will be only a simple variable name.

The variable argument can be a variable that is shared between processes. If a variable is
shared between processes, using the set request to assign a value to a variable changes the
value for all processes.

Use of the expression Argument in the High-Level Language Modes
The expression argument stands for an expression. The following paragraphs describe how
you specify this argument in each high-level language mode.

Use of the expression Argument in c Mode
In c mode, expression can be a constant, a variable reference, the OpenVOS C and
OpenVOS Standard C operator substr, or the OpenVOS PL/I built-in function length. It
can also be the OpenVOS C and OpenVOS Standard C library functions memcpy, memmove,
memset, or strlen, a function reference known in the current environment, or a
combination of these constructed by using any OpenVOS C and OpenVOS Standard C
operators other than the following: increment and decrement (++ and --), comma (,),
conditional (?:), and assignment (=, +=, -=, etc.).

The logical operators && and | | can be used, but both operands are always evaluated (in
contrast to the way such constructs are handled in the C language, where the second operand
is conditionally evaluated).

Casts are supported to a degree. Given a cast in the form (typename declarator),
typename must be a name identifying either an OpenVOS C or OpenVOS Standard C
fundamental or derived data type or a type defined using typedef. It can also be a name in
the form struct tag, union tag, or enum tag, where tag is defined in the source
program. The optional declarator is a string of zero or more asterisks (*), which specify
that the cast operand will be temporarily converted to a pointer type.

String constants, considered arrays (and thus addresses) in the C language, are interpreted as
character strings when used in the debugger. For example, "abc" is treated as identical to
substr("abc"). An exception to this interpretation occurs when a string constant is used
as an argument in a function reference, in which case its address is passed.

Use of the expression Argument in cobol Mode
In cobol mode, expression can be a non-reference modified identifier, a constant, or a
conditional expression consisting of the comparison of two identifiers or constants.
(A reference modifier is a parenthesized list of one or two colon-separated values following
an identifier. For example, a(2:3). Its purpose is to indicate that the program is to access
only a portion of the data.) For example, 100, city-code, base >= item, and amount >=
100 are valid cobol mode expressions. The permitted relational operators in cobol mode
are the OpenVOS COBOL operators <, <=, =, >=, >, ^<, ^=, and ^>.

Note: In order to expand the types of expressions that you can use when debugging
OpenVOS COBOL programs, you can debug OpenVOS COBOL programs in pl1
mode. However, debugging OpenVOS COBOL programs in pl1 mode has several
drawbacks. If your COBOL variable names contain hyphens, for example, you cannot
OpenVOS Commands Reference Manual (R098) 2-249

debug
set or display them in pl1 mode. In addition, you cannot set breaks on non-unique
paragraph names that are qualified by section names.

Use of the expression Argument in fortran Mode
In fortran mode, expression can be a constant, a variable reference, a substring
reference, one of the OpenVOS PL/I built-in functions null, byte, rank, substr, length,
and addr, or one of the OpenVOS FORTRAN intrinsic functions char, ichar, and len. It
can also be a function reference known in the current environment, or a combination of these
constructed using the OpenVOS PL/I or OpenVOS FORTRAN arithmetical, logical,
relational, and string operators.

Use of the expression Argument in pascal Mode
In pascal mode, expression can be a constant, a variable reference, one of the OpenVOS
PL/I built-in functions byte, substr, length, and addr, or one of the OpenVOS Pascal
predefined functions chr, eof, eoln, or ord. It can also be a function reference known in
the current environment, or a combination of these constructed using the OpenVOS Pascal
arithmetical, boolean, relational, set, and string operators.

Use of the expression Argument in pl1 Mode
In pl1 mode, expression can be a constant, the string pseudovariable, a variable
reference, or one of the OpenVOS PL/I built-in functions null, byte, rank, string,
substr, length, addrel, and addr, a function known in the current environment. It can
also be a combination of these constructed by using the OpenVOS PL/I arithmetical,
relational, and string operators.

Note that pl1 debugging mode supports pointer constants even though they are not supported
in OpenVOS PL/I. A pointer constant is an unsigned hexadecimal number starting with a
decimal digit and having X or X. as its final character or characters. It can appear as the left
most pointer qualifier of a variable reference, and wherever a pointer-type expression can
appear. For example, in pl1 debugging mode, the following is a valid statement where
11088x is a pointer constant.

db? display 11088x->based_int

The string pseudovariable can appear on the left-hand side of a set request in pl1 mode.

Source-Mode Requests
From debugger request level, you can enter any of the source-mode requests. In addition, you
can use the help request to display online information on all the source-mode requests or
more information on one request.

* args
Displays the values of all the arguments passed to the block of the current environment.

* break ¢ £ [(request_list)] [-every number]
Sets a breakpoint and allows you to give a list of requests that the debugger executes
after stopping for a breakpoint. The breakpoint is set so that program execution stops
before the statement or clause on the specified line is executed. The breakpoint remains
in the program until you clear it with a clear request.

label [:]
line
2-250

debug
Note: You cannot examine or set breakpoints in a shared library that has not yet
been loaded.

When you omit label and line, the break request sets a breakpoint on the current
statement. When you include label or line, the debugger determines the statement
or clause that would be the current statement if the specified line were the current line,
and sets a breakpoint on that statement or clause. See the ‘‘Terminology” section earlier
in this discussion for information on how the debugger determines a current statement
from a current line.

If you supply a request_list argument, the debugger executes the requests in the
list every time execution stops at the breakpoint. If you supply an -every argument
and specify a number value, the debugger stops program execution at the breakpoint
only after reaching the statement the specified number of times.

If you omit a continue request from request_list, the debugger displays
information about the state of the program at the breakpoint and goes to debugger
request level. From this level, you can issue any debugger request, continue program
execution with a continue request, or stop the debugging session with a quit request.

* call procedure [(argument . . .)]

call 'procedure' [using argument . . .] (in cobol mode)

Calls the program with the entry name procedure, passing it arguments if given. An
argument can be an expression in the language of the debugger mode when the mode
is fortran, pascal, c, or pl1. When the mode is cobol, an argument must be a
variable reference.

Use the first form of the call request when the debugger is in fortran, pascal, c,
or pl1 mode. If you use the first form with more than one argument, separate the
arguments with commas. Use the second form in cobol mode.

The subprogram procedure must be accessible from the current environment. If the
subprogram procedure returns, your process is at debugger request level. To display
the value of a function, use the display request.

* clear ® ¯
Clears one or more breakpoints. When you omit an argument, the clear request clears
the current breakpoint. The current breakpoint is the one that most recently stopped
program execution, placing your process at debugger request level.

The -all argument clears all breakpoints. When you supply label or line, the
clear request clears the breakpoint on the statement at the specified line. You cannot
supply both -all and either label or line.

label [:]
line
-all
OpenVOS Commands Reference Manual (R098) 2-251

debug
* clearw

Clears one or more watchpoints.

The clearw reference form is valid in any source mode except machine mode. It
clears any watchpoint that maps exactly onto the storage used by reference. The
reference value can be a variable, an array element, a pointer-qualified variable, or
a substring. It cannot be a structure or an array.

The clearw memory_reference num_bytes form is valid in machine mode. It
clears any watchpoint that maps exactly onto the storage whose address is designated
by memory_reference, and whose length in bytes is given by num_bytes. If you
omit num_bytes, the request clears watched storage up to the next mod4 boundary in
memory. The memory_reference value must not be a register name or register range.

The clearw -id n form clears the watchpoint that is numbered n.

The clearw -all form clears all watchpoints.

* continue ¢ £
Resumes program execution after the debugger stops for a breakpoint. When you omit
label and line, the continue request continues executing the program with the
statement following the most recently executed statement.

If you supply label or line, the request transfers control to the associated statement
and starts execution at that point. The statement specified must be accessible from the
current statement. If the source module was compiled with the -production_table
argument, supplying a line argument may produce unpredictable results.

When a continue request in a request_list is executed, any requests following the
continue request are not executed.

* disassemble ¢ £
Displays the instructions generated for the statement specified by label or line or for
the current statement if you do not include an argument. The debugger displays the
instructions in assembly language code.

* display expression
Displays the value of expression. The expression must be valid for the mode of the
debugger. In general, it can be a computational expression that evaluates to a scalar, or
it can be a reference to any of the following types of variables.

 a scalar
 a structure

reference
memory_reference [num_bytes]

-id n
-all

label [:]
line

label [:]
line
2-252

debug
 a structure member
 an array
 an array element

In addition to the usual method of referencing an array in the particular language, the
debugger allows you to reference an array using two other methods. With the first
method, you use the low:high construct to specify a range of elements for that
dimension of the array. The specifiers low and high are integer values indicating the
low and high end of the range. With the second method, you use an asterisk (*) to
represent all possible subscript values for that dimension.

The low:high construct or the asterisk appears in the position where a subscript value
would normally appear. For example, the following display request uses the
low:high construct to show elements 7 through 9 of the array id_numbers.

display id_numbers

In c mode, you can use an empty set of brackets () to display all the characters of a
variable up to but not including the null character (\0).

The display request displays whatever is currently in memory. If you are debugging
optimized code, the most current variable values might be saved in registers instead of
in memory. However, if you compile using the -table argument, the generated code
always stores the current value of variables in memory, and you can safely use the
display request.

If more than one invocation of a block exists on a stack (as in a recursive procedure),
the display request changes the current environment in an undefined manner.

Notes:

1. In fortran mode, the low:high construct is not allowed.

2. In c mode, the low:high construct must be used to reference more than
one element of an array defined with unspecified extents.

3. In cobol mode, expression must be a variable reference, enclosed in
parentheses, as shown in the following:

 display array (expression_1:expression_2)

4. If you compile with the -production_table argument instead of the
-table argument, you may not be able to use the display request if the
optimization level is 3 or 4.

* dump variable [number]
Displays the value of variable as a hexadecimal number and as an ASCII character
string. If you include the number argument, the debugger displays the specified
number of bytes of data.
OpenVOS Commands Reference Manual (R098) 2-253

debug
If you omit the number argument, the debugger displays a minimum of 16 bytes of
data. However, if the specified variable (for example, an array) contains more than 16
bytes, the debugger uses the variable’s type to determine how much data to dump.

In fortran mode, you must use a colon as a delimiter between the variable and
number arguments because FORTRAN parsing eliminates spaces inside variable
names. For example, issue the request dump var1:8 instead of dump var1 8 to
distinguish var1 from var18.

* env

Sets the current environment to the environment you specify. The mode changes to the
language of the new environment. The debugger tells you the new mode whenever it
changes the mode.

When you issue an env request, the debugger resets the current line. See the
‘‘Terminology” section earlier in this discussion for more information on how the
debugger resets the current line after you issue an env request.

You can specify one of the following arguments with the env request.

The procedure argument is the name of an active procedure or block with a frame on
the stack. With this argument, the current environment is set to the most recent
activation of the block named procedure. For example, the following request sets the
environment to the most recent activation (the closest stack frame) of the procedure
named sort_report.

env sort_report

If the procedure is inactive, the debugger searches for a procedure known in the current
scope. If such a procedure is not found, the debugger searches for an external procedure
having the specified name. If the debugger does not find an external procedure, it
searches for an object module with the specified name. If the debugger finds none, it
displays an error message.

The stack_frame argument can be either of the following:

 an unsigned integer representing the stack frame number. For example, the
request env 3 sets the current environment to the block activation of stack frame
3. For information on displaying stack frames and stack frame numbers, see the
description of the trace request later in this discussion.

 a signed integer. The debugger adds the specified value to the current stack frame
number to calculate the stack frame number of the new current environment. For
example, if the stack frame number of your current environment is 4 and you
issue the request env -2, the debugger sets the new current environment to that
of stack frame 2.

{
procedure

stack_frame
-frameptr memory_reference

-task task_id
begin.line_number

{

2-254

debug
The -frameptr argument specifies a memory_reference. With this argument, the
debugger sets the current environment to the stack frame located at the address
specified by memory_reference. For more information on the syntax of
memory_reference, see the ‘‘Machine-Mode Memory Reference Argument” section
later in this discussion.

When the stack has been corrupted, the -frameptr argument allows you to examine
partially damaged stacks. In addition, this argument may also be useful when
debugging applications that do not follow operating system stack standards. With this
argument, the debugger does not switch tasks if the frame address is on a different
stack.

The -task argument specifies a task_id. With this argument, the debugger sets the
current task to that specified by task_id, and sets the current environment to the stack
frame with the highest number that the trace request would display. A task_id of 0
identifies the current task.

The begin.line_number argument specifies the name of an OpenVOS PL/I begin
block. In pl1 mode, you can set the current environment to a begin block by
supplying the name that the OpenVOS PL/I compiler gives the block. The name is in
the form begin.line_number. The line_number is the line number of the source
line on which the begin block starts.

* help [request_name]
Displays online documentation. If you omit request_name, the help request
displays the names and uses of all debugger requests. If you supply request_name,
help provides information about the particular request.

* if expression then (request_list_1) [else (request_list_2)]
Executes request_list_1 if the expression specified in expression is true. If you
include an else clause and the expression is false, the if request executes
request_list_2.

The allowed form of expression depends on the debugger mode. It must be a logical
expression that evaluates to true or false. When the mode is cobol, the logical
expression must be a comparison, using a relational operator, of two variables or of a
variable and a constant. When the mode is pl1, pascal, or c, the logical expression
can be any expression that the language allows in an if statement. When the mode is
fortran, the logical expression can be any expression, enclosed in parentheses, that
the language allows in a logical if statement.

Note: The entire if request, like all debugger requests, must be on one line.

* keep
Creates a keep module (.kp) that you can use later for debugging.
OpenVOS Commands Reference Manual (R098) 2-255

debug
* list
Displays the following information about all breakpoints:

 where you set the breakpoint
 how many times the debugger encountered the breakpoint
 what debugger requests you issued at the breakpoint

* listw [n] [-full]
Displays information about watchpoints.

If you specify n, the request displays information only about watchpoint n. If you omit
n, the request displays information about all defined watchpoints.

If you specify the -full argument, the request displays a memory compare list for any
watchpoint whose new value differs from the old value. The memory compare list
shows memory words that have different values, as well as the values themselves (in
hexadecimal). If you omit this argument, the request displays the values using natural
data-type formatting. Note that watchpoints set in machine mode have no data type, so
the -full argument is forced.

* position identifier ¢ £
Resets the current line to the line specified by identifier. Resetting the current line
resets the current statement and the current environment.

If identifier is a character string, the debugger finds the first occurrence of the
string in the source module after the current line, and resets the current line to the line
containing the character string. If the character string contains spaces or punctuation
marks, you must enclose it in apostrophes.

If identifier is an unsigned integer, the debugger resets the current line to the line
with that source line number. If identifier is a signed integer, the debugger adds the
specified value to the current line number to calculate the new current line.

If identifier is in the form file_number-line_number, where both numbers are
unsigned integers, the debugger resets the current line to the line numbered
line_number in the include or copy file numbered file_number. For example, the
following position request resets the current line to line number 14 in the third
include file that was incorporated into the source file.

position 3-14

If you specify the -no_include argument, the debugger does not recognize source
code lines from include and copy files when you use the position request to reset the
current line and when you use the source request to display source code. If you
specify the -no_include argument, all subsequent position and source requests
do not use source code from include and copy files until you issue a request specifying
the -include argument.

If you specify the -include argument, the debugger does recognize source code lines
from include and copy files when you use the position request to reset the current

-include
-no_include
2-256

debug
line and when you use the source request to display source code. If you specify the
-include argument, all subsequent position and source requests use source code
from include and copy files until you issue a request specifying the -no_include
argument.

Notes:

1. If you never specify either -include or -no_include, the
-no_include argument is the default.

2. When identifier is in the form file_number-line_number, the
debugger ignores the -no_include argument and does recognize source
code from the specified include or copy file.

Even though the -no_include argument has been specified, the debugger recognizes
the contents of include and copy files if the current line is within the include file. For
example, the following situations cause the debugger to recognize the include file:

 if you change the current line to a line within an include file (for example, if you
issue the request position 2-45)

 if program execution is suspended at a position within an include file

 if a change in the environment causes the current line to be a line in an include file

In the preceding situations, when you specify -no_include, the debugger does not
recognize other files nested within include files if you issue a position or source
request. It does recognize the main file and the include file containing the current line.

* quit
Ends the debugging session and returns your process to command level.

* return
Returns your process to break level after you have entered the debugger from break
level.

* regs
Displays the current contents of the processor registers. In addition to the contents of
the data and address registers, the regs request displays machine condition
information, such as the contents of the user stack pointer and the program counter. For
more information on registers, refer to the VOS Symbolic Debugger User’s
Guide (R308).

* set reference = expression
Assigns the value of expression to reference. The expression must be a scalar.
The reference can be a variable, a member of an array, a pointer-qualified variable, or,
where the language supports it, a string or substring reference. Multiple assignments,
such as a = b = 0, cannot be used.

Optimized code may not reload registers for every statement. As a result, the set
request may produce unpredictable results when you are debugging optimized code.
However, if you compile using the -table argument, the generated code reloads the
OpenVOS Commands Reference Manual (R098) 2-257

debug
processor registers from memory for every statement, and you can safely use the set
request.

* source [number] ¢ £
Displays one or more lines of source code. When you omit a number argument, the
source request displays the current line of source code. When you supply a number
argument, it displays the specified number of source lines, starting with the current line.
The debugger resets the current line to the last line displayed.

If you specify the -no_include argument, the debugger does not recognize source
code lines from include and copy files when you use the position request to reset the
current line and when you use the source request to display source code. If you
specify the -no_include argument, all subsequent position and source requests
do not use source code from include and copy files until you issue a request specifying
the -include argument. If you never specify either -include or -no_include, the
-no_include argument is the default.

If you specify the -include argument, the debugger does recognize source code lines
from include and copy files when you use the position request to reset the current
line, and when you use the source request to display source code. If you specify the
-include argument, all subsequent position and source requests use source code
from include and copy files until you issue a request specifying the -no_include
argument.

For additional information on the -no_include and -include arguments, see the
description of the position request earlier in this discussion.

If more than one invocation of a block exists on a stack (as in a recursive procedure),
the source request changes the current environment in an undefined manner.

* source_path [path_name] [-file_number number]
Allows you to do the following:

 When you omit the path_name argument, the source_path request displays
the path names of all source modules used in compiling the current program.

 When you supply the path_name argument, the source_path request
specifies the path name that the debugger will use to find the main source module
that corresponds to the executing program module. The main source module
appears first in the list of files specified with the bind command.

 When you supply the -file_number argument, the source_path request
does one of the following:

Note: If you omit the path_name argument, it displays the path name of
the source module identified by number. If you supply the path_name
argument, it specifies the path name that the debugger will use to find the
source module identified by number.

-include
-no_include
2-258

debug
When you move or rename a source module, the debugger is not able to find the source
module file because the program module’s symbol table indicates the wrong path name.
To give the debugger the information it needs to find the source module, you use the
source_path request and include the path_name argument and, optionally, the
-file_number argument.

The -file_number argument allows you to display or change any single source
module path name. The number argument specifies an included file in the current
environment. For example, the following source_path request tells the debugger to
change the path name of the fifth included file in the current environment to file name
sort_records, located in the directory version2.

source_path -file_number 5 version2>sort_records

If path_name contains a file name, the debugger searches for the specified file relative
to the current directory. If path_name is a directory name, the debugger searches for
the source module’s compile-time file name in the specified directory. If path_name
is an empty string (''), the debugger searches for the source module using the path
name contained in the program module’s symbol table. The symbol table contains the
path name of the source module at compile time.

The information you give in the source_path request is saved when the debugger
changes the environment. Abbreviations defined using the subsequent directive in
the abbreviations file are expanded in path_name.

* start
Starts execution of the program specified in a debug command issued from command
level. For example, if you enter debug sort_reports when your process is at
command level, the debugger loads the program sort_reports. The debugger takes
control, placing you at debugger request level. You can then examine the values of
static variables, look at source code lines, or set breakpoints before starting the
program. Issuing the start request then starts execution of the program under the
control of the debugger.

* step [number] ¢ £
Executes one or more program statements. When you omit the number argument, the
step request executes the current statement. When you supply the number argument,
the debugger executes the specified number of statements, starting at the current
statement. The debugger displays information about the executed statement or
statements. The debugger resets the current statement to the statement following the
last statement executed. It resets the current line to the source line in which the new
current statement begins.

If you specify the -in argument, the debugger steps into any procedures or functions
activated by the program. If you specify the -no_in argument, the debugger does not
step into procedures or functions, treating procedure and function calls as single
statements. The default argument is -no_in.

-in
-no_in
OpenVOS Commands Reference Manual (R098) 2-259

debug
The step request is not suited for use in a tasking environment. When a step request
in a request_list is executed, any requests following the step request are not
executed.

* symbol variable
Displays the declaration information about variable. The declaration information
consists of the name of the block in which the variable was declared and the variable’s
base address, data type, and size.

In c mode, you can display information about a structure, union, or enumerated type
that has been defined with a tag by specifying struct tag, union tag, or enum tag.

* task_status [task_id] [-long] [-all]
Displays the task ID, terminal port, and state of a specified task. If you specify the
-long argument, the debugger also displays the task’s stack base, stack length, static
base, static length, and the CPU time and page-fault count (if they are nonzero).

If you omit the task_id argument, the debugger displays information for the current
task. If you supply a value for task_id, the debugger displays information for the
specified task. A task_id value of 0 identifies the current task. If you specify the -all
argument, the debugger displays the information for all tasks.

* trace [number] [-all] [-args] [-on_units]
Displays information about the environments with frames on the stack. If you do not
supply any arguments or you omit the number argument, the debugger displays
information about the entire stack. If you include a number argument, it displays
information about the specified number of block activations, starting with the most
recent block activation.

If you supply the -all argument, the debugger displays information about run-time
language support procedures as well as your program’s procedures. If you supply the
-args argument, an args request is executed for each frame on the stack. All frames
on the stack are numbered, including frames for the run-time support routines. If you
supply the -on_units argument, the debugger displays a stack trace with information
about all active condition handlers.

* watch ¢ £
Sets a watchpoint.

The watch reference form is valid in any source mode except machine mode. It sets
a watchpoint that maps exactly onto the storage used by reference. The reference
value can be a variable, an array element, a pointer-qualified variable, or a substring. It
cannot be a structure or an array.

The watch memory_reference num_bytes form is valid in machine mode. It sets a
watchpoint that maps exactly onto the storage whose address is designated by
memory_reference, and whose length in bytes is given by num_bytes. If you do not

reference
memory_reference [num_bytes]
2-260

debug
specify num_bytes, the length of the watched storage will be up to the next mod4
boundary in memory. The num_bytes value must be equal to or less than 32,767. The
memory_reference value must not be a register name or register range.

If you set a watchpoint on an automatic variable, make sure that the watchpoint does
not survive past the end of the procedure. To accomplish this, set a breakpoint at the
first executable statement after the statement that enters a procedure whose
request_list sets the watchpoint. Then set a breakpoint at all return points from the
procedure whose request_list clears the watchpoint.

When you watch an unshared variable, you are watching only one task’s instance of that
variable. You do not see what occurs to other tasks’ instances of that variable.

Note: When you set watchpoints, ensure that the memory you are watching
belongs to instantiated data for your program. If the instantiation vanishes (for
example, entities on the stack when a subroutine returns), you should remove the
watchpoint. If you do not remove it, the debugger’s behavior will be
unpredictable.

* where
Displays information about the current line, the current statement, the current block
environment, and the current task (if the program is running in a tasking environment).

Machine-Mode Debugging
You can debug any program when the debugger is in machine mode. Machine mode is also
called the object mode of the debugger. In this mode, you can refer to code and data values
by address instead of by name, and you can examine the contents of processor registers.

The machine request starts machine-mode debugging. If a module in the program you are
debugging does not have a symbol table, the debugger resets its mode to machine mode
automatically.

With larger applications, space considerations may make it impractical to compile an entire
program with the -table or -production_table argument. These arguments incorporate
a symbol table into the program module.

With larger applications, you can use the machine mode of the debugger to identify program
blocks that require closer examination. Then, you can use the -table or
-production_table argument to compile the source modules containing these blocks.
After binding the application, you can debug the blocks containing errors using a high-level
language source mode.

Machine-Mode Memory Reference Argument
You can use a memory_reference argument in the following machine-mode requests:
break, clear, continue, disassemble, display, dump, if, and set. See Table 2-19 for
the syntax of each of these requests. The allowed forms of a memory_reference argument
are explained in this section.

A memory_reference can be an absolute memory address: an unsigned number or the sum
or difference of two unsigned numbers. Optionally, you can specify the format of an absolute
OpenVOS Commands Reference Manual (R098) 2-261

debug
memory address by appending a format character to the address. The format characters are as
follows:

 o indicates octal
 d indicates decimal
 x indicates hexadecimal

If you do not specify a format character, decimal format is assumed.

A memory_reference can be a register or a sequence of registers. A register reference can
be specified using either of the following forms.

register [.length]

register [.length]... register [.length]

To examine or affect only a particular part of the register, you can use the length suffix .b
to indicate a byte length, .w to indicate a word length, or .l to indicate a long-word length
of the register. When register is a data register and you do not specify length, the
debugger assumes that you want to examine the entire 32-bit register. When register is an
address register, the debugger examines the entire 32-bit register. For more information on
registers, refer to the VOS Symbolic Debugger User’s Guide (R308).

In addition to an absolute memory address or register reference, memory_reference can be
specified using any one of the following forms.

[name(modifier)] [/region] [.offset]

[offset](memory_reference)

* [offset]

.offset

If you omit name or region, the debugger uses the current name and region. The current
name and region are the last ones that you explicitly specified. The env request changes the
current name to the most recent activation of the block you specify.

The following paragraphs explain the components of the memory_reference syntax.

The name can be a programmer-defined identifier specifying an entry point constant, label
constant, object module, or external symbol name. The name can consist of the uppercase
letters A through Z, the lowercase letters a through z, the digits 0 through 9, and the following
characters.

$ _ @ [\] ^ ‘ { } | ~
2-262

debug
In name, you can use two apostrophes ('') to represent a single apostrophe ('). If name
contains a character other than the characters listed above, use apostrophes to enclose the
name. For example, because the following name value contains a reserved character, a hyphen
(-), you enclose the name in apostrophes.

'INDEX-MODE'

An optional modifier specifies whether name is a block, object module, or external symbol.
Table 2-14 shows the block environments for each of the OpenVOS high-level languages.

If you do not specify a modifier, the debugger resolves name by first looking in the list of
block names. You can use the trace request to display the names of active blocks. Second,
it looks in the list of object module names in the module map. Third, the debugger looks in
the list of external variables in the external variable map.

You can override this search order by specifying a modifier in parentheses after name. For
example, if modifier is module, the debugger first looks in the list of object modules in the
module map. Table 2-15 lists the valid modifiers and allowed modifier abbreviations.

15

The region specifies the address space region in which the offset is based. When name is an
external variable, you do not need to specify region. If you use region without specifying
name, do not precede region with a slash character (/). Table 2-16 lists the valid regions and
allowed region abbreviations.

16

An offset can be a signed or unsigned number. An offset can also be the sum of or
difference between two numbers. In this case, the number to the left of the operator (+ or -)
can be a signed or unsigned number. The number to the right of the operator is an unsigned
number. The syntax for an offset is as follows:

 ¢ £ number ¢ Ç È unsigned_number£

Table 2-15. Modifiers and Modifier Abbreviations

Modifier Abbreviation Description

stack
block
module
extvar
common

s
b
m
e
c

A block environment
A block environment
An object module name as specified during binding
An external variable
An external variable

Table 2-16. Regions and Region Abbreviations

Region Abbreviation Address Space

code
symtab or table
static or own
stack
ext_static

c
t
i or o
s
e

Program code
Symbol table
Static data
Stack data
External static data

+
-

+
-

OpenVOS Commands Reference Manual (R098) 2-263

debug
The offset is positive and increments the address if you do not specify a sign or if you
specify a plus sign (+) before offset. The offset is negative and decrements the address
if you specify a minus sign (-) before offset. Optionally, you can specify the format of
offset by appending a format character to the number or numbers in offset. The format
characters are as follows:

 o indicates octal
 d indicates decimal
 x indicates hexadecimal

If you do not specify a format character, decimal format is assumed. If you use name without
specifying region, do not include a period before offset. An asterisk (*) preceding
offset indicates that it is an offset to the last location referenced.

Note: To make specifying stack offsets easier, the debugger evaluates an offset in the
stack data region as negative if the first number in offset is hexadecimal and does not
have an explicit sign.

Table 2-17 gives some examples of machine-mode memory references and a brief
explanation of each reference.

17

Table 2-17. Example Memory References

Memory Reference Explanation

0E00128x An absolute memory address:
location 0E00128 hexadecimal

0E00128x+296 An absolute memory address expressed as the sum of
two unsigned numbers: 0E00128 hexadecimal and
296 decimal

calculate(block)/code.174 A reference to an offset of 174 decimal into the code
region of the block named calculate

main(module)/296 A reference to an offset of 296 decimal into the most
recently referenced region of the module named
main

c.128x or code.128X A reference to an offset of 128 hexadecimal into the
code region of the most recently referenced name

 .296 A reference to an offset of 296 decimal into the most
recently referenced name and region

global(extvar)/2 A reference to an offset of 2 decimal from the
external variable global

d7 A reference to data register d7

-80(a6) A reference to a negative offset of 80 decimal from
the current value of address register a6
2-264

debug
Many times a block environment has the same name as an object module. In this case, if you
specify a block environment name and do not specify a region or offset, the debugger (by
default) resolves the memory reference to offset 0 of the code region of the object module.

Other Machine-Mode Arguments
The following arguments used in machine-mode debugging are identical to the arguments
used in source-mode debugging: number, request_list, and line. For an explanation of
each of these arguments, see the ‘‘Frequently-Used Arguments” section earlier in this
discussion.

In addition to the memory_reference argument, two other arguments are implemented
uniquely in machine-mode debugging.

 relational_expression
 constant

The relational_expression Argument
The relational_expression argument is used in the if request. It must be a logical
expression that evaluates to true or false. The syntax of relational_expression follows:

memory_reference relational_operator constant

The memory_reference is any valid memory reference. For more information on this
argument, see the ‘‘Machine-Mode Memory Reference Argument” section earlier in this
discussion.

The valid operators for relational_operator are as follows:

< = > <= ^= >=

The constant Argument
The constant can be an integer constant, PL/I character-string constant, or PL/I bit-string
constant. The type and extent of the constant determines the type and extent of the logical
comparison. In addition to its use in a relational_expression, the constant argument
is also used with a machine-mode set request.

Note: Although the PL/I syntax is used to make machine-mode requests, the high-level
language PL/I has no direct relevance to machine-mode debugging.

When constant is an integer constant, it is in the following form.

integer_constant.suffix

The rules for forming integer_constant are similar to the rules for forming an offset.
An integer_constant can be a signed or unsigned number. An integer_constant can
also be the sum of or difference between two numbers. In this case, the number to the left of

*+2 A reference to an offset of 2 decimal into the most
recently referenced location

Table 2-17. Example Memory References (Continued)
OpenVOS Commands Reference Manual (R098) 2-265

debug
the operator (+ or -) can be a signed or unsigned number. The number to the right of the
operator is an unsigned number.

An integer_constant is positive if you do not specify a sign or if you use a plus sign (+).
An integer_constant is negative if you specify a minus sign (-). To indicate a number’s
format, you can append one of the format characters: o, d, or x. The default format is decimal.

An integer_constant can be followed by an optional suffix. An integer_constant
is considered to be a word (short integer) unless you specify a suffix. The allowed values
for suffix are as follows:

 b indicates that constant is a byte
 w indicates that constant is a word
 l indicates that constant is a long word

The following examples are integer constants.

1024

FFx.l

When constant is a PL/I character-string constant, it is composed of ASCII characters
enclosed in apostrophes. It can range from 0 to 256 characters in length. In a character-string
constant, you can use two apostrophes ('') to represent a single apostrophe ('). The
following examples are character-string constants.

'It didn''t help.'

'friday'

When constant is a PL/I bit-string constant, it is composed of a string of zeros and ones
enclosed in apostrophes, followed by the letter b. It can range from 0 to 32 digits in length.
An optional digit following the letter b represents the number of bits each character of the
constant represents.

 1 indicates binary characters: the digits 0 or 1
 2 indicates base 4 characters: the digits 0 through 3
 3 indicates octal characters: the digits 0 through 7
 4 indicates hexadecimal characters: the digits 0 through 9 and the letters a through f

If you do not specify a digit following the letter b, binary characters are assumed. The
following examples are bit-string constants.

'1'b

'ffff'b4

See the OpenVOS PL/I Language Manual (R009) for more information on character-string
and bit-string constants.

Table 2-18 gives some examples of relational expressions and a brief explanation of each
expression.
2-266

debug
18

Machine-Mode Requests
The machine-mode requests include all the source-mode requests except call and symbol.
The machine request and the requests that change the mode to that of a high-level language
(for example, the pl1 request) are available in both source mode and machine mode.

The machine request also includes the endian_specifier argument. This argument is
available only for the machine request. See ‘‘The endian_specifier Argument” later
in this section for more information.

An object module contains a statement map when you use the assemble command without
selecting the -no_statement_map argument. If the program module contains a statement
map, the following requests have the same functionality and syntax in machine mode and
source mode.

env source
help source_path
keep start
list step
position task_status
quit trace
regs where
return

The remaining debugger requests have modified arguments, functionality, or syntax in
machine mode. Table 2-19 lists the machine-mode functionality and syntax for each of these
modified requests.

In the break, clear, continue, and disassemble requests, you can use
memory_reference as an argument. You can append a colon (:) to the
memory_reference argument to act as a terminator for the reference.

Notes:

1. With the break request, you must use a colon to separate a label name or a
machine-mode memory reference from a request_list.

Table 2-18. Example Relational Expressions

Relational Expression Explanation

 d0 >= 1111x.w

Specifies that the first word of data register d0
is greater than or equal to the integer
constant 1111 hexadecimal

 00FD6AD0x = 'L' Specifies that the contents of memory address
00FD6AD0 hexadecimal are equal to the
character-string constant L

 setting1(extvar)/0 ^= '0101'b Specifies that offset 0 of the external variable
setting1 is not equal to the bit-string constant
0101 binary
OpenVOS Commands Reference Manual (R098) 2-267

debug
2. With the break, clear, continue, and disassemble requests, do not use a
colon as the terminator for line. Using a colon causes the debugger to interpret
the number as a label, not as a line number.

In the break request, the debugger uses the colon to differentiate between the label or
memory reference and the request_list. For example, a colon is required in each of the
following break requests.

break label_name: (display variable_10; continue)

break sublabel_name(5): (continue sublabel(3))

break 00E000CEx: (regs; continue)

break main(module): (display a5; continue)

The use of a colon as the explicit terminator for a memory_reference is optional in the
following requests: with a break request that does not include a request_list, and with
the clear, continue, and disassemble requests.

19

Table 2-19. Requests That Are Modified in Machine Mode

Request Description

 args Displays pointers to the arguments for the current block, and for each
argument shows four bytes of data in hexadecimal format. The syntax for
the args request is as follows:

args

 break Sets a breakpoint at a specified machine address or line number. If you
omit memory_reference and line, it sets a breakpoint at the current
code address. If you specify the request_list argument, it allows you
to give a list of requests that the debugger executes after stopping for the
breakpoint. If you specify the -every argument, the debugger stops
program execution at the breakpoint only after reaching the address (or
line) the specified number of times. The syntax for the break request is
as follows:

break ¢ £[(request_list)]
 [-every number]

 clear Clears a breakpoint at a specified machine address or line number. If you
omit arguments, it clears the current breakpoint. If you specify the -all
argument, it clears all breakpoints. The syntax for the clear request is as
follows:

clear ¢ £ [-all]

line
memory_reference [:]

line
memory_reference [:]
2-268

debug
 continue Resumes program execution from the current breakpoint. If you specify
the memory_reference or line argument, it resumes program
execution from the instruction specified. The syntax for the continue
request is as follows:

continue ¢ £

disassemble Displays, as a pseudo-assembly-language instruction, the word or line
specified by memory_reference or the current code address. If you
omit number, the debugger disassembles one instruction and enters
display mode. In machine mode, to show the next instruction, you press
the <RETURN> key; to exit display mode, you press any key other than the
<RETURN> key. If you supply number, the debugger displays the specified
number of instructions but does not enter display mode. The syntax for
the disassemble request is as follows:

disassemble ¢ £ [number]

display Displays the value specified by memory_reference. The format for
the data shown can be one of the following: d for decimal, b for binary, x
for hexadecimal, or a for ASCII. The default is decimal. If
memory_reference is an address and you omit number, the debugger
displays one line of data. If you supply number, the
memory_reference must be an address. In this case, the debugger
displays the specified number of bytes of data. The syntax for the
display request is as follows:

display memory_reference [format] [number]

dump Displays the value of memory_reference as a hexadecimal number
and as an ASCII character string. If you omit number, the debugger
displays a minimum of 16 bytes of data. However, if the variable contains
more than 16 bytes, the debugger uses the type of memory_reference
to determine how much data to dump. If you supply number, the
debugger displays the specified number of bytes of data. The syntax for
the dump request is as follows:

dump memory_reference [number]

Table 2-19. Requests That Are Modified in Machine Mode (Continued)

Request Description

line
memory_reference [:]

line
memory_reference [:]
OpenVOS Commands Reference Manual (R098) 2-269

debug
The endian_specifier Argument
If you specify one of the optional endian_specifier arguments , the debugger assumes
that all machine-mode memory references should be treated as either big-endian or
little-endian.

 A big-endian memory reference is one in which the byte ordering is such that the
lowest-addressed byte contains the high-order bits of a binary item.

 A little-endian memory reference is one in which the byte ordering is such that the
highest-addressed byte contains the high-order bits of a binary item.

If the current environment is in an object module of the program module being debugged, the
debugger will continue to use this assumption whenever it enters that object module in
machine mode. Otherwise, the debugger uses the assumption only while in the current
environment.

20

if Executes request_list_1 if the expression specified in
relational_expression is true. If you include an else clause and
the expression is false, the if request executes request_list_2. For
information on relational_expression, see the ‘‘Other
Machine-Mode Arguments” section earlier in this discussion. The syntax
for the if request is as follows:

if relational_expression then (request_list_1) [else (request_list_2)]

set Assigns the value of constant to memory_reference. The
memory_reference can be a register but cannot be a sequence of
registers. If memory_reference is a register, the value specified in
constant must fit in the register. If memory_reference is an address,
the debugger assigns constant to the addressed byte and to as many
subsequent bytes as necessary. The syntax for the set request is as
follows:

set memory_reference = constant

Table 2-20. Values for the endian_specifier Argument

Value Meaning

big_endian
big_endian
be

The debugger treats all machine-mode memory requests as
big-endian.

little-endian
little_endian
le

The debugger treats all machine-mode memory requests as
little-endian.

Table 2-19. Requests That Are Modified in Machine Mode (Continued)

Request Description
2-270

debug
Related Information
See also the description of the mp_debug command.
OpenVOS Commands Reference Manual (R098) 2-271

decode_vos_file
decode_vos_file 2-

Purpose
This command reverses the effects of the encode_vos_file command on an encapsulated
and/or encoded file. You can also use it to decode uuencoded or MIME base64 encoded files
created on other systems.

Display Form

Command Line Form
decode_vos_file source_file[destination_dir] [-no_overwrite] [-tell]

Arguments* source_file Required
The path name of a file to decapsulate/decode. You can specify only one file at a time
(star names are not allowed).

Typically, source_file was created by encode_vos_file. However,
decode_vos_file decapsulates/decodes uuencoded or MIME base64 encoded files
created on other systems (for example, files received as email).

The -encode (uuencode) and -base64 (MIME) arguments of the
encode_vos_file command are compatible with encoding done on UNIX systems,
PCs, or mail-reading programs. The decode_vos_file command can usually handle
files from these systems without pre-editing, provided that the message includes only
one encoded block.

Email messages usually contain a free-text section followed by one or more encoded
sections. This program extracts the first uuencoded or MIME base64 encoded section
only. To extract subsequent encoded sections, or if errors are reported when processing
an email file, edit the encoded section into a separate file and process that file.

------------------------------ decode_vos_file ------------------------------
source_file:
destination_dir:
-overwrite: yes
-tell: no
2-272

decode_vos_file
* destination_dir
The path name of the directory to which you want to write the file. If you do not specify
destination_dir, the command writes the file to the current directory. The name of
the destination file is the name of the original file that you encoded with
encode_vos_file and is not related to the name of source file (which may have been
renamed after the encoding occurred).

For MIME base64 encoded files from other systems, decode_vos_file uses the first
file name found in a valid MIME header. If no file name is present, the command
creates one by dropping the last suffix from the encoded file’s name and adding the
suffix .DECODE to it.

If destination_dir is #null, the command does not perform any decoding, but it
still performs the header-interpretation logic, including the -tell argument (if
specified). This allows a macro that has successfully decoded a file to get the name and
type of the extracted file by running this command again with -tell and the
attach_default_output command.

* -no_overwrite <CYCLE>
Specifies that the command should not overwrite existing files that have the same
names as those being decapsulated/decoded. By default (the value yes), the command
silently overwrites these existing files.

* -tell <CYCLE>
Specifies whether to display the name of the destination file that is being created in the
destination directory. The destination-file name is the name of the file that was
originally encoded by encode_vos_file or by another system. The
decode_vos_file command extracts this name from headers in the source file and
is not related to the name of the source file itself, since encoded files can be renamed.
By default (no), the destination-file name is not displayed.

The OpenVOS header, uuencode header, or MIME header is also displayed on a
separate line after the destination-file name. An OpenVOS header is present if the file
being decoded was created by encode_vos_file. Foreign files do not have an
OpenVOS header, but they do have a uuencode header (that is, begin...) or MIME
header (that is, Content-type...).

Explanation
The decode_vos_file command reverses the effects of the encode_vos_file
command. It decapsulates (if necessary) and optionally decodes an OpenVOS file, back to the
sequential, relative, or fixed file format.

Related Information
See the description of the encode_vos_file command.
OpenVOS Commands Reference Manual (R098) 2-273

decrypt
decrypt 2-

Purpose
 This command converts ciphertext data into cleartext data.

Display Form

Command Line Form
decrypt input_file [output_file]

-password string [-delete] [-suppress_password]
Arguments* input_file Required

The name of the file to be decrypted. This file can have any file organization
(sequential, relative, fixed, or stream), and it can have the pipe attribute. However, it
cannot have any indexes.

* output_file
The name of the file to contain the decrypted data. This file has the same file
organization as input_file. If input_file has the pipe attribute, output_file
has it, too. If you specify neither output_file nor the -delete argument, the
command asks if you want to replace input_file with an output_file of the same
name. Type y or Y at the prompt if you want to replace it. If you type n or N at the
prompt, input_file is not decrypted.

* -password string Required
A string that forms the decryption key. The string must have a length of one to eight
characters and can contain any character.

Note: Abbreviations are not expanded.

 ----------------------------------- decrypt ----------------------------------
 input_file:
 output_file:
 -password:
 -delete: no
 -suppress_password: no
2-274

decrypt
* -delete <CYCLE>
Suppresses the prompt that occurs if you specify the same file for both input_file
and output_file, or if output_file already exists. By default (the value no), the
command displays this prompt.

* -suppress_password <CYCLE>
Prevents the command from attempting to use the password saved in input_file. By
default (the value no), the command reads the saved password from input_file.

Explanation
The decrypt command converts ciphertext data into cleartext data. The command reads the
input file, decrypts the contents of the input file using the Data Encryption
Algorithm (DEA) in cipher feedback 8 mode, and writes the decrypted data into the output
file. By default, the output file replaces the input file.

By default, the decrypt command verifies that the password specified on the command line
matches the decrypted value of the saved password. If they match, the decrypt command
decrypts the file. Otherwise, it displays an error message and terminates. This action avoids
decrypting the file with the wrong key, which would produce a useless output file and could
result in the deletion of the original, encrypted, input file.

When you encrypt a fixed or stream file using the -suppress_password argument, you
must also use this argument when decrypting the file.

When you encrypt a sequential or relative file using the -suppress_password argument,
the initial zero-length record informs the decrypt command that no password is available.
Therefore, you are not required to specify the -suppress_password argument when you
are decrypting sequential or relative files.

If you use the -suppress_password argument to encrypt a file, and then you accidentally
use the incorrect password to decrypt the file, and finally, you overwrite the input file with the
(incorrectly) decrypted output, you must re-encrypt the file with the incorrect password, and
then decrypt it with the correct password.

The encryption and decryption algorithm is entirely dependent on the user-specified
password; no other information is used during the encryption or decryption process.

Access Requirements
You need read permission on the input file, and you need modify access and default write
permission on the directory containing the output file.

Related Information
See the encrypt command. Also, for more information about DEA support, see the
following files:

 >system>doc>dea.doc
 >system>doc>tdea.doc
OpenVOS Commands Reference Manual (R098) 2-275

delete_dir
delete_dir 2-

Purpose
This command deletes a directory and all of its contents.

Display Form

Command Line Form

delete_dir directory_names . . . [-no_ask] [-no_expired_only] [-brief]
Arguments* directory_names Required

One or more names or star names of directories to be deleted.

* -no_ask <CYCLE>
Suppresses the prompt asking whether to delete a directory. By default, the command
asks before deleting a directory, unless the directory is empty.

* -no_expired_only <CYCLE>
Deletes all files, including those that have an expiration date some time in the future.
By default, the command deletes only those files whose expiration dates have passed
or for which no expiration date is set.

* -brief <CYCLE>
Suppresses the display of each directory name that matches a star name before the
directory is deleted. By default, the command displays the names.

Explanation
The delete_dir command deletes the target directory if a directory_names term
matches a link whose target is a directory. The link remains, even though it has no target.

If the delete_dir command encounters a file that it cannot delete, the file is not deleted. If
such a file is contained in a subdirectory, that subdirectory is not deleted. If a directory

---------------------------------- delete_dir -----------------------------------
directory_names:
-ask: yes
-expired_only: yes
-brief: no
2-276

delete_dir
contains any object that cannot be deleted, the command deletes all files and subdirectories
that can be deleted, but it does not delete the directory itself or any links it contains. Normally,
the command returns an error message for each file and subdirectory that cannot be deleted.

Examples of files that cannot be deleted are files with the safety switch set, hidden files, and
files whose expiration date has not passed unless you have specified the
-no_expired_only argument. A directory containing hidden objects is never deleted, and
e$dir_not_empty (1095) is returned regardless of the release the module is running.
However, if the module is running a release that supports extended names, an error message
is reported for each hidden object. See Using OpenVOS Extended Names (R631) for more
information about hidden files.

Access Requirements
You need modify access to the directory immediately containing a directory you delete.

Examples
Example 1.
To delete the directory >east>Jones>customers, use this command.

delete_dir >east>Jones>customers

Example 2.
Suppose your current directory contains the directories reports.jan90, reports.feb90,
reports.mar90, and reports.apr90 among others. You want to delete all the reports
directories except reports.apr90. The following command prompts you as to whether you
want to delete each directory with a name that matches the star name reports.*.

delete_dir reports.*

If you answer yes to each prompt except the one for reports.apr90, the command deletes
all but that directory.

Example 3.
Suppose your current directory contains these directories.

month.7
month.8
month.9

The directories month.7 and month.8 are empty, but month.9 contains the following
directories.

week.1
week.2
week.3
week.4

Now suppose that you issue this command.

delete_dir month.*
OpenVOS Commands Reference Manual (R098) 2-277

delete_dir
The command deletes the directories month.7 and month.8 without asking because they are
empty, but asks you before deleting month.9, since it is not empty.

Related Information
See also the description of the set_expiration_date command. For more information
about directory management, see the command descriptions of change_current_dir,
compare_dirs, copy_dir, create_dir, display_current_dir, and move_dir. For
information about removing a link, see the unlink command.
2-278

delete_file
delete_file 2-

Purpose
This command deletes files from the directory hierarchy.

Display Form

Command Line Form

delete_file file_names . . . [-no_ask] [-brief] [-force]
Arguments* file_names Required

One or more names or star names of files to be deleted.

* -no_ask <CYCLE>
Suppresses the prompt, when a file name is a star name, asking whether to delete a file
with a matching name. By default, the command asks before deleting a file with a
matching name.

* -brief <CYCLE>
Suppresses the display of each file name that matches a star name before the file is
deleted. By default, the command displays the name.

* -force <CYCLE>
Deletes a file not currently in use and marks for deletion a file that is in use. In the
second case, the command deletes the file after all users have closed it. By default, the
command ignores files that are in use.

Explanation
The delete_file command deletes the target file if a file_names term matches a link
whose target is a file. The link remains, although it has no target.

--------------------------------- delete_file ----------------------------------
file_names:
-ask: yes
-brief: no
-force: no
OpenVOS Commands Reference Manual (R098) 2-279

delete_file
If you mistakenly delete an important file, your only recourse is to restore the file from your
latest backup tape. The OpenVOS file system does not have “un-delete” capabilities. You can
prevent the deletion of important files by performing one or more of the following actions.

 Create an abbreviation for the delete_file command that contains the -ask
argument. For example:

first del by delete_file -ask

When you specify the -ask argument, the command prompts you before deleting the
file.

Note: When file_names is a star name, unless you specify -no_ask, the
command prompts you before deleting a file with a matching name. When you
answer prompts about a set of files, no files are deleted until you have responded
to prompts for the entire set. If you cancel the command before answering
prompts about all files in the set, no files in the set are deleted. After you have
answered prompts for all the names that match one file_names term, however,
the command deletes the files in that set before asking you about the next set of
names.

 Create an abbreviation for delete_file which moves the file rather than deletes it. If
you move it to your (process_dir) directory in
(master_disk)>system>process_dir_dir, OpenVOS deletes the file when you
logout, but it is available before then in case you need it. For example:

first del by move_file &1& (process_dir)>&1&

 If using the process_dir_dir directory is too risky, create an abbreviation that
moves the deleted file to a directory where it will remain when you logout.

 Use the set_safety_switch command to set a file’s safety switch to on. If you set
the safety switch for a file and then you attempt to delete it, OpenVOS displays the
following message:

delete_file: Operation invalid while file is protected by the
safety switch. path_name

To delete a file that has the safety switch turned on, use the set_safety_switch
command to turn off the safety switch.

 Use the set_expiration_date command to prevent a file’s deletion before a
specific date and time. If you set the expiration date for a file and then you attempt to
delete it, OpenVOS displays the following message:

delete_file: The object may not be deleted before its expiration
date. path_name

To delete the file, use the set_expiration_date command to reset the expiration
date to today’s date.

The -brief argument suppresses messages telling you which files are being deleted.
2-280

delete_file
Access Requirements
You need modify access to the directory immediately containing any file that is to be deleted.

Examples
Suppose clark_report is a link in the current directory to a file, and the current directory
contains the files week90-02-04, week90-02-11, week90-02-18, week90-02-25, and
week90-03-03. The following command deletes some of these files.

delete_file week90-02-* clark_report

The command deletes the files in the current directory whose names match the given star
name and the target of the link clark_report. The link remains in the directory. The deleted
files are week90-02-04, week90-02-11, week90-02-18, week90-02-25, and the target
of clark_report.

Related Information
See also the command descriptions of compare_files, copy_file, create_file,
display_file_status, dump_file, locate_files, move_file,
set_file_allocation, and truncate_file. For information about removing a link, see
the unlink command.
OpenVOS Commands Reference Manual (R098) 2-281

delete_index
delete_index 2-

Purpose
This command deletes a set of indexes to a file.

Display Form

Command Line Form

delete_index file_name index_names . . . [-no_ask]
Arguments* file_name Required

The path name of a file.

* index_names Required
One or more names or star names of indexes to be deleted. The command deletes all
indexes with matching names.

* -no_ask <CYCLE>
Suppresses the prompt that asks you, when an index name is a star name, whether to
delete an index with a matching name. By default, the command asks before deleting
an index with a matching name.

Explanation
The delete_index command deletes one or all indexes to the file file_name.

When you are responding to prompts about a set of indexes whose names match
index_names, the delete_index command does not delete any index in the set until it has
asked you about all of them. If you cancel the command before answering prompts about all
indexes in the set, no indexes in the set are deleted.

Access Requirements
You must have write access to the file file_name and modify access to the directory
containing the file.

--------------------------------- delete_index ---------------------------------
file_name:
index_names:
-ask: yes
2-282

delete_index
Examples
Example 1.
To delete all the indexes to the file reports>this_week, issue this command.

delete_index reports>this_week *

Example 2.
To delete the indexes name and zip_code to the file new, issue this command.

delete_index <Smith>jones_customers>new name zip_code

Related Information
See also the descriptions of the create_index and truncate_file commands. When you
truncate a file, you truncate, but do not delete, all indexes to the file.
OpenVOS Commands Reference Manual (R098) 2-283

delete_library_path
delete_library_path 2-

Purpose
This command removes a path name from the list of directories that define the specified
library.

Display Form

Command Line Form

delete_library_path [library_name]

 library_path_name

Arguments* library_name <CYCLE>
Specifies one of the following library names.

 include
 object
 command
 message

By default, the command looks for the library_path_name in the include library.

* library_path_name Required
The path name of a directory. The path name can include the command functions
(current_dir) or (home_dir); if library_name is message, the path name can
also include (referencing_dir) and (language_name). If enclosed in
apostrophes, the command functions are evaluated when the path name is used.

Explanation
The delete_library_path command allows you to remove a single path name from the
list of directories that define the specified library.

----------------------------- delete_library_path ------------------------------
library_name: nclude
library_path_name:

i

2-284

delete_library_path
A library is one or more directories that the operating system searches for objects of a
particular type. Each module has the following libraries.

 include library
 object library
 command library
 message library

The compilers search the include library for include files; the binder searches the object
library for object modules; and the command processor searches the command library for
commands and the message library for messages associated with individual commands.

For each library, the search for an object begins in the first directory on the library list. If the
object is not in that directory, the search proceeds to the second directory on the list, then to
the third, and so on. The module’s default list of directories for each library serves as a guide
to where to find objects. The delete_library_path command enables you to delete any
path name in the list for a specified library, so you can control which directories the operating
system searches for an object.

The path name of the directory library_path_name can include the command functions
(current_dir) or (home_dir); if library_name is message, the path name can also
include (referencing_dir) and (language_name). (Note that you must enclose a
command function in apostrophes in order to prevent its evaluation by the command
processor at the time you give it to the delete_library_path command.)

The list of libraries modified by the delete_library_path command remains in effect
only for the life of your process.

Examples
Suppose you use the list_library_paths command to list your include library and you
get the following output.

include library directories:
 (current dir)
 %s1#d03>Sales>incl
 %s1#d03>Sales>Smith>work
 %s1#d04>system>include_library

To delete the directory named work, execute the following command.

delete_library_path include work

Now if you list your include library, you get the following output.

include library directories:
 (current dir)
 %s1#d03>Sales>incl
 %s1#d04>system>include_library
OpenVOS Commands Reference Manual (R098) 2-285

delete_library_path
Related Information
 See also the command descriptions of add_library_path, list_library_paths, and
set_library_paths. See the OpenVOS Commands User’s Guide (R089) for information
about the conventions for searching libraries. The descriptions of the
delete_default_library_path and set_default_library_paths commands, in
the OpenVOS System Administration: Administering and Customizing a System (R281),
provide additional information about a module’s default directories for libraries.
2-286

detach_default_output
detach_default_output 2-

Purpose
This command detaches your default_output port and reattaches it to its previous
attachment.

Display Form

Command Line Form
detach_default_output

Explanation
The detach_default_output command saves the identity of the attachments, in
sequential order, of the default_output port so that detach_default_output can
reattach the port to its previous attachment. If no previous attachment exists, the operating
system disregards a detach_default_output command, since it cannot reattach the port
to an object that does not exist.

Examples
Suppose the default_output port for your process is attached to your terminal. Consider
the following sequence of commands.

attach_default_output table_of_contents
list -all
detach_default_output

These commands attach the default_output port to a file named table_of_contents,
list the current directory, and then reattach the port to your terminal. The file
table_of_contents now contains listings of all the files, subdirectories, and links in the
current directory.

Related Information
See the description of the attach_default_output command for information about how
to change the default attachment of the default_output port. See also the descriptions of
the attach_port, detach_port, start_logging, and stop_logging commands.

---------------------------- detach_default_output -----------------------------
No arguments required. Press ENTER to continue.
OpenVOS Commands Reference Manual (R098) 2-287

detach_port
detach_port 2-

Purpose
This command detaches an attached port from a file or I/O device.

Display Form

Command Line Form
detach_port port_name

Arguments* port_name Required
The name of the port to be detached.

Explanation
The detach_port command cannot be used to detach your process’s default_input,
terminal_output, command_input, default_output, or terminal port, or your
process’s unique string port to the system message file.

Examples
To detach the port this_week from the file or I/O device to which it is attached, use this
command.

detach_port this_week

Related Information
See the description of the attach_port command for information on how to attach a port
to a file or I/O device. See also the descriptions of the attach_default_output,
detach_default_output, and list_devices commands.

--------------------------------- detach_port ----------------------------------
port_name:
2-288

dismount_tape
dismount_tape 2-

Purpose
This command dismounts a tape mounted on the specified tape drive or the tape drive to
which the specified port is attached.

Display Form

Command Line Form

dismount_tape tape_device_or_port_name [-message message] [-no_unload]
Arguments* tape_device_or_port_name Required

The name of the tape device, or the name of the port attached to the tape drive, holding
the tape to be dismounted.

* -message message
Displays a message on an operator’s terminal or on your terminal. The message is
added to the standard message about dismounting the tape. By default, the default
message defined by the set_tape_drive_params command is displayed.

* -no_unload <CYCLE>
Dismounts the tape without unloading it. By default, once a tape is mounted with
mount_tape, it remains mounted until you dismount it with dismount_tape.

Explanation
The dismount_tape command dismounts a tape volume from a tape drive, unloads the tape
by default, and sends a message to the operator.

If you explicitly mount a tape with mount_tape, you must explicitly dismount the tape with
dismount_tape. If mount_tape implicitly attaches a port, dismount_tape implicitly
detaches the port. The dismount_tape command unloads the tape unless you specify
-no_unload.

-------------------------------- dismount_tape ---------------------------------
tape_device_or_port_name:
-message:
-unload: yes
OpenVOS Commands Reference Manual (R098) 2-289

dismount_tape
If write_tape, read_tape, or list_tape implicitly attaches a port and implicitly mounts
a tape, that is, with no prompts, the command implicitly dismounts the tape and detaches the
port. Likewise, if save_object, restore_object, or list_save_tape implicitly
attaches a port and automatically mounts a tape, that is, with the prompts for mount_tape,
the command implicitly detaches the port and unloads the tape. In these cases, you do not
need to use the dismount_tape or detach_port commands.

However, if a command that automatically mounts a tape does so after you attach a port with
attach_port, you must dismount the tape with either dismount_tape or detach_port.
The dismount_tape command dismounts the tape and unloads the tape, unless you specify
-no_unload. The detach_port command detaches the port, forcing the tape to be
unloaded. For more information, see Explanation in the mount_tape command.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
display_tape_params, dump_tape, list_save_tape, mount_tape,
position_tape, read_tape, restore_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
2-290

display
display 2-

Purpose
This command writes a file to the output device or file attached to your default_output
port, which is usually your terminal, or to the device or file specified in the command.

Display Form

----------------------------------- display ------------------------------------
file_names:
-caseless: yes
-index:
-match:
-output_path:
-first_line:
-last_line:
-line_numbers: no
-header: yes
-raw: no
-line_length: default
-slave_printer: no
-slave_page_length: 60
-min_lines: 1
-interpret_tabs:
-file_separator: lf
-match_status: no
OpenVOS Commands Reference Manual (R098) 2-291

display
Command Line Form

display file_names . . . [-no_caseless] [-index index_name] [-match character_string]

¢ £
[-first_line first_line_number] [-last_line last_line_number] [-line_numbers] [-no_header] [-line_length]

¢ £
[-slave_page_length number_of_lines] [-min_lines number_of_lines] [-file_separator] [-match_status]

Arguments* file_names Required
One or more names or star names of files to be displayed. You can specify any type of
file. For IBM® Document Content Architecture (DCA) files and WordPerfect® files,
use the display_file command, instead.

* -no_caseless <CYCLE>
Specifies that when you select -match, the specified match of character_string is
case sensitive. If you do not use -no_caseless and use -match, the matching
disregards the case of character_string. If you use -no_caseless without also
using -match, the command disregards this argument.

* -index index_name
Specifies an index to control the order in which records in the file are displayed. If you
use -index, you can give only one file path name, and index_name must be an index
to that file.

* -match character_string
Displays only the lines in the files that contain the character string
character_string. The command disregards the case of the alphabetical characters.
If you specify -no_caseless, the match is case sensitive. By default, the operating
system displays all the lines in the range defined by -first_line and -last_line.

* -output_path output_path_name
Directs the output to the output device or file output_path_name. By default, the
command directs the output to your default_output port. You cannot specify both
-output_path and -slave_printer in the same command.

-output_path output_path_name
-slave_printer

-raw
-interpret_tabs start_column, spacing
2-292

display
* -first_line first_line_number
Displays each specified file beginning at the line numbered first_line_number. If
there are fewer than first_line_number records in the file, the command displays
an error message informing you of that, and returns you to command level. By default,
the display begins at the first line in each file.

* -last_line last_line_number
Displays each specified file through the line numbered last_line_number. By
default, the display is through the end of the file.

* -line_numbers <CYCLE>
Includes line numbers in the display. By default, the display omits the line numbers.

* -no_header <CYCLE>
Suppresses the display of the names of the specified files. By default, the command
displays the file name of each specified file just before its contents.

* -raw <CYCLE>
Displays the files without interpreting embedded word processor controls. Control
sequences that do not normally appear on the screen are replaced with the ASCII digits
representing the hexadecimal value of the bytes. You cannot specify -raw and
-interpret_tabs in the same command.

* -line_length
Specifies the number of columns displayed before the line wraps. For terminal devices,
the default line length is the width of the output device; for nonterminal output devices
(for example, output to a file), the default line length is 132 columns. The default line
length for slave printers and for terminals is the same (generally, 80 columns).

* -slave_printer <CYCLE>
Directs the output from the command to a printer attached to the terminal. If you do not
use -slave_printer or -output_path, the command directs the output to the
default_output port. You cannot specify both -slave_printer and
-output_path in the same command.

* -slave_page_length number_of_lines
Prints a specified number of lines per page of output, if you also specify
-slave_printer. The minimum number of lines you can specify is 10. By default,
the value is 60. If you specify -slave_page_length and do not specify
-slave_printer, the command disregards this argument.

* -min_lines number_of_lines
Specifies the minimum number of lines to be displayed following each line containing
the characters specified in -match. If you specify a value of n for number_of_lines,
the command displays the line containing the specified string and the n-1 subsequent
lines, if any. By default, the value of number_of_lines is 1.

* -interpret_tabs start_column, spacing
Interprets occurrences of the ASCII tab character. You must give the column number
start_column of the first tab stop and the number spacing of positions between tab
stops. A comma must separate the two numbers. You cannot specify both
-interpret_tabs and -raw in the same command.
OpenVOS Commands Reference Manual (R098) 2-293

display
* -file_separator <CYCLE>
Controls the appearance of the output when the -output_path argument is used.
When using the -output_path argument, you can separate the output from multiple
files by specifying the ff (form-feed) value. By default, the -file_separator
argument uses the lf (line-feed) value.

* -match_status <CYCLE>
If you specify this argument with the -match argument, the command sets the
(command_status) command function to one of the following:

 e$no_match (7857) if the command finds no matches

 0 if the command finds a match

This argument has no effect unless you also specify the -match argument.

Explanation
The display command displays any type of file, with the following exceptions:

 Pipes, message queues, and server queues. If you specify only one file and it is a pipe,
message queue, or server queue, the command returns an error. If you specify more than
one file, either explicitly or via a star name, the command does not display any file that
is a pipe, message queue, or server queue, and the command status is set to zero. If you
specify -match in this case, files that cannot be displayed are treated as if they contain
no matches.

 IBM DCA files and WordPerfect files. Use the display_file command to display
these files.

The display command can display stream files that have been opened using region locking
(including files that are open and in use by POSIX programs).

If you specify the argument -index, the displayed records are sorted using the index
index_name. You can specify this argument only when displaying a single file.

The -match argument allows you to display only the lines containing the string
character_string. If character_string contains spaces, you must enclose the string
in apostrophes. This argument is convenient for displaying only the portions of a file that
contain a particular string and for identifying all files that contain it.

With the -output_path argument, you can direct the output to a file or device different from
the current attachment of your default_output port. If output_path_name is an existing
file, the display command truncates the file before writing to it. If -output_path is not
an existing file, the command creates a sequential file with that name and writes the output to
it. If you specify this argument and specify more than one file, the command appends the
output from each file to the output from the preceding files.

The -file_separator lf argument writes a blank line after each file if the display
command produces any output while processing a file. For example, if any characters in a line
matched the -match character_string argument, then a blank line is written after all of
the matching lines have been displayed. If multiple files are specified and the ff character is
2-294

display
used in the -file_separator argument, then a form-feed character is written to separate
the output.

The display command opens an input file for dirty input if the input file is locked using
record locking or if it is exclusively locked by another process and you do not specify the
-index argument. In these situations, the command displays the following messages:

For exclusive locking:

display: File is in use; using dirty input mode.
Some data may not be visible yet. object_name

For record locking:

 display: File is in use; using dirty input mode.
 Some records may not be visible yet. object_name

If a file is already locked using region locking, the command attempts to open the file only if
you did not specify the -index argument.

The -slave_printer argument is supported for both TeleVideo-style (V101, V102, V103)
and ANSI-style (VT100, VT220, VT320, CIT482, V105, V109) terminals. In addition,
OpenVOS supports this argument on any terminal whose terminal-type definition (.ttp) file
defines the sequences aux-printer-on and aux-printer-off. The following standard
ANSI .ttp files define the aux-printer-x output sequences: cit482, vt100, vt220,
vt320, v105, v105_ansi, v105_epc, and v109.

Access Requirements
You need read access to a file to display it.

Examples
Example 1.
The following command displays the path name and contents of the file this_week in the
current directory.

display this_week -index date_changed

The lines in the file are displayed in the order determined by the index date_changed.

Example 2.
To display the lines containing the character string city-code in all OpenVOS COBOL
source modules in your current directory, use this command.

display *.cobol -match city-code -line_numbers

This command also displays the path names of the specified files and the line numbers of the
lines that contain the string city-code.

Related Information
See also the description of the display_file command.
OpenVOS Commands Reference Manual (R098) 2-295

display_access
display_access 2-

Purpose
This command displays a user’s access to files, directories, and devices.

Display Form

Command Line Form

display_access path_names . . . [-user user_name] [-all]
Arguments* path_names Required

One or more names or star names of files, directories, and device access lists. The path
name for device access lists is >system>acl>access_list_name. The command
displays the user’s access to each matching file, directory, or device access list. By
default, the command uses your current directory.

* -user user_name
Specifies a user name whose access is to be displayed. By default, the command uses
your user name.

* -all <CYCLE>
Displays the access of all users with explicitly defined access to each file, directory, or
device. If you use -all and -user in the same command, the command disregards
-user. By default, the command uses your user name.

Explanation
The display_access command displays your access, the access of another user, or the
access of all users to each file, directory, and device you specify in the path_names
argument.

To determine the access to a file, the display_access command uses the access control list
of the file and the default access control list of its containing directory. To determine the

-------------------------------- display_access --------------------------------
path_names:
-user: current_user
-all: no
2-296

display_access
access to a directory, the command uses the access control list of the directory. To determine
the access to a device, the command uses the access control list of the device.

The path_names argument for device access lists contains the file name
access_list_name. This file name matches the value for the access_list_name field
for each device in a set in the devices.tin file. The access_list_name file contains the
access control list (ACL) for a device or set of devices. The operating system creates the ACL
from the devices.tin file. A user can then display access to the devices by issuing the
display_access command. If the access_list_name field for a device does not have a
value, no ACL is created, and all users can access that device.

Access Requirements
To see the access to an object, you need status access to the directory containing it.

Examples
Example 1.
The following command displays your access to the OpenVOS COBOL source modules in
>Sales>Jones>reports.

display_access >Sales>Jones>reports>*.cobol

Example 2.
To display the access of all users to all objects in the current directory, use this command.

display_access * -all

The output of this command might look like the following example, for each object in the
current directory.

%s1#d02>Marketing>Smith>weekly_report

r Backup.Backup (D)
w Clark.Marketing
w Smith.* (D)
w *.SysAdmin (D)
w *.System (D)
r *.Marketing (D)
r *.Services (D)
r *.Strategy (D)
r *.Operator (D)
n *.* (D)

The command derives the access from the access control list of the file and the default access
control list of the directory %s1#d02>Marketing>Smith. An entry in the access control list
of a file takes precedence over an entry in the default access control list for the same user
name.

The symbol (D) indicates that this term comes from the default access control list of the
directory.
OpenVOS Commands Reference Manual (R098) 2-297

display_access
Example 3.
The following command displays the access of all users of the device %s1#d02, which has
the access list name of exclude_service_acl.

display_access %s1#d02>system>acl>exclude_service_acl -all

The output of this command might look like the following example.

%s1#d02>system>acl>exclude_service_acl

 w *.Installer
 w *.SysAdmin
 w *.System
 r *.Marketing
 n *.Services
 r *.*

Related Information
For more information about access, see the command descriptions of
display_access_list, display_default_access_list, give_default_access,
propagate_access, remove_access, and remove_default_access. For a detailed
discussion of access, see OpenVOS Commands User’s Guide (R089) and OpenVOS System
Administration: Registration and Security (R283).
2-298

display_access_list
display_access_list 2-

Purpose
This command displays the access control lists of files, directories, and devices.

Display Form

Command Line Form

display_access_list path_names . . .

Arguments* path_names Required
One or more names or star names of files, directories, and device access lists. The path
name for device access lists is >system>acl>access_list_name. The command
displays the access control list of each matching file, directory, or device access list. By
default, the command uses your current directory.

Explanation
The display_access_list command displays the access control lists of the files,
directories, and devices you specify in the path_names argument.

The path_names argument for device access lists contains the file name
access_list_name. This file name matches the value for the access_list_name field
for each device in a set in the devices.tin file. The access_list_name file contains the
access control list (ACL) for a device or set of devices. The operating system creates the ACL
from the devices.tin file. A user can then display the ACL of devices by issuing the
display_access_list command. If the access_list_name field for a device does not
have a value, no ACL is created, and all users can access that device.

Access Requirements
To display the access control list of a file, directory, or device, you need status access to the
containing directory.

----------------------------- display_access_list ------------------------------
path_names:
OpenVOS Commands Reference Manual (R098) 2-299

display_access_list
Examples
The following command displays the access control lists of all OpenVOS PL/I and OpenVOS
COBOL source modules in the current directory.

display_access_list *.pl1 *.cobol

Related Information
For more information about access control, see the command descriptions of
display_access, display_default_access_list, give_default_access,
propagate_access, remove_access, and remove_default_access.
2-300

display_batch_status
display_batch_status 2-

Purpose
This command displays the status of the batch queue on a specified module.

Display Form

Command Line Form

display_batch_status [-module module_names]
Arguments* -module module_names

One or more names or star names of modules, for which you want batch queue
information. The default is the current module.

Explanation
The display_batch_status command displays information about the status of batch jobs
in the queues for a module. The following information is provided:

 the name of the queue or queues in the module

 the state of the queue, which may be running, suspended, or stopped

 the maximum number of users allowed to have batch jobs in the queue at the same time
(a limit set by batch_admin)

 the number of jobs running for each user

----------------------------- display_batch_status -----------------------------
-module: urrent_module c
OpenVOS Commands Reference Manual (R098) 2-301

display_batch_status
Examples
The following example illustrates the output for the display_batch_status command.

Batch queues for %s1#d02

QUEUE STATE MAX RUNNING JOBS
r1b run 1
bk (m2) run 1
normal (m2) run 1 02 Smith (weekly_receivables)
normal (m2) run 1 02 Clark (pass3)

Related Information
See the command descriptions of batch, cancel_batch_requests,
cancel_device_reservation, reserve_device, list_batch_requests,
move_device_reservation, and update_batch_requests.
2-302

display_current_dir
display_current_dir 2-

Purpose
This command displays the full path name of your current directory.

Display Form

Command Line Form
display_current_dir

Explanation
The display_current_dir command displays the full path name of your current
directory.

Related Information
For more information about directory management, see the command descriptions of
change_current_dir, compare_dirs, copy_dir, create_dir, delete_dir, and
move_dir.

----------------------------- display_current_dir ------------------------------
No arguments required. Press ENTER to continue.
OpenVOS Commands Reference Manual (R098) 2-303

display_current_module
display_current_module 2-

Purpose
 This command displays the full name of the processing module running your process.

Display Form

Command Line Form
display_current_module

Explanation
 The display_current_module command displays the full name of your current module.
The current module is the processing module executing your process.

The full name of a module is a percent sign followed by a system name, then a number sign,
then a module name. For example, %s1#m2 is the full module name of the module m2.

---------------------------- display_current_module ----------------------------
No arguments required. Press ENTER to continue.
2-304

display_date_time
display_date_time 2-

Purpose
This command displays the current date and time.

Display Form

Command Line Form

display_date_time [-long]
Arguments* -long <CYCLE>

Displays the long form of the date and time. By default, the command displays a short
form.

Explanation
The display_date_time command displays the current date and time on your terminal or
the current attachment of default_output.

The short form of the date and time is as follows:

yy-mm-dd hh:mm:ss zzz

In the date part:

yy is a two-digit code for the year (90 is 1990)

mm is a two-digit code for the month (06 is June)

dd is a two-digit code for the day of the month

------------------------------ display_date_time -------------------------------
-long: o n
OpenVOS Commands Reference Manual (R098) 2-305

display_date_time
In the time part:

hh is the hour of the day according to a 24-hour clock (14 is 2:00 P.M.)

mm is the minute of the hour

ss is the second of the minute

zzz is a three-character code for the time zone as defined by the user or the system

The long form of the date and time is as follows:

day-name, month day, year time

In this form:

day-name is the name of the day of the week

month is the name of the month

day is the number of the day of the month

year is the year

time is the time of day according to a 12-hour clock

Examples
Example 1.
The following command displays the current date and time in the short form.

display_date_time

This display might appear.

90-06-15 14:31:21 est

Example 2.
This command displays the current date and time in the long form.

display_date_time -long

If the current date and time are the same as in the previous example, the following display
appears.

Tuesday, June 15, 1990 2:31 pm

Related Information
See also the description of the set_time_zone command and the (date_time) command
function.
2-306

display_default_access_list
display_default_access_list 2-

Purpose
This command displays the default access control lists of directories.

Display Form

Command Line Form

display_default_access_list [directory_names] . . .

Arguments* directory_names
One or more names or star names of directories. The command displays the default
access control list of each matching directory. By default, the command displays the
default access control list of your current directory.

Explanation
The display_default_access_list command displays the default access control list of
a directory which has the same form as the access control list of a directory or file. It is of
user-name access-type pairs. However, unlike access control lists, which are associated with
both directories and files, default access control lists are associated only with directories.
Furthermore, the access types in a default access control list are access types to files.

A default access control list specifies the access of users to files in the directory when the
users are not covered by the files’ access control lists. When checking a user’s access to a file,
the operating system first searches the file’s access control list for a matching entry. If the user
name does not match any entry in the access control list, the operating system searches the
default access control list of the containing directory. If the user name does not match any
entry in either list, the user has undefined access to the file. Undefined access is equivalent to
null access.

When you create a directory, the operating system gives it the default access control list of its
containing directory.

------------------------- display_default_access_list --------------------------
directory_names: urrent_dir c
OpenVOS Commands Reference Manual (R098) 2-307

display_default_access_list
Access Requirements
To display the default access control list of a directory, you need status access to the directory.

Related Information
See also the command descriptions of display_access, display_access_list,
give_default_access, propagate_access, remove_access, and
remove_default_access. For a detailed discussion of access, see OpenVOS Commands
User’s Guide (R089) and OpenVOS System Administration: Registration and
Security (R283).
2-308

display_default_open_options
display_default_open_options 2-

Purpose
This command displays the default open options for a directory.

Display Form

Command Line Form

display_default_open_options directory_names . . . [-brief]
Arguments* directory_names Required

One or more names or star names of directories for which default open options are to
be displayed.

* -brief <CYCLE>
Displays the default open options for only those directories that do not have standard
default open options. By default (the value no), the command displays the default open
options for all specified path names.

Explanation
This command displays the default open options for all directories that match the specified
star names. Files that are located in the directory, or that are created in that directory in the
future, will inherit the directory’s default open options unless you explicitly set open options
for the file or its indexes. A newly created directory inherits its default open options from its
parent directory.

If you set the -brief argument to no (the default), the command displays each of the path
names that the command examines only if the default open options are not default values. The
command displays the default open options as canonical strings (these values are also used in
the display_dir_status command).

For more information about the open options, see the manual OpenVOS System
Administration: Administering and Customizing a System (R281). See also the description of
the s$get_default_open_options subroutine in the OpenVOS Subroutines manuals.

------------------------- display_default_open_options ------------------------
directory_names:
-brief: no
OpenVOS Commands Reference Manual (R098) 2-309

display_default_open_options
Related Information
See also the descriptions of the display_open_options,
set_default_open_options, and set_open_options commands.
2-310

display_device_info
display_device_info 2-

Purpose
This command displays information about a specified device.

Display Form

Command Line Form
display_device_info device_name[-brief]

Arguments* device_name Required
The path name of a device. The device can be defined on any module.

* -brief <CYCLE>
Displays a subset of the information about the specified device. By default, the
display_device_info command displays full information about the specified
device.

Explanation
The display_device_info command displays the following information about a
specified device. (Use the list_devices command to determine the device_name.)

 type—The device type

 module name—The name of the module to which the device is connected

 channel number—The channel number associated with the device

 event id—The event ID associated with the device

 clone limit—The maximum number of clone devices that can be created from one
clone device. A non-zero value indicates that the device is a clone device; a zero value
indicates that the device is not a clone device. If clone limit has a zero value and
cloned from has a non-zero value, the device was cloned from a clone device.

 clone count—The current number of devices cloned from the clone device

----------------------------- display_device_info ------------------------------
device_name:
-brief: no
OpenVOS Commands Reference Manual (R098) 2-311

display_device_info
 cloned from—Helps generate the suffix used in clone device names. A non-zero
value indicates that the device is a clone device; a zero value indicates that the device
is not a clone device. If cloned from has a non-zero value and clone limit has a
zero value, the device was cloned from a clone device.

 device type name—The device type. If no device driver is loaded, device type
name displays the requested device type.

 streams device—The device is a STREAMS-based device

 streams minor number—A unique identifier for STREAMS devices that are not
cloneable

 streams remote minor number—Reserved for future use

 streams remote clone limit—Reserved for future use

 streams driver—The name of the STREAMS driver

 hardware address—The hardware address of the device. If the device is not
physical, the value is NULL. See the manual OpenVOS System Administration:
Configuring a System (R287) for more information about this field.

 Device Flags—Indicates the following:

– local—Whether the device is located on the module that is executing the
display_device_info command.

– reserved—Whether the device is reserved for use by a specific process

– shareable—Whether the device can be shared by multiple processes

– configured—Displayed only for compatibility with previous VOS releases

– dial out—Whether the channel can originate outbound telephone calls

– login slave—Whether the device is a login device

– force listen—Whether the channel has been configured to ignore dataset
leads. Stratus does not recommend the use of this option.

– privileged terminal—Whether a privileged process can log in on the
terminal

– ebcdic—Whether the character code is ASCII or EBCDIC

– dial up—Whether the channel can be externally dialed-up

– half duplex—Whether the line is full-duplex or half-duplex

– multiplexed—Whether the device is multiplexed

– sub device—Whether the device is a subdevice
2-312

display_device_info
– spooler—Whether the device is a printer

– alternate speed—Whether the device supports alternate baud rates

 reference count—The reference count indicating the number of processes attached
to the device

 person name—The person name of the current user

 primary person name—The person name of the current primary user (displayed
only for vterm devices)

 process id—The process identifier of the login process

 time assigned—The time at which the device was assigned to the process

 baud—The initial baud rate for the device

 stop bits—The number of stop bits associated with each character

 parity—The parity assumed for the channel

 terminal type name—The model name of the terminal or printer attached to the
device

 parent device name—The primary device of the subdevice

 mpx number—The control unit address for the subdevice

 sub device number—The device address of the subdevice

 firmware type—Displayed only for compatibility with previous VOS releases

 parameters—Any device-specific parameters

 More Users—Provides information about additional users

 Secondary Users—Provides information about additional users (displayed only for
vterm devices)
OpenVOS Commands Reference Manual (R098) 2-313

display_device_info
Examples
Example 1.
Device information for a window term device

display_device_info %sys2#tli_log.m105_1

Device Information for %sys2#tli_log.m105_1

type: window_term
module name: %sys2#m105
channel number: 0
event id: 2
clone limit: 0
clone count: 2
cloned from: 27
device type name: window_term
streams device: 0
hardware address: NULL

Device Flags:
local: 1
reserved: 0
shareable: 1
configured: 1
dial out: 0
login slave: 1
force listen: 0
privileged terminal: 1
ebcdic: 0
dial up: 0
half duplex: 0
multiplexed: 0
sub device: 0
spooler: 0
alternate speed: 0

reference count: 10
person name: Rogerson
process id: 0719805A
time assigned: 04-03-01 19:54:02 est
baud: ext
stop bits: 0?
parity: even
terminal type name: ascii
parent device name:
mpx number: 0
sub device number: 0
firmware type: default
parameters: -access_layer tli_al

(Continued on next page)
2-314

display_device_info
(Continued)

More Users:
person name: Rogerson
process id: 07178040
time assigned: 04-03-01 20:25:59 est

person name: Rogerson
process id: 07178040 (4 attachments)
time assigned: 04-03-01 20:25:48 est

person name: Rogerson
process id: 0719805A
time assigned: 04-03-01 19:54:15 est

person name: Rogerson
process id: 0719805A (3 attachments)
time assigned: 04-03-01 19:54:03 est

Example 2.
Device information for a STREAMS device

display_device_info #enet.m105.11.3 -brief

Device Information for %sys2#enet.m105.11.3

type: streams_pci
module name: %sys2#m105
slot number: 11
event id: 3
clone limit: 32
clone count: 0
cloned from: 6
streams driver: genet
hardware address: 11/3
Device Flags: streams device, local, shareable,
+configured
reference count: 0
parameters: -partner #enet.m105.10.3 -sdlmux
+#sdlmuxA.m105.10.

Note: In the preceding example, the plus-sign character (+) indicates that the line
has wrapped.
OpenVOS Commands Reference Manual (R098) 2-315

display_device_info
Example 3.
Device information for a tape device

display_device_info %sys2#tape.fibre

Device Information for %sys2#tape.fibre

type: tape
module name: %sys2#m103
slot number: 10
channel number: 0
event id: 2
clone limit: 0
clone count: 0
cloned from: 0
device type name: tape
streams device: 0
hardware address: 10/2/1/0/1

Device Flags:
local: 1
reserved: 0
shareable: 0
configured: 1
dial out: 0
login slave: 0
force listen: 0
privileged terminal: 0
ebcdic: 0
dial up: 0
half duplex: 0
multiplexed: 0
sub device: 0
spooler: 0
alternate speed: 0

reference count: 0
baud: ext
stop bits: 0?
parity: even
terminal type name:
parent device name:
mpx number: 0
sub device number: 0
firmware type: default
parameters:
2-316

display_device_info
Example 4.
Device information for a vterm device

display_device_info vterm1.1

Device Information for %sys2#vterm1.1

type: vterm
module name: %sys2#m100
channel number: 1
event id: 2
clone limit: 0
clone count: 0
cloned from: 0
device type name: vterm
streams device: 0
hardware address: NULL

Device Flags:
local: 1
reserved: 0
shareable: 1
configured: 1
dial out: 0
login slave: 1
force listen: 0
privileged terminal: 0
ebcdic: 0
dial up: 1
half duplex: 0
multiplexed: 0
sub device: 0
spooler: 0
alternate speed: 0

reference count: 3
primary person name: Rogerson
process id: 07148088
time assigned: 04-02-25 14:17:23 est
baud: 9600
stop bits: 0?
parity: space
terminal type name: v103
parent device name:
mpx number: 0
sub device number: 0
firmware type: default
parameters:

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-317

display_device_info
(Continued)

Secondary Users:
person name: Rogerson
process id: 07148088
time assigned: 04-02-25 14:17:31 est

person name: Rogerson
process id: 07148088
time assigned: 04-02-25 14:17:27 est

Related Information
For a complete description of the parameters displayed, see the manual OpenVOS System
Administration: Configuring a System (R287). See also the description of the
list_devices command.
2-318

display_dir_status
display_dir_status 2-

Purpose
This command displays information about a specified directory.

Display Form

Command Line Form

display_dir_status directory_names . . .[-show_limits]
Arguments* directory_names Required

One or more names or star names of directories. The command displays information
about all directories with matching names. By default, the command uses your current
directory.

* -show_limits <CYCLE>
Provides information about a directory’s entry and block limits as well as the current
number of entries for expandable directories.

Explanation
The display_dir_status command displays the following information about the
specified directory:

 the full path name
 the date and time the directory was last used
 the date and time the directory was last modified
 the date and time the directory was last saved
 the date and time the directory was created
 the number of disk blocks used to store the directory
 the access mode of the user for the directory
 the author of the directory
 the default open options
 the author of a directory is the user who created the directory
 the entry limits setting, if the directory is expandable

------------------------------ display_dir_status ------------------------------
directory_names:
-show_limits: no
OpenVOS Commands Reference Manual (R098) 2-319

display_dir_status
 the values of block limit, if the limits are non-default
 the value of limit-related data

For more information about the open options, see the description of the
display_open_options command.

Access Requirements
To obtain information about a directory, you need status or modify access to it.

Examples
The following command displays the status of the directory Sales that is a subdirectory of
the current directory.

display_dir_status Sales -show_limits

This display might result.

name: %s1#d02>Sales>east>Jones
last used at: 14-06-15 14:31:40 est
last modified at: 14-06-15 14:31:40 est
last saved at: never
time created: 14-06-15 14:31:40 est
blocks used: 6
mode: m
author: Smith.SysAdmin
entries allowed 32700
current entries: 25142
blocks allowed: 8720 (default 500)
current blocks: 8720

Related Information
See also the command descriptions of compare_dirs, create_dir, delete_dir,
display_file_status, display_open_options, and move_dir.
2-320

display_disk_info
display_disk_info 2-

Purpose
This command displays information about the disks in a specified module.

Display Form

Command Line Form

display_disk_info ¢ £...
[member] [partner] [-module module_name] [-long] [-partitioned] [-show_non_native]

Arguments* disk_name
The logical volume of which the disk is a member. The command displays information
about the specified logical volume in the current module. You cannot specify both
disk_name and -module. By default, the command displays information about all of
the member disks in the specified modules.

* member
A number, between 0 and 9 inclusive, that refers to the member disk’s location in the
logical volume. By default, the command displays disk information about all members
of the specified logical volume.

* partner <CYCLE>
The partner of the member disk or disks specified by member. The possible values are
primary, secondary, and either one (blank). The default setting is either one. If you

------------------------------- display_disk_info ------------------------------
disk_name:
 member:
 partner:
 -module:
 -long: no
 -partitioned: no
 -show_non_native: no

disk_name
-module module_name
OpenVOS Commands Reference Manual (R098) 2-321

display_disk_info
do not select either the primary or the secondary disk, the computer selects whichever
one is available. If both disks are available, the computer selects the primary disk. Use
the default setting if it does not matter which partner of the duplex disk is used, or if
you are displaying the label of a nonduplex disk.

* -module module_name
Specifies a module name or star name. You cannot specify both disk_name and
-module. By default, the command displays information about all of the member disks
in the specified modules.

* -long <CYCLE>
Displays a long report on the disks, including the size of the log partition file. By
default, the command displays a short report, and does not report the size of the log
partition file.

* -partitioned <CYCLE>
Displays partition-related information for a disk. By default, the command does not
display this information.

* -show_non_native <CYCLE>
Displays information about any non-native file system devices (for example, iso9660
file system devices such as DVDs). By default, the command does not display this
information.

Note: Open StrataLINK does not support non-native file system devices.
Because Open StrataLINK considers them to be devices for local use only, the
-show_non_native argument has no effect if you specify it with the -module
argument.

Explanation
The display_disk_info command displays the following information for each disk,
specified in alphabetical order by disk name.

 the name of the module containing the disk
 the total number of disk blocks in the file partition, if the disk is mounted
 the number of disk blocks being used in the file partition, if the disk is mounted
 the number and percentage of disk blocks remaining in the file partition, if the disk is

mounted

The system level I/O subprograms file_io, cache_manager, and tp_overseer reserve
blocks for their use. These reserved blocks are counted as free by display_disk_info.
Commands and subroutines that perform I/O call these subprograms, so you may get
out-of-disk errors, even though display_disk_info shows as many as 200 to 300 free
blocks.

If you specify the -long argument, the command displays, in alphabetical order by disk
name, the following information:

 the total, used, and free disk block information for the file, paging, and log partitions
for each disk (if the disk is mounted)
2-322

display_disk_info
 the disk type

 the number of disk reads or writes since the last time the system was booted

 the non-default per-volume attributes related to optimization and allocation (see
OpenVOS System Administration: Administering and Customizing a System (R281) for
more information about per-volume attributes)

Note: If your system administrator issued the add_paging_file command (instead
of the update_disk_label command) to add paging space to your module’s disks,
this space is not shown in the output of the display_disk_info command. If you
want to see the actual paging space in use for a module, issue the
display_paging_usage command. For more information on the
add_paging_file and display_paging_usage commands, see the manual
OpenVOS System Administration: Registration and Security (R283).

The display_disk_info command displays information about non-native file system
devices in the following situations:

 if you specify the -show_non_native argument

 if you issue the command for a specific non-native disk, regardless of whether you
specify -show_non_native or not

Note that you cannot specify the disk_name argument with the -module argument, nor can
you specify the -show_non_native argument with the -module argument.

Examples
Example 1.
Sample output of the display_disk_info -long command for %s1#m2 follows.

Module %s1#m2

%s1#dsa9

 Partition Size Used Free Left

 File 14999960 6839887 8160073 54.40%

 Member Pri Sec Attributes

 0 10/9/0/3/3 RAID,nonduplex,non-verify,serial

 Volume Reads Writes Attributes

 471 3 mounted

%s1#m2_mas

 Partition Size Used Free Left

 Paging 120000 7425 112575 93.81%

 File 14879864 13305525 1574339 10.58%

 Member Pri Sec Attributes

 0 10/9/0/1/0 10/9/0/3/0 RAID,duplex,verify,serial

 Volume Reads Writes Attributes

 18582 7176 mounted

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-323

display_disk_info
%s1#raid0-1lun

 Partition Size Used Free Left

 File 63476568 11737092 51739476 81.50%

 Member Pri Sec Attributes

 0 10/9/0/2/1 10/9/0/4/1 RAID,duplex,non-verify,serial

 Volume Reads Writes Attributes

 1822 2 mounted

%s1#raid1

 Partition Size Used Free Left

 Paging 120000 7399 112601 93.83%

 File 14879960 10668386 4211574 28.30%

 Member Pri Sec Attributes

 0 10/9/0/1/1 10/9/0/3/1 RAID,duplex,verify,serial

 Volume Reads Writes Attributes

 103486 109646187 mounted,thruput,access

%s1#raid10-1lun

 Partition Size Used Free Left

 File 63476568 12986434 50490134 79.54%

 Member Pri Sec Attributes

 0 10/9/0/1/3 10/9/0/3/4 RAID,duplex,non-verify,serial

 Volume Reads Writes Attributes

 1822 2 mounted

%s1#raid2

 Partition Size Used Free Left

 Paging 120000 7353 112647 93.87%

 File 14879960 7085273 7794687 52.38%

 Member Pri Sec Attributes

 0 10/9/0/1/2 10/9/0/3/2 RAID,duplex,verify,serial

 Volume Reads Writes Attributes

 97413 105292762 mounted,access

%s1#raid3

 Partition Size Used Free Left

 File 30517560 2594317 27923243 91.49%

 Member Pri Sec Attributes

 0 10/9/0/2/5 10/9/0/4/5 RAID,duplex,verify,serial

 Volume Reads Writes Attributes

 383426 355255175 mounted,response,access

%s1#raid4

 Partition Size Used Free Left

 File 31738264 31724147 14117 0.04%

 Member Pri Sec Attributes

 0 10/9/0/2/6 10/9/0/4/6 RAID,duplex,verify,serial

 Volume Reads Writes Attributes

 852 2 mounted,thruput,access
2-324

display_disk_info
Example 2.
If a system has several modules, you can give the -module argument with a module star name
or an asterisk to retrieve information about disks on the system. If a disk volume exists but is
not complete, the command lists that disk with the attribute member missing. The
command display_disk_info -module * would produce output similar to this.

Module %s1#m2

Size Used Left

#d02 202576 194328 8248 4.0% duplex,verify,serial,mounted

#newdisk 0 0 0 0.0% member missing,not mounted

Module %s1#m3

Size Used Left

#d03 419264 409856 9408 2.2% duplex,verify,parallel,mounted

#d07 368584 364084 4500 1.2% duplex,verify,parallel,mounted

#d08 105344 100026 5318 5.0% duplex,verify,parallel,mounted

Module %s1#m4

Size Used Left

#d04 178680 121678 57002 31.9% duplex,verify,serial,mounted

Module %s1#m5

 Size Used Left

#d05 174680 137587 37093 21.2% duplex,verify,parallel,mounted

#d06 367584 341509 26075 7.0% duplex,verify,serial,mounted

Module %s1#m6

 Size Used Left

#d09 206576 179820 26756 12.9% duplex,non-verify,serial, mounted

#d10 77376 60504 16872 21.8% duplex,verify,serial,mounted

Example 3.
The following example uses the -partitioned argument to provide information about
partitioned disks on the module.

Module %sys5#m16

%sys5#dd_target

 Partition Size Used Free Left

 File 14648368 362970 14285398 97.52%

 Member Pri Sec Attributes

 0 08/1/1/2/03 D913,nonduplex,non-verify,serial

 (partitioned: primary) <-----

 1 08/1/1/2/04 D913,nonduplex,non-verify,serial

 (partitioned: primary) <-----

 Volume Reads Writes Attributes

 500 12 mounted

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-325

display_disk_info
%sys5#m16_mas

 Partition Size Used Free Left

 Paging 6000 2648 3352 55.86%

 File 1094648 895430 199218 18.19%

 Member Pri Sec Attributes

 0 04/01/01/01 04/02/01/03 D705,duplex,verify,parallel

 (not partitioned) <-----

 Volume Reads Writes Attributes

 80781 31276 mounted

In the preceding example, the extra line of attributes indicates whether or not the partner disks
in the member are partitioned. If neither member is partitioned, the command displays the
following:

(not partitioned)

If one partner is partitioned, the command displays the following:

(partitioned: primary) OR
(partitioned: secondary)

If both partners are partitioned, the command displays the following:

(partitioned: primary, secondary)

Example 4.
The following example uses the -show_non_native argument to provide information
about non-native file system devices.

display_disk_info -show_non_native

Module %sys1#m122

 Size Used Left

#m122_mas 14849864 8794333 6055531 40.7% duplex,non-verify,

 serial,mounted

#titanium1 10986216 3020402 7965814 72.5% duplex,non-verify,

 parallel,mounted

#m122_dvd 0 0 0 0.0% ISO file system for

 DVD/CD
2-326

display_disk_usage
display_disk_usage 2-

Purpose
This command displays the number of disk blocks occupied by a directory and all of its
contents.

Display Form

Command Line Form

display_disk_usage [directory_name]

[-depth depth]
Arguments* directory_name

The path name of a directory. The command displays the number of disk blocks used
by the directory and all its contents. It also displays the total number of blocks used by
each directory in the hierarchy beneath directory_name down to a specified level of
directories depth below directory_name. By default, the command displays the
disk usage for your current directory and all of its contents.

* -depth depth
Specifies the number of levels in the directory hierarchy about which the command
displays information. By default, the command displays the number of disk blocks used
by the directory directory_name and all its subdirectories.

Explanation
The display_disk_usage command displays the number of disk blocks occupied by a
directory and all of its contents, the number of blocks occupied by its subdirectories and all
their contents, and so forth down to a specified level in the hierarchy.

If your process is privileged, you can read the size of any directory, so that a privileged
process always obtains an accurate report on disk usage. When your process is unprivileged,
executing the display_disk_usage command updates the date-time-used attribute of the
directory. If your process is privileged, the operating system does not update the
date-time-used attribute.

------------------------------ display_disk_usage ------------------------------
directory_name: urrent_dir
-depth: 1

c

OpenVOS Commands Reference Manual (R098) 2-327

display_disk_usage
Access Requirements
To display disk usage, you need status access to a specified directory and to all of its
subdirectories. If you do not have status access to a directory, the display_disk_usage
command reports that the directory occupies no disk blocks.

Examples
The following command displays the disk usage for the specified directory and two levels of
its subdirectories.

display_disk_usage >Sales>east>Jones -depth 2

This display might appear.

BLOCKS USED DIRECTORY

 4 %s1#d02>Sales>east>Jones>reports>weekly_old
 17 %s1#d02>Sales>east>Jones>reports>monthly_old
 22 %s1#d02>Sales>east>Jones>reports
 17 %s1#d02>Sales>east>Jones>customers
 60 %s1#d02>Sales>east>Jones
2-328

display_error
display_error 2-

Purpose
This command displays the OpenVOS error message corresponding to a specified error code.

Display Form

Command Line Form
display_error error_code

Arguments* error_code Required
A standard status code name or number.

Explanation
The display_error command returns the status code name and message corresponding to
the specified status code number if error_code is an OpenVOS status code number. If
error_code is an OpenVOS status code name, the command returns the status code number
and message that corresponds to the specified status code name. If error_code is not an
existing status code number or status code name, the command displays the following
message.

display_error: Invalid error code. error_code.

The display_error command displays markers in the message text that inform the user
where the substitutions should be made. For example, if you display the error associated with
m$file_implicitly_locked_by, this display appears.

Code 1024. Object is implicitly locked by &a1& on module &a2&
executing &a3&.

All OpenVOS status code names begin with e$, m$, q$, or r$, and all OpenVOS status code
numbers are in the range 1001 to 14000. The range reserved for user-defined status code
numbers is 16000 to 18000.

-------------------------------- display_error ---------------------------------
error_code:
OpenVOS Commands Reference Manual (R098) 2-329

display_error
Examples
Example 1.
The following command displays the name and message associated with the specified error
status code number.

display_error 1112

This display appears.

e$record_not_found. The given key does not locate a record.

Example 2.
By comparison, the following command displays the code number and message associated
with the specified error status code name.

display_error e$record_not_found

This display appears.

Code 1112. The given key does not locate a record.

Related Information
See also the description of the use_message_file command. For additional information
about status codes, see the OpenVOS Subroutines manuals.
2-330

display_file
display_file 2-

Purpose
This command writes a file to the output device or file attached to your default_output
port, which is usually your terminal, or to the device or file you specify in the command.

Display Form

--------------------------------- display_file ---------------------------------
file_names:
-caseless: yes
-index:
-match:
-output_path:
-first_line:
-last_line:
-line_numbers: no
-header: yes
-raw: no
-line_length: default
-slave_printer: no
-slave_page_length: 60
-min_lines: 1
-interpret_tabs:
-file_separator: lf
-match_status: no
OpenVOS Commands Reference Manual (R098) 2-331

display_file
Command Line Form

display_file file_names . . . [-no_caseless] [-index index_name] [-match character_string]

¢ £
[-first_line first_line_number] [-last_line last_line_number] [-line_numbers] [-no_header] [-line_length]

¢ £
[-slave_page_length number_of_lines] [-min_lines number_of_lines] [-file_separator] [-match_status]

Arguments* file_names Required
One or more names or star names of files to be displayed. You can specify any type of
file (except for transaction files), including IBM® Revisable-Form-Text DCA files and
Release 4.2 WordPerfect files.

* -no_caseless <CYCLE>
Specifies that when you select -match, the specified match for character_string
is case sensitive. If you do not use -no_caseless and use -match, the matching
disregards the case of character_string. If you use -no_caseless without also
using -match, the command disregards this argument.

* -index index_name
Specifies the name of an index to control the order in which records in the file are
displayed. If you use -index, you can give only one file path name, and index_name
must be an index to that file.

* -match character_string
Displays only the lines in the files that contain the character string
character_string. If you also use -no_caseless, the match is case sensitive.
Otherwise, the command disregards the case of the alphabetical characters. By default,
the command displays all the lines in the range defined by -first_line and
-last_line.

* -output_path output_path_name
Directs the output from the command to the output device or file output_path_name.
By default, the command directs the output to your default_output port. You
cannot specify both -output_path and -slave_printer in the same command.

-output_path output_path_name
-slave_printer

-raw
-interpret_tabs start_column, spacing
2-332

display_file
* -first_line first_line_number
Displays each specified file starting with the line numbered first_line_number. If
there are fewer than first_line_number records in the file, the command displays
an error informing you of that, and returns you to command level. By default, the
display begins at the first line in each file.

* -last_line last_line_number
Displays each specified file through the line numbered last_line_number. By
default, the display is through the end of the file.

* -line_numbers <CYCLE>
Includes line numbers in the display. By default, the command omits line numbers.

* -no_header <CYCLE>
Suppresses the display of the names of the specified files. By default, the command
displays the file name of each specified file just before its contents.

* -raw <CYCLE>
Displays the specified file without interpreting embedded word processor controls,
including those from IBM Revisable-Form-Text DCA or Release 4.2 WordPerfect
files. Control sequences that do not normally appear on the screen are replaced with the
ASCII digits representing the hexadecimal value of the bytes. You cannot specify -raw
and -interpret_tabs in the same command.

* -line_length
Specifies the number of columns displayed before the line wraps. For terminal devices,
the default line length is the width of the output device; for non-terminal output devices
(for example, output to a file), the default line length is 132 columns. The default line
length for slave printers and for terminals is the same (generally, 80 columns).

* -slave_printer <CYCLE>
Directs the output from the command to a printer attached to the terminal. By default,
the command directs the output to the default_output port. You cannot specify both
-slave_printer and -output_path in the same command.

* -slave_page_length number_of_lines
Prints a specified number of lines per page of output, if you also specify
-slave_printer. The minimum number of lines you can specify is 10. If you use
-slave_printer but omit -slave_page_length, the value of
number_of_lines is 60. If you specify -slave_page_length and do not specify
-slave_printer, the command disregards this argument.

* -min_lines number_of_lines
Specifies the minimum number of lines to be displayed following each line containing
the characters specified in the -match argument. If you specify a value of n for
number_of_lines, the command displays the line containing the specified string and
the n-1 subsequent lines, if any. By default, the value of number_of_lines is 1.

* -interpret_tabs start_column, spacing
Interprets occurrences of the ASCII tab character. You must give the column number
start_column of the first tab stop and the number spacing of positions between tab
OpenVOS Commands Reference Manual (R098) 2-333

display_file
stops. A comma must separate the two numbers. You cannot specify both
-interpret_tabs and -raw in the same command.

* -file_separator <CYCLE>
Controls the appearance of the output when the -output_path argument is used.
When using the -output_path argument, you can separate the output from multiple
files by specifying the ff (form-feed) value. By default, the -file_separator
argument uses the lf (line-feed) value.

* -match_status <CYCLE>
If you specify this argument with the -match argument, the command sets the
(command_status) command function to one of the following:

 e$no_match (7857) if the command finds no matches

 0 if the command finds a match

This argument has no effect unless you also specify the -match argument.

Explanation
The display_file command writes the file file_names to the file or device attached to
your default_output port or to the file or device specified in an -output_path
argument. Normally, the port is attached to your terminal, so the contents of the files are
displayed on your terminal screen.

The display_file command displays any type of file, except for pipes, message queues,
and server queues. If you specify only one file and it is a pipe, message queue, or server
queue, the command returns an error. If you specify more than one file, either explicitly or via
a star name, the command does not display any file that is a pipe, message queue, or server
queue, and the command status is set to zero. If you specify -match in this case, files that
cannot be displayed are treated as if they contain no matches.

The display_file command displays stream files that have been opened using region
locking (this includes files that are open and in use by POSIX programs), IBM
Revisable-Form-Text DCA file, and Release 4.2 WordPerfect files. To display a WordPerfect
file, the file name must be in the form filename.wpf. Only those files whose names have
the suffix .wpf are processed as WordPerfect documents.

The -match argument allows you to display only the lines containing the string
character_string. If character_string contains spaces, you must enclose the string
in apostrophes. This argument is convenient for displaying only the portions of a file that
contain a particular string and for identifying all files that contain the string.

With the -output_path argument, you can direct the output to a file or device different from
the current attachment of your default_output port. If output_path_name is an existing
file, the display_file command truncates the file before writing to it. If -output_path
is not an existing file, the command creates a sequential file with that name and writes the
output to it. If you specify this argument and specify more than one file, the command
appends the output from each file to the output from the preceding files.
2-334

display_file
The -file_separator lf argument writes a blank line after each file if the display
command produces any output while processing a file. For example, if any characters in a line
matched the -match character_string argument, then a blank line is written after all of
the matching lines have been displayed. If multiple files are specified and the ff character is
used in the -file_separator argument, then a form-feed character is written to separate
the output.

The display_file command opens an input file for dirty input if the input file is locked
using record locking, or if it is exclusively locked by another process and you do not specify
the -index argument. In these situations, the command displays the following messages:

For exclusive locking:

display_file: File is in use; using dirty input mode.
Some data may not be visible yet. object_name

For record locking:

 display_file: File is in use; using dirty input mode.
 Some records may not be visible yet. object_name

If a file is already locked using region locking, the command attempts to open the file only if
you did not specify the -index argument.

The -slave_printer argument is supported for both TeleVideo-style (V101, V102, V103)
and ANSI-style (VT100, VT220, VT320, CIT482, V105, V109) terminals. In addition,
OpenVOS supports this argument on any terminal whose terminal-type definition (.ttp) file
defines the sequences aux-printer-on and aux-printer-off. The following standard
ANSI .ttp files define the aux-printer-x output sequences: cit482, vt100, vt220,
vt320, v105, v105_ansi, v105_epc, and v109.

Access Requirements
You need read access to a file to display it.

Examples
Example 1.
The following command displays the path name and contents of the IBM
Revisable-Form-Text DCA file this_week in the current directory.

display_file this_week

Example 2.
To display the lines containing the character string city-code in all OpenVOS COBOL
source modules in your current directory, use this command.

display_file *.cobol -match city-code -line_numbers

This command also displays the path names of the specified files and the line numbers of the
lines that contain the string city-code.
OpenVOS Commands Reference Manual (R098) 2-335

display_file
Related Information
See also the description of the display command.
2-336

display_file_status
display_file_status 2-

Purpose
This command displays information about a set of files you specify.

Display Form

Command Line Form

display_file_status file_names . . .

Arguments* file_names Required
The path name of one or more names or star names of files. The command displays
information about each file with a matching name.

* -count_keys
Counts the keys for an index and displays the number of keys counted.

* -index_name
Specifies the index for which information should be returned.

Explanation
The display_file_status command displays some or all of the following, depending
primarily on the type of file:

 the full path name
 the file organization (sequential, relative or stream)
 the date and time the file was last used
 the date and time the file was last modified
 the date and time the file was last saved by a save command with -backup specified
 the date and time the file was created
 the expiration date of the file
 whether the file is a transaction file
 whether the file is set for implicit locking
 whether region locks are enforced for the file
 whether the file is a pipe file

----------------------------- display_file_status ------------------------------
file_names:
-count_keys: no
-index_name:
OpenVOS Commands Reference Manual (R098) 2-337

display_file_status
 whether a safety switch is set for the file
 the extent type for the file and for each index associated with the file
 the size of extents
 the open options
 the number of disk blocks to be allocated to the file when more disk space is required

(note that the value default is displayed for all files for which allocation size has not
been explicitly set to a value other than 0)

 the record size
 the next byte to be written
 the largest record number of the records written
 the number of disk blocks used to store the file
 the number of indexes to the file
 the number of disk blocks to be added each time the file needs more space
 your access to the file
 the author (last user to modify)
 whether the file has RAM usage
 the default character set
 the shift mode
 the maximum queue depth for server queues and one-way server queues
 the names of the indexes to the file
 information about each index, including type, collation, key components, and open

options
 the maximum key length, in bytes, that is allowed in the file
 the size of the file:

– for non-transaction-protected fixed or relative files, the number of records in the
file

– for other file types, the number of bytes in the file.

If you do not specify either the -count_keys or the -index_names argument, the default
behavior of the command is to report on all indexes in the file and not count keys. Otherwise,
the command behaves as follows:

 If you specify -count_keys but do not specify -index_name,
display_file_status reports on all indexes in the file and counts keys for each
index.

 If you specify -index_name but do not specify -count_keys,
display_file_status reports on only the specified index but does not count keys.

 If you specify both arguments, display_file_status reports on only the specified
index and counts keys for the index.

In addition, if you specify -count_keys, the display_file_status command’s output
for each index includes a field that reports the number of keys. The output follows.

number of keys: number_of_keys

The number_of_keys value represents the number of keys in the index.
2-338

display_file_status
If you specify -count_keys for an index residing on a remote module that does not support
the counting of keys, the output is as follows:

number of keys: not supported on remote module

Note: The display_file_status command shows index names in order of the
index address inside the file. This order may change if the file is specified as the subject
of the copy_file, move_file, restore_object, or save_object command.

For more information about the open options, see the description of the
display_open_options command.

Access Requirements
To obtain information about a file, you need execute, read, or write access to the file, or status
or modify access to the directory that contains the file.

Examples
Example 1.
The command display_file_status this_week displays the following information
about the specified indexed file.

name: %s1#d02>Sales>east>Jones>reports>this_week
file organization: fixed file
last used at: 94-09-06 10:18:26 edt
last modified at: 94-09-06 10:15:55 edt
last saved at: never
time created: 94-09-06 10:15:55 edt
expiration date: 95-01-01 00:00:00 edt
transaction file: no
implicit locking: no
pipe file: no
safety switch: no
audit: no
extent size: 1
record size: 126
last record: 0
blocks used: 0
num indexes: 1
allocation size: default
mode: w
author: Jones.East
tag type: 0
tag version: 0

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-339

display_file_status
(Continued)

index name: prospects
 key components: 1,6
 type: embedded_key
 collation: ascii
 data type: nonvarying string
 ascending: yes
 duplicates: yes
 null keys: no
 extent index: no
 automatic update: yes
 extent_size: 1
 blocks: 0

Example 2.
The command display_file_status >Sales>Jones>sq1 displays the following
information about the specified link to a one-way server queue:

name: %s1#d02>Sales>Jones>sq1
 is a link to: %s1#d02>Sales>Jones>quotas>sq1
file organization: one way server queue
last used at: never
last modified at: 94-03-31 16:22:19 EST
last saved at: never
time created: 94-03-31 16:22:19 EST
safety switch: no
audit: no
extent size: 1
blocks used: 0
allocation size: default
mode: w
author: Jones.east
max_queue_depth: 256
tag type: 0
tag version: 0
2-340

display_file_status
Example 3.
The command display_file_status journal displays the following information about
the specified file:

name: %s1#d02>Sales>east>journal
file organization: sequential file
last used at: 94-05-11 19:02:48 EDT
last modified at: 94-05-09 09:22:47 EDT
last saved at: 94-05-09 19:11:45 EDT
time created: 94-05-09 09:22:14 EDT
transaction file: no
implicit locking: no
pipe file: no
safety_switch: no
audit: no
extent_size: no
next byte: 92622
num indexes: 0
allocation size: default
mode: r
author: Clark.Sales
character set: latin_1
shift mode: single
tag type: 0
tag version: 0

Example 4.
The command display_file_status file1 displays the following information about
the specified DAE file:

name: %s1#d02>Sales>east>Jones>file1
file organization: relative file
last used at: 03-09-11 08:24:43 edt
last modified at: 03-09-11 08:24:43 edt
last saved at: never
time created: 03-09-11 08:22:37 edt
transaction file: no
implicit locking: no
pipe file: no
safety switch: no
audit: no
dynamic extents: yes
extent size: 8
record size: 12
last record: 1
blocks used: 8
num indexes: 0
allocation size: default

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-341

display_file_status
(Continued)

mode: w
author: Jones.east
tag type: 0
tag version: 0
record count: 1
data byte count: 7

Example 5.
In the following example of a simple file with nonextent indexes, the file is a zero-length file.

name: %s1#d02>Sales>Jones>test_file1
file organization: sequential file
last used at: 00-05-03 16:23:42 EDT
last modified at: 00-05-03 16:22:46 EDT
last saved at: never
time created: 00-05-03 16:22:46 EDT
transaction file: no
implicit locking: no
pipe file: no
safety switch: no
audit: no
dynamic extents: no
extent size: 1
next byte : 0
blocks used: 0
num indexes: 2
allocation size: default

mode: w
author: Jones.Sales
tag type: 0
tag version: 0

index name: test_index_11
key components: 1,2 10,15
type: embedded_key
collation: ascii
data type: nonvarying string
ascending: yes
duplicates: yes
null keys: no
extent index: no
dynamic extents: no
automatic update: yes
extent_size: 1
blocks: 0

(Continued on next page)
2-342

display_file_status
(Continued)

index name: test_index_12
key components: 4,10 30,5
type: embedded_key
collation: ascii
data type: nonvarying string
ascending: yes
duplicates: yes
null keys: no
extent index: no
dynamic extents: no
automatic update: yes
extent_size: 1
blocks: 0

Example 6.
The following example shows an SAE file with SAE indexes.

name: %s1#d02>Sales>Jones>test_file2
file organization: sequential file
last used at: 99-10-29 16:23:42 EDT
last modified at: 99-10-29 16:22:46 EDT
last saved at: never
time created: 99-10-29 16:22:46 EDT
transaction file: no
implicit locking: no
pipe file: no
safety switch: no
audit: no
dynamic extents: no
extent size: 8
initial allocated size: 32
next byte: 0
blocks used: 32
num indexes: 1
allocation size: default
mode: w
author: Jones.Sales
tag type: 0
tag version: 0

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-343

display_file_status
(Continued)

index name: test_index_21
key components: 1,2 10,15
type: embedded_key
collation: ascii
data type: nonvarying string
ascending: yes
duplicates: yes
null keys: no
extent index: no
automatic update: yes
dynamic extents: no
extent_size: 16
blocks: 0

Example 7.
In the following example of a DAE file with DAE indexes, the file was created with the
-num_records argument set to 3.

name: %s1#d02>Sales>Jones>test_file3
file organization: sequential file
last used at: 00-06-03 16:23:42 EDT
last modified at: 00-06-03 16:22:46 EDT
last saved at: never
time created: 00-06-03 16:22:46 EDT
transaction file: no
implicit locking: no
pipe file: no
safety switch: no
audit: no
dynamic extents: yes
extent size: 64
next byte: 0
blocks used: 64
num indexes: 2
allocation size: default
mode: w
author: Jones.Sales
tag type: 0
tag version: 0

(Continued on next page)
2-344

display_file_status
(Continued)

index name: test_index_31
key components: 1,2
type: embedded_key
collation: ascii
data type: nonvarying string
ascending: yes
duplicates: yes
null keys: no
extent index: yes
automatic update: yes
dynamic extents: yes
extent_size: 32
blocks: 32
index name: test_index_32
key components: 4,10 30,5
type: embedded_key
collation: ascii
data type: nonvarying string
ascending: yes
duplicates: yes
null keys: no
extent index: yes
automatic update: yes
dynamic extents: yes
extent_size: 32
blocks: 32

Example 8.
The following example illustrates how an extended sequential file is represented in
display_file_status output.

name: %s1#d02>Sales>Jones>test_file4
file organization: sequential file [4]
.
.
.
next byte: 1024
.
.
.

In this example, the [4] following the file organization indicates the number of record offset
units (in this case, four). This bracketed value appears in the output only for extended
sequential files.
OpenVOS Commands Reference Manual (R098) 2-345

display_file_status
Example 9.
The following example shows output for a file with non-default open options for itself and its
index.

name: %s1#d02>system>error_codes.text
 is a link to: %s1#d02>r15.2_system>error_codes.text
file organization: sequential file
.
.
.
tag type: 0
tag version: 0
record count: 0
data byte count: 0
index name: number
type: separate_key
collation: numeric
data type: varying string
ascending: yes
duplicates: no
null keys: no
extent index: no
dynamic extents: no
extent_size: 1
open options: full preread_extents
blocks: 18
2-346

display_file_status
Example 10.
The following example shows output for a file with RAM usage.

name: %s1#d02>Sales>east>journal2
file organization: sequential file
last used at: never
last modified at: 10-05-20 09:07:24 edt
last saved at: never
time created: 10-05-20 09:07:24 edt
transaction file: no
implicit locking: no
pipe file: no
safety switch: no
audit: no
dynamic extents: no
extent size: 1
next byte: 0
blocks used: 0
num indexes: 0
allocation size: default
mode: w
author: Clark.Sales
tag type: 0
tag version: 0
usage: ram
record count: 0
data byte count: 0

Example 11.
The following example shows output for a 64-bit stream file that contains two non-zero bytes,
one at offset 0 and another at offset 34,000,000,000. Such a file may be sparse, depending on
how it was built, and if so, it occupies fewer disk blocks than an identical normal stream file.

name: %s1#d02>Sales>Jones>filex
file organization: stream file (64-bit/rstr)
last used at: 13-02-15 15:50:50 est

.

.

.
dynamic extents: yes
extent size: 16
next byte: 34000000001
blocks used: 34
sparse: yes
mode: w

The designation (64-bit/rstr) means that filex is restricted (in this case, due to both
size and sparseness). If the file were not sparsely allocated, it would occupy 8,300,781 disk
blocks; instead, it occupies only the minimum required: enough blocks for the 16-block
extent holding the first and last non-zero bytes and the supporting file map blocks.
OpenVOS Commands Reference Manual (R098) 2-347

display_file_status
Example 12.
The following example shows output for a flex file.

display_file_status bigflex
name: %s1#d02>Sales>Jones>bigflex
file organization: stream file (64-bit/rstr)
last used at: 13-09-02 16:51:16 edt
last modified at: 13-09-02 16:44:40 edt
last saved at: never
time created: 13-09-02 16:44:39 edt
transaction file: no
implicit locking: no
region locks reqd: no
pipe file: no
safety switch: no
audit: no
dynamic extents: yes
extent size: flex
owner access: none
next byte: 540142534656
blocks used: 616
num indexes: 0
allocation size: 1
sparse: yes
mode: w
author: Jones.Sales
tag type: 0
tag version: 0

In this example, the file represents the largest flex file supported (just under 512 GB in size).
This file is both greater than 2 GB and sparse, and it is therefore restricted. Flex files are not
necessarily restricted, but they are always 64-bit stream files.

If you issue display_file_status on a module that does not support flex files, the
extent size field is -1. If you issue display_file_status on a module that does not
support 64-bit stream files, the file organization field is stream file.

Related Information
See the description of the create_index command for further information on indexes. See
also the command descriptions of compare_files, copy_file, create_file,
delete_file, dump_file, locate_files, move_file, set_file_allocation,
set_pipe_file, set_safety_switch, and truncate_file.
2-348

display_line
display_line 2-

Purpose
This command displays the literal text of the argument that follows the command name on
the command line.

Display Form

Command Line Form

display_line [text]
Arguments* text

The text to be displayed. The text can contain words, abbreviations to be replaced,
quoted strings, and command functions to be evaluated.

Explanation
The display_line command replaces abbreviations and evaluates command functions in
the text before displaying it. This command allows you to view the results of replacing
abbreviations and evaluating command functions. You can also use it in command macros to
display messages.

Examples
Example 1.
Suppose that this is the home directory of the current user.

%s1#d02>Sales>Smith

Suppose also that the following directive appears in the user’s abbreviations file.

all mr by make_reports

Now consider this command.

display_line (home_dir)>mr

--------------------------------- display_line ---------------------------------
text:
OpenVOS Commands Reference Manual (R098) 2-349

display_line
The command evaluates the command function (home_dir), expands the abbreviation mr,
and generates this display.

%s1#d02>Sales>Smith>make_report

Example 2.
The following command evaluates the command function (time), then displays the current
time followed by the specified date string.

display_line (time) Tuesday, January 22, 1990
2-350

display_notices
display_notices 2-

Purpose
This command displays system-wide notices.

Display Form

Command Line Form
display_notices

Explanation
The display_notices command displays, in particular, all files named
(master_disk)>system>notices*.

Examples
The following example illustrates the output of the display_notices command.

Welcome to %s1#m2

90-04-22 Congratulations to Bill Smith on a major sale in the western
region.

90-04-22 NOTICE: The fiscal year ends June 30. Please plan
accordingly.

------------------------------- display_notices --------------------------------
No arguments required. Press ENTER to continue.
OpenVOS Commands Reference Manual (R098) 2-351

display_object_module_info
display_object_module_info 2-

Purpose
This command returns selected information from an object module or modules.

Display Form

Command Line Form

display_object_module_info object_module_name [-no_header] [-source_files] [-internal_entries] [-external_entries] [-output_path path_name]
Arguments* object_module_name Required

The names or star names of the object modules about which information is to be
displayed.

* -no_header <CYCLE>
Suppresses header information. By default, the command displays information about
how the object module was compiled.

* -source_files <CYCLE>
Displays source file information. By default, the command does not display
information about the source files that were used in the compilation of the object
module.

* -internal_entries <CYCLE>
Displays information on internal entries. By default, the command does not display
information about the internal entries that occurred in the source module that was
compiled to create the object module.

-------------------------- display_object_module_info --------------------------
 object_module_name:
 -header: yes
 -source_files: no
 -internal_entries: no
 -external_entries: no
 -output_path:
2-352

display_object_module_info
* -external_entries <CYCLE>
Displays information on external entries. By default, the command does not display
information about the external entries declared in the source module that was compiled
to create the object module.

* -output_path path_name
Directs the output of the command to a file or device. By default, the command directs
the output to the user’s terminal.

Explanation
The display_object_module_info command returns information from an object
module file. The optional arguments determine the information that the command extracts.

Unless you select -no_header, the command extracts information about how the object
module was compiled. Compilation information includes the following:

source module path
The path name of the compiled source module.

compiler
The name of the compiler used to compile the object module. The possible values for
compiler are c, cc, cobol, edit_form, fortran, pascal, or pl1.

os_version
The version of the operating system that was running on the processing module when
the object module was compiled.

user name
The user name of the user who compiled the object module.

date_time compiled
The date and time when the object module was compiled. For example: 99-08-03
19:57:42 EDT.

system name
The name of the system on which the object module was compiled.

data object file
Specifies whether the object module is a data object or a compiled object module.

processor
The type of CPU on which the source module was compiled. The possible value is
pentium4.
OpenVOS Commands Reference Manual (R098) 2-353

display_object_module_info
options
The compiler options that were selected for the compilation and that are included in the
object module. Possible values are as follows:

check

The source module was compiled with check (array subscript reference
checking) specified.

optimize

The source module was compiled with optimize specified.

optimization_level

The optimization level that was applied to the compilation of this source module.

table

The source module was compiled with table (full symbol table) specified.

production_table

The source module was compiled with production_table specified.

profile

The source module was compiled with profile (statement execution count)
specified.

cpu_profile

The source module was compiled with cpu_profile (statement execution
count and CPU time) specified.

system_programming

The source module was compiled with system_programming (sub-level-1
member checking and implicit data-type-conversion checking) specified.

fortran66

The source module was compiled with fortran66 (execute each do-loop at
least once) specified.

fixedoverflow

The source module was compiled with fixedoverflow (integer and
fixed-point-decimal overflow checking) specified.
2-354

display_object_module_info
full_list

The source module was compiled with full_list (compilation listing with
assembly language listing) specified.

xref

The source module was compiled with xref (cross-reference compilation
listing) specified.

posix

The source module uses POSIX features.

longmap/check

The source module was compiled with longmap_check specified.

longmap

The source module was compiled with longmap specified.

shortmap/check

The source module was compiled with shortmap_check specified.

minimal_stack_frames

If present, the generated code may not store a back pointer to the previous stack
frame. If absent, the generated code always stores a back pointer to the previous
stack frame.

untyped_storage_sharing

The source module was compiled with untyped_storage_sharing specified.

typed_storage_sharing

The source module was compiled with no_untyped_storage_sharing
specified.

store_args

The source module was compiled with store_args specified.

extended_names_disable

The source module was compiled with extended_names_disable specified.

extended_names_enable

The source module was compiled with extended_names_enable specified.
OpenVOS Commands Reference Manual (R098) 2-355

display_object_module_info
abi_bitfields

The source module was compiled with the cc command with
-compatible_bitfields not specified.

If you select the -source_files argument, the display_object_module_info
command extracts source file information from the object module. This includes the path
name, date and time created, and date and time modified for the main source module and for
all of the include files used in the compilation.

If you select the -internal_entries argument, the command extracts internal entries
information from the object module. Internal entries information includes the entry name, the
number of arguments the entry takes, and whether the entry is a subroutine or a function.

If you select the -external_entries argument, the command extracts external entries
information from the object module. External entries information includes the entry name, the
number of arguments the entry takes, and whether the entry is a subroutine or a function.

If you omit all of the arguments, the command displays the path name of the object module.

Access Requirements
You need read access to the object modules about which you want information.

Examples
An example of the display_object_module_info command follows.

display_object_module_info testb.obj -source_files

%s1#d03>Sales>Smith>work>testb.obj

Compilation Information

source module path: %s1#d03>Sales>Smith>work>testb.pl1

compiler: pl1

os_version: Release 17.1.0

user name: Smith.Sales

date_time compiled: 10-05-20 09:58:13 edt

system name: %s1

data object file: no

processor: pentium4

options:

 xref

 system_programming

 profile

 table

optimize

 optimization_level 1

 check

 longmap

(Continued on next page)
2-356

display_object_module_info
(Continued)

minimal_stack_frames

 typed_storage_sharing

 store_args

Source Files

 Source module name Date-Time Created Date-Time Modified

 ------------------ ----------------- ------------------

%s1#d03>Sales>Smith>work>testb.pl1

 10-02-08 11:19:37 10-02-08 12:01:33

 Include file name Date-Time Created Date-Time Modified

 ----------------- ----------------- ------------------

 No include files.
OpenVOS Commands Reference Manual (R098) 2-357

display_open_options
display_open_options 2-

Purpose
This command displays the open options for one or more files or indexes.

Display Form

Command Line Form

display_open_options file_names . . . [-index index_name] [-active] [-active_only] [-brief]
Arguments* file_names Required

One or more names or star names of files for which open options are to be displayed.

* -index_name index_name
Specifies the name of one or more indexes for file_names for which open options are
to be displayed. The value of index_name is a string. By default, there is no value for
index_name. You can specify an asterisk (*) to display all indexes of the file,
including system-defined indexes (for example, _deleted_record_index).

* -active <CYCLE>
Displays the open options that are associated with a file’s current activation as well as
for the file itself. These open options may or may not be identical. For example,
activated file open options reflect the specific default open options when these are
inherited from directories (that is, a file’s cache-mode options might be default,
whereas the activated file’s cache-mode options may be transient, if that is what the
directory default was at the time of activation). Also, a file’s open options may have
changed since the file was first activated, and the activated file’s open options may have
been explicitly changed from what they inherited from the permanent file attributes,
either by use of the set_open_options -active command or by calls to either the
s$control or s$set_open_options subroutine for open files.

----------------------------- display_open_options ----------------------------
file_names:
-index:
-active: no
-active_only: no
-brief: no
2-358

display_open_options
The activated file’s open options are shown on the line following the file’s open options.

By default (the value no), the command does not display the open options associated
with a file’s current activation.

* -active_only <CYCLE>
Displays the open options for only those files or indexes that are currently active. By
default (the value no), the command display the open options for all specified files and
indexes.

* -brief <CYCLE>
Displays the open options for only those files or indexes that do not have default open
options. By default (the value no), the command displays the open options for all
specified path names.

Explanation
This command displays the open options for all files or indexes that match the given star
names.

If you set the -brief argument to no (the default), the command displays each of the path
names that the command examines only if the open options are not default values. The open
options are displayed as canonical strings.

If the command cannot process one of the files, it displays an error message and continues on
to the next specified file.

This command uses the following syntax to display open options for files and indexes:

display_open_options cache_mode [preread_mode n]

An explanation of the syntax follows.

 cache_mode is one of the following values:

– * indicates that the cache mode is in default mode.
– n indicates that the cache mode is normal.
– M indicates that the cache mode is in memory-resident mode.
– T indicates that the cache mode is in transient mode.

 preread_mode, which the command displays only if the values are non-default
values, is one of the following values:

– r indicates that the file or index has normal preread extents.
– N indicates that the file or index has never preread extents.
– S indicates that the file has preread extents only with sequential access.
– F indicates that the file or index has full preread extents.

 n is the read-ahead value, which is 0 through 127. The command displays the
read-ahead value only if it is a non-default value.
OpenVOS Commands Reference Manual (R098) 2-359

display_open_options
For more information about the open options, see the manual OpenVOS System
Administration: Administering and Customizing a System (R281). See also the description of
the s$get_open_options subroutine in the OpenVOS Subroutines manuals.

Examples
The following example illustrates how to use the display_open_options command to
display open options for a file.

m100: display_open_options charbit
n-F2 %s#m100>disk>charbit
ready 11:03:24

In the preceding output, n-F2 indicates the following about the file charbit:

 n indicates that the cache mode is in normal mode.
 F indicates that the file or index has preread full extents.
 2 indicates that the read-ahead value is 2.

Related Information
See also the descriptions of the display_default_open_options,
set_default_open_options, and set_open_options commands.
2-360

display_print_defaults
display_print_defaults 2-

Purpose
This command displays the default values for a specified print queue or queues.

Display Form

Command Line Form

display_print_defaults [-queue queue_name]

[-module module_name] [-long] [-all]
Arguments* -queue queue_name

Specifies the name of a print queue. The command displays the default page lengths
and line lengths of queue_name. By default, the command uses the default print queue,
either on the module specified in -module or on the current module.

* -module module_name
Specifies the module containing the specified queue. By default, the command uses
your current module.

* -long <CYCLE>
Displays detailed information about a particular queue. If you omit -queue and specify
-long, the command displays extensive information about the standard queue.

* -all <CYCLE>
Displays the default values for all print queues. By default, the command displays the
default values for the queue specified in -queue.

---------------------------- display_print_defaults ----------------------------
-queue: tandard
-module:
-long: no
-all: no

s

OpenVOS Commands Reference Manual (R098) 2-361

display_print_defaults
Explanation
The display_print_defaults command displays the default values for a given print
queue or all print queues. The operating system places print requests in queues that control
the spooling and printing order of files.

You can override the default page size and line length values of a print queue by selecting
arguments in the print command.

Examples
Example 1.
The following example illustrates the screen output for the display_print_defaults
command with the -all argument.

Queue name Page Size Line length

single_sheet 66 84
lqp 66 84
spinwriter 66 84

Example 2.
The following example illustrates the screen output for the display_print_defaults
command issued with the -long argument. Use of the -queue argument with -long
argument supplies more information about any queue.

queue: standard
device_type: line_printer
form_type: standard
page_density: 6_lines_per_inch
line_density: 10_chars_per_inch
channels: 1,1
page_size: 66
line_length: 85
separators: yes

Related Information
See the descriptions of the print command for more information about printers, spoolers,
and print queues.
2-362

display_print_status
display_print_status 2-

Purpose
This command displays the status of the printer or printers connected to a module or modules.

Display Form

Command Line Form

display_print_status [-module module_name]
[-no_long]

Arguments* -module module_name
Specifies a module name or star name. By default, the command uses the current
module. If there are no devices connected to the current module, you must specify the
module or modules to which devices are attached.

* -no_long <CYCLE>
Displays detailed information about a printer or printers connected to a module or
modules. It gives information about printer names, type, status, and printer process
names. It also lists hoppers and queues, indicating which are current, and whether they
are mounted. If you omit this argument, the command displays the device name, type,
state, and names the queues for all printers connected to the specified module or
modules.

Explanation
The display_print_status command displays the status of the printer or printers
connected to a module or modules, including information about the print queues and spoolers.

The command displays the names of any devices currently being spooled on a particular
module, the state of the spoolers, and the queues that manage the device or devices. If you
give the -long argument, it also displays the names of printers as well as their type and status.
In addition, it displays printer process names, lists hoppers and queues, and indicates which
are current, and which are mounted.

----------------------------- display_print_status -----------------------------
-module: urrent_module
-long: yes

c

OpenVOS Commands Reference Manual (R098) 2-363

display_print_status
The primary use of the command is to select an appropriate queue for your print request. The
command tells you which spoolers are running or stopped and why, and which queues are
currently being processed. Use this command to help choose a module to specify when
invoking the print command. Use the display_print_status command with the
list_print_requests command, to tell how many jobs are waiting on a queue and the
size of each job.

The module_name argument can be a module star name. If you issue the -module argument
with a module star name, the command displays status information separately for each
module. In this way you can determine the module associated with a particular device as well
as which queues receive print requests.

Examples
Example 1.
The following example illustrates the output of the display_print_status command for
module %s1#m2.

display_print_status -module %s1#m2

(Module %s1#m2)--

DEVICE TYPE STATE QUEUES
#p.1.0 4590 run * spinwriter

#p.1.1 4975 run * lqp

#p.1.2 4590 run * standard on module %s1#m2

#p.1.3 4590 run * standard on module %s1#m3

The device is the name of the device as it is known to the system, and the type is the defined
device type. The state in this example is run for all devices, but could be any of the states
listed below. The queues are those defined for the current module, and the asterisk indicates
that the processor is acting on the queue. It is possible to have no active queue for a printer.

Possible states of the spooler are listed below.

 run
 stopped
 offline
 paper feed
 paper jam
 paper out
 process fault
 band fault
 carriage fault
 printer not operational
 stand by
 susp
2-364

display_print_status
Most states reflect the status of a particular printer or job; the susp status indicates that the
activity of an entire queue has been suspended. This can happen when the module of the
queue is offline and you are checking the status of that queue from another module.

Example 2.
The following example illustrates the output of the display_print_status command
invoked with the -long argument on module %sales#m27.

display_print_status -long

(Module %sales#m27)--
Printer: #p27_b Type: l306 Status: run
 Process name: spooler
 Hopper 1: (current) Queue: wide27 (mounted, current)
 Hopper 2: Queue: narrow27 (mounted)

Printer: #spin27 Type: l151 Status: run
 Process name: spooler
 Hopper 1: (current) Queues: spinwriter (mounted, current)
 spin27

Related Information
See also the command descriptions of display_print_defaults,
list_print_requests, and print. For more information on the print spooler, see the
description of the spool_admin command in VOS System Administration: Administering
the Spooler Facility (R286).
OpenVOS Commands Reference Manual (R098) 2-365

display_program_module
display_program_module 2-

Purpose
This command displays information about the authorship, history, size, and structure of a
program module.

Display Form

--------------------------- display_program_module --------------------------
program_module_name:
-dates: no
-disassemble: no
-dump: no
-dynamic_table: no
-dynref_map: no
-dynsym_map: no
-entry_map: no
-external_vars_map: no
-full: no
-hash_map: no
-header: no
-line_numbers: no
-link_map: no
-link_names_map: no
-module_map: no
-object_dirs_map: no
-release: no
-relocation_map: no
-string_pool: no
-page:
2-366

display_program_module
 Command Line Form
 display_program_module program_module_name [-dates] [-disassemble] [-dump] [-dynamic_table] [-dynref_map] [-dynsym_map] [-entry_map] [-external_vars_map] [-full] [-hash_map] [-header] [-line_numbers] [-link_map] [-link_names_map] [-module_map] [-object_dirs_map] [-release] [-relocation_map] [-string_pool] [-page number]

Arguments* program_module_name Required
The path name of the program module file. The program module can have either a fixed
or stream file organization. You cannot specify a star name. If you specify only this
argument, the command displays only the program module header. For a description of
the program module header, see the Sample Output section.

* -dates <CYCLE>
Specifies that the command display the file modification date and time and compilation
date and time for every object module in the object module map. By default, the
command does not display the program module modification and compilation dates.

* -disassemble <CYCLE>
Specifies that the command display the program module’s machine code as
pseudo-assembly code. If you specify this argument and the -page argument, the
command displays pseudo-assembly code for the specified page. If you specify this
argument and the -line_numbers argument, the command ignores the
-disassemble argument. By default, the command does not display the program
module’s machine code as pseudo-assembly code.

* -dump <CYCLE>
Specifies that the command dump the program module’s virtual pages. If you specify
this argument and the -page argument, the command dumps the specified page. By
default, the command does not dump the program module’s virtual pages.

* -dynamic_table <CYCLE>
Specifies that the command display the contents of the dynamic table. By default, the
command does not display the contents of the dynamic table.
OpenVOS Commands Reference Manual (R098) 2-367

display_program_module
* -dynref_map <CYCLE>
Specifies that the command display the contents of the dynref map. The dynref map
replaces the link map in shared libraries and dynamically-linked main program
modules. Each entry in the map corresponds to an external symbol reference in the
executable. By default, the command does not display the contents of the dynref map.

* -dynsym_map <CYCLE>
Specifies that the command display the contents of the dynsym map. The dynsym map
contains information about symbols defined in this program module; it contains only
global symbols and is used for dynamic linking. By default, the command does not
display the contents of the dynsym map.

* -entry_map <CYCLE>
Specifies that the command display the program module’s entry map, which is used by
the s$monitor and s$monitor_full subroutines, and the analyze_pc_samples
and harvest_pc_samples commands. The entry map is created when you bind
object modules and specify the -retain_all argument. By default, the command
does not display the program module’s entry map.

* -external_vars_map <CYCLE>
Specifies that the command display the program module’s external and static variables
map. External variables are variables that can be shared by more than one program.
Static variables are variables that are used during the execution of a single program. By
default, the command does not display the program module’s external and static
variables.

* -full <CYCLE>
Specifies that the command display the program module header, the dynamic table, and
maps, including the entry, dynref, dynsym, external variable, link names, object
module, and object directory maps. (This argument does not display the hash map.) For
a description of the program module header and maps, see the Sample Output section.
By default, the command does not display the program module header, the dynamic
table, or maps.

* -hash_map <CYCLE>
Specifies that the command display the contents of the hash map. The hash map is a
data structure that uses a hash function to efficiently map certain identifiers to
associated values in the dynsym map. By default, the command does not display the
contents of the hash map.

* -header <CYCLE>
Specifies that the command display the program module’s header. You cannot specify
both this argument and the -release argument. By default, the command does not
display the program module’s header.

* -line_numbers <CYCLE>
Specifies that the command display the program module’s machine code as
pseudo-assembly code accompanied by source line numbers and object module
boundary information. This machine code listing is similar to the listing produced when
you specify the -full argument with an OPENVOS compiler. If you specify
2-368

display_program_module
-line_numbers, the command ignores the -disassemble argument. By default, the
command does not display the program module’s source line numbers.

* -link_map <CYCLE>
Specifies that the command display a list of all of the program module’s external
cross-references, in contrast with the -link_names_map argument, which displays
only a condensed list of link names. These cross-references are resolved at run time.
By default, the command does not display the program module’s link map.

* -link_names_map <CYCLE>
Specifies that the command display a condensed list of the program module’s external
cross-reference names. If a cross-reference name appears more than once in the link
map, it appears only once in the link names map. By default, the command does not
display the program module’s link names map.

* -module_map <CYCLE>
Specifies that the command display a list of all of the object modules in a program
module, along with their lengths and offsets. By default, the command does not display
the program module’s object module map.

* -object_dirs_map <CYCLE>
Specifies that the command display the program module’s object directory map. This
map lists the path names of all of the object modules’ directories in the program
module. The module map specifies the index into the object directory map for each
object module. By default, the command does not display the program module’s object
directory map.

* -release <CYCLE>
Specifies that the command display the release number from the program module
header of a command installed from an OpenVOS release tape. You cannot specify both
the -release argument and the -header argument. By default, the command does
not display the program module release number.

Note: A release number is not defined in the program modules you have
compiled and bound.

* -relocation_map <CYCLE>
Specifies that the command display the relocation map of a relocatable program
module. Relocatable program modules are used for dynamic tasking and kernel
loadable applications. To create a relocatable program module, specify the
-relocatable argument with the bind command. By default, the command does not
display the program module’s relocation map.

* -string_pool <CYCLE>
Specifies that the command display the contents of the string pool. The string pool is a
collection of character strings referenced by other maps. By default, the command does
not display the contents of the string pool.

* -page number
Specifies that the command display a dumped page of machine code or
pseudo-assembly code. The page value can range from 0 to 32,767 and is relative to the
load point (not to a virtual memory location). Each page is 4096 bytes long.
OpenVOS Commands Reference Manual (R098) 2-369

display_program_module
Use this argument with the -disassemble or -dump argument. If you specify the
-page argument but do not specify -disassemble or -dump, the command uses the
-dump argument by default.

Explanation
The display_program_module command displays information about the authorship,
history, size, and structure of a program module.

An OpenVOS program module (.pm) consists of a header and a series of maps, some of
which are optional, produced by the OpenVOS binder, and one or more object modules
produced by an OpenVOS compiler. The header and maps are used by the OpenVOS program
loader and debugger to execute the program module. The display_program_module
command can display the header, all or selected maps, and pseudo-assembly code listings of
object modules in the program module.

The program_module_name value does not require a .pm suffix. For example, you can
specify the name of a shared library, which does not have a .pm suffix. The
display_program_module command looks first for an input file with a .pm suffix, and if
that search fails, it looks for an input file with the name specified in
program_module_name.

Using the -disassemble and -line_numbers Arguments
The -disassemble and -line_numbers arguments are mutually exclusive arguments that
specify that the command display the program module’s machine code as pseudo-assembly
code. However, the arguments display the pseudo-assembly code differently. The
-line_numbers argument organizes the display of pseudo-assembly code by object module
and provides the corresponding source code line numbers. The -disassemble argument
displays pseudo-assembly code in the order it will appear in virtual memory. You may find
this output harder to interpret, because it does not follow the same order as the source code.
However, you can specify the -disassemble argument with the -page argument, and the
command will display pseudo-assembly code for the specified page.

Using the -page Argument
Before using this argument, it is helpful to run the command and specify -full to display
the program module header and object module map. The header contains load point
information, and the object module map contains the location of the code, symbol table, and
static regions relative to the load point. This information enables you to select a page to
display.

When you specify the value 0 for the -page argument, you are specifying the load point. All
-page values are relative to the load point. In the header, the load point is called the
user_boundary. For an example of the user_boundary field, see the sample program
module header shown in the Sample Output section.
2-370

display_program_module
As noted above, the object module map contains the location of the code region relative to the
load point. See the Sample Output section for a sample of the object module map for the
strcpy object module. To calculate the page location of the beginning of this object module,
perform the following steps.

1. Convert the strcpy code region address (for example, 00E10DC8) from hexadecimal
to decimal notation (14749128).

2. Convert the load point address (for example, 00E00000) from hexadecimal to decimal
notation (14680064).

3. Subtract the load point address from the code region address, divide the difference by
4096 bytes per page, and round down the quotient to the nearest integer. In this
example, the -page value is 16.

The following is another method for calculating the page location of the strcpy object
module.

!display_line (floor (calc '(' 0E10DC8x - 0E00000x ')' / 4096)) 16

Sample Output
This section describes the sample output of the display_program_module command
when it is invoked with the -full and -relocation_map arguments. The -full argument
causes the display_program_module command to display the program module header,
the dynamic table, and the following maps.

 ‘‘Object Module Map”
 ‘‘Object Directory Map”
 ‘‘External Variable Map”
 ‘‘Link Names Map”
 ‘‘Entry Map”

In addition, the -hash_map argument displays the ‘‘Hash Map,” and the -relocation_map
argument displays the ‘‘Relocation Map.” The following sections describe the header, the
dynamic table, and each of these maps.
OpenVOS Commands Reference Manual (R098) 2-371

display_program_module
Header
The header contains auditing and structure information that the binder adds to the program
module. The user_name and date_bound fields may help you determine who last changed
a program module. The release_name field contains release information about program
modules delivered on OpenVOS release tapes. An example program module header follows.

display_program_module testb

Header:

version: 1
program_name: testb
binder_version: bind, Release 17.1.dev.lb
release_name: Pre-release
pop_version: 0
processor: 1280 (pentium4)
processor_family: 7 (IA32)
data_model: 0 (32-bit)
binder_options: -compact, -table, paths
system_name: sw
user_name: Sales.Smith
date_bound: 10-05-20 08:58:18 est
main_ep.code_addr: 0000208C
main_ep.static_addr: 00014D58
user_boundary: 00002000
max_heap_size: 00000000
max_program_size: 00000000
max_stack_size: 00000000
stack_fence_size: 00001000
n_modules: 22
n_external_vars: 9
n_link_names: 23
n_unsnapped_links: 24
n_entries: 0
n_vm_pages: 19
n_header_pages: 1
n_relocations: 11
module_map_address: 000132B2
module_map_len: 0000065C
ext_vars_map_address: 0001390E
ext_vars_map_len: 0000018C
link_names_map_address: 00013A9A
link_names_map_len: 0000030E
link_map_address: 00013DA8
link_map_len: 00000090
entry_map_address: 00013E38
entry_map_len: 00000000
header_address: 00013F4C
header_len: 00000B84
relocation_map_address: 00013E38

(Continued on next page)
2-372

display_program_module
(Continued)

relocation_map_len: 0000009A
high_water_mark: 00000000
string_pool_address: 00013ED2
string_pool_len: 0000006A
obj_dir_map_address: 00013F3C
obj_dir_map_len: 00000010
section_map_file_address:00000000
section_map_address: 00000000
section_map_len: 00000000
n_sections: 0
dynamic_table_address: 00000000
dynamic_table_len: 00000000
dynsym_map_address: 00000000
dynsym_map_len: 00000000
n_dynsyms: 0
hash_map_address: 00000000
hash_map_len: 00000000
n_hash_buckets: 0
dynref_map_address: 00000000
dynref_map_len: 00000000
n_dynrefs: 0
flags: profile, private_stack, supports_xfn
n_tasks: 1
stack_len: 00010000
xfn_version: 1

Section Info:

 Paged address length
 Code 00002000 00009BC8
 Symtab 0000E000 000052B2
 Static 0000C000 00000DC8
 External 0000D000 0000000E

 task_static_len: 00000DC8 GOT address: 0000CD58
 block_map_address: 0000B4F8 block_map_len: 000006D0

In the preceding example, the output xfn_version displays information about
extended-names support, with values of 0, 1, or 2:

 The value 0 indicates that extended-names support is disabled.
 The value 1 indicates that version 1 extended-names support is enabled.
 The value 2 indicates that version 2 extended-names support is enabled.

See the description of the bind command for more information about enabling
extended-names support for a program module.
OpenVOS Commands Reference Manual (R098) 2-373

display_program_module
Dynamic Table
This section displays the contents of the dynamic table. The dynamic table contains
information used in dynamically linked programs, such as the shared libraries needed by the
specified program module and where it should look for them, the name of the shared library
at runtime, and so on. The following example shows a dynamic table.

1 DT_NEEDED 570 libvosposix.1.so
21 DT_DEBUG 19842 (00004D82)
30 DT_FLAGS 1 DF_ORIGIN
0 DT_NULL 0 (00000000)

Object Module Map
This map contains a list of all object modules in the program module, and the starting address
and length of the code, symbol table, and static regions for each object module. The Scn
column indicates which portion of memory the object module occupies. Most object modules
occupy section 3, paged memory. The Dir Index column is an index to the DTC column in
the ‘‘Object Directory Map.” The Date Compiled column indicates the date and time each
object module was compiled. The following example shows a portion of a module map for a
user program.

Module Map:

Name Dir Index Date Compiled

 Scn Code Symtab Static UERW, SAP

 Start Length Start Length Start Length

test 1 09-12-03 11:00:11

 3 00002000 00000068 00010000 0000015A 0000E000 00000004

s_start_c_program 2 09-09-25 00:54:45

 3 00002070 000006E8 00010160 000002EC 0000E010 00000138

exit 2 09-10-28 23:41:34

 3 00002760 000001E0 00010450 000002A0 0000E150 00000108

clock 2 08-03-11 16:11:12

 3 00002940 00000108 000106F0 000000A8 0000E260 00000010

s_start_c_program_util 2 09-10-28 23:42:38

 3 00002A50 00000198 00010798 000002F6 0000E270 0000003A

s_c_lookup_kernel_entry 2 09-10-28 23:42:28

 3 00002BF0 00000128 00010A90 000002C8 0000E2B0 00000004

.

.

.

2-374

display_program_module
Object Directory Map
This map lists the directories that are specified using the bind command’s -search
argument or directive, and the links to the object modules that are chased at bind time. The
search (-search) directories are always listed first and the non-search (chased at bind time)
directories are listed last. The numbers in the DTC column are used in the directory index in
the object module map. The following example shows an object directory map.

Object Directory Map:

 3 search directories
 0 non-search directories
 3 directories in all

DTC Directory Path

 1 %s1#d03>Sales>Smith>work
 2 %s1#d03>system_17.1.0>c_object_library
 3 %s1#d03>system_17.1.0>object_library

External Variable Map
This map lists all external variables used in the program module. The Sx column indicates
which portion of memory the object module occupies. Most object modules occupy section
3, paged memory (section 1 is wired memory, and section 2 is the initial section used by the
OpenVOS kernel). The Length column indicates the byte length of each variable in
hexadecimal. The following example shows an external variable map.

External Variable Map:

Name Sx Rx Address Length
_GLOBAL_OFFSET_TABLE_
 3 3 00010848 00000000
s$pl1_first_time 3 4 00009004 00000004
s$plio_debug 3 4 0000900C 00000002
s$plio_fcb_chain 3 4 00009000 00000004
s$plio_in_epilogue 3 4 00009008 00000004
suplio_cursor 3 3 000081DC 00000002
suplio_in_epilogue 3 3 00008630 00000004
sysprint 3 3 00008010 000001B8
OpenVOS Commands Reference Manual (R098) 2-375

display_program_module
Link Names Map
This map contains a condensed list of all of the program module’s external cross-reference
names. If a cross-reference name appears more than once in the link map, it appears only once
in the link names map. The following example shows a link names map.

Link Names Map:

 # Name
 1 s$convert
 2 s$write
 3 s$close
 4 s$error
 5 s$detach_port
 6 s$add_epilogue_handler
 7 s$add_task_epilogue_handler
 8 s$open
 9 s$create_index
 10 s$create_file
 11 s$get_object_type
 12 s$delete_file
 13 s$control
 14 s$attach_port
 15 s$expand_path

16 s$get_task_id
 17 s$is_file_type_a_terminal
 18 s$get_port_attachment
 19 s$seq_write
 20 s$signal_condition
 21 s$seq_write_partial
2-376

display_program_module
Entry Map
This map lists the program module’s entry map. If the program module was not bound with
the -retain_all argument or directive, the display_program_module command
displays a message that the entry map is empty. The following example shows an entry map.

Name Code Static
 Address Address
__do_global_ctors
 00004900 00026220
__do_global_dtors
 00004890 00026220
__main 00004990 00026220
access_mode_name 00015815 00026220
are_default_open_options_set
 00016174 00026220
are_open_options_set
 000160D5 00026220
baud_rate_code 00015FCC 00026220
baud_rate_name 00015E73 00026220
collating_type_name
 00014E30 00026220
comm_device_type 0001571C 00026220
comm_list_device_type
 00015750 00026220
default_open_options_name
 00016549 00026220
default_open_options_string
 00016CAC 00026220
device_type_name 0001524A 00026220
device_type_number
 0001545C 00026220
drq_cancel_ack 0000DBAD 00026220
drq_close 0000D838 00026220
drq_create 0000D530 00026220
drq_delete 0000D648 00026220
drq_open 0000D6C3 00026220
drq_open_port 0000D7B9 00026220
drq_recv 0000D9FE 00026220
drq_send 0000D8C7 00026220
drq_set_io_time_limit
 0000DC09 00026220
file_type_name 00014F5E 00026220
file_type_number 000153D8 00026220
hold_mode_name 00015A85 00026220
io_type_name 00015BC5 00026220
locking_mode_name
 0001594D 00026220

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-377

display_program_module
(Continued)

login_slave_device_type
 000156E5 00026220
main 000046BB 00026220
mpx_device_type 000156AE 00026220
open_options_name
 000161CB 00026220
open_options_string
 000167D5 00026220
pthread_create 000171D0 00026220
pthread_getspecific
 000171D0 00026220
pthread_key_create
 000171D0 00026220
pthread_mutex_lock
 000171D0 00026220
pthread_mutex_unlock
 000171D0 00026220
pthread_once 000171D0 00026220
pthread_setspecific
 000171D0 00026220
requester_close_queue
 0000CB63 00026220
shareable_device_type
 00015784 00026220
short_file_type_name
 000151C2 00026220
sync_device_type 00015650 00026220
sync_only_device_type
 0001567A 00026220
valid_baud_rate_code
 0001607B 00026220
valid_baud_rate_name
 000160B5 00026220
valid_device_names
 000154FB 00026220
valid_device_type
 00015398 00026220
valid_file_type 00015223 00026220
valid_io_type 00015E4C 00026220
wait_mode_name 00015CFE 00026220
2-378

display_program_module
Dynamic Reference Map
This map lists the program module’s dynamic reference (dynref) map. If no such map exists
for the program module, the display_program_module command displays a message that
the dynref map is empty. The following example shows a portion of a dynamic reference map.

Name Address Rtype Roffset N_args Flags
 fclose 00003010 0 0 -2 elink, entrypoint
 fopen 00003018 0 0 -2 elink, entrypoint
 __main 00003020 0 0 -2 elink, entrypoint
 strcpy 00003028 0 0 -2 elink, entrypoint
 fgets 00003030 0 0 -2 elink, entrypoint
 sprintf 00003038 0 0 -2 elink, entrypoint
 fputs 00003040 0 0 -2 elink, entrypoint
 strtoul 00003048 0 0 -2 elink, entrypoint
 strcmp 00003050 0 0 -2 elink, entrypoint
 fprintf 00003058 0 0 -2 elink, entrypoint
 _iob 000003A3 56 208
 _iob 000003C2 56 208

.

.

.

Dynamic Symbolic Table Map
This map lists the program module’s dynamic symbolic table (dynsym) map. If no such map
exists for the program module, the display_program_module command displays a
message that the dynsym map is empty. The following example shows a portion of a dynamic
symbolic table map.

Name Next Address Stat/Len Sx Rx N_args Flags

1 _GLOBAL_OFFSET_TABLE_

 0 0000B060 00000000 3 3

2 __DWARF2_ABBREV_BEGIN__

 0 0000702E 00000000 3 2

3 __DWARF2_ABBREV_END__

 0 0000702E 00000000 3 2

4 __DWARF2_ARANGES_BEGIN__

 0 00007062 00000000 3 2

5 __DWARF2_ARANGES_END__

 1 00007062 00000000 3 2

.

.

.

OpenVOS Commands Reference Manual (R098) 2-379

display_program_module
Hash Map
This map lists the contents of the hash map. The dynamic linker uses the hash map to quickly
look up symbol definitions in the entry map and the external variable map. To see the hash
map, specify the -hash_map argument of the display_program_module command. The
following example shows a hash map.

hash[0]: 9
hash[1]: 15
hash[2]: 7
hash[4]: 20
hash[6]: 19
hash[7]: 16
hash[9]: 17
hash[10]: 21
hash[11]: 8
hash[12]: 22
hash[14]: 12
hash[16]: 2

Relocation Map
This map lists those regions where code and data will be relocated in a dynamic tasking or
kernel-loadable application. If the program module was not bound with the bind command’s
-relocatable argument or directive, then this map is empty. The following example shows
a relocation map.

Relocation Map:

Reference Reference Reference Referent Referent Referent Reloc
Section Region Offset Section Region Offset Type
Length
Paged Static 00000004 Paged Static 00000010 0
4
Paged Static 000001D4 Paged Static 000001DC 0
4
Paged Static 00000204 Paged Static 000001DC 0
4
Paged Static 00000214 Paged Static 000001DC 0
4
Paged Static 0000060C Paged Static 00008848 0
4
Paged Static 00000614 Paged Static 00008848 0
4
Paged Static 0000061C Paged Static 00008848 0
4
Paged Static 0000062C Paged Static 00000630 0
4
Paged Static 0000064C Paged Static 00000630 0
4

2-380

display_program_module
Related Information
For more information about the s$monitor and s$monitor_full subroutines and their
use of the entry map, see the VOS Transaction Processing Facility Guide (R215). For more
information about the analyze_pc_samples and harvest_pc_samples commands and
their use of the entry map, see the command descriptions in this manual. For more
information about the bind command, see the command description in this manual.
OpenVOS Commands Reference Manual (R098) 2-381

display_system_usage
display_system_usage 2-

Purpose
This command displays information about the current usage of a module or set of modules.

Display Form

Command Line Form

display_system_usage [-long]

[-module module_name] [-last period]
Arguments* -long <CYCLE>

Displays a long usage report.

* -module module_name
Specifies a module name or star name. The operating system displays usage
information for all modules with matching names. By default, the command uses the
current module.

* -last period <CYCLE>
Specifies the time period for the usage figure. Possible values for period are 1, 5, 60,
and all, to indicate the number of minutes or the entire time the module has run since
bootload. This argument applies only when you select more than one module with
-module; the command displays system usage in the specified time period for all
modules specified. By default, the command displays the system usage during the past
minute of usage for the modules specified.

----------------------------- display_system_usage -----------------------------
-long: o
-module:
-last: 1

n

2-382

display_system_usage
Explanation
The display_system_usage command displays the following information about each
module.

 the name of the module, with its central processing unit type and OpenVOS release
number

 the page fault rate of the module
 the CPU usage rate of the module
 the disk I/O rate of the module
 the percentage of idle CPU time of the module
 the percentage of time handling page faults
 the percentage of time handling interrupts
 the percentage of time that the computational cores are busy (or idle)

If you specify the -long argument, the display_system_usage command presents the
information in more detail, showing how much time and disk I/O is performed by user,
operating system, and network processes.

If you specify the display_system_usage command from a module running an older
release that does not know about the new hardware on a module running a later release, the
module returns UNKN (unknown) in the CPU Model field. See Example 2 later in this
subroutine description for an example.

Note: If a number in the output is too large to fit in the reserved column of information,
the system displays the field as asterisks; for example: ******.

ftServer modules may use Intel® Xeon® processors with Hyper-Threading (HT) Technology.
This technology groups multiple logical processors within a computational core. Although
the logical processors appear to be independent, they must contend for resources within the
core, consuming additional processor time. The CPU minutes value measures logical
processor time (including contention delays). The CPU Core Busy and CPU Core Idle
values measure computational core activity, a more meaningful measure of how busy (or idle)
the system is at any point in time

The display_system_usage command reports the effective number of CPUs for each
reporting interval. This line is labeled N CPUs. It reports the total of all CPU time used for
useful work (100% minus the idle time) as Total Reported CPU.
OpenVOS Commands Reference Manual (R098) 2-383

display_system_usage
Examples
Example 1.
In the following example, the command displays system usage information for a single
ftServer module.

display_system_usage -module %sw#m1

Usage statistics for module %sw#m1, G94330, OpenVOS Release 17.2.0

All 115.3 hours (4.8 days) up.

----CPU----- Last Min Last 5 Min Last Hour All Up Time

CPU minutes 0.87 21.7% 4.38 21.9% 53.62 22.3% 1578.15 5.7%

Min at PF 0.11 2.7% 0.55 2.7% 6.88 2.9% 199.79 0.7%

Idle 2.90 72.5% 14.45 72.2% 171.45 71.4% 25586.46 92.4%

Other 0.01 0.1% 0.03 0.1% 0.41 0.2% 22.30 0.1%

N CPUs 4.00 4.00 4.00 3.99

Total Reported CPU 1.10 27.5% 5.55 27.8% 68.59 28.6% 2099.22 7.6%

CPU Core Busy 1.08 53.9% 5.38 53.8% 65.76 54.8% 2031.10 14.7%

CPU Core Idle 0.92 46.1% 4.62 46.2% 54.25 45.2% 11811.73 85.3%

--I/O Rates--

Page faults,/sec 253766 4229 1277476 4258 15277898 4244 474455772 1142

File IO, /sec 194491 3242 980949 3270 11582035 3217 310157678 747

Disk IO, /sec 195579 3260 987984 3293 11760490 3267 336481731 810

--INT Rates--

Ints, /sec 186375 3106 940000 3133 13331420 3703 1004591432 2419

Int. Time 0.12 2.9% 0.60 3.0% 7.68 3.2% 298.98 1.1%

The output displays statistics for active times (the line CPU Core Busy) and idle times (the
lines CPU Core Idle and Idle) as minutes and hours as well as percentages of minutes and
hours. The number of hours in the rightmost column represents the time since the system was
booted.
2-384

display_system_usage
Example 2.
In the following example, the display_system_usage command is issued from m7, a
module running VOS Release 14.7.0, while module m8 is running VOS Release 15.0.0.
Because m7 does not recognize the m8 CPU model, display_system_usage displays
UNKN in the CPU Model field.

display_system_usage -module #m*

Usage statistics for module %sales#m*, VOS Release 14.7.0am (on
%sales#m7)
Data from last minute

-----CPU---- m7 m8
Module Up/hrs 6506 144
CPU Model G313 UNKN
CPU usage % 0.4 1.3
Time at PF % 0.0 0.1
Idle % 98.7 98.4
Other % 0.0 0.0

--I/O RATES--
Page faults/sec 2.1 40.0
File IOs/sec 0.8 10.0
Disk IOs/sec 1.9 22.9

Ints/sec 364 471
Int Time % 0.9 0.3

Example 3.
The following example shows the display_system_usage output for a single ftServer
module.

!display_system_usage

Usage statistics for module %sw#m102, G92200, OpenVOS Release 17.0.0

All 16.3 hours up.

----CPU----- Last Min Last 5 Min Last Hour All Up Time

CPU minutes 0.01 0.1% 0.04 0.1% 0.55 0.1% 8.52 0.1%

Min at PF 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.06 0.0%

Idle 7.97 99.6% 39.85 99.6% 478.10 99.6% 7819.39 99.6%

Other 0.00 0.0% 0.00 0.0% 0.03 0.0% 0.31 0.0%

N CPUs 8.00 8.00 8.00 7.99

Total Reported CPU 0.03 0.4% 0.15 0.4% 1.93 0.4% 30.19 0.4%

CPU Core Busy 0.04 0.9% 0.19 0.9% 2.33 1.0% 36.76 0.9%

CPU Core Idle 3.96 99.1% 19.81 99.1% 237.68 99.0% 3888.00 99.1%

--I/O Rates--

Page faults,/sec 0 0.0 0 0.0 1415 0.4 15607 0.3

File IO, /sec 4 0.1 312 1.0 10379 2.9 39080 0.7

Disk IO, /sec 6 0.1 315 1.1 11039 3.1 45895 0.8

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-385

display_system_usage
(Continued)

--INT Rates--

Ints, /sec 81963 1366 413304 1378 5071211 1409 80697599 1371

Int. Time 0.02 0.3% 0.11 0.3% 1.35 0.3% 21.31 0.3%

Example 4.
The following example shows display_system_usage output for a multi-module system.
Note that some modules displayed in the following output do not support the CPU Core
Busy or CPU Core Idle values; therefore, those output lines are blank.

!display_system_usage -module *

Usage statistics for module %es#*, VOS Release 17.0.0 (on %es#m3)
Data from last minute.

-----CPU---- m2 m3 m10 m12 m13 m16
Module Up/hrs 172 2359 1631 646 262 173
CPU Model G334 G748 G332 G334 G321 G334
CPU usage % 0.0 1.1 0.2 0.1 0.0 0.0
Time at PF % 0.0 0.2 0.0 0.0 0.0 0.0
Other % 99.9 97.8 99.6 99.8 99.8 99.9
Idle % 99.9 97.8 99.6 99.8 99.8 99.9
N CPUs 2.0 2.0 1.0 2.0 2.0 2.0
Tot Reported CPU % 0.1 2.2 0.4 0.2 0.2 0.1
--I/O RATES--
Page faults/sec 0.0 5.7 0.0 0.0 0.0 0.0
File IOs/sec 0.0 1.5 0.0 0.2 0.0 0.0
Disk IOs/sec 0.0 1.5 0.0 0.3 0.0 0.0
--INT RATES--
Ints/sec 371 271 240 394 371 389
Int Time % 0.0 0.9 0.2 0.0 0.1 0.0

-----CPU---- m100 m101 m102 m104 m107 m108
Module Up/hrs 67.7 166 66.9 165 93.7 289
CPU Model G92200 G92900 G92200 G94220 G94340 G94330
CPU usage % 0.0 0.2 0.0 1.4 0.1 0.2
Time at PF % 0.0 0.0 0.0 0.0 0.0 0.0
Other % 99.5 99.4 99.7 98.1 99.8 99.8
Idle % 99.5 99.4 99.7 98.0 99.8 99.8
N CPUs 8.0 4.0 8.0 2.0 8.0 4.0
Tot Reported CPU % 0.5 0.6 0.3 2.0 0.2 0.2
CPU Core Busy % 1.2 1.6 0.9 0.5
CPU Core Idle % 98.8 98.4 99.1 99.5
--I/O RATES--
Page faults/sec 6.7 0.0 0.0 2.8 2.9 0.0
File IOs/sec 5.5 0.0 0.4 2.8 2.9 0.0
Disk IOs/sec 8.3 0.0 0.4 4.1 4.3 0.0
--INT RATES--
Ints/sec 1289 730 1293 443 1377 756
Int Time % 0.4 0.5 0.3 0.6 0.0 0.0

(Continued on next page)
2-386

display_system_usage
(Continued)

-----CPU---- m109
Module Up/hrs 67.6
CPU Model G94330
CPU usage % 0.3
Time at PF % 0.0
Other % 99.6
Idle % 99.6
N CPUs 4.0
Tot Reported CPU % 0.4
--I/O RATES--
Page faults/sec 9.4
File IOs/sec 10.2
Disk IOs/sec 14.3
--INT RATES--
Ints/sec 828
Int Time % 0.0
OpenVOS Commands Reference Manual (R098) 2-387

display_tape_params
display_tape_params 2-

Purpose
This command displays the default, user, and actual parameters of the tape drive, tape mount,
and tape file.

Display Form

Command Line Form

display_tape_params tape_device_or_port_name [-no_default] [-no_user] [-no_actual]
Arguments* tape_device_or_port_name Required

The name of the tape device, or the name of the port attached to the tape drive, for
which the default, user, and actual parameters are to be displayed.

* -no_default <CYCLE>
Omits displaying the default tape parameter values used by the tape commands. The
initial port attachment determines the default tape drive, tape mount, and tape file
parameters. By default, the command displays the default tape parameter values.

* -no_user <CYCLE>
Omits displaying the user tape parameter values used by the commands that create and
write a tape. The set_tape_drive_params, set_tape_mount_params, and
set_tape_file_params commands set the user tape drive, tape mount, and tape file
parameters. The user tape parameters override the default tape parameters. By default,
the command displays the user tape parameter values.

* -no_actual <CYCLE>
Omits displaying the actual tape parameter values used by the tape commands. The
actual tape drive, mount, and file parameters consist of the user values overlaid on the
default values, and the default values that are not overlaid by user values. The actual
values of tape mount and tape file parameters can also include values from the tape

---------------------------- display_tape_params ------------------------------
tape_device_or_port_name:
-default: yes
-user: yes
-actual: yes
2-388

display_tape_params
label. The user tape parameters override the default tape parameters. The actual values
are used for every tape operation. By default, the command displays the actual tape
parameter values.

Explanation
To display the tape parameters for a tape drive attached to a port, issue the
display_tape_params command with either the tape device name or port name as an
argument.

The display_tape_params command does not implicitly attach a port or mount a tape.
You must explicitly attach a port with attach_port before you use
display_tape_params. Optionally, you can also mount a tape with mount_tape before
you use display_tape_params. Once the port is attached, you can specify either the tape
device or port name for tape_device_or_port_name, as convenient.

The output of display_tape_params contains data about the attached tape drive, as shown
in the Example, which follows.

Note: If you specify the display_tape_params command for a SCSI tape drive,
ignore the Tape Density parameter; it is inaccurate.

The command output contains three sections: DEFAULT TAPE PARAMETERS, USER TAPE
PARAMETERS, and ACTUAL TAPE PARAMETERS. You can determine whether any of these
sections is displayed by setting the -no_default, -no_user, or -no_actual argument.

The initial port attachment determines the tape parameter values that your terminal screen
displays. You can change any of these values by issuing the set_tape_drive_params,
set_tape_mount_params, or set_tape_file_params command. If you do not change
any initial values with these commands, the output of display_tape_params shows the
USER_TAPE_PARAMETERS as NOT SET or N/S. If the tape is not mounted, the actual tape
mount and file parameters are not displayed. If the tape is mounted, but a tape file is not open,
the actual file parameters are not displayed.

The tape drive parameters are in effect as long as the port is attached, unless you change the
parameters again.

If you use the set_tape_mount_params or mount_tape command, the mount parameters
are in effect only for the next mount.

If you use the set_tape_file_params command, the file parameters are in effect for the
next open file or files, as specified by the -file_id argument of the command.

For more information, see Appendix A, ‘‘Setting and Displaying Tape Parameter Values.” For
information about tape mounting, see Explanation in the mount_tape command description.
OpenVOS Commands Reference Manual (R098) 2-389

display_tape_params
Example
To display the tape parameters for a tape drive attached to the port t_port, type the following
command.

display_tape_params t_port

The output is displayed in the following format.

*** DEFAULT TAPE PARAMETERS ***

DRIVE: Disposition: reread
 Reel Retention: dismount on detach
 Multivolume Default: yes
 Message: Notify Sys Admin
MOUNT: Volume ID:
 Owner ID: Smith
 Tape Format: ansi
 Tape Density: 1600
 Cartridge No: 0
 Access Rights: read/write
FILE: File ID:
 File Number: 1
 Expiration Date: 00000
 Translation: ascii
 Open Type: Create Create Create
 Fixed Relative Sequential Input Append
 File Format: f vb vb f f
 Block Length: 80 4096 4096 80 80
 Record Length: 80 4092 4092 80 80
 Blocking Factor:

*** USER TAPE PARAMETERS ***

DRIVE: Disposition: reread
 Reel Retention: NOT SET
 Multivolume Default: NOT SET
 Message: Notify Sys Admin
MOUNT: Volume ID: NOT SET
 Owner ID: NOT SET
 Tape Format: NOT SET
 Tape Density: NOT SET
 Cartridge No: NOT SET
 Access Rights: NOT SET
FILE: File ID: NOT SET
 File Number: NOT SET
 Expiration Date: NOT SET
 Translation: NOT SET

(Continued on next page)
2-390

display_tape_params
(Continued)

Open Type: Create Create Create
Fixed Relative Sequential Input Append

File Format: N/S N/S N/S N/S N/S
Block Length: NOT SET NOT SET NOT SET NOT SET NOT SET
Record Length: NOT SET NOT SET NOT SET NOT SET NOT SET
Blocking Factor: NOT SET NOT SET NOT SET NOT SET NOT SET

*** ACTUAL TAPE PARAMETERS ***

DRIVE: Disposition: reread
 Reel Retention: dismount on detach
 Multivolume Default: yes
 Message: Notify Sys Admin

Tape is not mounted. MOUNT and FILE Parameters are not valid for this
state.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, dump_tape, list_save_tape, mount_tape, position_tape,
read_tape, restore_object, set_second_tape, set_tape_drive_params,
set_tape_mount_params, set_tape_file_params, verify_save, and
write_tape.
OpenVOS Commands Reference Manual (R098) 2-391

display_terminal_parameters
display_terminal_parameters 2-

Purpose
 This command displays the current parameters for your terminal.

Display Form

Command Line Form
display_terminal_parameters

Explanation
The display_terminal_parameters command displays the parameters set by the
set_terminal_parameters command. For example:

Modes:interrupt_key_enabled,display_enable,break_enabled,output_flow
Line length: 80
Screen size: 24
Pause lines: 23
Prompt chars: ''
Continue chars: '+'
Pause chars: '--PAUSE--'
Escape char: ‘
Flow chars: '‘11‘13'
Terminal type: v102a
Tabs:6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81,86,91,96,101,106
Baud: 19200
Device name: t1.6

Related Information
See the description of the set_terminal_parameters command for a complete discussion of
these parameters.

------------------------- display_terminal_parameters --------------------------
No arguments required. Press ENTER to continue.
2-392

display_usb_info
display_usb_info 2-

Purpose
This command displays information about a USB device.

Display Form

Command Line Form

display_usb_info [device_name]
[-long]

Arguments* device_name
The name of the USB device for which the information is to be displayed. If you omit
this argument, the command displays information about all defined USB devices.

* -long <CYCLE>
Displays a long report on the device. By default, the command displays a short report.

Explanation
The display_usb_info command displays information about a USB device.

Examples
display_usb_info

#usb$ms.2

Vendor name MATSHITA
Product name DVD-RAM UJ870BJ
Media Size Total Sector Total

Sectors Size Bytes
1704 2048 3489792

---------------------------- display_usb_info ------------------------------
device_name:
-long: no
OpenVOS Commands Reference Manual (R098) 2-393

dump_file
dump_file 2-

Purpose
This command dumps the contents of the specified file for debugging purposes or the contents
of an index to the specified file.

Display Form

Command Line Form

dump_file file_path_name [-index index_name] [-output_path output_path_name] [-from first_block] [-to largest_block] [-ebcdic] [-bcd] [-brief] [-no_header]
Arguments* file_path_name Required

The path name of the file to be dumped.

* -index index_name
Dumps index_name instead of the file.

* -output_path output_path_name
Specifies the file to which the dumped output is to be appended. By default, the
command writes the output to the default output port.

---------------------------------- dump_file -----------------------------------
file_path_name:
-index:
-output_path:
-from: 1
-to: 2147483647
-ebcdic: no
-bcd: no
-brief: no
-header: yes
2-394

dump_file
* -from first_block
Specifies the block number at which the dump is to begin. By default, the dump begins
at block 1.

* -to largest_block
Specifies the block number at which the dump is to end. If you omit -to and -from,
the dump ends at the largest possible block in the file. If you do not specify the last
block of the dump with -to but you specify -from, the command dumps one block.

* -ebcdic <CYCLE>
Interprets the data in the file as EBCDIC characters. By default, the data is interpreted
as ASCII characters.

* -bcd <CYCLE>
Interprets the data in the file as binary coded decimal (BCD) characters. By default, the
data is interpreted as ASCII characters.

* -brief <CYCLE>
Avoids displaying blocks that contain all 0s (for stream files) or all 1s (for other file
types). By default, the command displays all blocks.

* -no_header <CYCLE>
Suppresses the normal header, which displays the path name and current date. Use this
argument when generating output to compare with expected output, as you may not
want to see the current date as a difference. By default (yes), the command displays
the normal header.

Explanation
The dump_file command dumps the contents of the specified file for debugging purposes,
in both hexadecimal and ASCII, with the ASCII text in the rightmost column.

Access Requirements
You need read access to a file to dump its contents.

Related Information
See also the command descriptions of compare_files, copy_file, create_file,
delete_file, display_file_status, locate_files, move_file,
set_file_allocation, and truncate_file.
OpenVOS Commands Reference Manual (R098) 2-395

dump_record
dump_record 2-

Purpose
This command dumps one or more records in a fixed, sequential, relative, or stream file.

Display Form

Command Line Form

dump_record path_name [-from first_record_number] [-for record_count] [-match string]
Arguments* path_name Required

The path name of the file from which the records are to be dumped.

* -from first_record_number
Specifies the number of the first record to be dumped. By default, the dump begins with
the first record in the file.

* -for record_count
Specifies the number of records to be dumped. By default, all records are dumped.

* -match string
Specifies a character string in the record. Specifying a string causes only records
containing the string to be dumped.

Explanation
The dump_record command dumps one or more records in a fixed, sequential, relative, or
stream file. If you specify -from and -for, you can specify the first record to be dumped and
the number of subsequent records to dump. If you specify -match, you can dump only
records containing the specified string.

--------------------------------- dump_record ----------------------------------
path_name:
-from: 1
-for:
-match:
2-396

dump_tape
dump_tape 2-

Purpose
This command dumps files from a tape.

Display Form

Command Line Form

dump_tape tape_device_or_port_name [-first_file first_file_number] [-file_count file_count] [-first_record first_record_number] [-last_record last_record_number] [-ebcdic] [-bcd] [-no_initial_rewind] [-no_stop_on_eot] [-no_stop_on_error] [-no_dump] [-no_hex]
Arguments* tape_device_or_port_name Required

The name of the tape device, or the name of the port attached to the tape drive, holding
the tape from which files are to be dumped.

* -first_file first_file_number
Specifies the file number of the first file to dump. By default, the dump begins with file
number 1.

---------------------------------- dump_tape -----------------------------------
tape_device_or_port_name:
-first_file: 1
-file_count: 32767
-first_record: 1
-last_record: 32767
-ebcdic: no
-bcd: no
-initial_rewind: yes
-stop_on_eot: yes
-stop_on_error: yes
-dump: yes
-hex: yes
OpenVOS Commands Reference Manual (R098) 2-397

dump_tape
* -file_count file_count
Specifies the number of files to dump. By default, the dump begins with file number 1
or the first_file_number and dumps all subsequent files on the tape.

* -first_record first_record_number
Specifies the first record of the selected file to dump. By default, the dump begins with
the first record of the file.

* -last_record last_record_number
Specifies the last record of the selected file to dump. By default, the dump continues
through the last record of the file.

* -ebcdic <CYCLE>
Dumps a tape written in EBCDIC code. By default, the data on the tape is interpreted
as ASCII characters.

* -bcd <CYCLE>
Dumps a tape written in binary coded decimal (BCD) code. By default, the data is
interpreted as ASCII characters.

* -no_initial_rewind <CYCLE>
Dumps the tape without first rewinding it. By default, the tape rewinds before the dump
begins.

* -no_stop_on_eot <CYCLE>
Permits reading a tape past the end-of-tape mark. By default, the dump ends when
processing encounters an end-of-tape mark. An end-of-tape mark is two consecutive
tape marks.

* -no_stop_on_error <CYCLE>
Permits reading a tape past errors. By default, the dump ends when processing
encounters an error.

* -no_dump <CYCLE>
Suppresses dumping of the data on the tape. If you specify -no_dump, the command
displays only identifying information for each selected record, including its length.

* -no_hex <CYCLE>
Dumps only the character representation of the data, suppressing the accompanying
hexadecimal information.

Explanation
The dump_tape command dumps the contents of a tape.

Before using the dump_tape command, you must load the tape whose contents are to be
dumped. If you do not attach a port with the attach_port command, the dump_tape
command implicitly attaches a port. The dump_tape command does not require that a tape
be mounted. When execution is completed, if dump_tape implicitly attached a port, it
implicitly detaches the port.
2-398

dump_tape
Access Requirements
By default, you have write access to all devices. If your system administrator restricts access
to a device, you need read access to read from tapes, or write access to read from and write
to tapes.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, list_save_tape, mount_tape,
position_tape, read_tape, restore_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-399

edit
edit 2-

Purpose
This command invokes the screen editor.

Display Form

Command Line Form

edit [text_file_names] . . .

[-buffer_names buffer_name . . .] [-names_shown name_shown . . .] [-read_only_buffers buffer_number . . .]

¢ £
[-initial_window window_number] [-start_at_bottom buffer_number . . .] [-dictionary dictionary_name] [-no_keystrokes] [-initial_shorthand shorthand] [-shorthand_file shorthand_file_name]

¢ £
[-silent_overwrite]

------------------------------------- edit -------------------------------------
text_file_names:
-buffer_names:
-names_shown:
-read_only_buffers:
-num_windows:
-window_divisions:
-initial_window:
-start_at_bottom:
-dictionary:
-keystrokes: yes
-initial_shorthand:
-shorthand_file:
-backup: yes
-backup_name:
-silent_overwrite: no

-num_windows number_of_windows
-window_divisions division_location . . .

-no_backup
-backup_name backup_file_name
2-400

edit
Arguments* text_file_names
One or more names or star names of text files to be placed in editor buffers. If you
specify a file that does not exist, the editor creates an empty buffer with the name of the
file you specified. By default, the editor creates an empty buffer. The character set of
the file can be either ASCII or Latin alphabet No. 1.

* -buffer_names buffer_name
Specifies a name to be assigned to an editor buffer. You can give as many buffer names
as there are files in the text_file_names list. The editor assigns the nth name in
-buffer_names to the buffer for the nth file in the list. If you specify fewer buffer
names than there are files, the editor assigns the file name of any extra file to its buffer
as a buffer name. If you specify more buffer names, the editor reports an error. You can
specify the null string ('') as a buffer name. In this case, the editor does not assign a
buffer name to the buffer for the corresponding file. By default, the editor assigns no
name to the buffer for the first file in the list, and assigns the file name for any
subsequent file to its buffer as a file name.

* -names_shown name_shown
Specifies a name to be displayed for an editor buffer instead of its full path name. You
can give as many shown names as there are files in the text_file_names list. The
editor displays the nth name in -names_shown for the buffer for the nth file in the list.
If you specify fewer shown names than there are files, the editor displays the full path
name of the buffer for each extra file. If you specify more shown names, the editor
reports an error. You can specify the null string ('') as a shown name. In this case, the
editor displays the full path name of the buffer for the corresponding file. By default,
the editor displays the full path name of each buffer.

* -read_only_buffers buffer_number
Specifies one or more buffers that are to contain text accessible for reading only. The
editor assigns the buffer number n to the buffer that corresponds to the nth file in the
text_file_names list. You specify a buffer for read-only access by giving its buffer
number. By default, you have write access to all buffers.

* -num_windows number_of_windows
Specifies the number of horizontal windows to open on the terminal screen. The editor
assigns buffers to windows in the order of the file names given in the
text_file_names list. If number_of_windows is greater than the number of files,
the extra windows are empty. By default, one window is created, which displays the
buffer corresponding to the first name in the text_file_names list. You cannot
specify both -num_windows and -window_divisions in the same command.
OpenVOS Commands Reference Manual (R098) 2-401

edit
* -window_divisions division_location
Specifies the location of one or more divisions that separate editor screen into windows.
A division can be vertical or horizontal. To specify a vertical division, give the window
number, the value v or V, and the number of the column where the division is to appear
(1v34). To specify a horizontal division, give the window number, the value h or H, and
the number of the row where the division is to appear (2h12). Windows are numbered
from left to right and from top to bottom. A single screen may be divided into windows
both horizontally and vertically. Note that the number of divisions is always one fewer
than the number of windows opened. You cannot specify both -window_divisions
and -num_windows in the same command.

* -initial_window window_number
Specifies the window_number in which the cursor first appears after you invoke the
editor. By default, the cursor first appears in the window of the first file displayed in the
text_file_names list.

* -start_at_bottom buffer_number
Specifies the number or numbers of one or more buffers to display, with the cursor
starting on the last line rather than the first line of the buffer. The last line of the buffer
appears in the middle line of the window.

* -dictionary dictionary_name
Specifies a user dictionary that the editor checks when you issue the “Verify
spelling” editor request. You can specify this argument only if the current system has
the system dictionary. If you use this argument, the editor checks for misspelled words
in the specified user dictionary and then, if necessary, in the system dictionary. By
default, the editor checks only the system dictionary.

* -no_keystrokes <CYCLE>
Allows editing of a file without creating a keystrokes file. By default, the editor creates
or overwrites a keystrokes file in your home directory. The file contains the sequence
of editor requests you make and the characters you insert in the edited text. With a
keystrokes file, you can usually recover from editing mistakes.

If you invoke the command from a main process and omit -no_keystrokes, the
keystrokes file is named _edit.terminal_name, where terminal_name is the
device name of the current terminal. You can interrupt this editing session to enter a
subprocess. If you invoke the edit command without -no_keystrokes while you
are in the subprocess, the name of the new keystrokes file is the same as the original
keystrokes file, except that it acquires the suffix .1. That is, its name is
_edit.terminal_name.1. If you create another keystrokes file during a
second-level subprocess, its name has the suffix .2; the names of keystrokes files
created during further subprocesses have corresponding suffixes.

If you are not editing from a terminal, the editor does not create a keystrokes file. For
example, a keystrokes file is not created when the editor requests come from a
command macro.
2-402

edit
* -initial_shorthand shorthand
Executes the shorthand shorthand, which must be a single character, before editing
begins. The shorthand must be in the shorthand file specified by or implied in
-shorthand_file. By default, the editor does not execute an initial shorthand.

* -shorthand_file shorthand_file_name
Uses the shorthand definitions in the file shorthand_file_name. A shorthand file
consists of a series of edit requests that will be replaced by a single character. In an
editing session you can execute this series of requests by pressing the shorthand key and
the single character that is defined in the shorthand file. By default, the editor uses the
shorthand definitions in a file in your home directory named
shorthand_definitions. If shorthand_file_name does not exist or you do not
specify this argument and shorthand_definitions does not exist, then the editor
creates a shorthand file with the name.

* -no_backup <CYCLE>
Allows editing without creating backup copies of any file the editor reads in to any
editor buffer and then writes out to the file. By default, the editor creates a backup copy
of every file that it reads in to a buffer. The backup is created the first time you write
out the buffer to the file. The path name of the backup copy is the same as the name of
the original file except that the editor adds the suffix .backup. You cannot specify
-no_backup and -backup_name in the same command.

* -backup_name backup_file_name
Names a backup copy of the edited files of the text_file_names list with a name in
-backup_name. You can specify the null string ('') as a backup file name. In this
case, the editor creates a backup copy of the corresponding file the first time you write
out the contents of the buffer to that file. The path name of the backup file is the file
name from the text_file_names list with the suffix .backup appended. By default,
the editor creates and assigns backup files as if the backup file name specified for each
file is the null string. You cannot specify -backup_name and -no_backup in the same
command.

* -silent_overwrite <CYCLE>
Overwrites the file silently when you explicitly specify an output path name. By
default, the editor asks you before writing the file.

Explanation
The edit command calls the screen editor. After you issue the edit command, your process
is at the editor request level. At request level, you can make any of the several requests
described in the VOS Word Processing User’s Guide (R006). One request, the request to quit
the editor, returns your process to command level. To issue the quit request, press the <MENU>
key and then type the letter q.

If you give the path name of a file when you issue the edit command, the editor reads in the
file to the default buffer and displays the first 20 lines of the buffer. Otherwise, the buffer is
empty when you begin.
OpenVOS Commands Reference Manual (R098) 2-403

edit
Before you edit the text file, you must set the shift mode to none and specify a character set
of none, ascii, or latin_1. Use the create_file or convert_text_file command
to establish the shift mode and character set of the file.

Note: If you are working with very large files, there is a limit to the file size that can be
read. This limit is determined by the size of the file, the number of format lines it
contains, and the size of the program modules that are also being loaded. You must be
aware if your file is approaching this limit and break it into smaller files before this
occurs; once a file surpasses that size, you cannot access it through the editor.

Access Requirements
You need read access to an existing file to read it into an editor buffer and write access to
overwrite it with the contents of an editor buffer.

Related Information
For a complete description of the OpenVOS screen editor and editor requests, see the VOS
Word Processing User’s Guide (R006).
2-404

edit_form
edit_form 2-

Purpose
This command invokes the old Forms Editor.

Display Form

---------------------------------- edit_form -----------------------------------
input_path:
form_path:
-into: no
-prefix: no
-library: accept_field_definitions
-edit: yes
-backup: yes
-force_write: no
-basic: no
-cobol: no
-fortran: no
-pascal: no
-pl1: no
-pl1_template: yes
-c: no
-processor: default
-mapping_rules: default
-sort_into_by_alignment: yes
-produce_symtab: yes
OpenVOS Commands Reference Manual (R098) 2-405

edit_form
Command Line Form

edit_form input_path [form_path] [-into] [-prefix] [-library field_definitions_directory_name] [-no_edit] [-no_backup] [-force_write] [-basic] [-cobol] [-fortran] [-pascal] [-pl1] [-no_pl1_template] [-c] [-processor processor_string] [-mapping_rules mapping_rules] [-no_sort_into_by_alignment] [-no_produce_symtab]
Arguments* input_path Required

The path name of a form definition file. The path name cannot be an extended name. A
.form file is a programming source file. If the file exists, its name must have the suffix
.form. You can omit the suffix when specifying the name in the command. If the file
does not exist, the Forms Editor behaves as if the file existed but was empty. The name
of the form definition file, without the suffix .form, becomes the name of the form. (A
form name should not exceed 15 characters; otherwise, the names of some
automatically generated include files may exceed 32 characters and be truncated.) You
cannot edit or compile a .form file on a release that is earlier than the release on which
the .form file was originally created unless the .form file contains only features
supported by the earlier release.

Note: Do not give a form the same name as the program that displays it: both a
form and its related program require uniquely named object modules.

* form_path
Writes the edited form definition to the file form_path. By default, the Forms Editor
writes the form definition file to the file input_path (but in the current directory),
when you write out the form. If the specified file does not exist when you write out the
form, the editor creates it. The form_path cannot be an extended name.

* -into <CYCLE>
Creates a field-values file for each programming language specified by the language
arguments. The Forms Editor names the field-values file (an include file)
form_name.incl.language and puts the file in the current directory. When revising
a form, the command uses the already-specified language’s include files. You can
override the existing value with the Forms Editor <MENU>-S request.
2-406

edit_form
* -prefix <CYCLE>
Adds a prefix to the name of each field identifier name in any field IDs file that the
editor generates. The prefix is the name of the form followed by an underline. The
editor also adds the prefix to each variable name in any OpenVOS FORTRAN
field-values file that it generates.

* -library field_definitions_directory_name
Specifies a directory to be searched for field definition files. The editor searches the
directory for field definition files and writes out field definition files to the directory.
By default, the editor searches a subdirectory of your current directory named
accept_field_definitions. If the directory you specify, either directly or by
default, does not exist when the editor is ready to write out a field definition file, it
creates the directory.

* -no_edit <CYCLE>
Creates a new object module and language include files from an existing form
definition file without editing the form. (If you specify -force_write as well, the
editor writes a new form definition file.) By specifying -no_edit, you can run the
Forms Editor in a batch process or started process. By default, the Forms Editor reads
the form definition file, displays the form, and lets you edit it.

* -no_backup <CYCLE>
Suppresses the creation of a backup file for input_path. If you do not use
-no_backup, and the input_path and form_path files are in the same directory,
the Forms Editor renames the old file and gives it the name of the input_path file
(including its suffix .form), with the suffix .backup added. The backup file is created
each time you write out the form with the <MENU>-W request; it replaces a previous
backup file of the same name if one exists.

* -force_write <CYCLE>
Writes a new form definition file (form_name.form) when you invoke with
-no_edit. By default, -no_edit produces the object module and specified include
files only. Use -force_write with -no_edit to generate a .backup form file or to
rename your form without reediting it.

* -basic <CYCLE>
Creates OpenVOS BASIC versions of the field identifiers file and the field-values file.
By default, the editor does not create OpenVOS BASIC versions of the files. When
revising a form, the command uses the already-specified language. You can override
the existing value with the Forms Editor <MENU>-S request.
OpenVOS Commands Reference Manual (R098) 2-407

edit_form
* -cobol <CYCLE>
Creates OpenVOS COBOL versions of the field identifiers file and the field-values file.
By default, the editor does not create OpenVOS COBOL versions of the files. When
revising a form, the command uses the already-specified language. You can override
the existing value with the Forms Editor <MENU>-S request.

* -fortran <CYCLE>
Creates OpenVOS FORTRAN versions of the field identifiers file and the field-values
file. By default, the editor does not create OpenVOS FORTRAN versions of the files.
When revising a form, the command uses the already-specified language. You can
override the existing value with the Forms Editor <MENU>-S request.

* -pascal <CYCLE>
Creates OpenVOS Pascal versions of the field identifiers file and the field-values file.
By default, the editor does not create OpenVOS Pascal versions of the files. When
revising a form, the command uses the already-specified language. You can override
the existing value with the Forms Editor <MENU>-S request.

* -pl1 <CYCLE>
Creates OpenVOS PL/I versions of the field identifiers file and the field-values file. By
default, the editor does not create OpenVOS PL/I versions of the files. When revising
a form, the command uses the already-specified language. You can override the existing
value with the Forms Editor <MENU>-S request.

* -no_pl1_template <CYCLE>
Specifies that OpenVOS PL/I include files are to be generated as based structures. (See
the Explanation section of this command description for details.) When revising a form,
the command used the already-specified language. You can override this argument with
the Forms Editor <MENU>-S request.

* -c <CYCLE>
Creates OpenVOS C versions of the field identifiers file and the field-values file. By
default, the editor does not create OpenVOS C versions of the files. When revising a
form, the command uses the already-specified language. You can override the existing
value with the Forms Editor <MENU>-S request.

* -processor processor_string <CYCLE>
Specifies the processor for which object code is to be generated. The values of
processor_string are as follows:

 default
 pentium4

If you are creating a form that is to run on a module using an IA-32 processor, specify the
pentium4 value. By default, processor_string is the processor type of the current
module. The default value is default.
2-408

edit_form
* -mapping_rules mapping_rules <CYCLE>
Specifies one of the following data-alignment rules for include files generated by
edit_form.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. By default, the data alignment rules specified by default are used.
(See the Explanation section of this command description for details.) When revising a
form, the command uses the already-specified language. You can override this
argument with the Forms Editor <MENU>-S request.

* -no_sort_into_by_alignment <CYCLE>
Specifies that the alignment of data items in the field-values file overrides all other
sorting criteria. By default, this argument is yes. (See the Explanation section of this
command description for details.) When revising a form, the command uses the
already-specified language. You can override this argument with the Forms Editor
<MENU>-S request.

* -no_produce_symtab <CYCLE>
Produces forms without a runtime symbol table. Because the forms runtime symbol
table is small, use -no_produce_symtab only where there is a shortage of virtual
memory.

Explanation
The edit_form command invokes the Forms Editor. After you issue the edit_form
command, your process is at editor request level. At editor request level, you can make a
number of requests. To issue the Quit request and return to command level, press the <MENU>
key and then type the letter q or Q.

If you give the path name of a form definition file when you issue the edit_form command,
the Forms Editor reads the file and displays the defined form. If you are migrating a
Forms-based application from a release earlier than VOS Release 15.0.0, see the manual
Migrating VOS Applications from Continuum Systems (R607) for more information.

The Forms Editor deletes trailing spaces from all values you enter into the editor’s request
form and from all lines you enter into the form you are constructing. It also deletes all empty
lines from the bottom of the form. Thus when you write out the form definition file and the
other files described previously, the files reflect these deletions.

If you specify -into, -prefix, -mapping_rules, -sort_into_by_alignment, or any
of the language arguments (-basic, -cobol, -fortran, -pascal, -pl1,
-pl1_template, or -c) for a particular form, these arguments are saved in the form
definition file. You do not have to respecify these arguments when using the Forms Editor
requests or in future invocations of the Forms Editor on that form.
OpenVOS Commands Reference Manual (R098) 2-409

edit_form
If you specify -pl1_template, all PL/I include files are generated as based structures.
Field-values structures can then be declared using the PL/I like attribute. You should specify
-pl1_template or the Forms Editor <MENU>-S request to prevent possible longmap or
shortmap mismatches in the generated include file.

The -mapping_rules argument allows you to specify the data-alignment rules for include
files generated by edit_form. The value default indicates the system-wide default. The
default is site-settable. The value shortmap specifies that the shortmap alignment rules are
to be used for the include files. The value longmap specifies that the longmap alignment rules
are to be used for the include files. The values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively.

Note that -mapping_rules affects include files differently, based on the language specified.
In OpenVOS C and OpenVOS Pascal, when you specify -mapping_rules, the include files
will contain explicit longmap or shortmap keywords in field-values structures. In OpenVOS
PL/I, these keywords are generated only if you specify the -pl1_template argument or the
Forms Editor <MENU>-S request. In OpenVOS PL/I, if you do not specify -pl1_template or
the Forms Editor <MENU>-S request, you must add the longmap and shortmap keywords
manually. OpenVOS COBOL, BASIC, and FORTRAN do not allow the definitions of
structure templates. For these three languages, the Forms Editor generates an include file for
the body of the structure, which you include in your program within the structure definition
itself. To do this in OpenVOS COBOL, for example, you would specify the following:

01 structure1.
 copy 'struct_info.incl.cobol'.

The -sort_into_by_alignment argument determines whether the alignment of the data
items in the field-values file overrides all other sorting criteria. The default is yes. This
argument is used to avoid compiler warnings if you compile with the -mapping_rules
default/check, shortmap/check, or longmap/check argument. This argument also
minimizes the size of the field-values file because no padding will be required.

If you specify the -into argument when you invoke the Forms Editor, but do not specify any
of the languages at that time, you can do so using the Forms Editor requests. If you do not
specify any of the language arguments, the -into argument is ignored.

Access Requirements
You need read access to a form definition file to read it; you need write access to a form
definition file, include file, or object module to write it.

Related Information
See the OpenVOS Forms Management System manuals for a complete description of the
Forms Editor requests. Also see the description of the nls_edit_form command.
2-410

emacs
emacs 2-

Purpose
This command invokes the Emacs text editor.

Display Form

Command Line Form

emacs [file_names . . .]

[-start_up_path start_up_path_name] [-num_windows number] [-backup] [-keystrokes] [-keystrokes_dir keystrokes_path_name] [-flow_control] [-nls] [-dictionary dictionary_path_name] [-organization organization] [-record_size record_size] [-character_set character_set] [-shift_mode shift_mode] [-pathname_style style_name] [-compatibility method_name]

------------------------------------ emacs -------------------------------------
file_names:
 -start_up_path: current_start_up_path_name
 -num_windows: 1
 -backup: no
 -keystrokes: no
 -keystrokes_dir: current_directory
 -flow_control: no
 -nls: no
 -dictionary: current_dictionary_path_name
 -organization: sequential
 -record_size:
 -character_set: none
 -shift_mode: none
 -pathname_style: vos
 -compatibility: vos
OpenVOS Commands Reference Manual (R098) 2-411

emacs
Arguments* file_names ...
One or more names or star names of files to be edited. Copies of the files are read into
Emacs buffers in the order in which the file names are specified. By default, Emacs
creates an empty buffer for editing. You name the file when you write the file and
specify an output path name.

* -start_up_path start_up_path_name
Specifies an Emacs startup file. The name of the startup file must have the suffix
.emacs, though you can omit this suffix when you specify the path name. This file
tailors the editing environment to your needs. You can use this file to set modes, alter
default keystroke sequences for Emacs requests, and assign keystroke sequences to
requests that do not currently have them, including your own macros. By default,
Emacs looks for a start_up.emacs file in your home directory. If there is no
start_up.emacs file in your home directory, Emacs uses built-in default settings for
all modes.

* -num_windows number
Specifies the number of horizontal windows you want to open on the terminal screen.
The Emacs editor assigns buffers to windows in the order in which the file names were
specified in the file_names list. If the value of number is greater than the number of
files specified, the extra windows are empty. By default, one window displays the first
buffer named in the file_names list. On a standard 24-line screen, the maximum
number of windows is five.

* -backup <CYCLE>
Creates a backup copy of any file that the Emacs editor reads into any buffer and then
writes to the file. The backup copy is created when you write the contents of the buffer
to the file. The path name of the backup copy is the same as the name of the original
file, with the suffix .backup added. By default, Emacs does not create a backup copy
of the file read into a buffer.

* -keystrokes <CYCLE>
Creates a keystrokes file. If you specify -keystrokes, Emacs creates or overwrites,
in your home directory, a file named _emacs.terminal_name, which in some cases
has a numeric suffix following terminal_name. This file contains the sequence of
keystrokes you type during an Emacs session. (Keystrokes are control sequences that
you issue to give requests and all characters that you insert into a buffer.) You can apply
a keystrokes file to a backup file to recover from editing mistakes, or to reinstate
changes you made to a file that you were unable to save. By default, Emacs does not
create a keystrokes file.

Note: When you invoke Emacs with the -keystrokes argument, the keystrokes
file for your current Emacs session overwrites the keystrokes file for your
previous Emacs session except when the keystrokes file names do not match
because of terminal name or suffix differences. Such differences occur when you
are in a subprocess, are logged in on a different physical terminal, or have begun
a new OpenVOS login session on a system that uses terminal servers or window
terminal software. See the VOS Emacs User’s Guide (R093) for detailed
2-412

emacs
information on the situations in which Emacs creates multiple keystrokes files
and for information on determining which keystrokes file to apply.

* -keystrokes_dir keystrokes_path_name
Specifies the name of the directory in which the keystrokes files will be stored when
you give the -keystrokes argument. By default, Emacs stores keystrokes files in the
user’s home directory. You cannot give this argument without also giving the
-keystrokes argument.

Specifying the -keystrokes_dir argument is especially useful in situations in which
Emacs creates multiple keystrokes files, since it enables you to specify the name of the
directory in which to store the keystrokes file for a particular Emacs session.

* -flow_control <CYCLE>
Enables Emacs to recognize the default output flow characters defined for your
terminal. For most terminals, these are <CTRL>-S and <CTRL>-Q. By default, Emacs ignores
output flow control, making the flow-control characters available for use.

* -nls <CYCLE>
Enables an Emacs mode that handles special character sets, such as Chinese, kanji,
katakana, or hangul, which use multibyte sequences to represent a single character.
When National Language Support (NLS) mode is enabled, Emacs treats these
multibyte sequences as an indivisible unit. When NLS mode is disabled, Emacs
displays shifted characters in hexadecimal format, and editing requests operate on
individual bytes. By default, Emacs checks your process language to determine the
appropriate setting. NLS mode is enabled if the character set of the language is
simplified_chinese, chinese1, chinese2, kanji, katakana, hangul, or
user_dbcs. For any other process language, NLS mode is disabled.

* -dictionary dictionary_path_name
Specifies the user dictionary to be used with the check_spelling request. By default,
if you give the check_spelling request, Emacs looks for a dictionary with the path
name (home_dir)>user_dictionary.

* -organization organization <CYCLE>
Specifies one of the following types of file organization for the new file.

 sequential
 stream
 relative
 fixed

By default, the command creates a sequential file.

* -record_size record_size
Specifies the maximum record size, in bytes, when creating a file. The record_size
is a value from 1 to 32,767. The command ignores this value for sequential and stream
files.
OpenVOS Commands Reference Manual (R098) 2-413

emacs
* -character_set character_set <CYCLE>
Specifies one of the following default character sets to be assigned to the file.

 none
 ascii
 latin_1
 latin_9
 kanji
 katakana
 hangul
 simplified_chinese
 chinese1
 chinese2
 user_dbcs

By default, a value of none is assigned to the file, indicating no default character set.
Specify a character set only for a fixed, relative, sequential, or extended sequential file.

* -shift_mode shift_mode <CYCLE>
Specifies the shift combinations allowed in the new file. Possible values for
shift_mode are:

 none
 locking
 single
 all

By default, the command assigns the value none. This argument is ignored when
-character_set is none. By default, both single- and locking-shift combinations
(all) are allowed. If the shift mode is locking or all, file data is stored as compactly
as possible at the expense of execution speed. For more information on shift modes, see
the National Language Support User’s Guide (R212).

* -pathname_style style_name <CYCLE>
Determines whether Emacs interprets path names as POSIX-style (slash-separated or
greater-than-separated) path names or as OpenVOS-style (greater-than-separated) path
names. Possible values for style_name are posix or vos. By default (vos), Emacs
interprets all path names as OpenVOS-style path names.

This argument applies to all input path names, whether on the command line, given to
prompts, or processed by the <ESC><TAB> completion action. It also applies to the path
names that are arguments to the -dictionary, -start_up_path, and
-keystrokes_dir arguments. This argument has no effect on output path names;
Emacs always displays OpenVOS-style path names.

* -compatibility method_name <CYCLE>
Determines whether Emacs commands and mode settings are initialized to their
“traditional” values (that is, GNU Emacs values) or to OpenVOS-specific values.
Possible values are vos or traditional. By default, Emacs initializes its commands
and mode settings to OpenVOS-specific values.
2-414

emacs
Explanation
The emacs command invokes the Emacs text editor. Once you invoke the emacs command,
your process is at the Emacs editor request level. At request level, you can issue any of the
requests described in this manual. To return your process to command level, issue the quit
request by pressing the <ESC> key and then the <Q> key.

When Emacs creates a new file (for example, with the write_file or write_region
request), it uses the values specified by the -organization, -record_size,
-character_set, and -shift_mode arguments to create the file with the specified
attributes.

If the file already exists, Emacs retains the existing attributes of the file. If Emacs cannot
create a file of the specified type, it displays an error and prompts you for a response with the
following:

Invalid shift mode.
Can’t make file. Make sequential file? (yes, no)

If you type Yes, a sequential file with a character set of none and a shift mode of none is
created (the defaults). If you type no, the request is aborted.

When Emacs writes out a buffer that contains NLS characters, it overrides a request to create
a stream file; instead, it creates a sequential file with a character set of ascii and shift mode
of all.

A fixed file that has a default character set must specify a shift mode of none, indicating that
no shift characters are allowed.

Using Emacs on Flow-Controlled Terminals
Some ASCII terminals generate output flow-control characters to regulate the data-flow rate
from the host computer. These terminals send the ASCII characters DC3 (^S) to halt the data
flow and DC1 (^Q) to resume the data flow.

If you are using Emacs on a flow-controlled terminal, the default output flow characters can
cause unexpected results. If you specify the -flow_control argument, do not give editing
requests that include your flow-control characters. If you do not specify the -flow_control
argument and your terminal sends these characters, simply cancel any inappropriate prompts
that Emacs issues.

The Emacs text editor accepts ^S for the search request and ̂ Q for the quit request. When
you select the emacs command -flow_control argument, the Stratus hardware interprets
these requests as instructions to halt or resume the sending of data. Therefore, to avoid this
conflict, issue the search request by using the keystroke sequence <ESC>-S instead of ^S.
Similarly, issue the quit request by pressing <ESC>-Q instead of ^Q.

Access Requirements
You need read access to a file in order to read it into an Emacs buffer. To write the contents
of an Emacs buffer to a file, you need modify access to the directory and write access to the
file (which can be specified in the default access list for the directory or the access list for the
file).
OpenVOS Commands Reference Manual (R098) 2-415

emacs
Related Information
See the VOS Emacs User’s Guide (R093) for a complete description of Emacs requests. See
also the descriptions of the temacs and vemacs commands.
2-416

encode_vos_file
encode_vos_file 2-

Purpose
This command encapsulates and optionally encodes OpenVOS files for transport to
non-OpenVOS systems, possibly over a non-8-bit transport medium, such as the Simple Mail
Transfer Protocol (SMTP).

Display Form

Command Line Form

encode_vos_file source_file [destination] [-encode] [-base64] [-file_is_text] [-no_header] [-no_overwrite] [-output_sequential]
Arguments* source_file Required

The path name of a file to encapsulate/encode. You can specify only one file at a time
(star names are not allowed).

* destination
The path name of the destination. If you do not specify a suffix, the command adds a
suffix of .evf to the file. If you do not specify a value for destination, the output
file will have the same name as source_file, but with a .evf suffix. If
destination is the path name of a directory, the output file will be a file in that
directory with the same name as source_file, but with a .evf suffix.

------------------------------ encode_vos_file ------------------------------
source_file:
destination:
-encode: no
-base64: no
-file_is_text: no
-no_header: no
-overwrite: yes
-output_sequential: no
OpenVOS Commands Reference Manual (R098) 2-417

encode_vos_file
* -encode <CYCLE>
Encodes the output file in the UNIX uuencode format. This argument is useful when
you must transfer a binary file using a method that does not allow transmission of
binary data. By default (no), the command does not encode the output file in the
uuencode format.

The output format is a stream file composed of records, each of which contains 61
printable characters. Some Internet mail servers may still corrupt uuencoded files,
because the character set, although printable, includes punctuation characters that mail
servers rarely filter. Because of this, the base64 encoding scheme is recommended for
use with Internet mail applications. Using the uuencode format increases the size of
the output file by 38 percent

* -base64 <CYCLE>
If you specify -base64, the output file is encoded in the MIME base64 format. MIME
(Multipurpose Internet Mail Extensions) is a standard developed for Internet mail
transmission. Base64 is the MIME standard for transmission of binary data in mail
messages.

The output format is a stream file composed of records, each of which contains 72
alphanumeric characters (plus the slash (/), plus-sign (+), and equals-sign (=)
characters). (Note that the last line may contain fewer than 72 characters.) These
characters are not corrupted by Internet mail servers, even those that perform
ASCII-to-EBCDIC conversion. Standard MIME application/octet-stream file
attachment headers are used, but encode_vos_file does not produce a full email
message (for example, one with subject lines). Base64 encoding increases the size of
the output file by 33 percent.

* -file_is_text <CYCLE>
Specifies that input files are handled like stream files, and does not write encapsulation
information. Specifying this argument causes all OpenVOS format information to be
lost, but the output file retains the OpenVOS header information.

* -no_header <CYCLE>
When specified with the -file_is_text argument, converts simple OpenVOS
sequential text files to stream format for transfer to non-OpenVOS systems.

* -no_overwrite <CYCLE>
Specifies that the command should not overwrite existing files that have the same
names as those being encapsulated/encoded. By default (the value yes), the command
silently overwrites existing files that have the same names as those being
encapsulated/encoded.

* -output_sequential <CYCLE>
Allows you to transmit, via remote_request, a file that was compressed by the gzip
utility. Otherwise, remote_request (that is, put_file and get_file) cannot
transmit stream files over the RSN when either side is running a release earlier than
VOS Release 12.

If you also specify the -encode or -base64 argument, the command performs
encoding, but the output file’s organization is sequential instead of stream. The output
2-418

encode_vos_file
format is the same as the encoded stream file: a series of records, each of which
contains 61 (with -encode) or 72 (with -base64) printable characters. The resulting
file can be transmitted by remote_request, rsn_transfer, email, or any method
that accepts an ASCII sequential file.

If you specify -output_sequential without specifying -encode or -base64, the
command converts the file into sequential format without encoding the data. The input
data stream is segmented into records that are laid into a sequential file without
translation. The output format is a sequential file composed of 61-byte records
containing binary data. The resulting file can be transmitted by remote_request,
rsn_transfer (use the -binary argument), or any method that accepts a sequential
file containing binary data. This processing increases the file size by approximately 8%
percent. Compare this method of processing to the following:

 -encode (stream), which increases file size by 38 percent
 -encode (sequential), which increases file size by 46 percent
 -base64 (stream), which increases file size by 33 percent
 -base64 (sequential), which increases file size by 41 percent

Explanation
The encode_vos_file command encapsulates (if necessary) and optionally encodes a
non-extent OpenVOS file with the sequential, stream (but not 64-bit stream), relative, or fixed
file format so that it can be transported through non-OpenVOS systems without loss of the
OpenVOS file-format information. If you specify an extent file, it becomes a non-extent file
after it is decoded and therefore might not be able to grow large enough to hold the contents
of the original extent file. In addition, any attributes associated with the original file (for
example, open options, implicit locking, and so on) are not present on the decoded file.

Related Information
See the description of the decode_vos_file command.
OpenVOS Commands Reference Manual (R098) 2-419

encrypt
encrypt 2-

Purpose
 This command converts cleartext data into ciphertext data.

Display Form

Command Line Form
encrypt input_file [output_file]

-password string [-delete] [-suppress_password]
Arguments* input_file Required

The name of the file to be encrypted. This file can have any file organization
(sequential, relative, fixed, or stream), and it can have the pipe attribute. However, it
cannot have any indexes.

* output_file
The name of the file to contain the encrypted data. This file has the same file
organization as input_file. If input_file has the pipe attribute, output_file
has it, too. If you specify neither output_file nor the -delete argument, the
command asks if you want to replace input_file with an output_file of the same
name. Type y or Y at the prompt if you want to replace it. If you type n or N at the
prompt, input_file is not encrypted.

* -password string Required
A string that forms the encryption key. The string must have a length of one to eight
characters and can contain any character.

Note: Abbreviations are not expanded.

 ----------------------------------- encrypt ----------------------------------
 input_file:
 output_file:
 -password:
 -delete: no
 -suppress_password: no
2-420

encrypt
* -delete <CYCLE>
Suppresses the prompt that occurs if you specify the same file for both input_file
and output_file, or if output_file already exists. By default (the value no), the
command displays this prompt.

* -suppress_password <CYCLE>
Prevents the command from saving an encrypted form of the password into
output_file. By default (the value no), the command saves this information into
output_file.

Explanation
The encrypt command converts cleartext data into ciphertext data. The command reads the
input file, encrypts the contents of the input file using the Data Encryption
Algorithm (DEA) in cipher feedback 8 mode, and writes the encrypted data into the output
file. By default, the output file replaces the input file.

By default, the encrypt command writes a value computed from the encryption key into the
first record of the output file so that the decrypt command can check it. You can override
this behavior by using the -suppress_password argument when the file is encrypted. In
this case, the command does not write any information about the encryption key into the
output file. If the password used to decrypt the file does not match the password used to
encrypt the file, the decrypted file does not match the original cleartext input file.

You can prevent the encrypt command from writing the encrypted form of the password
into the output file by specifying the -suppress_password argument. For a fixed or stream
file, this argument suppresses writing the first record that contains the password. For a relative
or sequential file, this argument writes a zero-length first record.

When you encrypt a fixed or stream file using the -suppress_password argument, you
must also use this argument when decrypting the file.

When you encrypt a sequential or relative file using the -suppress_password argument,
the initial zero-length record informs the decrypt command that no password is available.
Therefore, you are not required to specify the -suppress_password argument when you
are decrypting sequential or relative files.

If you use the -suppress_password argument to encrypt a file, and then you accidentally
use the incorrect password to decrypt the file, and finally, you overwrite the input file with the
(incorrectly) decrypted output, you must re-encrypt the file with the incorrect password, and
then decrypt it with the correct password.

The encryption and decryption algorithm is entirely dependent on the user-specified
password; no other information is used during the encryption or decryption process.

Access Requirements
You need read permission on the input file, and you need modify access and default write
permission on the directory containing the output file.
OpenVOS Commands Reference Manual (R098) 2-421

encrypt
Related Information
See the decrypt command. Also, for more information about DEA support, see the
following files:

 >system>doc>dea.doc
 >system>doc>tdea.doc
2-422

enforce_region_locks
enforce_region_locks 2-

Purpose
 This command turns mandatory region locking on or off for one or more stream files.

Display Form

Command Line Form

enforce_region_locks file_name [state]
Arguments* file_name Required

The name or star name of a stream file or files for which you want to enforce region
locks. The command sets a mandatory locking switch for all stream files with matching
names.

* state <CYCLE>
The state of the region locking switch for the specified files, which can be either on or
off. By default, enforce_region_locks sets a mandatory locking switch to on for
the specified files.

Explanation
The enforce_region_locks command turns mandatory locking on or off for all stream
files whose names match file_name.

When the mandatory locking switch for a stream file is set to on, the operating system
enforces all region locks that are currently in effect for that file. You cannot read a region that
has been write-locked by another process, and you cannot write a region that has been
read-locked by another process.

You do not have to lock a region of a stream file that you want to read or write if a mandatory
locking switch for the file is set to on. However, if you do lock the region, another process
cannot access that region to perform an I/O operation that conflicts with the lock state of the
region.

---------------------------- enforce_region_locks ------------------------------
file_name:
state: on
OpenVOS Commands Reference Manual (R098) 2-423

enforce_region_locks
When the mandatory locking switch for a stream file is set to off, advisory locking is in
effect. Each process making a call to a region must check for appropriate lock states before
performing an I/O operation.

You can invoke this command only for use on stream files.

Examples
The following command disables mandatory region locking for the stream file
make_report.out.

enforce_region_locks make_report.out off

Related Information
For a complete list of file attributes, see the description of the display_file_status
command. For information on region locking, see the description of the s$lock_region
subroutine in the OpenVOS Subroutines manuals.
2-424

fortran
fortran 2-

Purpose
This command compiles an OpenVOS FORTRAN source module.

Display Form

----------------------------------- fortran ------------------------------------
source_file_name:
-define:
-processor: default
-mapping_rules: default
-list: no -xref: no
-table: no -production_table: no
-optimize: yes -check: no
-mapcase: no -profile: no
-cpu_profile: no -statistics: no
-fixedoverflow: no -silent: no
-full: no -fortran66: no
-short_logical: no -short_integer: no
-recursive: no -optimization_level: 3
-check_uninitialized: no
OpenVOS Commands Reference Manual (R098) 2-425

fortran
Command Line Form

fortran source_file_name [-define variable_name...] [-processor processor_string] [-mapping_rules mapping_string] [-list] [-xref] [-table] [-production_table] [-no_optimize] [-check] [-mapcase]

¢ £
[-statistics] [-fixedoverflow] [-silent] [-full] [-fortran66] [-short_logical] [-short_integer] [-recursive] [-optimization_level number] [-check_uninitialized]

Arguments* source_file_name Required
The path name of an OpenVOS FORTRAN source module.

* -define variable_name
Defines variables to be used by the preprocessor. These variables are used during the
preprocessor phase of compilation. Preprocessor variables can contain letters, digits, or
the underline character (_), in any position. (See the Explanation section of this
command description or the description of the preprocess_file command for
details.)

* -processor processor_string <CYCLE>
Specifies the processor on which the program module (.pm) is to run. The display form
for the -processor argument restricts the values that you can choose to values for the
processor family of the current module.

-profile
-cpu_profile
2-426

fortran
If the current module uses a processor from the IA-32 family, or if you specify, on the
command line, the -processor argument with the pentium4 value, the allowed
processor_string values are as follows:

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors. To determine the default value, issue the display_error
m$default_processor command. By default, the compiler produces code intended
for the processor specified by default.

* -mapping_rules mapping_string <CYCLE>
Specifies one of the following data alignment rules for a given compilation.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. To determine the default value, issue the display_error
m$default_mapping command. By default, the compiler uses the data alignment
rules specified by default. (See the Explanation section of this command description
for details.)

* -list <CYCLE>
Creates a compilation listing. A compilation listing shows all source statements from
the source module and include files, as well as a summary of all data definitions and
the path names of include files used. You need not specify -list if you specify -full
or -xref, since those arguments create a compilation listing in addition to other
listings. By default, the compiler does not generate a compilation listing.

* -xref <CYCLE>
Creates a compilation listing and an alphabetized cross-reference listing of all data
actually referenced in the program. By default, the compiler does not generate a
cross-reference listing.

* -table <CYCLE>
Creates a symbol table in the object module, for use by the debugger. The compiler also
performs some related operations. (See the Explanation section of this command
description for details.) In addition, -table suppresses interstatement code
optimization, which results in code that is slower than normal. Specifying -table sets
the maximum optimization level to 1, unless you explicitly set the level to 0. By default,
the compiler does not create a symbol table, suppress interstatement code optimization,
or perform any related operations.

Note: A symbol table greatly increases the size of an object module.
OpenVOS Commands Reference Manual (R098) 2-427

fortran
If you specify both -table and -production_table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -production_table <CYCLE>
Creates a symbol table in the object module, for use by the debugger in a production
environment. Only variables actually referenced in the program are placed in the
symbol table. The compiler also performs some related operations. (See the
Explanation section of this command description for details.) Unlike -table,
-production_table does not suppress interstatement code optimization. As a
result, the set and continue requests of the debug command can lead to
unpredictable results. Also, the contents of variables in registers cannot be accurately
displayed with the display request of the debug command. In addition, if the
optimization level is greater than 2, the contents of any variables may not be accurately
displayed with the display request of the debug command. Specifying
-production_table sets the maximum optimization level to 3, unless you explicitly
specify some other value. By default, the compiler does not create a symbol table,
suppress interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -production_table and -table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -no_optimize <CYCLE>
Generates the object code without optimizing it. Optimization produces more compact
object code by removing unnecessary or redundant computations. Specifying
-no_optimize sets the optimization level to 0. This overrides any other specification
of the optimization level. By default, the compiler optimizes the object code.

* -check <CYCLE>
Checks for out-of-bounds array subscripts and out-of-range substring references when
the object module runs. The compiler checks while compiling and inserts code to check
further when the program is run. By default, the compiler does not check or insert
checking code.

* -mapcase <CYCLE>
Interprets all uppercase letters, except those in character-string and Hollerith constants,
as lowercase letters. If you specify -mapcase, and the source module contains an
external variable name or entry name, you may not be able to bind the resulting object
module. (See the Explanation section of this command description for details.) By
default, the compiler distinguishes between uppercase and lowercase letters.

* -profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement is executed when the program runs. (See the description of the profile and
add_profile commands.) By default, the compiler does not insert the counting code.
You cannot specify both -profile and -cpu_profile in the same command.
2-428

fortran
* -cpu_profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement executes, the amount of CPU time (in milliseconds) spent executing each
statement, and the number of page faults taken executing each statement when the
program runs. (See the description of the profile and add_profile commands.) By
default, the compiler does not insert the counting code. You cannot specify both
-cpu_profile and -profile in the same command.

Note: The code inserted by this argument uses much more CPU time, but
provides more useful information, than the code inserted by -profile.

* -statistics <CYCLE>

Displays the following statistics about the compilation as it proceeds.

 version number of the compiler
 elapsed CPU time
 elapsed real time
 number of page faults taken
 amount of storage used

You can specify -statistics to see the progress of the compilation and to determine
the phase in which an error occurs. If the compiler produces a listing, it puts the
statistics in the listing. By default, the compiler does not display compilation statistics.

* -fixedoverflow <CYCLE>
Generates code to check for fixed-point arithmetic overflow when the program is run
and to signal the fixedoverflow condition when it occurs. By default, the compiler
does not detect most fixedoverflow exceptions. In this case, if a fixedoverflow
condition occurs, the high-order bits that caused the overflow are lost, and the
remaining bits appear as they normally would in the result. However, note that code
generated for the exponentiation operator (**) may check for fixedoverflow
exceptions even if you do not specify -fixedoverflow.

* -silent <CYCLE>
Suppresses the warning messages of severity-1 or severity-0 errors on your terminal
during compilation. The compiler, nevertheless, puts the messages in an error file and
in any listing it produces. By default, the compiler writes all error messages on your
terminal.

* -full <CYCLE>
Creates from the compiled object code an assembly listing, with added comments, in
addition to a compilation listing (see the -list argument). The compiler uses a
disassembler to create the listing. By default, the compiler does not create an assembly
language listing.

* -fortran66 <CYCLE>
Requires that each do-loop be executed at least once. By default, the compiler does not
require that do-loops be executed.
OpenVOS Commands Reference Manual (R098) 2-429

fortran
* -short_logical <CYCLE>
Determines the length of logical data items whose length is not explicitly declared.
Length is 2 bytes with -short_logical and 4 bytes with -no_short_logical. By
default, the length is 4 bytes.

* -short_integer <CYCLE>
Determines the length of integer data items whose length is not explicitly declared.
Length is 2 bytes with -short_integer and 4 bytes with -no_short_integer. By
default, the length is 4 bytes.

* -recursive <CYCLE>
Allocates dynamic storage for some variables, thus allowing recursion for subroutines
and limited recursion for external functions. (An external function cannot call itself, but
it can call another procedure that calls an external function.) By default, the operating
system allocates all variables in static storage and disallows recursion.

* -optimization_level number <CYCLE>
Specifies the degree of optimization. The possible values are 0, 1, 2, 3, and 4. (See the
Explanation section of this command description for details.)

* -check_uninitialized <CYCLE>
Issues diagnostics for all references to uninitialized variables if you also specify an
optimization level of 3 or 4. If you specify this argument and an optimization level that
is less than 3, the compiler issues an error. This argument is useful when verifying new
code or checking for possible bugs, but it can return misleading diagnostics, as in the
case of variables that are initialized within a conditional statement. The categories of
uninitialized variables diagnosed by the compiler vary, depending on whether you
choose both -check_uninitialized and an optimization level of at least 3, or
choose only an optimization level of at least 3.

Explanation
The fortran command compiles an OpenVOS FORTRAN source module into an object
module.

The name of the source module must have the suffix .fortran; you can either supply or omit
the suffix when you give source_file_name. The compiler generates an object module,
puts it in your current directory, and names it. The name of the object module is the name of
the source file with the suffix changed from .fortran to .obj.

When you are compiling programs for an ftServer module at all optimization levels, the
module on which you are compiling must have at least 30,000 pages of paging partition
available to avoid running out of virtual memory. In addition, the module on which you are
compiling should have 64MB of physical memory available to achieve optimal compiler
performance.

Using the -define Argument
The -define argument defines variables to be used during the preprocessor phase of the
compilation. For example, if you specify the following on the command line, the preprocessor
2-430

fortran
variables var_a and var_b will be initially defined during the preprocessing phase of the
compilation:

fortran prog1 -define var_a var_b

You use preprocessor variables with preprocessor statements to perform conditional
compilation on a program. Conditional compilation enables you to switch on or off various
statements in a program. This is useful, for example, if you want your program to compile
different lines of source code on different processors. There are six preprocessor statements.

 $define
 $undefine
 $if
 $else
 $elseif
 $endif

Preprocessor statements must begin in the first column of the source program. Therefore,
indentation of nested $if statements is not allowed.

A preprocessor statement must be contained on a single line. A line containing a preprocessor
statement cannot contain comments or parts of the source language. (An exception is the
$endif statement, which ignores any text following it on the line, thus allowing you to
comment on the source code.)

For more information on the preprocessor, see the description of the preprocess_file
command.

Using the -processor Argument
The -processor argument allows you to specify the processor on which the program is to
run. The -processor argument also allows you to perform cross-compilation on a source
module if the FORTRAN cross compiler is available on your system. Cross-compilation
occurs when a compiler running on one processor family translates a source module into
object code for another processor family. The IA-32 cross compiler generates code to run on
ftServer modules. Specify the value pentium4 for the -processor argument to target an
ftServer module.

Depending on the value specified in the -processor argument, the compiler automatically
defines one preprocessor variable for the processor family and one or more preprocessor
variables corresponding to the processor type(s), as shown in Table 2-21.

21

If you specify -processor pentium4 on the command line, the preprocessor variables
__PENTIUM4__, __IA32__, and __i386 are defined.

Table 2-21. Predefined Preprocessor Variables

Processor Value Preprocessor Variable

default Varies, depending on the default system processor

pentium4 __PENTIUM4__, __IA32__, and __i386
OpenVOS Commands Reference Manual (R098) 2-431

fortran
If the value specified in the -processor argument indicates the IA-32 processor, the
maximum number of bytes available for each function’s initial stack frame is 2,147,483,584
bytes.

The amount of automatic storage you can actually declare is somewhat less than these limits
because temporary variables generated by the compiler also count towards the limit. Note that
although the OpenVOS FORTRAN compiler supports extremely large values (such as
2,147,483,646), the operating system does not support them.

Using the -mapping_rules Argument
The -mapping_rules argument allows you to specify the data alignment rules for a given
compilation. The value default indicates the system-wide default. The default is
site-settable. The value shortmap specifies that the shortmap alignment rules are to be used
for the source module. The value longmap specifies that the longmap alignment rules are to
be used for the source module. The values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively, except
that they also diagnose alignment padding within structures. For example, if you specify
default/check, the compiler displays a severity-0 message stating how many bytes of
padding exist between members of a structure. The %options mapping directives override
-mapping_rules values, but alignment padding within structures is still diagnosed if you
specify one of the checking values.

Using the -full, -list, or -xref Argument
If you specify the -list, -full, or -xref argument, the compiler creates a compilation
listing file and puts it in your current directory. The name of the compilation listing is
source_file_name.list. The -full argument creates an assembly language listing in
addition to a program listing. The -xref argument creates a list of cross-references in
addition to a program listing.

Using the -table or -production_table Argument
If you specify the -table argument, the compiler creates a symbol table, and allocates
storage and generates addresses for all external references, including any that are not used.
Symbol-table capacity is 2,147,483,647 nodes. The compiler generates internal subroutines
that calculate size, offset, and bound expressions that determine the characteristics of
adjustable data. This allows the OpenVOS Symbolic Debugger to display and modify
variable-length data according to its current length. In addition, the compiler suppresses
interstatement code optimization.

If you specify the -production_table argument, the compiler performs all of the same
operations that it performs for -table, except that it does not suppress interstatement code
optimization, and only variables actually referenced in the program are placed in the symbol
table (most unreferenced variables are from include files). Code produced with -table
executes more slowly than code produced with -production_table. Code produced with
-production_table can yield unpredictable results if you invoke the OpenVOS Symbolic
Debugger set and continue requests.

Using the -mapcase Argument
When you compile a source module using the -mapcase argument, and the module contains
an external variable name or entry name with one or more uppercase letters, you may not be
able to bind the resulting object module. If the binder encounters a reference to the original
2-432

fortran
name (for example, in a binder control file), it will not recognize the original name and its
lowercase version as the same name.

Using the -recursive Argument
If you select the -recursive argument, the compiler allocates some variables as dynamic
variables. Variables in dynamic storage lose their values when the containing procedure exits,
and new storage is allocated at each invocation of the procedure. Variables in static storage,
by contrast, are allocated storage only once, at the first invocation of the external procedure,
and maintain their values until the program terminates. The -recursive argument allocates
in dynamic rather than static storage all variables in the program module except the following:

 those that appear in common, data, or save statements, or are equivalenced to
variables in those statements

 those that are initialized in type-statements, or are equivalenced to variables initialized
in type-statements

If you omit the -recursive argument, the operating system allocates all variables in static
storage and disallows recursion. If a save statement that specifies no data elements appears
in an external procedure, it forces all variables in the procedure to be static. This overrides the
recursive argument and disallows recursion for that procedure.

Recursion for external procedures is an OpenVOS FORTRAN extension.

Optimizations for ftServer Modules
The -optimization_level argument allows you to optimize programs at different levels.
When you are compiling a source module to run on ftServer modules, the levels of
optimizations are 1, 2, 3, and 4. Specifying optimization level 3 or 4 causes the compiler to
perform level 3 optimizations.

If you specify optimization level 0, the compiler performs the following optimizations.

 local register allocation
 elimination of unreachable code

If you specify optimization level 1, the compiler performs all level 0 optimizations plus the
following other local optimizations.

 local pattern replacement
 short-circuit evaluation of Boolean expressions
 recognition of algebraic identities
 constant folding
 local combination of common subexpressions within a statement
 peephole optimizations within a single statement
 result incorporation
OpenVOS Commands Reference Manual (R098) 2-433

fortran
If you specify optimization level 2, the compiler performs all level 1 optimizations plus the
following global optimizations.

 branch retargeting
 global combination of common subexpressions
 removal of invariant expressions from loops
 subsumption
 peephole optimizations across statement boundaries
 global register allocation

If you specify optimization level 3, the compiler performs all level 2 optimizations plus the
following global optimizations.

 constant propagation
 removal of invariant assignments from loops
 strength reduction
 linear test replacement
 elimination of dead assignments
 elimination of useless loops
 check for uninitialized variables
 elimination of dead code and dead stores
 inline expansion
 instruction scheduling

Using the -no_optimize, -table, or -optimization_level Argument
The level of optimization is determined by the arguments -no_optimize, -table, and
-optimization_level. Specifying -no_optimize sets the optimization level to 0.
Specifying -table sets the level to 1, unless you explicitly set the level to 0. The
-optimization_level argument sets the level to any of the permitted levels: 0, 1, 2, or 3.
The compiler sets the actual level to the lowest level set by any of the three arguments. By
default, the level is 3.

Note: If you compile a program with either the -profile or -cpu_profile
argument, you must specify an optimization level lower than 3. Otherwise, -profile
or -cpu_profile might not return accurate information, since high optimization
levels can cause code to be moved from one statement to another.

Using the -check_uninitialized Argument
The optimization level for a source module also affects the functionality of the
-check_uninitialized argument.

 If you select the -check_uninitialized argument and an optimization level of at
least 3, the compiler diagnoses all instances of uninitialized variables within the source
module. In this case, the compiler diagnoses variables that are initialized as part of code
executed conditionally.

 If you do not select the -check_uninitialized argument but do select an
optimization level of at least 3, the compiler diagnoses instances of variables within the
source module that it knows are uninitialized. In this case, the compiler does not
diagnose variables that are initialized as part of code executed conditionally.
2-434

fortran
 If you select an optimization level of less than 3, the compiler issues an error and does
not diagnose uninitialized variables within the source module even if you select
-check_uninitialized.

Interpreting Compiler Diagnostics
If the compiler discovers any errors in your source module, it displays an error message on
your terminal. Severity-1 and severity-0 messages are not displayed on your terminal when
you specify the -silent argument. The compiler also creates an error file named
source_file_name.error in the current directory and writes the error messages to the
file. The compiler also appends error messages to a compilation listing if it produces one. The
system deletes any .error file if a subsequent compile to the same source file is successful
(contains no errors).

The OpenVOS FORTRAN compiler diagnoses five types of errors.

SEVERITY 0: Advice
SEVERITY 1: Warning
SEVERITY 2: Correctable error
SEVERITY 3: Uncorrectable error: translation can continue
SEVERITY 4: Uncorrectable error: translation cannot continue

The text of the error message explains the cause of the error.

A severity-0 error, although valid FORTRAN, indicates that improvement is possible, usually
in the area of performance. The source module is syntactically correct, so the compiled object
module can be bound and executed, but probably with less than optimum efficiency.

A severity-1 error, although valid FORTRAN, is probably a programming error. Since the
source module is syntactically correct at the point of a severity-1 error, however, the compiler
continues to compile the source. The compiled object module can be bound and executed, but
the program probably will not perform as expected.

A severity-2 error is invalid FORTRAN, but the compiler can reinterpret the source in such a
way that it can continue to compile the program. The compiler proceeds as if the faulty code
were replaced with the most likely syntactically correct code. The compiled object module
can be bound and executed, but it probably will not perform as expected.

A severity-3 error is invalid FORTRAN, and the compiler cannot reinterpret the source code
in such a way that it can continue to compile the program into a usable object module.
Nevertheless, the compiler continues to process the program to detect additional errors.
However, the object module is not created.

A severity-4 error is invalid FORTRAN, and the compiler cannot reinterpret the source code
in such a way that it can continue to process the program after the point of the severity-4 error.
The object module is not created.

Note: If the compilation results in more than 100 errors, in any combination (excluding
severity-0 errors), compilation terminates.

The compiler always overwrites an existing object module having the same name as the
object module it produces.
OpenVOS Commands Reference Manual (R098) 2-435

fortran
Access Requirements
You need read access to the source module to compile it. You need modify access to the
directory from which you are issuing the compile command, in which the .obj file will be
created.

Related Information
See the VOS FORTRAN Language Manual (R013) for a complete description of the
OpenVOS FORTRAN language.
2-436

get_external_variable
get_external_variable 2-

Purpose
This command returns the assigned value of an external static variable within a program
module.

Display Form

Command Line Form

get_external_variable external_variable_name -in program_module_name [-type string]
Arguments* external_variable_name Required

The name of the external variable whose value is to be returned.

* -in program_module_name Required
The path name of the program module containing the external variable. The program
module can have either a fixed or stream file organization.

* -type string <CYCLE>
Specifies the data type of the variable. The possible values are integer, char,
char_varying, or bit1. The default is char. The length of the target is contained in
the program module. Integers must be signed and either 16 or 32 bits.

Explanation
The get_external_variable command returns the value of an external static variable
within a program module. The variable must be defined as static external within the program.
You must specify the variable name as it is defined in the program. You must also specify the
program. The type must be the same as the type of the assigned value.

For unshared variables in tasking programs, the value from task one is returned.

---------------------------- get_external_variable ---------------------------
external_variable_name:
-in:
-type: char
OpenVOS Commands Reference Manual (R098) 2-437

get_external_variable
Examples
The following command displays the value of the integer variable record_size, from the
program monthly_sales.

get_external_variable record_size -in monthly_sales -type
integer

Related Information
To set the current value of an external static variable within a program module, use the
set_external_variable command.
2-438

give_access
give_access 2-

Purpose
This command gives users access to files, directories, and devices by adding entries in the
access control lists of files, directories, and devices.

Display Form

Command Line Form

give_access access path_names . . . [-user user_names . . .]
Arguments* access <CYCLE> Required

The access you give. The give_access command assigns this access type to users.
The possible types of access for files are execute, read, write, and null. The
possible types of access for directories are status, modify, and null. The possible
types of access for devices are read, write, and null.

* path_names Required
One or more names or star names of files, directories, or device access lists. The path
name for device access lists is >system>acl>access_list_name. The
give_access command adds entries in the access control list of each matching file,
directory, or device.

* -user user_names
Specifies one or more user names or star names. The give_access command adds
entries in the access control lists for these user names. By default, the command uses
your user name.

Explanation
The give_access command gives users access to files, directories, and devices by adding
entries in the access control lists of files, directories, and devices. An access control list is a
table of user-name access-type pairs. The command derives the pairs it adds from the -user
and access arguments.

-------------------------------- give_access -----------------------------------
access: ead
path_names:
-user: current_user

r

OpenVOS Commands Reference Manual (R098) 2-439

give_access
The path_names argument for device access lists contains the file name
access_list_name. This file name matches the value for the access_list_name field
for each device in a set in the devices.tin file. The access_list_name file contains the
access control list (ACL) for a device or set of devices. The operating system creates the ACL
from the devices.tin file. A user can then add user names to the ACL by issuing the
give_access command. The system then automatically updates the ACL. If the
access_list_name field for a device does not have a value, no ACL is created, and all users
can access that device.

A user name is a name with two components, a person name and a group name, which are
separated by a period. If either or both components are asterisks, the user name is called a
user star name.

A user name can appear only once in an access control list. However, more than one user star
name can represent an individual user, and each can have a different kind of access paired
with it. The following rules define a user’s access.

 Each time the give_access command adds an entry to an access control list, it sorts
the list. It puts the most specific entries ahead of more general entries. Specific user
names appear before user star names. User star names with asterisks only in the second
component are next. User star names with asterisks only in the first component follow
those. The user star name *.* is last.

 When a user tries to use the file, directory, or device with this access control list, the
operating system searches the list in order. The access associated with the first entry
that matches the user’s user name is the user’s access.

There are four types of access to a file.

 Null access denies all access by a user to a file.

 Execute access allows a user to execute a program module or a command macro but not
to read or write it.

 Read access allows a user to read or execute a file, if it is executable, but not to write it.

 Write access gives a user full access to the file.

There are three types of access to a directory.

 Null access denies all access by a user to a directory.

 Status access allows a user to display information about the directory, using commands
such as list and display_file_status, but not to modify the directory by
creating and deleting objects.

 Modify access gives a user full access to the contents of a directory, including the
ability to create, delete, and rename objects.
2-440

give_access
There are three types of access to a device.

 Null access denies all access by a user to a device.
 Read access allows a user to use a device for reading, but not writing, operations.
 Write access allows a user to use a device for reading or writing operations.

Note: A device requires a user to have write access to log in to that particular device.
If a user tries to log in to a device but does not have access to it, an error message is
displayed.

Access Requirements
To add an entry in the access control list of a file, you need modify access to the directory
containing the file.

To add an entry in the access control list of a directory, you need modify access to the
directory containing the directory.

To add an entry in the access control list of a device, you need modify access to the directory
containing the device access lists (>system>acl).

Examples
Example 1.

The following is a user name for a particular user.

Smith.Sales

This name specifies the unique user Smith.Sales.

The following are user star names.

*.Sales
Smith.*
.

The first name matches all user names of members of the group Sales; the second matches
all user names of the user with person name Smith; the last matches all user names.

The give_access command sorts the access control list entries of the four user names into
the following order.

Smith.Sales
*.Sales
Smith.*
.

The user Smith.Sales has the access in the access control list entry containing the user
name Smith.Sales.
OpenVOS Commands Reference Manual (R098) 2-441

give_access
The user Smith.Accounting has the access in the list entry containing the user star name
Smith.*. The user name does not match any particular user name in the access control list,
but it does match the user star name Smith.*.

The user Jones.Sales has the access in the list entry containing the user star name
*.Sales.

The user Jones.Accounting has the access of *.*.

Example 2.

Suppose your current directory contains the files week.90-02-04, week.90-02-11,
week.90-02-18, week.90-02-25, and week.90-03-03, and you issue the following
command.

give_access read week.90-02-* -user Smith.Sales Jones.*

The command adds the following entries to the access control list of the files
week.90-02-04, week.90-02-11, week.90-02-18, and week.90-02-25.

Smith.Sales read
Jones.* read

Example 3.

Suppose the directory weekly_old in the current directory has the following access control
list.

Smith.Sales modify
Jones.* modify
*.Accounting status

The user Jones.Sales has modify access to weekly_old, because the access control list
entry Jones.* is the first match for that user name. Now suppose that you issue the following
command.

give_access null weekly_old -user Jones.Sales

The access control list now looks like this.

Jones.Sales null
Smith.Sales modify
Jones.* modify
*.Accounting status

The user Jones.Sales now has null access to weekly_old, since the access control list
entry Jones.Sales is the first entry to match the user name.
2-442

give_access
Related Information
For more information about access, see the command descriptions of display_access,
display_access_list, display_default_access_list, give_default_access,
propagate_access, remove_access, and remove_default_access. For a detailed
discussion of access, see OpenVOS Commands User’s Guide (R089) and OpenVOS System
Administration: Registration and Security (R283).
OpenVOS Commands Reference Manual (R098) 2-443

give_default_access
give_default_access 2-

Purpose
This command gives users default access to files in directories by adding entries to the default
access control lists of the directories.

Display Form

Command Line Form

give_default_access access
directory_names . . . [-user user_names . . .]

Arguments* access <CYCLE> Required
The default access you give. The possible values are null, execute, read, and
write.

* directory_names Required
One or more names or star names of directories. The give_default_access
command adds entries to the default access control list of each matching directory.

* -user user_names
Specifies one or more user names or user star names. The give_default_access
command adds entries in the default access control list for these user names. By default,
the command gives default access to the current user.

Explanation
The give_default_access command gives users default access to files in directories by
adding entries to the default access control lists of the directories.

The default access control list of a directory has the same form as the access control list of a
directory or file. It is of user-name access-type pairs. However, unlike access control lists,
which are associated with both directories and files, default access control lists are associated
only with directories. Furthermore, the access types in a default access control list are access
types to files.

----------------------------- give_default_access ------------------------------
access: ead
directory_names:
-user: current_user

r

2-444

give_default_access
A default access control list specifies the access of users to files in the directory when the
users are not covered by the files’ access control lists. When checking a user’s access to a file,
the operating system first searches the file’s access control list for a matching entry. If the user
name does not match any entry in the access control list, the operating system searches the
default access control list of the containing directory. If the user name does not match any
entry in either list, the user has undefined access to the file. Undefined access is equivalent to
null access.

When you create a directory, the operating system gives it the default access control list of its
containing directory.

See the explanation of the give_access command for an explanation of user names.

Access Requirements
To add an entry in the default access control list of a directory, you need modify access to the
directory.

Examples
The following command gives the user Smith.Sales null default access to the files in the
directory weekly_old.

give_default_access null weekly_old -user Tom_Smith.Sales

The user Smith.Sales now has null access to each file in the current directory unless the
user was explicitly given access to the file through the give_access command.

Related Information
See also the command descriptions of display_access,
display_default_access_list, give_default_access, propagate_access,
remove_access, and remove_default_access. For a complete description of access,
see OpenVOS Commands User’s Guide (R089).
OpenVOS Commands Reference Manual (R098) 2-445

handle_sig_dfl
handle_sig_dfl 2-

Purpose
The handle_sig_dfl command changes the default action of certain POSIX.1 signals.

Display Form

Command-Line Form
 handle_sig_dfl [-like string] [-sigint_like string]

Arguments* -like string <CYCLE>
Two values are permitted for string: unix and vos. The normal default
signal-handling action is to process signals as UNIX does, by exiting the program or
creating a debuggable keep file. When you specify the value vos, the default action
for the signal that creates a keep file is changed to enter OpenVOS break level.

* -sigint_like string <CYCLE>

Two values are permitted for string: unix and vos. The normal default
signal-handling action for the SIGINT signal is to process signals as UNIX does, by
exiting the program. When you specify the value vos, the default action of SIGINT is
changed to enter OpenVOS break level.

Explanation
The default behavior of some OpenVOS POSIX.1 signals is to exit the program or create a
keep module. This command changes the default behavior for the signal whose default
behavior is to create a keep file to suspend the program and enter OpenVOS break level. At
OpenVOS break level, you can do one of the following:

 resume the program
 enter the debugger
 create a keep module
 signal the reenter condition
 exit the program.

 -------------------------------- handle_sig_dfl ------------------------------
 -like: unix
 -sigint_like: unix
2-446

handle_sig_dfl
If either switch is set to vos, the SIGINT signal enters OpenVOS break level. If the -like
argument is set to vos, all signals that can be modified enter OpenVOS break level.

Some POSIX.1 signals have a default action of ignore, or continue or stop; this
command does not affect the behavior of these signals. You cannot change the default action
of unsupported signals or of the SIGSTOP and SIGKILL signals.

The new value persists for the life of the process or until it is changed again with this
command.
OpenVOS Commands Reference Manual (R098) 2-447

harvest_pc_samples
harvest_pc_samples 2-

Purpose
This command collects process information and program counter (PC) samples from an
ftServer module for a specified length of time. The command output is stored in a file which
you can analyze with the analyze_pc_samples command to evaluate the performance of
one or more program modules.

Display Form

Command Line Form

harvest_pc_samples [duration]
[-output_path path_name] [-sampling_frequency seconds] [-timing_jitter jitter] [-program_validation_period period]

 Arguments* duration Required
The length of time during which the harvest_pc_samples command collects PC
samples. Specify a value using the format HH:MM:SS, where HH is the number of hours,
MM is the number of minutes, and SS is the number of seconds. For example, if you want
to indicate a value of four and a half hours, specify the value as 04:30:00.

The minimum value you can specify is 1 second, and the maximum value is 8,760 hours
(one year).

* -output_path path_name
Specifies the path of the PC sample data file in which the command will place the
collected data. The default path name is
raw_pc_samples.current_date_and_time. The path name cannot be an
extended name.

-------------------------------harvest_pc_samples----------------------------
duration: HH:MM:SS
-output_path: raw_pc_samples.current_date_and_time
-sampling_frequency: 16
-timing_jitter: 0
-program_validation_period:
2-448

harvest_pc_samples
* -sampling_frequency seconds
Specifies the frequency, in samples per second, at which PC samples are taken from
each CPU. On ftServer modules, the minimum value you can specify is 3 samples per
second, and the maximum is 256 samples per second. The default sampling rate is 16
samples per second.

Note: Scheduler contention may not allow the harvest_pc_samples
command to sample at as fast a rate as you have specified. For example, if you
specify a value of 256, the sampling frequency may actually be only 250 samples
per second. To determine the actual sampling frequency, check the value of the
Actual Sampling Freq. field in the statistics summary and CPU usage
subsection of the report generated by the analyze_pc_samples command. For
more information, see the description of the analyze_pc_samples command.

* -timing_jitter jitter
Specifies an integer value that allows you to slightly randomize the sampling frequency
on the specified modules. You must specify an integer value of zero or greater. The
default value is zero, which keeps the sampling frequency constant. A value of 1 causes
the harvest_pc_samples command to collect data at intervals that cycle from 4
milliseconds (ms) less to 4 ms more than the specified sampling frequency. The timing
jitter is always a multiple of 4 ms. A value of 2 causes the harvest_pc_samples
command to collect data at intervals that cycle from 8 ms less to 8 ms more than the
specified sampling frequency in 4 ms increments. For example, if the
-sampling_frequency value is 32 times per second (once every 31 milliseconds),
and the -timing_jitter value is 2, and sampling occurs at the following times:

31 milliseconds - 8 ms
62 milliseconds - 4 ms
93 milliseconds + 0 ms
124 milliseconds + 4 ms
165 milliseconds + 8 ms
196 milliseconds - 8 ms
...

Note: The value of this argument does not change the value of the
-sampling_frequency argument.

* -program_validation_period period
Specifies the interval at which the harvest_pc_samples command performs
program validation. Program validation occurs when the harvest_pc_samples
command checks that the same programs are running under the same process IDs as
they were when the command last checked. Specify a value using the format
HH:MM:SS, where HH is the number of hours, MM is the number of minutes, and SS is
the number of seconds. For example, if you want to indicate a value of 30 minutes,
specify the value as 00:30:00.

If a program running under a process terminates and another program is invoked under
the same process, the changed program will affect the results of the sample. The output
of the analyze_pc_samples command lists processes that have changed programs
during the validation period. If you specify a value that is greater than the value of
duration, the command does not perform program validation. If you do not specify
OpenVOS Commands Reference Manual (R098) 2-449

harvest_pc_samples
a value for this argument, the command performs program validation at the end of the
collection period specified by duration.

Explanation
The harvest_pc_samples command invokes the OpenVOS PC Sampler at a specified
frequency, collects information about the processes running on the system, reads the PC data
from an OpenVOS buffer, and writes it to the output file. You can use the
analyze_pc_samples command to analyze this file and generate a report on the
performance of one or more specified target program modules. A target program module is a
program module about which you want to gather statistical performance data.

Notes:

1. To see function names and source code line numbers in the output report of the
analyze_pc_samples command, bind the target program module with the
-retain_all argument (OpenVOS is automatically bound with
-retain_all) before running the harvest_pc_samples command.

2. Make sure the target program module runs during the same period of time that
the harvest_pc_samples command runs. Note that you can specify the target
program module with the analyze_pc_samples command, but not with the
harvest_pc_samples command. The harvest_pc_samples command
collects data for all modules currently running on the system.

3. You can run only one harvest_pc_samples process on a module at a time. If
you try to run the harvest_pc_samples command and another process is
already running it, the command displays the message: The PC Sampler has
already been started. Another user may be executing the
sampler. In this case, issue the list_users command to see who started the
harvest_pc_samples process.

When to Use the analyze_pc_samples and harvest_pc_samples Commands
OpenVOS provides seven commands for measuring performance. The following table
suggests when you might use each of these commands.

22

Table 2-22. Commands That Measure Performance

Commands Degree of Specificity When to Use

• harvest_meters
• translate_meters
• display_meters

Most general. Collects,
organizes, and displays
performance information
about CPU, memory, disk, file,
server queue, communications
device, and terminal use.

If you suspect system or
application performance
problems, use these commands
to isolate bottlenecks.
2-450

harvest_pc_samples
Data Flow with the analyze_pc_samples and harvest_pc_samples Commands
Figure 2-5 shows the route that the program counter data takes as it is collected and analyzed.
When invoked, the harvest_pc_samples command initializes the OpenVOS program
counter buffer, where OpenVOS temporarily stores program counter information about
program modules and routines. You specify the frequency at which OpenVOS stores PC
samples in this buffer. The harvest_pc_samples command places sampled data from the
program counter buffer into a raw data file whose name you specify. When you execute the
analyze_pc_samples command with a specified program module (.pm), the command
matches the contents of the raw data file to routines in a specified program module. The
command then generates a report that shows the number of times each routine was executed
in the specified program module.

• harvest_pc_samples
• analyze_pc_samples

Collects system-wide
information. Analysis focuses
on program and function
execution. Can also provide
statement-specific
information.

If you suspect performance
problems with a program
module, use these commands
to determine which functions
in a program module are using
the most system resources.

• add_profile
• profile

Most specific. Collects all
statement-specific information
from an executing program
module. Usually requires
program module
recompilation.

If you suspect performance
problems with a function, use
these commands to determine
which statements are using the
most CPU and memory
resources.

Table 2-22. Commands That Measure Performance (Continued)

Commands Degree of Specificity When to Use
OpenVOS Commands Reference Manual (R098) 2-451

harvest_pc_samples
5

Figure 2-5. The Program Counter Sampling System

Accuracy of the Data
If the harvest_pc_samples command collected information each time a program module
executed in a module’s CPU(s), the data would be completely accurate. However, collecting
data in this manner would greatly decrease system performance and quickly exhaust the
available disk space. Therefore, the harvest_pc_samples command statistically samples
a portion of the CPU activity. To make sure the sampled data accurately represents the actual
activity in the CPU, you should take the following steps.

 Specify that the harvest_pc_samples command take samples as often as possible
for as long as reasonable.

Note: You can run the harvest_pc_samples command more than once with
the same parameters if you think you have not collected enough data. The
analyze_pc_samples command can concatenate several raw data files
generated by the harvest_pc_samples command (effectively doubling or
tripling the sampling duration) and create a more accurate report.

 Use timing jitter to increase the randomness of the sampled data.

 Validate the program names if you think the target program module will not run
continuously under the same process.

OpenVOS

harvest_pc_samples

Raw Data File

Report File

analyze_pc_samplesUser-specified
.pm File

Program
Counter
Buffer

Input

Take Samples
2-452

harvest_pc_samples
The following paragraphs discuss how long you need to collect data, the frequency at which
you should sample the data, when to use timing jitter, and when to validate program names.

Length of Time to Collect Data
Consider the following factors when specifying a value for the duration argument.

 Target program module execution time. The target program module must run during the
entire period that the harvest_pc_samples command runs.

 The desired accuracy of the sample. The longer the duration, the greater the confidence
you can place on the accuracy of the statistical results.

 The CPU usage of the target program module. If the target program module uses large
quantities of CPU time, many data points will be generated in a short period, and you
may specify a duration value of 10 or 15 minutes.

If the target program module does not require much CPU time, specify a much longer
period for the duration argument. If possible, try to maximize the CPU usage of the
target program module while the harvest_pc_samples command is running. The
higher the percentage of CPU usage by the target program module, the higher the
percentage of useful samples. For example, if the target program module CPU usage is
10 percent, then 10 percent of the samples will be useful.

Frequency at Which the Command Samples Data
In general, when specifying a duration of less than one hour, use a high sampling frequency,
such as 256 samples per second. To generate statistics in which you can have high confidence,
you need to generate a large number of data points. Nevertheless, you should consider the
available disk space before specifying a duration of greater than one hour with a high
sampling frequency, since the raw data file can quickly grow to millions of bytes. For
example, when you run the harvest_pc_samples command for one hour with a sampling
frequency of 256 samples per second, each logical CPU will generate about 7.5 million bytes
of data (or 1831 blocks) for the raw data file.

If the system on which harvest_pc_samples is running is very busy, the command may
display the following error message: sampling rate exceeds harvesting capacity.
This error means that the OpenVOS program counter buffer is filling before the command has
read the buffer. If this occurs, use the set_priority command and rerun the
harvest_pc_samples command at a higher priority.

Timing Jitter to Use
The harvest_pc_samples command uses the scheduler to generate interrupts at the
specified frequency. This may skew the collection of scheduler and other program module
samples. If you suspect that too many samples are concentrated in or absent from a set of
program modules, use the -timing_jitter argument. Note that the maximum
-timing_jitter value cannot exceed the maximum sampling frequency of once every 4
ms or the minimum sampling frequency of once per second. The following table illustrates
the relationship between selected -sampling_frequency values and the maximum
-timing_jitter value.
OpenVOS Commands Reference Manual (R098) 2-453

harvest_pc_samples
Validation of Program Names
If you have control over when the target program module starts, stops, and who can invoke it,
then you do not need to specify a value for the -program_validation_period argument.
If you cannot control the execution of the target program module, specify a value for the
-program_validation_period argument in the range of 30 to 60 seconds.

Examples
The following examples show several different ways of specifying the arguments to the
harvest_pc_samples command.

Example 1.
In this example, the harvest_pc_samples command runs for 10 minutes. The command
samples data 256 times per second and performs program validation once just before it stops
executing.

harvest_pc_samples 10:00
-output_path pc_samples
-sampling_frequency 256

Example 2.
In this example, the harvest_pc_samples command also runs for 10 minutes and samples
data 256 times per second. However, the command does not perform program validation.

harvest_pc_samples 10:00
-output_path pc_samples
-sampling_frequency 256
-program_validation_period 10:01

Selected -sampling_ frequency Values Maximum -timing_jitter Values

256 samples/sec (4ms) 0 (0 milliseconds (ms) or no jitter)

125 samples/sec (8 ms) 1 (+/- 4 ms)

84 samples/sec (12 ms) 2 (+/- 8 ms)

50 samples/sec (20 ms) 4 (+/- 16 ms)

16 samples/sec (63 ms) 15 (+/- 90 ms)

4 samples/sec (125 ms) 63 (+/- 256 ms)

2 samples/sec (500 ms) 127 (+/- 496 ms)

1 sample/sec (1000 ms) 0 (0 ms or no jitter)
2-454

harvest_pc_samples
Example 3.
In this example, the harvest_pc_samples command runs for 1 hour. The command
samples data 128 times per second and performs program validation every 30 seconds.

harvest_pc_samples 1:00:00
-output_path pc_samples
-sampling_frequency 128
-program_validation_period 00:00:30

Example 4.
In this example, the harvest_pc_samples command runs for 12 hours. The command
samples data 32 times per second with a timing jitter of 7. The command also performs
program validation every 30 seconds.

harvest_pc_samples 12:00:00
-output_path pc_samples
-sampling_frequency 32
-timing_jitter 7
-program_validation_period 00:00:30

Related Information
For information on how to analyze the output created by the harvest_pc_samples
command, see the description of the analyze_pc_samples command in this manual. For
information on related performance measuring tools, see the descriptions of the profile and
add_profile commands in this manual. For more information on setting priorities, see the
description of the set_priority command in this manual.
OpenVOS Commands Reference Manual (R098) 2-455

help
help 2-

Purpose
This command helps you find the names of commands and command functions.

Note: Support for updating or adding new topic information to the online help facility
ended as of VOS Release 13. However, you can still use the help command for finding
commands and command functions via the -match and -type arguments. For
information about commands and command functions, use the StrataDOC
online-documentation service instead of the help command. See the Preface for more
information about StrataDOC.

Display Form

Command Line Form
help [-type help_type] [-match string]

Arguments* -type help_type <CYCLE>
Specifies one of the following five types of item to display.

 all
 internal
 external
 function
 subsystem

If you specify any type but subsystem, help displays the names of all these items, or
only the names of internal commands, external commands, or command functions,
respectively. By default, help uses the value subsystem, and displays the top-level
menu of the online help facility.

* -match string
Displays only the names that contain the character string string. If you also use the
-type argument with a value of internal, external, or function, help displays
only names of the specified type that contain the string; with a value of all or

------------------------------------- help -------------------------------------
-type: subsystem
-match:
2-456

help
subsystem, the command displays all names that contain the string. By default, help
displays all the names of items specified by -type help_type; if help_type is
subsystem, the command displays the menu interface to the online help facility. Note
that -match is case sensitive.

Explanation
The help command lists the names of commands and command functions.

To determine whether a command with a similar name exists, you can use the -type
command argument and the -match argument with a common, yet descriptive, portion of the
familiar name as the string.

Use -type when you know the item’s type but not its name, to list all the items of the same
type.

If you want to see a display of the names of items related to a particular topic, use both the
-type and -match arguments. Specify an appropriate value for the -type argument and
your topic as the value of the -match argument. The help command displays all items of the
specified type whose names contain the string string.

Examples
Example 1.
Enter the following command to display all of the command functions whose names contain
the character string current.

help -type function -match current

This command displays the following output.

current_dir
current_module

Example 2.
You can use the help command when you have issued a command that does not exist, for
example, set_locking. The following command helps you find the correct name.

help -type command -match lock
OpenVOS Commands Reference Manual (R098) 2-457

help
2-458

kill
kill 2-

Purpose
The kill command sends a signal to the process(es) specified by each pid operand.

Display Form

Command-Line Form
kill

Ç È
[-h] [--help]

Arguments* -s signal_name
The string specified by signal_name is the name of a signal from signal.h that is
sent to the process. The string accepts the names of OpenVOS POSIX.1 signals without
the SIG prefix and is case-independent. Thus, SIGABRT will be entered as ABRT or
abrt.

* pid
The pid argument is a string of numbers in one of three forms:

 hexadecimal 0X1a3f3
 hexadecimal 1A3F3x
 decimal 1075

The pid argument is the process identifier of the process that you want to send a signal.
Both POSIX PIDs and OpenVOS process identifiers are supported. More than one
process can be affected by specifying the respective process identifiers as arguments to
the command. When the first process identifier is negative, precede it by two hyphens
(--) to prevent the process identifier from being confused with an argument.
Subsequent negative process identifiers can only have a single hyphen (-) in front of
them.

 ------------------------------------- kill -----------------------------------
 -s:
 pid:
 -l:
 -h: no
 --help: no

-s signal_name pid ...
-l [signal_number]
OpenVOS Commands Reference Manual (R098) 2-459

kill
* -l [signal_number]
Without the signal_number, -l displays all the signal names supported by kill. If
you specify a signal_number (an unsigned decimal) value, -l displays only the
signal name corresponding to the value of signal_number.

* -h --help <CYCLE>

The -h and --help arguments display a brief help message illustrating the formats of
the command line.

Explanation
The kill command sends signals to one or more processes. It only accepts signal names but
lists all of the supported signal names. When a signal number is given, it gives a
corresponding signal_name value. The kill command is a wrapper around the kill
function. Thus, the kill command behaves similarly to the kill function from the POSIX.1
standard. The value of the pid operand is used as the pid argument. The sig argument is the
value specified by the -s argument. Invalid arguments exit with a nonzero exit status.

Related Information
For information on stopping a process, see the description of the stop_process command.
2-460

ldd
ldd 2-

Purpose
This command lists all of the shared libraries on which the specified program module or
shared library depends.

Display Form
None.

Command Line Form

ldd ¢ £ path_name [path_name...]
Arguments* --version

Displays the version number of the ldd command.

* --help
Displays usage information for the ldd command.

* path_name [path_name...]
One or more program module or shared library names. This value must be a
POSIX-style path name.

Explanation
The ldd command lists all of the shared libraries on which path_name depends. The
command displays POSIX-style path names in its output.

Examples
An example of ldd follows:

ldd salestest.pm
libvosposix.1.so => /lib/libvosposix.1.so

In the output, libvosposix.1.so is the shared library on which salestest.pm depends,
and /lib/libvosposix.1.so is the location of the shared library.

Related Information
See the description of the list_dynamic_dependencies command.

--version
--help
OpenVOS Commands Reference Manual (R098) 2-461

line_edit
line_edit 2-

Purpose
This command calls the line editor.

Display Form

Command Line Form

line_edit [text_file_name]

[-no_verbose] [-mapcase] [-numbers] [-no_keystrokes] [-no_backup] [-backup_name backup_file_name] [-keystroke_in keystroke_file_name]
Arguments* text_file_name

The path name of a text file to be edited. If the file exists, the editor reads it into the
editor buffer for editing. The editor saves the path name so that you can write the edited
text to the file text_file_name without retyping the path name. If the file does not
exist, the editor buffer is initially empty. In this case, the editor asks you whether to
create the file. Unless you tell the editor to create the file, the editor returns your process
to command level. By default, the editor buffer is empty when you begin, and the editor
does not save a path name.

---------------------------------- line_edit -----------------------------------
text_file_name:
-verbose: yes
-mapcase: no
-numbers: no
-keystrokes: yes
-backup: yes
-backup_name:
-keystroke_in:
2-462

line_edit
* -no_verbose <CYCLE>
Suppresses verbose mode. In verbose mode, the editor prints every line that it
modifies or selects with any of the following requests.

 append
 change
 find
 goto
 locate
 overlay

Specifying -no_verbose has the same effect as making a no_verbose request while
editing. By default, the editor begins in verbose mode.

* -mapcase <CYCLE>
Begins editing in mapcase mode. In mapcase mode, the editor disregards the case of
alphabetical characters when comparing text strings with the change, find, locate,
and overlay requests. This has the same effect as making a mapcase request. By
default, the editor distinguishes uppercase and lowercase letters.

* -numbers <CYCLE>
Prints the number of a text line in the editor buffer whenever the editor prints the line
on your terminal. The line number is printed in the leading four columns. This has the
same effect as making a numbers request. By default, the editor does not print the line
number.

* -no_keystrokes <CYCLE>
Edits a file without creating a keystrokes file. By default, the editor creates or
overwrites a file in your home directory named _line_edit.terminal_name,
where terminal_name is the device name of the terminal that you are using. The
editor saves the sequence of editor requests you make and the characters you insert in
the edited text. With a keystrokes file, you can usually recover from editing mistakes.
If you are not editing from a terminal, the editor does not create a keystrokes file. For
example, a keystrokes file is not created when the editor requests come from a
command macro.

* -no_backup <CYCLE>
Edits without creating a backup copy of the file text_file_name. By default, the
editor creates a backup copy of text_file_name the first time you write out the
contents of the editor buffer to the file text_file_name. The path name of the backup
copy is the same as the original file with the suffix .backup.

* -backup_name backup_file_name
Gives the name backup_file_name to the backup copy of the edited file. By default,
the path name of the backup file is the same as the file read in with the suffix .backup.

* -keystroke_in keystroke_file_name
Edits a file using the keystrokes file keystroke_file_name created during a
previous editing session. This allows you to recover from editing errors made during a
long editing session in which most of the processing you did was acceptable. You must
OpenVOS Commands Reference Manual (R098) 2-463

line_edit
have either a copy of the original file which has not been overwritten, or a backup copy
of the original file.

Explanation
The line_edit command calls and sets up the line editor. After you issue the line_edit
command, your process is at the line editor request level. At request level, you can make any
of several editor requests to enter and modify text in a temporary work space and to write out
the edited text from the work space to a file in the directory hierarchy. One request, the quit
request, returns your process to command level. You can also return to command level by
pressing <CTRL><BREAK>, which puts you at break level. At break level, typing stop returns you
to command level, typing continue lets the editor resume what it was doing, and typing
re-enter returns you to line_edit request level.

To use the keystrokes file, perform the following steps.

1. Copy or rename the keystrokes file. Do this before you invoke the line editor, since the
keystrokes file will be overwritten by the editor.

2. Edit the copy of the keystrokes file to remove the section containing errors, and remove
any <CTRL><BREAK> processing.

3. Invoke the line_edit command, supplying either the name of the file to be edited (if
it has not been overwritten) or the backup file for text_file_name and the path name
of the edited keystrokes file for keystrokes_file_name. The editor reads in the
backup file to its buffer and performs the requests you have prepared in the backup file.

4. When the editor reaches the end of the backup file, it begins to accept requests from
your terminal. You can now edit the buffer further interactively.

If you are unsure of the recovery procedures, use copies of the file or backup file and the
keystrokes file to protect the file originals.

Related Information
For additional information about the line_edit command, see the OpenVOS Commands
User’s Guide (R089).
2-464

link
link 2-

Purpose
This command creates a link to a specified file, directory, or link.

Display Form

Command Line Form

link target_name [link_name] [-delete] [-brief]
Arguments* target_name Required

The path name or star name of target files, directories, or links. If you specify a target
name that is not a star name, the target does not need to exist.

* link_name
Specifies the link path name or star name. If you specify a link name that is a star name,
the link command creates and names links according to the rules for star-name pairs.
By default, the command puts the link in the current directory and gives it the object
name portion of target_name.

* -delete <CYCLE>
Deletes a file or directory or unlinks a link if it has the same path name as the new link.
By default, if the path name of the new link conflicts with an existing object, the
operating system prompts you before deleting the object. If there is a conflict and you
do not delete the existing object, the operating system does not create the link.

* -brief <CYCLE>
Suppresses the display of each object and link that matches a star name, before the link
is created. By default, the link command displays the names of the links and their
targets.

------------------------------------- link -------------------------------------
target_name:
link_name:
-delete: no
-brief: no
OpenVOS Commands Reference Manual (R098) 2-465

link
Explanation
The link command creates links to one or more objects that you specify by target_name.

A link is an object contained in a directory that directs all references to itself onward to
another object, that is, to a file, a directory, or another link. Like many other objects, a link
has a path name that identifies it as a unique entity in the system directory hierarchy. The
object to which the link refers is called its target. When you refer to a link, for example in a
command, the operating system links you to the target by replacing the path name of the link
with the path name of its target.

A link referenced by another link is called a nested link. The maximum number of nested links
is 16. If you create a link that contains more than 16 nested links, the operating system
displays the following warning message.

The link created is too long or circular.

Specify the name and location of the target with the argument target_name. If you specify
a link_name, you can give a path name to the link; otherwise, the link appears in the current
directory and has the same name as the object target_name.

If you specify -delete, you can delete a file or directory, or unlink a link in the current
directory if its name conflicts with the name of the new link.

Because of the way in which links function, a link can be created to a device, instead of a file,
directory, or link. The link name serves as a local abbreviation for the device. There is,
however, little reason to create a link to a device; instead, put an abbreviation for the full path
name of the device in your abbreviations file. This abbreviation serves as a global
abbreviation for the device.

It is possible to create a circular link; a link that is its own eventual target. If you create a
circular link, the operating system creates the link and sets the command status to 0, but
returns the following warning message.

The link created is too long or circular.

Access Requirements
You must have modify access to the directory that contains the new link. Your access to the
target of the link is unchanged when you set up a link to it.

Examples
Suppose your current directory is %s1#d02>Sales>east>Smith, and that Jones is a
subdirectory of >east. The following command creates the link jones_customers in your
current directory.

link <Jones>customers jones_customers

The target of the link jones_customers is the file, directory, or link with the following path
name.

%s1#d02>Sales>east>Jones>customers
2-466

link
Related Information
For information about how to remove a link, see the description of the unlink command. See
also the Introduction to VOS (R001) for discussions of abbreviations files and star-name
pairs.
OpenVOS Commands Reference Manual (R098) 2-467

link_dirs
link_dirs 2-

Purpose
This command provides each directory in a specified set with links to all objects in every other
directory in the set.

Display Form

Command Line Form

link_dirs directories . . . [-brief] [-no_files] [-no_dirs] [-no_links] [-depth number] [-no_warnings]
Arguments* directories Required

Two or more directories in which links are to be placed.

* -brief <CYCLE>
Suppresses messages about links created. By default, link_dirs displays messages
about links as they are created.

* -no_files <CYCLE>
Ignores any files in the specified directories. By default, link_dirs creates links to
files contained in the specified directories.

* -no_dirs <CYCLE>
Ignores any directories in the specified directories. By default, link_dirs creates
links to subdirectories of the directories specified in the directories argument. This
has the same effect as specifying -depth 1.

---------------------------------- link_dirs -----------------------------------
directories:
-brief: no
-files: yes
-dirs: yes
-links: yes
-depth: 1
-warnings: yes
2-468

link_dirs
* -no_links <CYCLE>
Ignores any links in the specified directories. By default, link_dirs creates links to
links in the specified directories.

* -depth number
Specifies the number of directory levels down the directory hierarchy in which links are
to be created. By default, link_dirs creates links only in the specified directories; the
depth is 1. Specifying -no_dirs also sets the depth to 1.

* -no_warnings <CYCLE>
Suppresses warnings in the event of conflicts between object names that occur in two
or more directories. By default, link_dirs displays warnings about any conflicts.

Explanation
The link_dirs command places links in each of several directories to objects contained in
only one or more of the other directories. As a result, the directories are made equivalent,
since an object in one can be located (via a link) from any of the others. The path names
specified in the directories argument can be on any level of the hierarchy. The number of
directories you can specify is restricted only in that the path names must fit into a line no more
than 300 characters long.

The principal use of the link_dirs command is to create links in top-level directories on
multiple-logical-disk systems.

If the same object name occurs in two or more of the directories specified in the
directories argument, the link_dirs command displays a warning that a conflict exists.
Specifying -no_warnings suppresses messages reporting conflicts. In either case, the
command places a link to the first object of a conflicting pair in any of the directories where
the object name does not appear. Specifying -no_warnings also enables the link_dirs
command to run much faster over large directories where most objects have already been
linked, because the command does not need to verify that all existing links point to the same
object.

Specifying -depth limits the number of levels in the directory hierarchy in which links are
to be created. The value of -depth increases by 1 for each subdirectory.

Examples
Suppose that the directory %s1#d02>Sales>east contains the directories Smith and
Jones, and the directory %s1#d02>Sales>south contains the directories Clark and
Rogers.

Suppose also that the current directory is %s1#d02>Sales. The command link_dirs
east south produces this output.

%s1#d02>sales>east>Clark -> %s1#d02>Sales>south>Clark
%s1#d02>sales>south>Jones -> %s1#d02>Sales>east>Jones
%s1#d02>sales>east>Rogers -> %s1#d02>Sales>south>Rogers
%s1#d02>sales>south>Smith -> %s1#d02>Sales>east>Smith
OpenVOS Commands Reference Manual (R098) 2-469

link_dirs
The directory east now contains these links.

Clark -> %s1#d02>Sales>south>Clark
Rogers -> %s1#d02>Sales>south>Rogers

The directory south contains these links.

Jones -> %s1#d02>Sales>east>Jones
Smith -> %s1#d02>Sales>east>Smith
2-470

list
list 2-

Purpose
This command lists the contents of a directory.

Display Form

Command Line Form

list [path_name]

[-no_files] [-dirs] [-links] [-all] [-sort sort_code]

® ¯
[-header] [-exclude exclude_name] [-no_quotes]

Arguments* path_name
Specifies the name or star name of the object or objects to be listed. The list
command lists all objects that have matching names and are of the types specified by
-files, -dirs, -links, and -all. If you specify a path_name and omit -files,

------------------------------------- list -------------------------------------
path_name:
-files: yes
-dirs: no
-links: no
-sort: name
-full: no
-names_only: no
-totals: no
-header: no
-exclude:
-quotes: yes

-full
-names_only

-totals
OpenVOS Commands Reference Manual (R098) 2-471

list
-dirs, -links, and -all, the list command lists only files. By default, the
command lists all objects of the specified types in your current directory.

* -no_files <CYCLE>
Suppresses a listing of all files whose names match path_name or, if you omit the
path_name argument, of all files in the current directory. Use this argument in
combination with -dirs or -links if you do not want to list files and either directories
or links (but not both). If you do not use this argument and specify -dirs and/or
-links, the command lists only the directories and/or links. By default, the command
lists files only.

* -dirs <CYCLE>
Lists all directories whose names match path_name or, if you omit path_name, all
directories in the current directory. By default, the command lists no directories.

* -links <CYCLE>
Lists all links whose names match path_name or, if you omit path_name, all links in
the current directory. By default, the command lists no links.

* -all
Lists all files, directories, and links whose names match path_name or, if you omit
path_name, all objects in your current directory. By default, the command lists files
only.

* -sort sort_code <CYCLE>
Sorts the objects according to the code sort_code before listing them. There are six
possible values for sort_code.

 name
 size
 date_created
 date_modified
 date_used
 date_saved

If you specify any sort code except name, the list command sorts the objects
numerically on the attribute specified. If you specify name, the command sorts the
object names according to a variation of the ASCII collation sequence. By default, the
command sorts the objects by name.

* -full <CYCLE>
Displays more information about the objects listed. You cannot specify -full with
-names_only or -totals.

* -names_only <CYCLE>
Displays only the names of the objects listed. You cannot specify -names_only with
-full or -totals.

* -totals <CYCLE>
Displays only the number of specified objects and the number of disk blocks used. By
default, the command displays the names of each object, the number of disk blocks it
2-472

list
uses, and your access level to the object. You cannot specify -totals with -full or
-names_only.

* -header <CYCLE>
Displays, at the top of the list, the path name of the directory that contains the objects
in the list.

* -exclude exclude_name
Specifies one or more object names or star names to be excluded from the list.

* -no_quotes <CYCLE>
Suppresses the default display in which names containing special command-line
characters are enclosed by apostrophes. Names beginning with a hyphen are displayed
with the prefix .> (that is, the period and greater-than characters). See Using OpenVOS
Extended Names (R631) for more information about special command-line characters.

Explanation
The list command displays information about some or all of the contents of a directory.

Use path_name to specify the objects you want to list and, indirectly, their containing
directory. The -files, -dirs, -links, and -all arguments determine the types of objects
you want to list. If you omit all four of these and do not specify the name of a specific
directory or link for path_name, the list command displays only files.

The list command is particularly useful for checking the contents of your current directory.
When you invoke the list command without any arguments, your terminal displays a list of
all files in your current directory. If you invoke the command and specify only path_name,
for which you give a star name, you see a list of all files with matching names. When you
invoke list with only path_name, but give a path name that is not a star name, you see a
list containing just that file, if it exists. Thus you can use the list command to check whether
a specific file is in the current directory without listing its entire contents. Even if you do not
know the precise name of the file, you can check for it by giving a star name as an
approximation. Note that you must usually specify -dirs, -links, or -all to list objects
other than files. The exception is that if you specify only path_name and give a path name
that is the exact name of an existing directory or link, the list contains just that object. Note
also that when you give the path name of a directory, the command displays only the directory
name and not its contents.

To list the contents of a directory other than the current directory, you must enter a command
that contains the full or relative path name of the directory, for example:

list >Sales>weekly>reports>*

The list command groups objects by type when it lists them. Within a group, it sorts objects
by name, unless sort specifies a different sort code. In a name sort, the objects are sorted
alphabetically, with an uppercase letter preceding its corresponding lowercase letter. For
example, AB precedes Ab, which precedes aB, which precedes ab.

The list command sorts all other types numerically on the attribute specified.
OpenVOS Commands Reference Manual (R098) 2-473

list
The following information on files is displayed:

 the number of files listed

 the total number of disk blocks used by all the files

 your access to each file: read, write, execute, null, or undefined. (Access is considered
undefined when none of the standard access types is appropriate. Undefined access
defaults to null.)

 the number of disk blocks used by each file

 the name of each file

 if you specify -full, the date the file was last modified or the date specified in
sort_code; the (maximum) record size of each file, if it is a relative or fixed file; and
file organization

The following information on directories is displayed:

 the number of directories listed

 your access to each directory--status, modify, null, or undefined. (Access is considered
undefined when none of the standard access types is appropriate. Undefined access
defaults to null.)

 the number of disk blocks used by each directory

 the name of each directory

If you specify -full, the operating system also displays the date the directory was last
modified or the date specified in sort_code.

The following information on links is displayed:

 the number of links listed
 the immediate target of each link
 the name of each link

If you specify -full, the operating system also displays the date the link was last modified
or the date specified in sort_code.

Access Requirements
You need status access to the directory containing the listed objects to invoke this command.

Examples
Example 1.
The following command lists the files in the current directory whose names start with the
character string s.

list s* -names_only
2-474

list
The files are sorted by name, and only the names appear.

sales_class
sales_closed
sales_leads
sales_pending
september_goals
status

Example 2.
Now consider the following command.

list weekly_old>week* -all -sort date_created

This command might display the following list.

Files: 5, Blocks: 27.

w 8 90-03-13 10:51:09 week90-03-03
w 6 90-03-05 10:30:22 week90-02-25
w 4 90-02-26 10:43:59 week90-02-18
w 5 90-02-21 11:28:10 week90-02-11
w 4 90-02-13 10:35:26 week90-02-04

Directories: 0

Links: 0

Example 3.
If you list an object whose name uses special command-line characters, by default, the name
is surrounded by apostrophes in the output. Also, by default, if the object’s name begins with
a hyphen, the output is shown with the prefix .>. For example:

m102: list *test -names_only

.>-hyphentest
'a btest'
'a name with "quotes" test'

If you intend to parse the output of the list command and your program is not prepared to
deal with an apostrophe escape convention or .>, you may want to specify -no_quotes, as
follows:

m102: list *test -names_only -no_quotes

-hyphentest
a btest
a name with "quotes" test

However, problems may result from using names that contain spaces, actual apostrophes, or
hyphens (for example, if list assumes these characters as delimiters). OpenVOS provides
command-macro statements (&dcl_name, &set_name_string, and &set_name) for
OpenVOS Commands Reference Manual (R098) 2-475

list
handling names containing spaces and other special characters. See the OpenVOS Commands
User’s Guide (R089) for more information.
2-476

list_batch_requests
list_batch_requests 2-

Purpose
This command displays information about a set of batch requests you specify.

Display Form

Command Line Form

list_batch_requests [-queue queue_name]

[-module module_name] [-all] [-long] [-user user_name] [-process process_name]

Arguments* -queue queue_name
Specifies the batch queue queue_name containing the batch requests you want to list.
By default, the command displays the requests in the default batch queue, either on the
module specified by module_name or on the current module.

* -module module_name
Specifies the module serving the queue in which the batch requests are waiting. By
default, the command uses your current module.

* -all <CYCLE>
Displays information about all batch requests in the specified batch queue. You must
have read access to the pertinent queue to list all batch requests. If you have only
execute access to the queue, the command lists only your batch requests. By default,
the command lists only your batch requests.

----------------------------- list_batch_requests ------------------------------
-queue: ormal
-module:
-all: no
-long: no
-user:
-process:

n

OpenVOS Commands Reference Manual (R098) 2-477

list_batch_requests
* -long <CYCLE>
Displays detailed information about the batch requests in the specified batch queue.

* -user user_name
Specifies the name or star name of the user whose batch requests you want to list. By
default, the command lists batch requests of all users. You cannot specify -user and
-all in the same command.

* -process process_name
Specifies the name or star name of the process whose batch requests you want to list.
By default, the command lists batch requests of all processes. You cannot specify
-process and -all in the same command.

Explanation
The list_batch_requests command lists information about a specified set of batch
processes.

When you omit -long, the command displays:

 the name of each batch request
 the queue sequence number of each batch request
 the time each batch request was submitted
 the state of each batch request
 the command line to be executed for each batch process selected, if you omit -all
 the name of the user who submitted the request, if you specify -all

The list_batch_requests command indicates that a batch process is running by
displaying an asterisk in the line that describes the request or by printing a message stating
that the batch process is being executed.

If you specify -all and you have read access to the pertinent batch queue, the
list_batch_requests command lists all batch requests for that queue. However, if you
specify -all but you have only execute access, the command lists only your batch requests.
In either case, the command displays the name of the user who issued a request instead of the
command line from that request.

If you specify -long, the list_batch_requests command also displays the following
information.

 the time to which the request is deferred, if any
 the path name of the output file or device
 the queue priority
 the batch process priority
 the error codes file to be used (a file other than the default error codes file)

Access Requirements
You must have read access to the batch queue file to list all batch requests. If you have only
execute access to the queue file, the list_batch_requests command lists your batch
requests.
2-478

list_batch_requests
Examples
Example 1.
The command list_batch_requests -all might display the following output.

 Process Name # Time Options

weekly_sales_report 9670 00:02 Jones.SysAdmin (Deferred)
daily_functions 9756 00:02 Overseer.System (Deferred)
monthly_expenses 9759 12:33 *Smith.Sales

Example 2.
If you issued the command list_batch_requests -all -long, the following output
might be displayed.

Request: 9670
User: Jones.SysAdmin
Time queued: 17-01-26 09:16:49 est
Deferred until: 17-01-27 00:01:00 est
Attributes: deferred, not privileged, restart
Process priority: 5
Queue priority: 4
Process name: weekly_sales_report
Command: weekly_sales_report.cm
Output path: %s1#d01>Sales>reports>weekly_sales_report.out
Current dir: %s1#d01>Sales>Reports
Home dir: %s1#d01>Sales>Jones

Request: 9756
User: Overseer.System
Time queued: 17-01-26 10:02:13 EDT
Deferred until: 17-01-28 00:01:00 EDT
Attributes: waiting, privileged, restart
Process priority: 5
Queue priority: 4
Process name: daily_functions
Command: daily_functions
Output path: %s1#d01>Overseer>daily_functions.out

Request: 9759
User: Smith.Sales
Time queued: 17-01-26 11:10:13 EDT
Attributes: executing (on %s1#d01), not privileged, restart
Process priority: 1
Queue priority: 4
Process name: monthly_expenses
Command: >Sales>tools>monthly_expenses.cm
Output path: %s1#d01>Sales>reports>monthly_expenses
Home dir: %s1#d01>Sales>Smith
Notify users: Smith.Sales on %s1#*
OpenVOS Commands Reference Manual (R098) 2-479

list_batch_requests
Example 3.
If you issued the command list_batch_requests -process *.* the following output
might be displayed.

Process Name # Time Options

report.analysis 03 09:17 Jones.SysAdmin (Deferred)

Related Information
See also the command descriptions of batch, cancel_batch_requests,
cancel_device_reservation, display_batch_status,
move_device_reservation, update_batch_requests, and reserve_device.
2-480

list_devices
list_devices 2-

Purpose
This command displays a list of the path names of a specified set of devices in a specified set
of modules.

Display Form

Command Line Form

list_devices [-module module_name]

[-type device_type] [-long]
Arguments* -module module_name

One or more module names or module star names. The command lists the devices
connected to the specified modules. By default, the command uses your current
module.

* -type device_type <CYCLE>

Lists the path names of devices of the type device_type. Possible values for
device_type are as follows:

 vterm
 window_term
 server
 tape
 streams
 streams_pci

If your module is part of a multiple-module system that supports various releases of
VOS and OpenVOS, device_type supports additional values. See the manual
OpenVOS System Administration: Configuring a System (R287) for information about
types of devices.

--------------------------------- list_devices ---------------------------------
-module:
-type: window_term
-long: no
OpenVOS Commands Reference Manual (R098) 2-481

list_devices
By default, the command lists the path names of window_term devices.

* -long <CYCLE>
Displays more information about the selected set of devices.

Explanation
The list_devices command lists the path names of all devices of a given type connected
to a specified set of modules.

If you specify -long, list_devices displays the following information for each device, in
addition to the path name:

 device type
 baud rate
 chassis slot in which the controller for the device is located
 channel number on the communications chassis to which the device is connected
 module to which the device is connected
 primary user, if one is logged in

Examples
The following example displays information about the terminal t2.5 connected to slot 5 on
%s1#m2.

%s1#t2.5
 Type: terminal
 Baud: 9600
 Slot: 5
 Channel: 5
 Module: %s1#m2
 Primary user: Clarke

The primary user is the person name of the current user of the device, if any; if no one is
currently using the device, no primary user is listed.
2-482

list_dynamic_dependencies
list_dynamic_dependencies 2-

Purpose
This command lists all of the shared libraries on which the specified program module or
shared library depends.

Display Form

Command Line Form

list_dynamic_dependencies pathname [pathname...]
Arguments* pathname [pathname...]

One or more program module or shared library names. This value must be an
OpenVOS-style path name.

Explanation
The list_dynamic_dependencies command lists all of the shared libraries on which
pathname depends. The command displays OpenVOS-style path names in its output.

Examples
An example of list_dynamic_dependencies follows:

list_dynamic_dependencies salestest.pm
 libvosposix.1.so => %s1#m2>lib>libvosposix.1.so

In the output, libvosposix.1.so is the shared library on which salestest.pm depends,
and %s1#m2>lib>libvosposix.1.so is the location of the shared library.

Related Information
See the description of the ldd command.

 -------------------------- list_dynamic_dependencies -------------------------
 pathnames:
OpenVOS Commands Reference Manual (R098) 2-483

list_gateways
list_gateways 2-

Purpose
This command lists network gateways in the system.

Display Form

Command Line Form
list_gateways

Explanation
The list_gateways command lists network gateways in the system.

A gateway provides a communication link from the current system to one or more other
systems. This link can be directly connected to another system or it can be connected to a
common network shared by multiple systems.

The gateways listed are defined in the nodes.tin file for the current system. If there are no
gateways in the system, nothing is displayed.

-------------------------------- list_gateways --------------------------------
No arguments required. Press ENTER to continue.
2-484

list_library_paths
list_library_paths 2-

Purpose
This command displays the list of directories that define libraries for the current process.

Display Form

Command Line Form

list_library_paths [library_name]
Arguments* library_name <CYCLE>

Specifies the library whose list of directories is to be displayed. There are five possible
values for library_name.

 include
 object
 command
 message
 all

By default, the command lists all directories that define libraries for the current process.

Explanation
The list_library_paths command displays a list of directories that define the libraries
for the current process.

A library is one or more directories that the operating system searches for objects of a
particular type. Each module has the following libraries.

 include library
 object library
 command library
 message library

------------------------------ list_library_paths ------------------------------
library_name: ll a
OpenVOS Commands Reference Manual (R098) 2-485

list_library_paths
The compilers search the include library for include files; the binder searches the object
library for object modules; and the command processor searches the command library for
commands and the message library for messages associated with individual commands.

A library library_name is defined by an ordered sequence of path names. The order of the
list reflects the order in which the operating system searches the libraries for objects of a
designated type.

Examples
The following example illustrates a typical list of libraries. Each directory of a library is
specified by its full path name. The order in which the directories are listed reflects the order
of the search.

include library directories:
 (current_dir)
 %s1#d02>system>include_library

object library directories:
 (current_dir)
 %s1#d02>system>object_library

command library directories:
 (current_dir)
 %s1#d02>system>command_library
 %s1#d02>system>tools_library
 %s1#d02>system>applications_library

message library directories:
 (referencing_dir)
 %s1#d02>system>message_library>(language_name)

Related Information
For more information about libraries, see the descriptions of the
list_default_library_paths and the set_default_library_paths commands in
OpenVOS System Administration: Administering and Customizing a System (R281). See also
the command descriptions of add_library_path, delete_library_path, and
set_library_paths. See OpenVOS Commands User’s Guide (R089) for information
about the conventions for searching libraries.
2-486

list_modules
list_modules 2-

Purpose
This command lists one or all of the modules in a specified system.

Display Form

Command Line Form

list_modules [module_name]

[-all] [-brief] [-long]
Arguments* module_name

Specifies a module name or star name. The command lists all the module names in the
specified system, with information about which modules are online and which are
offline. By default, list_modules lists this information for the modules in the current
system.

* -all <CYCLE>
Lists the names of all modules in all of the systems accessible to the current system. By
default, the command lists the names of the modules in the current system.

* -brief <CYCLE>
Lists only the names of the modules in the specified system.

* -long <CYCLE>
Displays, for any offline module in the specified system, information about why the
module is offline.

--------------------------------- list_modules ---------------------------------
module_name:
-all: no
-brief: no
-long: no
OpenVOS Commands Reference Manual (R098) 2-487

list_modules
Explanation
The list_modules command lists the names of the modules in a specified system. You can
specify a module name or select -all. If you specify neither, the list_modules command
lists the modules in the current system.

The list_modules command indicates your current module and shows which modules are
not communicating with the current module over an OpenVOS communications network by
displaying offline next to their names.

Examples
Example 1.
The list_modules command with no arguments specified might display the following
information.

%s1#m1 online
 #m2 online (current module)
 #m3 offline

Example 2.
The list_modules -brief command might display the following list of module names.

%s1#m1
 #m2
 #m3

Example 3.
The list_modules -long command might display the following information.

%s1#m1 online
#m2 online (current module)
#m3 The target module is offline.
#m4 You are not a registered user of the target system.
2-488

list_port_attachments
list_port_attachments 2-

Purpose
This command lists information about a set of ports you specify in your process.

Display Form

Command Line Form

list_port_attachments [port_names] . . .

[-number number] [-last_port_number last_port_number] [-pathname path_name]
Arguments* port_names

Specifies one or more names of ports about which you want information displayed. By
default, the command displays information about all ports in your process.

* -number number
Specifies a port ID number. The number must be between 1 and 4096. If you also
specify -last_port_number, -number specifies the start of a range of port IDs, and
-last_port_number specifies the end of a range. Both port IDs must refer to the
same range, either low or high. If you specify -number but do not specify
-last_port_number, -number specifies a single port ID. The command displays
information about the specified port ID(s). You cannot specify the -number argument
together with the port_names argument.

* -last_port_number last_port_number
Specifies the highest port ID number of the ports about which you want information.
The highest permissible value is 4096. If you also specify -number, it specifies the
start of a range of port IDs; otherwise, the range starts at 1. The command displays
information about ports in the specified range. If the value you specify is too high, the
command lowers it to that of the highest numbered port in the range specified by

---------------------------- list_port_attachments -----------------------------
port_names:
-number:
-last_port_number:
-pathname:
OpenVOS Commands Reference Manual (R098) 2-489

list_port_attachments
-number. You cannot use both the -last_port_number and -port_names
arguments.

If the value you specify for -number is greater than that for -last_port_number,
then -last_port_number is set equal to -number.

* -pathname path_name
Specifies the full or relative path name of a file or device to which the current process
has attached one or more ports. The command displays information about these ports.
You can use this argument together with any of the preceding arguments to specify only
those ports attached to a particular file or device.

Explanation
The list_port_attachments command displays the following information.

 the name of the port
 the path name of the port’s attachment
 the type of the attachment
 the I/O type of the port
 the access mode of the port

If you do not specify port_name or any other arguments, the command displays information
about all ports.

If the attachment is a sequential file and the port is open, the command also displays the next
available byte.

If the attachment is an extended sequential file and the port is open, the command displays
the number of record offset units in brackets after the file organization (for example, Type:
sequential file [4] indicates that there are four record offset units). This bracketed
value appears in the output only for extended sequential files.

If the attachment is a relative file or a fixed file and the port is open, then the following
additional information is included.

 the (maximum) record size of the file
 the record number of the current record
 the record number of the last record written

For files of any type, when the port is open, the command displays the number of disk blocks
used.
2-490

list_port_attachments
Common port attachment types include the following:

 unknown
 fixed file
 relative file
 sequential file
 stream file
 stream file (64-bit)
 sequential file [N]
 printer
 tape drive
 terminal
 window terminal (64-bit stream file)

Common port I/O types include the following:

 closed
 input
 output
 append
 update

Common port access modes include the following:

 closed
 sequential
 random
 indexed

Output from the list_port_attachments command displays attributes of the port, as
illustrated in the examples later in this command description. A description of these attributes
follows.

Attribute Explanation

wait mode The system waits for I/O on this port; if tasking is in use, no task
switches will occur.

no wait mode The user is responsible for waiting for I/O on the port.

tasking mode The system waits for I/O on this port; if tasking is in use, task
switches may occur.

hold attachment The port was attached with hold attachment specified (see
s$attach_port in the OpenVOS Subroutines manuals) and will
not be detached at program termination.

hold open The port was opened with hold open specified (see
s$attach_port in the OpenVOS Subroutines manuals) and will
not be closed at program termination.

remote The port is attached to a device or file on another module.
OpenVOS Commands Reference Manual (R098) 2-491

list_port_attachments
Examples
Example 1.
Suppose you have a port named a_port in your process that is attached to the file
%s1#d02>Sales>Smith>file_27. The command list_port_attachments a_port
displays the following information about the specified port.

a_port
 Pathname: %s1#d02>Sales>Smith>file_27
 Type: sequential file
 I/O type: update
 Access mode: sequential
 Attributes: wait mode, hold attached and open
 Cur byte offset: 0
 Next available byte: 1210
 Disk blocks: 1

Example 2.
The command list_port_attachments -number 10 displays the following
information about the port whose ID is 10.

_aaaweXreo9SaWo7P.log (10)
 Pathname: %s1#d02>Sales>Smith>file_30
 Type: sequential file
 I/O type: output
 Access mode: sequential
 Attributes: wait mode, hold attached and open
 Cur byte offset: 0
 Next available byte: 2652
 Disk blocks: 1

Example 3.
The command list_port_attachments -number 10 -last_port_number 20
displays the following information about ports located in the range of IDs 10 and 20.

_aaaweXreo9SaWo7P.log (10)
 Pathname: %s1#d02>Sales>Smith>file_30
 Type: sequential file
 I/O type: output
 Access mode: sequential
 Attributes: wait mode, hold attached and open
 Cur byte offset: 0
 Next available byte: 3106
 Disk blocks: 1

(Continued on next page)
2-492

list_port_attachments
(Continued)

_aaaweXreo9SaWo8A (11)
 Pathname: %s1#d02>Sales>Smith>a_database.db
 Type: fixed file
 I/O type: input
 Access mode: random
 Attributes: wait mode, hold attached and open
 Record size: 4096
 Cur record number: 1
 Last record number: 7
 Disk blocks: 7

Example 4.
The command list_port_attachments -pathname a_file -last_port_number
7 displays the following information about the file whose path name matches the one
specified and whose port ID is less than or equal to 7.

_aaaweXreo9SaWo6X (7)
 Pathname: %s1#d02>Sales>Smith>a_file
 Type: sequential file
 I/O type: input
 Access mode: indexed
 Attributes: wait mode, hold attached and open
 Cur byte offset: 67470
 Next available byte: 287594
 Disk blocks: 314
OpenVOS Commands Reference Manual (R098) 2-493

list_print_requests
list_print_requests 2-

Purpose
This command displays information about a specified set of print requests.

Display Form

Command Line Form

list_print_requests [-queue queue_name]

[-module module_name] [-all] [-long]
Arguments* -queue queue_name

Specifies the print queue whose requests you want to list. By default, the command
displays the requests in the default print queue, either on the module specified by
module_name or on the current module.

* -module module_name
Specifies the module containing the specified queue. By default, the command uses
your current module.

* -all <CYCLE>
Displays information about all the print requests in the designated print queue. By
default, the command lists your print requests only.

* -long <CYCLE>

Displays additional information about the print requests. By default, the command
displays the information listed in the Explanation section of this command description.

----------------------------- list_print_requests ------------------------------
-queue: tandard
-module:
-all: no
-long: no

s

2-494

list_print_requests
Explanation
The list_print_requests command displays information about a specified set of print
requests.

When you omit -long, the list_print_requests command displays the following.

 the name of each file to be printed
 the queue sequence number of each print request
 the time you made each print request
 the state of each print request
 the number of copies requested
 the size, in blocks, of each file to be printed

If you specify -long, the additional information is the full path name of the file to be printed
and the values of all the print command arguments selected for each print request. See the
print command for a list of the arguments. If you do not select a value for the
-destination argument of print, list_print_requests displays Destination and
the value None.

If you specify -all, the list_print_requests command also displays the names of the
users who made the print requests. Use the display_print_status command to
determine the current state of the various printers on your system; then use the
list_print_requests command with -all to find out where the load is heaviest.

Examples
The following example illustrates the information displayed for two print requests when you
specify -all and -long with the list_print_requests command.

list_print_requests -all -long -module Sales

Request: 01
User: Smith.Sales
Destination: Smith
Time: 90-03-16 10:20:45 EDT
Path Name: %s1#d02>Sales>Smith>sales_by_rep
Queue Priority: 4

 Attributes: printing on %s1#p27
 Title: none.
 Header: none.
 Footer: none.

 Copies: 01 File size: 74 Sort index: none.
 Line length: 00 Page size: 00 Indent: 00
 Line numbers: no Page Breaks: yes Delete: no
 Edited: no Wrap: yes Controls: canonical

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-495

list_print_requests
(Continued)

Request: 02
User: Smith.Sales
Destination: None
Time: 90-03-16 10:20:59 EDT
Path Name: %s1#d02>Sales>Smith>sales_by_region
Queue Priority: 4

 Attributes: waiting
 Title: none.
 Header: none.
 Footer: none.

 Copies: 01 File size: 115 Sort index: none.
 Line length: 00 Page size: 00 Indent: 00
 Line numbers: no Page Breaks: yes Delete: no
 Edited: no Wrap: yes Controls: canonical

Note that only the first request is running; the second request is waiting in the queue.
2-496

list_process_cmd_limits
list_process_cmd_limits 2-

Purpose
This command lists the initial and maximum limits for commands executed by an existing
process.

Display Form

Command Line Form

list_process_cmd_limits [process_name]
[-user user_name] [-module module_name]

Arguments* process_name
The name or star name of existing processes for which you want to list the process
initial and maximum limits by each new command that the process runs. By default, if
the value of -user is the current_user and the value of -module is
current_module, then the command lists the process limits of the current process.
Otherwise, the default process name is an asterisk (*), indicating all processes of the
specified user on the specified module.

* -user user_name
Specifies a name or user star name indicating one or more user names for which you
want to list the initial and maximum process limits. By default, the command uses your
user name.

* -module module_name
Specifies the module on which the processes are running. By default, the command
uses the current module.

Explanation
The list_process_cmd_limits command lists the initial and maximum command limits
for an existing process.

---------------------------- list_process_cmd_limits------------------------------
process_name:
-user: current_user
-module: current_module
OpenVOS Commands Reference Manual (R098) 2-497

list_process_cmd_limits
Command limits control the amount of a resource (specifically, stack space, heap space, total
address space, CPU time, stream file size, keep module size, and the number of attached
ports) that an executing program can use. A system administrator can adjust the limits to
prevent runaway programs from using excessive resources or simply to enforce a degree of
fairness on the use of system resources.

The module’s default command limits are the limits that apply to all processes that are created
on the module. These limits, once inherited by each newly-created process, become the
process command limits for each process. A system administrator can change these limits
with the following commands:

 The update_default_cmd_limits command changes the module’s default
command limits. Any changes apply only to subsequently-created processes.

 The update_process_cmd_limits command changes the process command limits.

Each time that OpenVOS executes a program, it copies the process command limits into the
program command limits. The program command limits apply only to the currently-executing
program.

Each default or process command limit has an initial value and a maximum value, and each
program command limit has a current value and a maximum value. When each program
command limit is established, the current program value is taken from the initial process
value, and the maximum program value is taken from the maximum process value.

The current program value specifies the limit on the amount of a resource that can be obtained
by the executing program. A program can dynamically raise its current limit up to its
maximum limit by using the s$set_current_cmd_limit subroutine. A program can also
lower its maximum limit down to its current limit. Only a privileged user, or the root user, can
raise one of its maximum limits.

The current program value of a limit can never be set below its current usage, nor can it be
raised above its maximum value.

The maximum size of the user address space of a process is 2048 megabytes (MB). OpenVOS
reserves 128 MB for the executing program, and it reserves approximately 2 MB for system
use. By default, approximately 996 MB are reserved for dynamically-allocated shared virtual
memory, and approximately 1022 MB is reserved for the combined size of the heap and stack.
Arguments of the bind command enable you to adjust these default values.

For a description of the process command limits, see the description of the
update_process_cmd_limits command.

Issue the list_users command to obtain a list of existing process names and user names.
2-498

list_process_cmd_limits
Sample Output
The following shows sample output of the list_process_cmd_limits command.

Process command limits of list_process_cmd_limits.
Initial total limit: infinity.
 Initial heap limit: infinity.
 Initial stack limit: 8388608.
 Initial cpu limit: infinity.
 Initial file limit: infinity.
 Initial keep limit: infinity.
 Initial port limit: 4096.
 Maximum total limit: infinity.
 Maximum heap limit: infinity.
 Maximum stack limit: 132513792.
 Maximum cpu limit: infinity.
 Maximum file limit: infinity.
 Maximum keep limit: infinity.
 Maximum port limit: 4096.

Related Information
To specify the initial and maximum resource limits for any program module executed within
an existing process, use the update_process_cmd_limits command. For information
about setting the heap (max_heap_size), stack (max_stack_size), and total
(max_program_size) limits in a bound program module, see the bind command
description. For information about setting and listing the default resource limits for all new
processes on a module, see the descriptions of the update_default_cmd_limits and
list_default_cmd_limits commands in OpenVOS System Administration:
Administering and Customizing a System (R281) For information about the
s$get_current_cmd_limit and s$set_current_cmd_limit subroutines, see the
OpenVOS Subroutines manuals.
OpenVOS Commands Reference Manual (R098) 2-499

list_save_tape
list_save_tape 2-

Purpose
This command lists the contents of a save tape or a disk file.

Display Form

Command Line Form

list_save_tape tape_device_or_port_name [-volume_id volume_name] [-unattended]
Arguments* tape_device_or_port_name Required

The name of a tape device, or the name of a port attached to a tape drive, holding the
tape to be listed, or the name of a port attached to a disk file.

* -volume_id volume_name
Specifies the volume ID of the first tape volume on which file system objects are saved.

* -unattended <CYCLE>

Causes tape drives with automatic loaders to switch from one tape to the next, without
user intervention. This argument has no effect on tape drives for ftServer modules.

Explanation
The list_save_tape command lists the contents of a save tape or of a disk file containing
one or more saved objects. When you save an object with the save or save_object
command, the operating system saves the full path name of each object saved on the tape or
disk file. You can use the list_save_tape command to find the path names of the objects
you want to restore to the file system. You can then use the restore or restore_object
command to restore the objects to the file system.

Before restoring an object, particularly when you do not need to restore the entire save tape,
issue the list_save_tape command to list on your terminal the path names of all the saved
objects. From that list, you can determine the correct path names to specify in the restore
or restore_object command.

-------------------------------- list_save_tape --------------------------------
tape_device_or_port_name:
-volume_id:
-unattended: no
2-500

list_save_tape
If you are listing the contents of a save tape and have not yet attached a port with the
attach_port command, the list_save_tape command implicitly attaches a port. If you
have not yet mounted a save tape with the mount_tape command, the list_save_tape
command automatically mounts the save tape before executing. Unlike the other commands
that automatically mount tapes, the only prompt that list_save_tape issues is that for the
volume ID. When execution is completed, if list_save_tape implicitly attached a port, it
implicitly detaches the port, forcing the tape to be unloaded. For more information, see
Explanation in the mount_tape command description.

If you are listing the contents of a disk file, you must first attach a port with attach_port.
Then specify the port name for the tape_device_or_port_name argument of
list_save_tape. After list_save_tape is executed, you can either restore the object
with restore_object, or detach the port with detach_port.

Related Information
The save and restore commands are described in OpenVOS System Administration:
Backing Up and Restoring Data (R285). The save_object and restore_object
commands are described later in this manual. See the description of the restore_object
command for an explanation of how to specify the names of the objects you wish to restore.
Unless you are backing up all or a substantial part of the system, save_object and
restore_object are sufficient.

See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, mount_tape,
position_tape, read_tape, restore_object, save_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-501

list_systems
list_systems 2-

Purpose
This command lists the systems accessible from your module.

Display Form

Command Line Form

list_systems [-brief]

[-long]
Arguments* -brief <CYCLE>

Lists only the names of the systems accessible from the current module.

* -long <CYCLE>
Displays, for any system that is offline, additional information about why the system is
unavailable.

Explanation
The list_systems command lists the names of the systems accessible from the current
module, with additional information about which systems are online and which systems are
offline.

If you specify -brief, only the names of the systems are listed. By default, the systems are
listed with a comment telling whether each is online or offline. If you specify -long,
you are given the reason that a system is offline.

Note: If you specify both -brief and -long, -brief overrides -long.

--------------------------------- list_systems ---------------------------------
-brief: o
-long: no

n

2-502

list_systems
Examples
Example 1.
If you give the command list_systems -brief, the following output is displayed.

s1 s2 s3 s4 s5
s6

Example 2.
If you give the command list_systems, the following output is displayed.

s1 online
s2 offline
s3 online (current system)
s4 online (local)
s5 offline
s6 offline

Example 3.
The following example illustrates the information displayed when you give the
list_systems command specifying -long.

s1 online
s2 The target server is not in operation.
s3 online (current system)
s4 online (local)
s5 No one is listening to the specified extension.
s6 offline
OpenVOS Commands Reference Manual (R098) 2-503

list_tape
list_tape 2-

Purpose
This command lists the contents of a labeled tape volume.

Display Form

Command Line Form

list_tape tape_device_or_port_name [-full]
Arguments* tape_device_or_port_name Required

The name of the tape device, or the name of the port attached to the magnetic tape drive,
holding the tape from which the files are to be listed.

* -full <CYCLE>
Lists the tape file type, the record length, and the block length in addition to the file ID
and the file number of each tape file on the tape. By default, the command lists only the
tape file ID and tape file number of the tape files.

Explanation
The list_tape command lists the files of a labeled tape volume mounted on the specified
tape device or on the tape drive connected to the specified port.

The list_tape command displays the volume ID and owner ID of the tape volume, lists the
information about the tape files in order on the tape, and rewinds the tape after listing its
contents.

If you have not yet used the attach_port command to attach a port, the list_tape
command implicitly attaches a port. If you have not yet used the mount_tape command to
mount a tape, the list_tape command implicitly mounts the tape before executing. When
execution is completed, if list_tape implicitly mounted a tape, it implicitly dismounts the
tape. If it implicitly attached a port, it implicitly detaches the port. For more information, see
the Explanation section in the mount_tape command description.

---------------------------------- list_tape ------------------------------------
tape_device_or_port_name:
-full: no
2-504

list_tape
Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, read_tape, restore_object, save_object,
set_second_tape, set_tape_drive_params, set_tape_mount_params,
set_tape_file_params, and verify_save.
OpenVOS Commands Reference Manual (R098) 2-505

list_terminal_types
list_terminal_types 2-

Purpose
This command lists the terminal types for which default parameter values are defined.

Display Form

Command Line Form

list_terminal_types [-match string]

[-module module_name]
Arguments* -match string

Lists only the types of terminals with names that contain the character string string.
By default, the command lists all the terminal types for which default parameters are
defined.

* -module module_name
Specifies a module. The command lists the types of terminals for which default
parameters are defined on the specified module. By default, the command uses your
current module.

Explanation
The list_terminal_types command lists the types of terminals for which default
parameter values are defined.

By default, the command list all terminal types. If you specify -match,
list_terminal_types selects only the terminal types that contain string in the terminal
type name. An asterisk in the -match string is treated as a literal character to match and
does not form a star name.

If you specify -module, the list_terminal_types command lists the types of terminals
for which default parameters are defined on the module you specify. The module_name

----------------------------- list_terminal_types ------------------------------
-match:
-module: current_module
2-506

list_terminal_types
value cannot be a module star name. The following are examples of the accepted forms of
module_name.

%s1#m2
#m2
m2

By default, the command lists the terminal types for the current module.
OpenVOS Commands Reference Manual (R098) 2-507

list_users
list_users 2-

Purpose
This command displays information about selected processes.

Display Form

Command Line Form

list_users [user_name]
[-process process_name] [-module module_name] [-full] [-interval interval] [-process_id process_id] [-admin data_set] [-kernel] [-prelogin] [-system] [-more_system_user_ids person_name[.group_name]]

Arguments* user_name
Specifies one or more user names or star names. The command displays information
only about processes belonging to the specified user or users. By default, the command
displays information about all processes satisfying the other argument criteria.

---------------------------------- list_users ----------------------------------
user_name: .*
-process: *
-module: current_module
-full: no
-interval:
-process_id:
-admin:
-kernel: no
-prelogin: no
-system: no
-more_system_user_ids: root.root nobody.nobody mysql.mysql

*

2-508

list_users
* -process process_name
Specifies one or more process names or star names. If you specify login for
process_name, list_users displays information only about interactive processes.
By default, the command displays information about all processes satisfying the other
argument criteria.

* -module module_name
Specifies one or more module names or module star names. By default, the command
uses your current module.

* -full <CYCLE>
Displays additional information about the specified processes. This is ignored if you
specify -admin. See the Explanation section of this command description for details.

* -interval [interval]
Displays information about the specified processes on the terminal screen and updates
it every interval seconds. If you specify -interval, your current terminal must be
a display terminal. If you specify -interval on the command line but omit the value
for interval, the command uses a value of 10.

* -process_id
Adds a PID column to the output to the left of the USER field, if you specify the
-process_id argument without specifying -interval time. (The PID is the
process ID, an 8-digit hexadecimal number, followed by an x.) See the Explanation for
information about how the -process_id argument interacts with the -interval
argument.

* -admin [data_set] <CYCLE>

Displays additional information about selected processes. There are four possible
values for data_set.

 usage
 page_faults
 disk_io
 deltas

By default, the command uses usage for data_set even though the display form
value for this argument is blank.

* -kernel <CYCLE>
Includes kernel processes that match user_name and process_name. Kernel
processes are processes created automatically by the operating system
(Diagnostic_Utility, Kernel_Utility, and Maintenance_Utility). By
default, the command displays no information about kernel processes.

* -prelogin <CYCLE>
Includes prelogin processes that match user_name and process_name. If you do not
specify -prelogin, and specify either PreLogin.System or PreLogin.* or
PreLogin for user_name or pre-login for process_name, the command includes
OpenVOS Commands Reference Manual (R098) 2-509

list_users
prelogin processes. By default, the command displays no information about prelogin
processes.

* -system <CYCLE>
Includes system processes that match user_name and process_name. System
processes are processes running for users whose group name is .System, except kernel
and pre-login processes. If you specify either user_name or -process, the command
displays information about system processes. By default, the command displays no
information about system processes.

* -more_system_user_ids person_name[.group_name]
Includes user names of the form person_name.group_name (group_name is
optional). The default list of user names is root.root, nobody.nobody, and
mysql.mysql. The list_users command displays noninteractive processes with
any of these names only if you also specify the -system argument.

Explanation
The list_users command displays information about a selected set of processes.

The user_name, -process, -module, -kernel, -prelogin, -system, and
-more_system_user_ids arguments determine which processes the command selects.

The user_name argument allows you to specify a user or set of users. The list_users
command displays information about only the processes of these users. The following are
examples of the accepted forms of the user_name argument.

Smith.Sales
Smith.*
*.Sales
.
*
Smith

The default value of user_name is *.*.

The -process argument allows you to specify a process or set of processes. The
list_users command displays information about only the processes whose names match
process_name.

The list_users command can display the following items of data about the specified
processes.
2-510

list_users
The -full, -admin data_set, -process_id, and -interval arguments determine
what information list_users displays. Table 2-23 lists the data items that are displayed
when you select various combinations of these arguments.

CPU CPU time used since the process started

DCPU CPU time used in the last interval

DDKR Physical disk blocks read in the last interval

DDKW Physical disk blocks written in the last interval

DISKR Physical disk blocks read since the process started

DISKW Physical disk blocks written since the process started

DPF Page faults in the last interval

DPFTM CPU time used handling page faults in the last interval

F Flags:

T Transaction protection overseer
N Network server
K Kernel process
~ Pre-login process
+ Privileged process

LOGIN TIME Date and time the process started

P Priority

PF Page faults since the process started

PFTIME CPU time used handling page faults since the process started

PID Process ID

PROGRAM Program module or internal command name

PS Process state:
ST Stopped
RD Ready
WS Short wait
FZ Reserved for Stratus internal use

USER The user name, the module name (if you chose a module star
name), and the process name (except for logged-in interactive
processes)

USERS at time Same as USER, except that the current time on a 24-hour clock is
displayed in hours, minutes, and seconds.
OpenVOS Commands Reference Manual (R098) 2-511

list_users
23

If you specify -admin and -full, -full has no effect.

If you specify -admin and not -interval, the choice of data_set is irrelevant. If you
specify both -admin and -interval, you can specify a different data_set while the data
is being displayed.

Table 2-23. Data Items Displayed by the list_users Command

Arguments Selected Columns Displayed in Command Output

None USER

-full LOGIN TIME, CPU, PF, USER

-admin CPU, PF, PFTIME, DISKR, DISKW, F, P, USER

-interval USERS at time, CPU, PF, PROGRAM

-interval -full USERS at time, CPU, DCPU, PF, DPF, PROGRAM

-interval -admin usage USERS at time, CPU, DCPU, PF, DPF, PS, F, P,
PROGRAM

-interval -admin page_faults USERS at time, DCPU, PF, DPF, PFTM, DPFTM,
PS, F, P, PROGRAM

-interval -admin disk_io USERS at time, DCPU, DPF, DISKR, DDKR,
DISKW, DDKW, PS, F, P, PROGRAM

-interval -admin deltas USERS at time, DCPU, DPF, DPFTM, DDKR,
DDKW, PS, F, P, PROGRAM

-interval time -process_id USERS at time, PID, PF, PROGRAM
2-512

list_users
If you specify -interval, you can use the following keys to control the display.

<BREAK>

<CANCEL>

<CANCEL_FORM>

<CYCLE>

<®>

<CYCLE_BACK>

<¬>

<DISPLAY_FORM>

<¯>

<GOTO>-<¯>

<GOTO>-<END>

<GOTO>-<−>

<GOTO>-<BEGINNING>

<NEXTSCREEN>

<PREVSCREEN>

<QUIT>

<REDISPLAY>

<SCROLL>-<¯>

<SCROLL>-<−>

<−>

Stop

Stop

Stop

Change -admin data_set

Change -admin data_set

Change -admin data_set

Change -admin data_set

Refresh display

Move window up a line

Move window to last process displayed

Move window to last process displayed. If you
specify -interval on an EPC keyboard, the
<END> key repositions the display to show
information for the last process.

Move window to first process displayed

Move window to first process displayed. If you
specify -interval on an EPC keyboard, the
<HOME> key repositions the display to show
information for the first process.

Move window down a page

Move window up a page

Stop

Refresh display

Move window down a line

Move window up a line

Move window down a line
OpenVOS Commands Reference Manual (R098) 2-513

list_users
Examples
Example 1.
The following example shows the output of the list_users command with the -full
argument specified. The asterisk (*) indicates that Harris is the current user. The x indicates
a stopped process.

s122: list_users -full

 LOGIN TIME CPU PF USER

04-04-30 11:26:39 16.14 2186 Jones.Sales

04-04-30 11:26:31 0.84 2939 Fung.Sales

04-05-03 10:45:12 0.02 235 * Harris.SysAdmin

04-04-30 11:28:18 2\23:17 1487 Smith.SysAdmin (UPS_MD_Daemon)

04-05-03 10:50:36 0.04 160 x George.Sales

Example 2.
The following example shows the output of the list_users command with the -admin
argument specified.

s122: list_users -admin

 CPU PF PFTIME DISKR DISKW F P USER

 16.14 2186 0.07 961 4787 + 5 Jones.Sales

 0.84 2939 0.19 1444 948 + 5 Fung.Sales

 0.03 265 0.00 40 14 + 5 * Harris.SysAdmin

 2\23:22 1487 0.04 148 23 + 7 Smith.SysAdmin (UPS_MD_Daemon)

 0.04 160 0.00 137 26 + 5 George.Sales

Example 3.
The following example shows the output of the list_users command with the
-interval, -admin deltas, and the -system arguments specified.

s122: list_users -interval -admin deltas -system

USERS at 11:53:46 DCPU DPF DPFTM DDKR DDKW PS F P PROGRAM

Jones WS + 5 emacs.pm

Harris RD + 5 list_users.pm

Smith (UPS_MD_Daemon) 9.912 RD + 7 diag_ups_monitor.p

George WS + 5

Overseer (BatchOverseer) WS + 7 batch_overseer.pm

Overseer (ftpd) WS + 7 ftpd.pm

Overseer (osl_daemon) WS + 7 osl_daemon.pm

Overseer (osl_server) WS + 7 osl_server.pm

Overseer (osl_server) WS + 7 osl_server.pm
2-514

list_users
When the screen is updated, the changes that have occurred within the specified interval are
displayed.

USERS at 11:53:56 DCPU DPF DPFTM DDKR DDKW PS F P PROGRAM

Fung WS + 5

Jones WS + 5 emacs.pm

Harris RD + 5 list_users.pm

George WS + 5 emacs.pm

Overseer (BatchOverseer) WS + 7 batch_overseer.pm

Overseer (ftpd) WS + 7 ftpd.pm

Overseer (osl_daemon) WS + 7 osl_daemon.pm

Overseer (osl_server) WS + 7 osl_server.pm

Overseer (osl_server) WS + 7 osl_server.pm

Example 4.
When you specify the -process_id argument with -interval time, the display line
output becomes longer than a single line per process. To avoid this problem, you can change
the view of the fields of the interval display with the use of a PID display toggle. If you press
the P or p key, the display changes between the PID display and the normal display. The
following example shows the normal output.

list_users -interval 5 -full

USERS at 17:45:00 CPU DCPU PF DPF PROGRAM
Fung 4.70 5777 emacs.pm
Harris 27.71 27032 list_users.pm

When you press the P or p key, the output changes to the PID display:

list_users -interval 5 -full -process_id

USERS at 17:46:00 PID DCPU PF DPF PROGRAM
Fung 011E4BCFx 5777 emacs.pm
Harris 011E85D4x 27032 list_users.pm

If the -admin argument was specified, the PID column toggles between the PS, F, and P
columns. The following example shows the normal output.

list_users -interval 5 -admin

USERS at 17:48:30 CPU DCPU PF DPF PS F P PROGRAM
Fung 4.70 5777 0 ws + 5 emacs.pm
Harris 27.71 27032 0 ws + 5 list_users.pm

When you press the P or p key, the output changes to the PID display:

list_users -interval 5 -admin -process_id

USERS at 14:48:47 CPU DCPU PF DPF PID PROGRAM
Fung 4.70 5777 011e4bcfx emacs.pm
Harris 27.71 27032 011e85d4x list_users.pm
OpenVOS Commands Reference Manual (R098) 2-515

list_users
Related Information
See also the description of the who_locked command.
2-516

locate_expandable_dirs
locate_expandable_dirs 2-

Purpose
This command identifies expandable directories.

Display Form

Command Line Form

locate_expandable_dirs [path_name]

Arguments* path_name
The name of a directory to examine. If you specify path_name, the command
examines all directories that are directly or indirectly subordinate to path_name, but
it does not examine path_name itself. If you omit path_name, the command
examines all disks on the module.

Explanation
The locate_expandable_dirs command identifies expandable directories. If you are a
privileged user, the command forces status access on the directory. If you are not a privileged
user and do not have sufficient access to the directory, the command displays a warning.

Examples
In the following example, the command is specified without path_name, so it examines all
disks on the module.

locate_expandable_dirs

Checking directories in disk %s#raid4...

Checking directories in disk %s#m111_mas...
%s#m111_mas>Sales>Smith>d3>d4
%s#m111_mas>Sales>Smith>d3>d4>d5
%s#m111_mas>Sales>Smith>d3>d4>d6
%s#m111_mas>Sales>Smith>d3>d4>d6>d7

 ---------------------------- locate_expandable_dirs --------------------------
 path_name:
OpenVOS Commands Reference Manual (R098) 2-517

locate_expandable_dirs
In the following example, the command is specified with a path name, so it examines only
#m111_mas and its subdirectories.

locate_expandable_dirs #m111_mas

%s#m111_mas>Sales>Smith>d1
%s#m111_mas>Sales>Smith>d3>d4
%s#m111_mas>Sales>Smith>d3>d4>d5
%s#m111_mas>Sales>Smith>d3>d4>d6
%s#m111_mas>Sales>Smith>d3>d4>d6>d7

Related Information
See also the description of the locate_large_dirs command.
2-518

locate_files
locate_files 2-

Purpose
This command lists all files in a directory subhierarchy whose names match one or more file
names you specify.

Display Form

Command Line Form

locate_files file_names . . . [-root_dir directory_name]
Arguments* file_names Required

One or more names or star names of files you want to locate. The command lists the
full path name of a directory that contains one or more files with matching names,
followed by the names of all files in that directory with matching names.

* -root_dir directory_name
Specifies the top directory of a subhierarchy of directories that the locate_files
command is to search for files. By default, the command looks in the current directory.

Explanation
The locate_files command lists the files in a directory subhierarchy whose names match
one of the names in a list of names you specify. No message is displayed if the files are not
found.

Examples
Consider the following command.

locate_files *.cobol

This command lists all the files whose names end with .cobol contained in the directory
subhierarchy whose top directory is your current directory.

--------------------------------- locate_files ---------------------------------
file_names:
-root_dir: current_dir
OpenVOS Commands Reference Manual (R098) 2-519

locate_files
Related Information
 See also the descriptions of the list and walk_dir commands.
2-520

locate_indexed_files
locate_indexed_files 2-

Purpose
This command enables you to search a module for indexed files with certain characteristics.

Display Form

Command-Line Form

locate_indexed_files [directory_names]
[-depth number_of_subdirs] [-min_key_size key_size] [-min_level number_of_levels] [-min_keys number_of_keys] [-min_blocks number_of_blocks] [-extent_type extent_type] [-tp_type tp_type] [-no_verify] [-pace] [-no_count_keys] [-no_verbose] [-no_full_path] [-no_details] [-no_brief]

----------------------------- locate_indexed_files ---------------------------
directory_names:
-depth:
-min_key_size:
-min_level:
-min_keys:
-min_blocks:
-extent_type:
-tp_type:
-verify: no
-pace:
-count_keys: no
-verbose: no
-full_path: no
-details: no
-brief: no
OpenVOS Commands Reference Manual (R098) 2-521

locate_indexed_files
Arguments* directory_names
One or more directories to be searched. If you do not specify a directory name, the
command searches the root directory of all disks on the current module. The search
goes to unlimited depth unless you specify the -depth argument.

* -depth number_of_subdirs
Limits the depth of subdirectories that the command searches. You can specify 1 to 25
for number_of_subdirs. If you specify 1, the command searches only the directory
specified in directory_names. If you do not specify this argument, the command
searches all subdirectories.

* -min_key_size key_size
Displays only those files with indexes having the specified key_size or greater. If you
do not specify this argument or if you specify a key_size of 0, the command displays
all applicable indexes, including those with no intrinsic key size (such as item indexes).

* -min_level number_of_levels
Displays only those files with indexes having a current level of number_of_levels
or greater. You can specify 1 through 64 for number_of_levels. If you do not
specify this argument, the command displays files with empty indexes.

* -min_keys number_of_keys
Displays only those files with an index containing number_of_keys or greater. The
value of number_of_keys must be at least 1. If you do not specify this argument, the
command displays files with empty indexes.

* -min_blocks number_of_blocks
Displays only those files with an index containing number_of_blocks or greater. The
value of number_of_blocks must be at least 1. If you do not specify this argument,
the command displays files with empty indexes.

* -extent_type <CYCLE>
Displays indexed files based on extent type. Values are as follows:

 static—Displays indexed files with static extents.

 dynamic—Displays indexed files with dynamic extents.

 either—Displays indexed files with either static or dynamic extents.

 none—Displays indexed files with no extents.

If you do not specify this argument, the command displays indexed files with any extent
type, including no extents.
2-522

locate_indexed_files
* -tp_type <CYCLE>
Displays indexed files based on whether they are transaction-protected. Values are as
follows:

 tp—Displays transaction-protected indexed files.

 non-tp—Displays non-transaction-protected indexed files.

If you do not specify this argument, the command displays both types of indexed files.

* -no_verify <CYCLE>
Performs basic verification on all applicable indexes. By default (no), the command
does not verify indexes.

Files may be opened and may be transaction protected. The command does not perform
verification on temporary files (that is, those whose names start with _), reserved
indexes (for example, record_indexes), or item indexes. The command reports
empty indexes, but verification is not applicable. Only files containing indexes are
located, not queues that may use indexes internally.

If you also specify the -brief argument, the command identifies only those indexed
files that fail verification. Otherwise, the command identifies all indexes being verified
or not verified.

* -pace pace_value
Changes the speed at which the command transverses records during verification.

The -pace argument is meaningful only if you specify it with the -verify argument.
Indexes are verified by using them to traverse the file in both directions. The file's
records are not accessed. This ensures that the index is self-consistent but does not
catch every possible index error. (Use the verify_index command, which is
described in OpenVOS System Administration: Starting Up and Shutting Down a
Module or System (R282), to perform a more thorough analysis.) This basic validation
is designed to be minimally intrusive and be performed when the files in question are
active.

By default, the command traverses 1024 records at a time, followed by a short sleep so
that the file is available for other users. You can set this value from 0 through 32767.
Lower values require much more time to traverse the index. Setting -pace to 0 causes
traversal of 32,767 records at a time with no intervening sleeps and can be used when
no other critical file activity is occurring.

* -no_count_keys <CYCLE>
Counts the keys in each applicable index. By default (no), the command does not count
keys.

Unlike the count_keys option of the s$get_index_status subroutine, this
argument is minimally invasive. However, -count_keys does not guarantee an
accurate count. (See the OpenVOS Subroutines manuals for more information about
s$get_index_status.)
OpenVOS Commands Reference Manual (R098) 2-523

locate_indexed_files
If you specify the -min_keys argument, the command counts keys only up to the
minimum required for determining applicability, whereas -count_keys counts all
keys and implies use of the -detail argument.

* -no_verbose <CYCLE>
Displays all directories that the command searches, even those with no applicable files.
By default (no), the command displays only directories containing applicable files.

The -full_path and -verbose arguments are mutually exclusive.

* -no_full_path <CYCLE>
Displays the full path name on each line and eliminates the directory identification and
summary, unless you also specify -brief. By default (no), the command does not
display the full path name.

This argument may be useful if you use the output to produce command macros.

If you specify both -full_path and -verify, the command always displays a full
path name, even if you also specify -brief.

The -full_path and -verbose arguments are mutually exclusive.

* -no_details <CYCLE>
Displays information about each index involving type, number of blocks, extent type,
transaction protection, current level, and if -count_keys is used, the current number
of keys. By default, the command does not display these details about each index.

* -no_brief <CYCLE>
Displays only a count of applicable indexed files. If you specify -brief with
-verify, the command displays only those files with indexes that failed verification.
By default, the command displays all applicable indexed files.

Explanation
The locate_indexed_files command allows you to search for indexed files with various
characteristics.

Examples
Example 1.
The following command performs a verification on indexed files and then displays the results.

locate_indexed_files -verify

locate_indexed_files . -verify
%s#Raid4>AcmeCompany>Smith:
 Verifying as_meter_file[meter_index]
 Not verifying reserved index as_meter_file[_deleted_record_index]
 Verifying emacs_keystroke_macros[macro_name]
 Not verifying reserved index

(Continued on next page)
2-524

locate_indexed_files
emacs_keystroke_macros[_deleted_record_index]
 Verifying error_codes.text[number]
 Verifying error_codes.text[name]
 Verifying error_codes.text[name_to_number] Total of 3 indexed files

examined.
 5 indexes were verified.

%s#Raid4>AcmeCompany>Smith>cm-429:
 Verifying rel_file[ix]
 Verifying seq_file[ix]
 Verifying seq_file1[ix]
Total of 3 indexed files examined.
 3 indexes were verified.

Example 2.
The following example shows examination of a large index. The ... line indicates progress.
The <> shows the halfway point where the traversal is reversed.

locate_indexed_files #raid8>pf_repro4 -verify -pace 2000 -details

%swsle#raid8>pf_repro4>nmatst:
 Not verifying reserved index network_network_id[_deleted_record_index]
 Verifying network_network_id[network_key]
 separate key index Blocks: 590262 High: 590196 TP SAE-65536

(524288)
 Current level: 5

 <>.......................

Total of 1 indexed file examined.
 1 index was verified.

%swsle#raid8>pf_repro4>sbt>common:
 Verifying sbt_file[sbt_idx]
 embedded key index Blocks: 4262 High: 4256 TP No extents
 Current level: 3

locate_indexed_files: Internal format error in file. sbt_file[sbt_idx]

 Not verifying reserved index sbt_file[_deleted_record_index] Total of 1
indexed file examined.

 1 index failed verification.

Related Information
See the description of the verify_index command in OpenVOS System Administration:
Starting Up and Shutting Down a Module or System (R282).
OpenVOS Commands Reference Manual (R098) 2-525

locate_large_dirs
locate_large_dirs 2-

Purpose
This command reports the names of directories that are at or over a specified percentage of
their maximum capacity.

Display Form

Command Line Form

locate_large_dirs [path_name]
[-warn_at number] [-check_block_usage]

Arguments* path_name
The name of a directory to examine. If you specify path_name, the command
examines all directories that are directly or indirectly subordinate to path_name, but
it does not examine path_name itself. If you omit path_name, the command
examines all disks on the module.

* -warn_at number
Indicates the percentage of entries used (or blocks used, if you specify
-check_block_usage) of the maximum allowed. Specify a value between 0 and
100; the default value is 75.

* -check_block_usage <CYCLE>
Identifies directories that contain more blocks than the maximum number allowed,
rather than entries. If you do not specify this argument, this command identifies only
expandable directories, because current entry usage is not tracked for standard
directories.

 ------------------------------ locate_large_dirs -----------------------------
path_name:
-warn_at: 75
-check_block_usage: no
2-526

locate_large_dirs
Explanation
The locate_large_dirs command reports the names of directories that are at or over a
given percentage of their maximum capacity. It takes into account the settable maximum
growth limit of expandable directories.

The command enables you to detect the growth potential of a directory by the number of
entries it currently contains versus the maximum number of entries allowed. Because only
expandable directories track the current number of entries and can have entry limits set, the
locate_large_dirs command identifies only expandable directories unless you specify
-check_block_usage.

If you are a privileged user, the command forces status access on the directory. If you are not
a privileged user and do not have sufficient access to the directory, the command displays a
warning.

Examples
In the following example, the command finds a disk that contains large directories.

locate_large_dirs <
*** Scanning for large directories in %s1#d02>Sales
%s1#d02>Sales>Jones>d1b: 31888 (97%) of 32700 entries allowed
*** WARNING: Located large directories in %s1#d02>Sales

In the following example, the command identifies the number of blocks used in all of the large
directories on the module’s disks.

Note: As shown in the following example, the current blocks or entries used in a
directory may exceed the maximum value. You can set the maximum value lower than
the current value to avoid further growth until the size of the directory is sufficiently
reduced. This accounts for usage percentages greater than 100 percent; however, such
directories are always diagnosed.

locate_large_dirs -check_block_usage

*** Scanning for large directories in %s1#d02-1

*** Scanning for large directories in %s1#d02-2

*** Scanning for large directories in %s1#d02-03
%s1#d02-03>Jones>d4: 527 (100%) of 527 blocks allowed
%s1#d02-03>Jones>d5: 527 (100%) of 527 blocks allowed
*** WARNING: Located large directories in %s1#d02-03

*** Scanning for large directories in %s1#d04
%s1#d04>Sales>Jones>d1: 527 (527%) of 100 blocks allowed
%s1#d04>Sales>Jones>d3a: 530 (100%) of 530 blocks allowed
%s1#d04>Sales>Jones>d4: 527 (100%) of 527 blocks allowed
*** WARNING: Located large directories in %s1#d04

Related Information
See also the description of the locate_expandable_dirs command.
OpenVOS Commands Reference Manual (R098) 2-527

locate_large_files
locate_large_files 2-

Purpose
This command allows you to search for large files.

Display Form

Command-Line Form

locate_large_files [path_name]
[-warn_at percentage] [-syserr_log] [-max_blocks blocks]

Arguments* path_name
The relative path name of the directory to be searched. If you do not specify a path
name, the command searches all disks on the current module.

* -warn_at percentage
Specifies the percentage of the maximum size to be used as a warning threshold. The
percentage can be between 50 and 100; the default is 75. If you specify 75, for example,
the command displays any files or indexes whose last record is greater than or equal to
75% of the maximum size allowed for that type of file.

* -syserr_log <CYCLE>
Writes messages about large files to the system error log. By default, these messages
are not written to the system error log.

* -max_blocks blocks
A value between 1 and 231. This value designates block usage; all files occupying at
least this many blocks are identified. This argument and -warn_at are mutually
exclusive.

------------------------------ locate_large_files ------------------------------
path_name:
-warn_at:
-syserr_log: no
-max_blocks:
2-528

locate_large_files
Explanation
In OpenVOS, the four standard file types used for storing and indexing data are sequential,
stream, relative, and fixed. The maximum file size is determined by whichever is smaller: the
maximum byte offset (for sequential or stream files only) or the maximum number of disk
addresses available in the file map (for sequential, stream, relative, or fixed files). The file map
is a list of blocks that contain the disk addresses of the actual data or index information for
the file.

By default, every disk address in a file map represents one disk block of 4096 bytes. You can
use statically-allocated extents (SAE files, or extent files) or dynamically-allocated extents
(DAE files) so that the file map can track data blocks for very large files. SAE files allocate
and initialize the blocks when you create the file. For DAE files, each file-map address has
the address of one extent_size group of blocks. The blocks are allocated and initialized
when that extent first gets referenced.

For fixed files, relative files, or 64-bit stream files, data does not have to be added in ascending
order from the beginning of the file. Instead, it may be written based on the record number or
byte offset, and many lower-numbered blocks may not need to be allocated to disk. Such files
are called sparse files. Because the calculation made by the locate_large_files
command compares the block number of the highest block in use to the maximum block that
can be written to the file, the command, when used with the -warn_at argument, may report
sparse files as large files, even if they do not have many disk blocks assigned to them. Use the
-max_blocks argument to identify files based on actual block usage, as opposed to the block
number containing the last record in the file.

Examples
An example of the locate_large_files command follows.

locate_large_files -warn_at 55

*** Scanning for large files in %disk_test#m1
%disk_test#m1>relative.4094.16.1.none.all 100%.
%disk_test#m1>relative.none.4094.16.1 100%.
*** WARNING: Located large file or index in %disk_test#m1

*** Scanning for large files in %disk_test#m1-1

*** Scanning for large files in %disk_test#m1-2

*** Scanning for large files in %disk_test#m1-3

*** Scanning for large files in %disk_test#m1-4

*** Scanning for large files in %disk_test#m1-5

%disk_test#m1-5>prod_cust_data 58% [idx_1_50 63%] [idx2_1_56 77%].
*** WARNING: Located large file or index in %disk_test#m1-5
OpenVOS Commands Reference Manual (R098) 2-529

locate_large_files
An explanation of the preceding example follows:

 The WARNING message indicates that the specified disk or directory contains one or
more files that exceeded the percentage specified in the -warn_at argument.

 The line %disk_test#m1-5>prod_cust_data 58% [idx_1_50 63%]
[idx2_1_56 77%]. indicates that the data is at 58% of the maximum size for that file
type. Two indexes (idx_1_50 and idx2_1_56) are also more than 55% full.

If the data exceeds percentage, that percentage will show up immediately after the
file’s path name, before any indexes. The command checks each index. If the index
exceeds the limit, it appears after the file’s path name, enclosed in brackets.

A period at the end of the line indicates that the data and all indexes for that file have
been checked and reported on, as necessary.

 The line %disk_test#m1>relative.4094.16.1.none.all 100%. indicates that
the file cannot grow beyond the last record that was written. If it is a sparse file, the
system can write new data in the unwritten lower records. If it is not a sparse file, the
system can only rewrite records.
2-530

locate_stream_files
locate_stream_files 2-

Purpose
This command enables you to search a module for stream files with certain characteristics.

Display Form

Command-Line Form

locate_stream_files [directory_names]
[-depth number_of_subdirs] [-type file_type]
¢ £

Arguments* directory_names
One or more directories to be searched. If you do not specify a directory name, the
command searches the root directory of all disks on the current module.

* -depth number_of_subdirs
Limits the depth of subdirectories that the command searches. If you do not specify this
argument, the command searches all subdirectories.

* -type <CYCLE>
Determines which type(s) of stream file to display in the output. Values are as follows:

 64-bit (the default) displays only 64-bit stream files.

 flex displays only 64-bit stream files with flexible extents.

 large displays only 64-bit stream files larger than 2 GB.

 ----------------------------- locate_stream_files ----------------------------
 directory_names:
 -depth:
 -type: 64-bit
 -brief: no
 -long: no

-brief
-long
OpenVOS Commands Reference Manual (R098) 2-531

locate_stream_files
 sparse displays only sparsely allocated 64-bit stream files.

 all displays all stream files.

* -brief <CYCLE>
Displays only a count of the number of files in each visited directory that contains the
specified type of stream file. You cannot specify this argument with -long. If you
specify neither argument, the command displays only those directories containing
applicable files, with the file names and a non-zero count.

* -long <CYCLE>
Displays all directories visited, the names of applicable files in each directory, and a
count (possibly zero) of the applicable files in each directory. You cannot specify this
argument with -brief. If you specify neither argument, the command displays only
those directories containing applicable files, with the file names and a non-zero count.

Explanation
The locate_stream_files command allows you to search for stream files with various
characteristics. Such searches can identify certain types of stream files on a module that is
running an OpenVOS release that may be incompatible with previous releases. For example,
64-bit stream files are supported on OpenVOS Release 17.2.x but not on earlier releases.

Before you move a disk to a module running an older release, make sure that you first identify
any stream files with characteristics that are incompatible with that release, and then convert
or remove them.

Examples
In the following example, the command searches for sparse files in the root directory of all
disks on the current module and then displays the results.

locate_stream_files -type sparse

Checking directories on disk %s#Raid3...
Checking directories on disk %s#raid0-1...
Checking directories on disk %s#raid0-2...
Checking directories on disk %s#Raid4...
%s#Raid4>Smith:
 bigflex2 (DAE-256/large)
 bignempty (DAE-32/large)
 e1
 e3 (DAE-128/large)
 e4 (DAE-128)
 s4 (DAE-8)
 s5 (DAE-8)
 z1a (DAE-16/large)
 Total of 8 sparse stream files.

%s#Raid4>Smith>xstream:
 new1 (DAE-8)
 Total of 1 sparse stream file.
2-532

locate_stream_files
Checking directories on disk %s#m111_mas...
%s#m111_mas>Sales>Jones:
 big-file (DAE-8/large)
 stm64
 Total of 2 sparse stream files.

%s#m111_mas>Sales>Jones>test:
 sparse_file (DAE-8)
 Total of 1 sparse stream file.

%s#m111_mas>Sales>Smith:
 p4be_vos_18.0.dev.eq.pm (DAE-8)
 xxx.pm (DAE-8)
 xxx2.pm
 zzz1.pm (DAE-8)
 Total of 4 sparse stream files.

Related Information
For information about the types of stream files, see the description of the create_file
command.
OpenVOS Commands Reference Manual (R098) 2-533

login
login 2-

Purpose
This command creates a process for you and gives you access to system resources.

Display Form — Initial Process

Display Form — Subprocess or Subsequent Process

Command Line Form — Initial Process
login user_name [-privileged] [-password password] [-change_password] [-priority priority] [-home_dir directory_name] [-module module_name] [-subsystem subsystem_name]

------------------------------------ login -------------------------------------
user_name:
-privileged: as registered
-password:
-change_password: no
-priority:
-home_dir:
-module:
-subsystem:

------------------------------------ login -------------------------------------
group_name: urrent_group_name
-privileged: same_as_parent_process
-priority:
-password:
-module:

c

2-534

login
Command Line Form — Subprocess or Subsequent Process

login [group_name]
[-privileged] [-priority priority] [-password password] [-module module_name]

Arguments* user_name Required
A person name or full user name as registered in the system’s registration file. This
argument is case-insensitive. You can use an alias instead of your person name. If the
value of the -require_full_person argument of the login_admin command is
no, you can use a word of your person name if the word is unique on your system. For
example, if you are registered as Tom_Clark and no one else named Clark is
registered on your system, you can use Clark for your user name. However, if the
value of the -require_full_person argument of the login_admin command is
yes, you must use your person name, full user name, or an alias. In this case, you must
use Tom_Clark as your person name.

If you omit the group name, the operating system adds your default group name to form
a user name for your process. Any subprocess you create will have this user name.

* -privileged <CYCLE>
Makes your process privileged. You must be registered as a privileged user to log in as
privileged. By default, your initial process has the default privilege defined for your
user name in the system registration file. Also, by default when you log in to a
subprocess or subsequent process, the subprocess or subsequent process has the same
privilege as the process from which you create it, the parent process. You cannot create
a privileged subprocess from a nonprivileged process.

* -password password
Specifies your password. By default, the operating system prompts you for it. In this
case, the characters do not appear on your terminal as you type them. If you supply your
password as part of the command line form, the characters are displayed. If you supply
your password in the display form of the command, the characters are not displayed.
When you create a subprocess on the same system, you do not supply a password.
When you create a subprocess on a different system, you supply a password.

Note: Abbreviations are not expanded.

* -change_password <CYCLE>
Changes your password. You can only change your password while logging in. When
you first log in, you must supply your old password; the operating system then prompts
for your new password. After you give your new password, the operating system
prompts you for it a second time for verification. If the two match, the new password
replaces the old password on all modules on the system. The new password is not
displayed as you type it in. If your two entries of the password do not match, the
operating system again prompts you for your new password.
OpenVOS Commands Reference Manual (R098) 2-535

login
Note: If the new password contains certain punctuation marks that the operating
system recognizes as delimiters (!, (,), ’, ;, or &), you may not be able to log
back in and give the password using the command line form. The password will
be accepted if you wait for the prompt.

* -priority priority
Sets the priority of your login process. You cannot specify a priority greater than your
registered maximum priority. By default, the command gives your process your
registered default priority.

* -home_dir directory_name
Sets your home directory to directory_name. By default, the command sets the
home directory of your process to your default home directory. Any subprocess you
create acquires the home directory set for your initial login.

* -module module_name
Creates your process on the specified module. The valid forms of module_name are
%system #module, or #module to indicate the current system. By default, the
command creates a process for you on the module to which your terminal is connected,
or, in the case of a subprocess, on the module that is executing the current process.

* -subsystem subsystem_name
Specifies the name of a subsystem supported under the operating system. The
command executes the start_up.cm corresponding to the specified subsystem. The
startup command macro for the specified subsystem must be of the form
subsystem_name_start_up.cm. By default, the command executes the
start_up.cm in your home directory.

* group_name <CYCLE>
Logs in to a subprocess as a member of a different group than the group for your current
process. The possible values are the group names for which you are registered in the
system registration file. You can specify group_name only when you log in to a
subprocess, and not when you log in initially. By default, the command logs you in as
a member of your current group.

Explanation
The login command authenticates and creates an interactive process for you. It allows you
to use system resources.

You can issue a login command either before you log in or after you are logged in. In the
second case, by default, the login command creates a subprocess or subsequent process that
has exactly the same attributes as the process from which you create it. However, as the
second display form shows, you can select only a subset of the arguments when you log in to
a subprocess or subsequent process.

At an initial login, the default value for the -privileged argument is as_registered,
which means that your process has the privilege defined for your user name in the system
registration file. If you try to initially log in as privileged when your user name is registered
as non-privileged, the operating system will not log you in. On a subsequent login, the
default value for the -privileged argument is yes if you are currently logged in as
privileged or no if you are not currently logged in as privileged. If you try to subsequently log
2-536

login
in as privileged when your current process is non-privileged, the operating system will not log
you in.

Depending on how your system administrator has registered you, an additional message may
appear when you perform an initial login. If this occurs, you must type a response before you
can log in successfully.

You must be registered in the system registration file of the system to which you are logging
in. The operating system validates your use of the system. For example, if you must supply a
password, the operating system asks you for it before allowing you to issue commands.

The operating system attaches the command_input, default_input,
terminal_output, and default_output ports of your process to your terminal.

Your current directory at initial login is set to your default home directory or to the directory
you specify in the -home_dir argument. If your home directory contains a command macro
named start_up.cm, the operating system executes it before accepting commands, both
when logging in a new process and when creating a subprocess or a subsequent process.

If the user that is logging in is registered to use external authentication, and if they have a
non-null external person name, that name is used instead of their OpenVOS user name.

Examples
Example 1.
The following command logs in a user with the person name Smith.

login Smith

The group for the user Smith is the default group registered for the user name Smith.

Example 2.
To log the user Smith.east in to the system %s1, use this command:

login Smith.east -module %s1#m2

The module that executes the user’s interactive process is named m2.

Related Information
For additional information about changing passwords, see the description of the
change_password command as well as the OpenVOS Commands User’s Guide (R089). For
information about how to start a noninteractive process, see the description of the
start_process command in this manual. For information about how to display the state of
your login process, see the description of the list_users command in this manual. See the
Introduction to VOS (R001) for information about processes and subprocesses.
OpenVOS Commands Reference Manual (R098) 2-537

logout
logout 2-

Purpose
This command terminates a login process or login subprocess.

Display Form

Command Line Form

logout [-hold]
Arguments* -hold <CYCLE>

Logs out without breaking a telephone connection, when logged in over a telephone
line. By default, logout breaks the connection. If you are not logged in over a
telephone line, the command disregards the argument.

Explanation
The logout command terminates your login process.

The operating system closes all files you have opened, unlocks all locks you have locked,
detaches all ports you have attached, and detaches all events you have attached.

Specifying -hold when you are logged in over a telephone line gives you the following
advantages.

 When you log in again, you do not have to wait to be connected to a dial-up line.
 You can log in to your current module again.

Do not specify -hold if you are logged in over a telephone line and do not expect to log in
again soon. This frees the dial-up line for another user.

When you are using a vterm device and issue the logout -hold command, terminal
parameters (such as prompt_message and terminal_type) are retained for the next login.
Asynchronous or window terminal devices clear these parameters on logout.

------------------------------------ logout ------------------------------------
-hold: o n
2-538

logout
Examples
The following command terminates your login process or subprocess.

logout

When you log out from a subprocess, the operating system reactivates the interactive process
from which you created the subprocess.
OpenVOS Commands Reference Manual (R098) 2-539

mount_tape
mount_tape 2-

Purpose
This command mounts the tape volume on the specified tape device or on the tape drive
connected to the specified port.

Display Form

Command Line Form

mount_tape tape_device_or_port_name [-tape_format tape_format] [-volume_id volume_id] [-owner_id owner_id] [-message message] [-access_rights access_rights] [-cartridge_no cartridge_no] [-create_volume] [-reel_retention reel_retention] [-compression] [-unattended]
Arguments* tape_device_or_port_name Required

The name of the tape device or the name of the port attached to the tape drive, holding
the tape to be mounted.

---------------------------------- mount_tape ----------------------------------
tape_device_or_port_name:
-tape_format:
-volume_id:
-owner_id:
-message:
-access_rights:
-cartridge_no:
-create_volume: no
-reel_retention:
-compression:
-unattended: no
2-540

mount_tape
* -tape_format tape_format <CYCLE>
Specifies the type of labels of the tape and the tape files. The operating system can
process the following types of tapes:

 ANSI-labeled tapes
 IBM OS/VS and MVS labeled tapes
 UNIX-labeled tapes
 unlabeled tapes

The possible values for tape_format are ansi for ANSI-labeled tapes, ibm for IBM
OS/VS-labeled tapes, ibm_mvs for tapes used on MVS/RACF systems, unlabeled
for unlabeled tapes, and unix for tapes that have UNIX tar, cpio, or cpioc formats.

The operating system also sets the default translation mode according to the tape format
you specify. When you choose the format ansi, or unix, the default translation mode
is ascii; when you choose the format ibm or ibm_mvs, the default translation mode
is ebcdic; and when you choose the format unlabeled, the default translation mode
is binary. You can explicitly set the default translation mode by giving the
-translation argument of the set_tape_file_params command. In this case, be
careful to choose a translation mode that is consistent with the specified tape format.
The -translation argument overrides any implicit default.

* -volume_id volume_id
Specifies the volume ID of the tape to be mounted. The tape facility disregards
volume_id when the tape is unlabeled, although it is printed as part of the mount
request message. By default, the tape facility disregards a volume ID on the tape
volume it is mounting.

* -owner_id owner_id
Specifies the owner ID of the tape to be mounted. The tape facility disregards
owner_id when the tape is unlabeled, although it is printed as part of the mount
request message. By default, the tape facility disregards an owner ID on the tape
volume it is mounting.

* -message message
Specifies a message to send to the operator that gives information about the tape to be
mounted. By default, the tape facility uses the default message value previously defined
by the set_tape_drive_params command.

* -access_rights access_rights <CYCLE>
Specifies the access to set on the tape to be mounted. The possible values are
read_write and readonly. If you specify read_write, the tape facility checks to
make sure that you have put the write ring in the tape reel or, for cartridge tape, that you
have set the write-protect mechanism to off. If you specify readonly, the tape facility
accepts a tape with or without a write ring, but does not allow you to write to the tape.
By default, the tape is mounted with read_write access.

* -cartridge_no cartridge_no
Determines which tape is mounted next. This argument has no effect on tape devices
for ftServer modules; specify 0 or blank.
OpenVOS Commands Reference Manual (R098) 2-541

mount_tape
* -create_volume <CYCLE>
Specifies that the tape does not contain a tape volume; therefore, the tape facility does
not check the tape’s volume ID and owner ID. If the tape is to be a labeled tape, the tape
facility writes a new volume ID and a new owner ID on the tape. If the tape is to be an
unlabeled tape, the tape facility writes two tape marks at the beginning of the tape. By
default, if the tape is labeled, the tape facility checks the volume ID and owner ID of
the tape volume.

Note: In order to use this argument, you must have write access to the applicable
device.

* -reel_retention reel_retention <CYCLE>
Specifies whether the tape should remain loaded when the port is detached. The
possible values are dismount and retain. The default value, dismount, causes the
tape to be unloaded, unless you give the set_tape_drive_params command to
enable reel retention. Regardless of the value of -reel_retention, the
dismount_tape command dismounts the tape and unloads it, unless you use the
-no_unload argument of dismount_tape.

* -compression <CYCLE>
Enables you to select data compression if you have a tape drive that supports data
compression. The default value for the -compression argument is no. If you select
the alternative value, yes, it remains for the duration of the port attachment (that is, it
is not reset with the dismount_tape command). This argument has no effect on tape
drives for ftServer modules.

Note: The compressibility of data may vary widely.

* -unattended <CYCLE>
Causes tape drives with automatic loaders to switch from one tape to the next, without
user intervention. If you specify the value yes for the -unattended argument, the
command does not check the owner_id and volume_id values against the values you
specified for the -volume_id and -owner_id arguments of the mount_tape
command. This argument has no effect on tape drives for ftServer modules.

The -unattended argument allows you to use the read_tape and write_tape
commands to consecutively process multiple tapes. However, you cannot use
mount_tape in unattended mode if you also want to create tape volumes using the
-create_volume argument.

Explanation
The mount_tape command mounts the tape volume on the specified tape drive or on the tape
drive to which the specified port is attached.

For more information about tape format, see the command description for
set_tape_mount_params.

The tape facility checks that the tape is mounted with the write ring installed according to the
access you specify. If the tape volume is labeled and you specify -volume_id, then the tape
facility checks the volume ID in the volume label. Similarly, if you specify -owner_id and
the volume is labeled, then the tape facility checks the owner ID.
2-542

mount_tape
Before you perform a cross-module mount, make sure that the devices.tin files on the host
and destination modules have identical file entries for the tape drive. For example, if you are
specifying the mount_tape command on an ftServer module in order to mount a tape
volume on a Continuum-series module’s tape drive, the devices.tin file entry on both
modules might look like the following:

/ =name tape.16
=module_name m16
=terminal_type tape_drive_type_n
=device_type tape
=slot 4
=bio_port 1
=bio_device 6

File entries for devices on ftServer modules have a different format from the one shown in the
preceding example. See OpenVOS System Administration: Configuring a System (R287) for
more information.

You can explicitly attach a port and mount a tape before a tape command is executed, and
explicitly dismount the tape and detach the port after the command is executed. Or, you can
let the tape commands perform the attachment and mounting.

You should explicitly attach a port with attach_port and detach the port with
detach_port when you perform these tasks:

 reserve the tape drive for your use over a period of time
 set the tape parameters with the set_tape_drive_params or

set_tape_mount_params command before mounting the tape with mount_tape

You should explicitly mount a tape with mount_tape and dismount a tape with
dismount_tape when you perform these tasks:

 create a tape volume
 specify the volume ID of the tape to be mounted
 perform multiple tape operations to a given tape, such as a sequence of write_tape

operations or a sequence of different commands

You can let the tape commands attach a port and mount the tape when you perform these
tasks:

 issue a single command, such as write_tape, save_object, or dump_disk
 process a combination of read_tape and list_tape commands
 read a tape using read_tape when you do not know the tape’s format

Explicit Port Attachment and Tape Mounting
If you explicitly attach a port with attach_port, you must explicitly detach the port with
detach_port.

If you explicitly mount a tape with mount_tape, you must explicitly dismount it with
dismount_tape. The dismount_tape command by default unloads the tape. If you want
the command to dismount the tape but not unload it, specify -no_unload.
OpenVOS Commands Reference Manual (R098) 2-543

mount_tape
The mount_tape command can implicitly attach a port. If you use mount_tape to attach a
port implicitly, you must use dismount_tape to detach the port implicitly. Implicit port
attachment is explained in the next section.

Implicit Port Attachment and Tape Mounting
If you have not yet used the mount_tape command to mount the tape, some commands
implicitly mount the tape; that is, they mount the tape without any action on your part. These
commands are list_tape, read_tape, and write_tape.

The commands that implicitly mount a tape can also implicitly attach a port.

If a command implicitly mounts a tape, it implicitly dismounts the tape after execution. The
command dismounts the tape by ‘‘releasing” it; that is, by rewinding the tape to the beginning
(BOT).

Note: To avoid overwriting data on your tape by consecutive write_tape operations,
you should mount the tape explicitly.

To specify that the command implicitly mount the tape, give a device name or a port name for
the first argument, tape_device_or_port_name. If you give a device name and a port is
not already attached, the command implicitly attaches one.

If, however, you previously attached a port with attach_port, the tape command uses that
port. If you give a port name for the first argument, you must first attach the port with
attach_port. When you issue the tape command, it implicitly mounts the tape.

When execution is completed, if the command implicitly mounted the tape, it implicitly
dismounts the tape. If the command implicitly attached the port, it implicitly detaches the
port.

Implicitly mounting a tape changes the actual tape mount parameters to reflect the values
used on the tape label, the density of the tape, and the access rights determined by the
write-ring or SAFE switch. The tape command does not prompt you as mount_tape does.
If the tape command attempts implicitly to mount an uncreated tape, the mount fails.

A tape command can implicitly mount only the first tape of a multivolume set of tapes. The
operating system prompts you to mount the second and remaining tapes in the set.

Automatic Tape Mounting
If you have not yet used the mount_tape command to mount the tape, the following user
commands automatically mount the tape: save_object, list_save_tape, and
restore_object. (The system administration commands save, restore, and
dump_disk also use automatic mounting.) These commands mount the tape for you after
displaying the mount_tape prompts, to which you must respond. The prompts can prevent
you from inadvertently overwriting the contents of a save tape by mounting the wrong tape,
or can prevent you from using the wrong tape to restore from.

These commands can also implicitly attach and detach a port. Implicitly detaching the port
forces the tape to be unloaded.
2-544

mount_tape
To have the tapes mounted automatically for one of these three commands, specify a device
name or a port name for the first argument, tape_device_or_port_name. If you give a
device name and a port is not already attached, the command implicitly attaches one. If,
however, you previously attached a port with attach_port, the command uses that port. If
you give a port name for the first argument, you must first attach a port with attach_port.
After you issue the tape command, the command automatically mounts the tape for you,
displaying the mount_tape prompts.

When execution is completed, if the command implicitly attached a port, the command
implicitly detaches the port, forcing the tape to be unloaded. If, however, you attached a port
explicitly, with attach_port, the tape stays mounted after execution, at which time you can
optionally issue other tape commands. You must then either detach the port by issuing
detach_port, or dismount the tape by issuing dismount_tape. Both commands cause the
tape to be unloaded. If you dismount the tape, you must then detach the port with
detach_port.

Access Rights
The items listed below address what happens when the values you specify for the access
rights, tape format, volume ID, owner ID, or the default values do not match the values on the
tape.

Mismatched Access Rights
The tape access rights are read/write or read only. The default is read/write. When reading a
tape, you can set the access rights to readonly to prevent the accidental overwriting of the
tape. When writing a tape, set the access rights to read_write. The access rights you specify
with the set_tape_mount_params or mount_tape command should match the setting of
the write-protect mechanism on the tape, as shown in Table 2-24. Set the tape write-protect
mechanism before you load the tape. On reel tapes the write-protect mechanism is a
write-ring. On 1/4-inch cartridge tapes, the write-protect mechanism is a SAFE switch, and
on 1/2-inch cartridge tapes, the write-protect mechanism is a FILE PROTECT switch.

24

If the access rights are read_write (the default), the tape’s write-protect mechanism must
be off. If the write-protect mechanism is on and the access rights are read_write, the
mount_tape command displays the message Tape must be mounted with the write
ring in. The message is followed by the prompt Okay to mount tape volume?. The

Table 2-24. Matching Access Rights

Write-Protect
Mechanism Setting

Tape Type
Access
Rights

Reel
1/4-Inch
Cartridge

1/2-Inch
Cartridge

On

Write-ring
out

SAFE switch
on

FILE
PROTECT
switch on

Read only

Off

Write-ring in SAFE switch
off

FILE
PROTECT
switch off

Read/write
OpenVOS Commands Reference Manual (R098) 2-545

mount_tape
command displays this prompt until you unload the tape and set the write-protect mechanism
to off, or until you set the access rights to readonly. You can alter the access rights with
alter_parameters, as described below.

Mismatched Tape Formats
If you specify a tape format that does not match the tape format value on the tape label, the
mount_tape command displays a message such as the following.

The tape is an ibm labeled tape, not an ansi labeled tape.
Mount tape on %s1#tape.1.0 as specified in the following.

Access Rights: read_write (ring_in).
Tape Format: ansi.
Volume ID: Vol1.
Owner ID: Smith.

Okay to mount (yes, alter_parameters, create_volume, abort)?

To correct this mismatch, you can alter the tape format by typing alter_parameters,
pressing <RETURN>, and typing the new value.

Mismatched Volume IDs or Owner IDs
If you specify a value for the volume ID or owner ID with the set_mount_tape_params
or mount_tape command that does not match the values on the tape label, the mount_tape
command displays a message such as the following.

Tape Volume ID (Vol1) is not the volume requested
Mount tape on %s1#tape.1.0 as specified in the following.

Access Rights: read_write (ring_in).
Tape Format: ansi.
Volume ID: Vol1.
Owner ID: Smith.

Okay to mount (yes, alter_parameters, create_volume, abort)?

You can correct this mismatch by altering the volume ID or owner ID with
alter_parameters as shown above, or, if you have loaded the wrong tape, you can now
load the right tape, and type yes in response to the prompt.

If you do not specify a volume ID and owner ID, the command searches for the volume ID
and owner ID of the tape. The command displays the tape values for the volume ID and
owner ID, and asks you whether to use the tape. Respond with yes or no. If yes, the
command uses the mounted tape. If no, the command aborts. You must then reissue the
mount_tape command if you want to continue. See the example that follows.

Example
In this example, the user attaches the port a_port to the drive #tape.2.0 and issues the
mount_tape command. The command uses the default values for the volume ID and owner
ID.

attach_port a_port #tape.2.0
 ready 14:01:47
 mount_tape a_port
2-546

mount_tape
The command displays the default values and asks whether it is all right to mount the tape
volume. The user responds with yes.

Mount tape on %se#tape.2.0 as specified in the following.
Access Rights: read_write (ring_in).
Tape Format: ansi.
Owner ID: Smith.

Okay to mount tape volume? (yes, alter_parameters, create_volume,
abort) yes

The command then indicates that the volume ID and owner ID on the tape label are different
from the default values, and asks whether to use the loaded tape. The user responds with yes.

 The tape loaded on %se#tape.2.0 is designated by the following.
 Access Rights: read_write (ring_in).
 Tape Format: ansi.
 Volume ID: VOLONE.
 Owner ID: JONES.
 Proceed to use the loaded tape? (yes, no) yes

At command level, the user displays both the default values and the actual values on the tape
label by issuing the display_tape_params command for data that has not been
compressed. The output follows.

*** DEFAULT TAPE PARAMETERS ***

DRIVE: Compression: no
Disposition: rewind

 Reel Retention: dismount on detach
 Multivolume Default: yes
 Issue Op Messages: yes
 Message:

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-547

mount_tape
(Continued)

MOUNT: Volume ID:
 Owner ID: Smith
 Tape Format: ansi
 Tape Density: 1600
 Cartridge No: 0
 Access Rights: read/write
FILE: File ID:
 File Number: 1
 Expiration Date: 00000
 Translation: ascii
 Open Type: Create Create Create
 Fixed Relative Sequential Input Append
 File Format: f vb vb u f
 Block Length: 80 4096 4096 32767 80
 Record Length: 80 4092 4092 32767 80
 Blocking Factor:

*** USER TAPE PARAMETERS ***

DRIVE: Compression: NOT SET
Disposition: NOT SET

 Reel Retention: NOT SET
 Multivolume Default: NOT SET
 Issue Op Messages: NOT SET
 Message: NOT SET
MOUNT: Volume ID: NOT SET
 Owner ID: NOT SET
 Tape Format: NOT SET
 Tape Density: NOT SET
 Cartridge No: NOT SET
 Access Rights: NOT SET
FILE: File ID: NOT SET
 File Number: NOT SET
 Expiration Date: NOT SET
 Translation: NOT SET
 Open Type: Create Create Create
 Fixed Relative Sequential Input
Append
 File Format: N/S N/S N/S N/S N/S
 Block Length: NOT SET NOT SET NOT SET NOT SET NOT SET
 Record Length: NOT SET NOT SET NOT SET NOT SET NOT SET
 Blocking Factor: NOT SET NOT SET NOT SET NOT SET NOT SET

(Continued on next page)
2-548

mount_tape
(Continued)

*** ACTUAL TAPE PARAMETERS ***

DRIVE: Compression: no
Disposition: rewind

 Reel Retention: dismount on detach
 Multivolume Default: yes
 Issue Op Messages: yes
 Message:

MOUNT: Volume ID: VOLONE
 Owner ID: JONES
 Tape Format: ansi
 Tape Density: 1600
 Cartridge No: 0
 Access Rights: read/write

Tape is not open. FILE Parameters are not valid for this state.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
position_tape, read_tape, restore_object, save_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-549

move_device_reservation
move_device_reservation 2-

Purpose
This command moves a device reservation from the current process to one other process.

Display Form

Command Line Form

move_device_reservation device_path_name [process_name] [-user current_user_name] [-module module_name]
Arguments* device_path_name Required

The path name of a device, such as a tape drive or a disk, reserved for the current
process.

* process_name
The name or star name of a process for which the device is to be reserved. If you use a
star name, move_device_reservation prompts you to select the desired process.
By default, the -user and -module arguments determine the process to which the
device reservation is moved.

* -user current_user_name
Specifies the name or star name of the user for whom the device is to be reserved. By
default, move_device_reservation uses your user name.

* -module module_name
Specifies the module executing the process for which the device is to be reserved. By
default, move_device_reservation uses your current module.

Explanation
The move_device_reservation command moves a device reservation from one process
to another.

--------------------------- move_device_reservation ----------------------------
device_path_name:
process_name: *
-user: current_user_name
-module:
2-550

move_device_reservation
If you give process_name, the move_device_reservation command moves the device
reservation from the current process to a process matching the process_name term. If you
specify a user_name, the move_device_reservation command moves the device
reservation from the current process to a process matching the user_name term. If you
specify both a process_name and a user_name, the move_device_reservation
command moves the device reservation from the current process to a process matching the
process_name and user_name terms. Thus, if process_name matches more than one
process, you can further define it by specifying user_name as well. If the process is not
running on the current module, specify the module_name; move_device_reservation
moves the device reservation from the current process to a process running on the specified
module.

Access Requirements
By default, you have write access to all devices. If your system administrator restricts access
to a tape device, you need read access to read from tapes, or write access to read from and
write to tapes. To use other devices on which access is restricted, you need only write access.

Related Information
See also the command descriptions of batch, cancel_batch_requests,
display_batch_status, list_batch_requests, reserve_device, and
cancel_device_reservation.
OpenVOS Commands Reference Manual (R098) 2-551

move_dir
move_dir 2-

Purpose
This command moves a directory and its contents from one place to another.

Display Form

Command Line Form

move_dir source_directory [destination] [-pack] [-delete] [-keep_dates] [-brief] [-pacing pacing_value]

Arguments* source_directory Required
The name or star name of directories to be moved.

* destination
The path name of the moved directory. By default, move_dir makes
source_directory a subdirectory of your current directory.

* -pack <CYCLE>
Packs any files being moved, discarding deleted records. You cannot specify -pack if
any file to be moved has separate-key or item indexes. An error message is returned for
each file that cannot be packed, and those files are not moved. By default, move_dir
does not pack the file.

* -delete <CYCLE>
Deletes an existing directory if its path name conflicts with the path name of the moved
directory. By default, move_dir asks you if you want to delete the directory with the
conflicting path name.

----------------------------------- move_dir -----------------------------------
source_directory:
destination:
-pack: no
-delete: no
-keep_dates: no
-brief: no
-pacing: disk_type
2-552

move_dir
* -keep_dates <CYCLE>
Assigns to the new directory and its contents the creation date, modification date, and
last-used date of the directory being moved. The initial last-saved date of all objects is
never. By default, the current time of the move is used for the creation date,
modification date, and last-used date.

Note: If you have set an expiration date for files in source_directory, this
command does not preserve the expiration date of the moved files in
destination, even if you specify yes as the value of -keep_dates. For more
information, see the description of the set_expiration_date command.

* -brief <CYCLE>
Suppresses the display of each directory name that matches a star name before the
directory is moved. By default, move_dir displays the name(s).

* -pacing pacing_value
Determines the pacing behavior of the move operation. Possible values are disk_type (the
default value), yes, and no. Pacing occurs during the move operation if either of the
following is true:

 If you specify disk_type and the source or target disk is optimized for fast response
time

 If you specify yes

If you specify no, pacing does not occur, regardless of the type of the source or target disk.
Only privileged users can specify the no value. See the Explanation section for more
information about pacing.

Explanation
The move_dir command moves a directory, including any contained files, subdirectories,
links, and access control lists. In effect, this command gives a directory a new path name that
designates a new location in the hierarchy. Normally, the object designated by the new name
does not exist before the move. If the source directory contains a pipe file, the command
moves the file as an empty pipe file.

Specify the name and location of the directory to be moved with the source_directory
argument. Use the destination argument to specify the path name the directory is to have
after it is moved. The destination argument should not conflict with the name of an
existing directory unless you intend to delete the existing destination directory, actually
replacing it with the moved directory. If you specify as the destination argument the path
name of an existing directory, the move_dir command asks if you really want to delete the
existing directory.

All objects in a directory and in all its subdirectories must be able to be deleted, or the
directory cannot be deleted. For example, you cannot delete files that have the safety switch
set, nor can you delete hidden files. (See Using OpenVOS Extended Names (R631) for
information about hidden files.) If it is not possible to delete the existing destination
directory, move_dir returns an error message and does not move any objects into that
directory. However, move_dir will delete all objects in the destination directory that can
be deleted.
OpenVOS Commands Reference Manual (R098) 2-553

move_dir
This command copies all objects in source_directory to the destination directory and
after doing so, deletes source_directory. If this directory contains objects that cannot be
deleted, move_dir does not delete it. However, move_dir does delete all objects in the
directory that can be deleted. Normally, the command returns an error message for each file
and subdirectory that it cannot delete.

The move_dir command moves the contents of directories in the following manner unless
the current execution environment does not allow the name of the directory being moved or
the name of the target directory.

If the directory being moved contains objects with extended names, those objects are copied
only if both the module on which move_dir is invoked and the module containing the
destination directory supports them.

Depending on the module you are logged in to, different results can occur if objects with
extended names are not copied:

 If you are logged in to a module that supports only legacy names, no error is returned.

 If you are logged in to a module that supports version 1 or version 2 extended names,
hidden objects are ignored and are not diagnosed individually. Otherwise, an error is
reported for all other objects that cannot be copied. If no error has been reported, the
operating system returns the error e$all_objects_not_copied (7771).

If you omit the destination argument, source_directory and all of its contents are
built as a subdirectory of the current directory. The command uses the directory name portion
of the path name specified in the source_directory argument as the name of the moved
directory. If a subdirectory with that name already exists in the current directory, for example
as the result of a previous use of the move_dir command, move_dir asks if you really want
to delete the existing directory.

If you omit destination, and source_directory is an existing subdirectory in your
current directory, the operating system tells you that both source_directory and
destination name the same object.

If you specify destination, and no directory with the destination name exists, the
move_dir command creates a directory with that name.

When you move a directory, it keeps its type and limit attributes. However, if the destination
module is running a release that does not support expandable directories, the result is a normal
directory without limits.

If the directory being moved (or any of its subdirectories) is expandable or has nonstandard
limits, the type and limit information is retained only if both the module on which move_dir
is issued and the module containing the destination directory support expandable directories.

If you attempt to move a directory that is expandable or has nonstandard limits to a disk that
is either set with restricted expand mode or is on a module running an OpenVOS (or VOS)
release that does not support expandable directories, the result is a move into a standard
directory (assuming standard capacity is sufficient), with the type and limit information
removed, along with a warning message issued for the top-level directory (only) affected. For
2-554

move_dir
more information about restricted expand mode, see the description of the
set_dir_expand_mode in OpenVOS System Administration: Disk and Tape
Administration (R284).

If the directory contains more entries than will fit in a normal directory, an error occurs after
the command moves all objects that will fit. The source_directory is not deleted. Since
the maximum number of entries in a normal directory is based on blocks used, the number of
entries that will fit depends on various factors, including the order in which the objects are
moved. Before you move an expandable directory or a directory containing expandable
directories to a module that does not support them, first convert them to normal directories to
ensure that move_dir does not result in an error. To identify such directories, use the
locate_expandable_dirs command. Use the set_dir_type or consolidate_dir
(with the -revert argument) to convert them to normal if it is possible to do so.

The value of source_directory and destination can be a star name. See the
copy_file command for a description of how star names function.

If you specify a link for source_directory and specify a star name for destination,
be careful that the link does not point to a directory that is identified by the star name, or the
command may determine that source_directory and destination are identical. For
example, if you have a subdirectory called subd, a link called xxx to subd>yyy, and two
subdirectories in subd called xxx and yyy, the move_dir command behaves as follows
when you specify source_directory as a link and destination as a star name.

move_dir xxx subd>*
Moving xxx to %sys#m1>Sales>Joe_Smith>subd>xxx.
Do you really wish to delete %sys#m1>Sales>Joe_Smith>subd>xxx?

(yes, no) n

The command does not expand the link and uses the unexpanded link name to resolve the
star name to subd>xxx. The command behaves in a similar fashion if you specify
source_directory as a link and destination as a directory name.

move_dir xxx subd
move_dir: Either source or destination directory is a subdirectory

of the other. %sys#m1>Sales>Joe_Smith>subd.

If you specify -pack, all indexes are re-created regardless of file organization. In some cases,
the resulting indexes are empty. You cannot delete a record from a fixed file with no record
index. If you ask the operating system to delete a record from such a file, it updates
embedded-key and deleted-record indexes appropriately, but does not actually delete the
record. Therefore, such records reappear if their file is packed.

If you specify -delete, the move_dir command deletes a directory whose path name
matches the path name of the moved directory. If destination is a link and you specify
-delete, the operating system replaces the target of the link with the moved directory.

Links to targets in the directory being moved become links to the relative path names of those
targets in the new directory. Links to targets outside the directory being moved are copied
exactly.
OpenVOS Commands Reference Manual (R098) 2-555

move_dir
Pacing prevents the move operation from dominating the disks, and it allows other processes
to access other files on the disks involved (both source and target) without long delays. Pacing
is relevant only to block-mode moves; the value of the -pacing argument is ignored for
record-mode moves (that is, those for which the -truncate or -pack argument has been
specified).

The move_dir command assigns ownership of any moved files to the user name of the
person doing the copying.

Access Requirements
To move a directory, you need modify access to the directory source_directory, to the
directory containing it, and to the directory that contains the moved directory.

Examples
Example 1.
Suppose that this is the current directory.

%s1#d02>Sales>Jones

The following command moves the directory %s1#d02>Sales>Clark>orders into the
current directory.

move_dir >Sales>Clark>orders clarks_orders

The moved directory has the following path name.

%s1#d02>Sales>Jones>clarks_orders

Example 2.
Again, assume that this is the current directory.

%s1#d02>Sales>Jones

The following command moves all of the subdirectories of >Sales>Clark>orders into the
current directory hierarchy.

move_dir >Sales>Clark>orders>*

If you specify a star name, the command displays the names of the objects being moved, as
shown by the following example.

Moving %s1#d02>Sales>Clark>orders>* to *
 new_accounts
 new_orders
 closed_accounts

The directory %s1#d02>Sales>Jones now has three new subdirectories: new_accounts,
new_orders, and closed_accounts.
2-556

move_dir
Related Information
For more information about directory management, see the command descriptions of
change_current_dir, compare_dirs, consolidate_dir, copy_dir, create_dir,
delete_dir, display_current_dir, give_default_access,
locate_expandable_dirs, remove_access, and set_dir_type.
OpenVOS Commands Reference Manual (R098) 2-557

move_file
move_file 2-

Purpose
This command moves a file or set of files to another file or directory.

Display Form

Command Line Form

move_file source_file [destination] [-pack] [-truncate] [-delete] [-keep_dates] [-keep_acl] [-brief] [-keep_audit] [-pacing pacing_value]

Arguments* source_file Required
The name or star name of the files to be moved.

* destination
Either a file path name, or an existing directory into which move_file puts the moved
files. A file name can be a star name. If you specify a file name, the command moves
the file into the current directory and names it destination. If you specify an existing
directory, the command moves the files into that directory. By default, move_file
moves the files into the current directory without changing their names, as long as the
current directory is not the source directory.

---------------------------------- move_file -----------------------------------
source_file:
destination:
-pack: no
-truncate: no
-delete: no
-keep_dates: no
-keep_acl: no
-brief: no
-keep_audit: no
-pacing: disk_type
2-558

move_file
* -pack <CYCLE>
Packs a file being moved, discarding deleted records. You cannot specify -pack if the
file to be moved has separate-key or item indexes. An error message is returned for each
file that cannot be packed, and those files are not moved. By default, move_file does
not pack the file.

* -truncate <CYCLE>
Truncates an existing destination file before moving an input file to it. If you
specify -truncate and the destination file is an existing file, move_file
preserves the file’s attributes and indexes but deletes its contents (data records). Any
embedded key indexes previously defined on the destination are rebuilt from the new
records. However, if the destination file does not exist, the command creates an
output file with the same organization, maximum record length, and allocation size as
the file to be moved but creates no indexes on the new file. If you specify -truncate,
the file is packed regardless of the value of the -pack argument.

* -delete <CYCLE>
Deletes a file if it has the same path name as the destination path name of the moved
file. By default, move_file asks if you want to delete a file that has a conflicting path
name. By default, -delete determines what happens if there is a name conflict.

* -keep_dates <CYCLE>
Assigns to the new file the creation date, modification date, and last-used date of the
file being moved. The initial last-saved date of all objects is never. By default, the
current time of the move is used for the creation date, modification date, and last-used
date.

Note: If you have set an expiration date for source_file, this command
preserves the expiration date of the moved files in the destination file, even
if you specify no as the value of -keep_dates. For more information, see the
description of the set_expiration_date command.

* -keep_acl <CYCLE>
Keeps the access control list, but not the default access control list, with the file. By
default, the access control list is not moved with the file.

* -brief <CYCLE>
Suppresses the display of each file name that matches a star name before the file is
moved. By default, move_file displays the name(s).

* -keep_audit <CYCLE>
Specifies that the new file retains the audit options of the source file. By default, the
command does not retain the audit options of the source file.
OpenVOS Commands Reference Manual (R098) 2-559

move_file
* -pacing pacing_value
Determines the pacing behavior of the move operation. Possible values are disk_type (the
default value), yes, and no. Pacing occurs during the move operation if either of the
following is true:

 If you specify disk_type and the source or target disk is optimized for fast response
time

 If you specify yes

If you specify no, pacing does not occur, regardless of the type of the source or target disk.
Only privileged users can specify the no value. See the Explanation section for more
information about pacing.

Explanation
The move_file command moves a file or files. If the source file is a pipe file not open by
another process, the command moves the file as an empty pipe file.

Use the source_file argument to specify the file or files to be moved.

With the optional destination argument, you can specify either a directory into which the
operating system is to put the moved file or files, or a file path name.

The value of source_file and destination can be a star name. See the copy_file
command for a description of how star names function.

If you give a directory name as the destination argument, the move_file command
moves source_file into that directory using its same file name. If you specify a star name
for source_file, all files whose names match the source_file argument move into the
destination directory retaining their file names.

If you give a file path name as the destination argument, and it is not a star name, then
source_file must match only one file path name. In this case, the move_file command
moves the file and names it as specified in destination. If the destination and
source_file arguments are both star names, the command moves, and renames as
appropriate, each star name pair.
2-560

move_file
If you omit the destination argument, the move_file command moves all of the files
whose names match source_file into your current directory using their same file names.
If the files to be moved already reside in your current directory, the operating system displays
this message:

Both the source and destination name the same object.

If you specify a link for source_file and specify a star name for destination, be careful
that the link does not point to a file that is identified by the star name, or the command may
determine that source_file and destination are identical. For example, if you have a
subdirectory called subd, a link called xxx to subd>yyy, and two files in subd called xxx
and yyy, the move_file command behaves as follows when you specify source_file as
a link and destination as a star name.

move_file xxx subd>*
Moving %sys#m1>Sales>Joe_Smith>xxx to

%sys#m1>Sales>Joe_Smith>subd>xxx.
%sys#m1>Sales>Joe_Smith>subd>xxx already exists.

Delete the old one? (yes, no) n

The command does not expand the link and uses the unexpanded link name to resolve the
star name to subd>xxx. The command behaves in a similar fashion if you specify
source_file as a link and destination as a directory name.

move_file xxx subd
%sys#m1>Sales>Joe_Smith>subd>xxx already exists.

Delete the old one? (yes, no) n

When you specify -pack, all indexes are re-created, regardless of file organization. In some
cases, the resulting indexes are empty. You cannot delete a record from a fixed file with no
record index. If you ask the operating system to delete a record from such a file, it updates
embedded-key and deleted-record indexes appropriately, but does not actually delete the
record. Therefore, such records can reappear if their file is packed. To prevent this,
move_file ignores records that consist entirely of hexadecimal FF when packing a fixed file
without a record index.

The system displays warning messages if indexes are not moved or rebuilt. If the -truncate
argument is specified and the target file exists, move_file checks the indexes and displays
a message for each embedded index that is not on the target file as well as for each
non-embedded index. If -truncate is specified and the target file does not exist,
move_file displays a message for each index on the source file. If -no_truncate and
-pack are specified, move_file displays a message for each embedded index that is not in
the target file, and for each non-embedded index.

Note: The display_file_status command shows index names in order of the
index address inside the file. This order may change if the file is specified as the subject
of the copy_file, move_file, restore_object, or save_object command.

The -truncate and -pack arguments allow you to convert a regular sequential file to an
extended sequential file. Similarly, if an extended sequential file is less than approximately
OpenVOS Commands Reference Manual (R098) 2-561

move_file
2 GB in size, you can use -truncate and -pack to convert it to a regular sequential file.
Extended sequential files can exist only on systems running VOS Release 15.1.0 or later.

 Assume the following scenario: your module does not support extended sequential files
because it is running a release prior to VOS Release 15.1.0, and source_file is a
regular sequential file. In this scenario, to move source_file to a destination file that
is an extended sequential file on a module running VOS Release 15.1.0 or later, specify
the -truncate argument. This operation truncates the existing destination file, then
moves the data from source_file into it while maintaining the destination file’s
extended sequential format.

 Assume the following scenario: your module is running VOS Release 15.1.0 or later,
and source_file is an extended sequential file. In this scenario, to move
source_file to a destination file that is a regular sequential file on a module running
a release prior to VOS Release 15.1.0, specify the -pack argument. If source_file’s
size is small enough to fit in the destination file’s regular sequential file format (that is,
it is less than 2.14 gigabytes), this operation moves the data from source_file into
the destination file while maintaining the destination file’s regular sequential format. If
no destination file exists, move_file creates one, provided you specify -pack.

Note: In either of the preceding situations, you must issue the move_file command
from a module running VOS Release 15.1.0 or later.

If a non-empty RAM file is moved, the newly created file does not have RAM file usage.
Therefore, if you move a RAM file while it is activated in order to capture its contents, the
contents appear in the new non-RAM file.

However, if this is the case, the source file cannot be deleted, since the only way a RAM file
can be non-empty is for it to be currently open. When a RAM file is deactivated, its contents
are discarded.

When a server queue has RAM usage, the new server queue retains RAM usage and is thus
always empty. The contents of a server queue are never copied.

If a RAM file’s containing directory is being copied or moved, the RAM file in the newly
created directory retains its RAM usage and is always empty. See the description of
set_ram_file for more information about RAM files.

Pacing prevents the move operation from dominating the disks, and it allows other processes
to access other files on the disks involved (both source and target) without long delays. Pacing
is relevant only to block-mode moves. The value of the -pacing argument is ignored for
record-mode moves (that is, those for which the -truncate or -pack argument has been
specified) and also when a file is moved from one directory to another on the same disk.

Access Requirements
To move a file, you need write access to the destination file and modify access to both the old
and new directories that contain the file.
2-562

move_file
Examples
To move all of the OpenVOS COBOL source modules in the current directory into the
directory >east>Clark, use this command.

move_file *.cobol >east>Clark

The object names of the copies are the same as the names of the original files.

Related Information
See also the command descriptions of compare_files, copy_dir, copy_file,
create_file, cvt_stream_to_fixed, delete_file, display_file_status,
locate_files, move_dir, set_file_allocation, set_ram_file, and
truncate_file.
OpenVOS Commands Reference Manual (R098) 2-563

mp_debug
mp_debug 2-

Purpose
This command calls the multi-process debugger to debug one or more processes in the current
network.

Display Form

Command Line Form
mp_debug

Explanation
The mp_debug command calls the multi-process debugger to debug one or more processes.
The set of processes that are debugged in a multi-process debugging session is called the
debug process set; it can include processes from anywhere in your network. This
command is particularly useful when you want to debug a process that does not usually have
a terminal associated with it, such as a server process.

Note: To include a process that does not have your user name, you must be registered
as privileged.

You must call the multi-process debugger from a terminal; you cannot invoke the mp_debug
command from a batch process. However, you can debug a batch process with the
multi-process debugger.

When you invoke the mp_debug command, you intercept the debugging input and output
requests for other processes. Initially, there are no processes in the debug process set. You add
and remove processes from the debug process set with the mp_debug requests. The processes
that you include are called slave processes because they are under the control of the
multi-process debugger. Using the mp_debug requests, you can list these processes, suspend
them, and restart them. You can also create a new process, call the debugger for it, and then
start the process, all from within the multi-process debugger.

During a multi-process debugging session, a slave process can encounter a break point. When
this happens, the process that encounters the break point sends a message to the multi-process
debugger. In response, the multi-process debugger suspends all processes in the debug
process set that are not already suspended. If more than one process encounters a break point

------------------------------------- mp_debug ---------------------------------
No arguments required. Press ENTER to continue.
2-564

mp_debug
before all processes are suspended, each sends a message. The multi-process debugger selects
one of these processes to become active and respond to input from your terminal.

Usually, you issue the OpenVOS mp_debug command after a command line like this.

a -args b -args c -args &

The & character causes the mp_debug program to be run as a background process, which
effectively frees your terminal from these processes.

Multi-Process Debugger Requests
The mp_debug command is a request-loop command that has several internal requests. Once
you have invoked the command, the multi-process debugger prompts you for requests as
follows:

mp_debug:

If you specify an additional prompt message for your terminal, the prompt consists of both
the standard prompt and your own prompt. For example, assume that the prompt message for
your terminal is the > character. In this case, the prompt message is as follows:

mp_debug: >

The multi-process debugger allows you to enter any request except quit in either the
command line form or display form. To display the form, press the <DISPLAY_FORM> key. The
quit request does not have a display form.

The mp_debug command replaces first abbreviation directives in your multi-process
debugger requests. Abbreviations for multi-process debugger requests and within the source
file path name are both expanded.

While your process is in the debugger, you can issue internal commands as if you were at
command level. Use the ..help command to display a list of these commands. To issue an
internal command from debugger request level, type the name of the command preceded by
two periods. For example, ..list invokes the list command. The set of internal
commands may change in subsequent releases of the operating system. Note that you can use
abbreviations for internal commands, for example, ..l. Lines starting with .. are executed
as OpenVOS internal commands in the mp_debug process.

Lines starting with >> are passed to the active slave process to be executed as OpenVOS
internal commands. For example, if you specify >>list_port_attachments, the
operating system displays the port attachments for the process currently being debugged.

If you enter a request that the multi-process debugger does not recognize as an mp_debug
request, the request is forwarded to the current active process as a debug request line.

OpenVOS Commands Reference Manual (R098) 2-565

mp_debug
The mp_debug requests follow.

* include_process [process_name] [-user user_name] [-module module_name]
Includes all processes specified by process_name in the debug process set. The
process_name term can be a star name. Each process you include is assigned a debug
process number by the multi-process debugger; use these numbers when issuing some
of the requests that follow. If you specify an asterisk for process_name, the request
includes all processes of the specified user on the specified module. If you do not use
the -user or -module terms, the value of user_name is the current user, and the value
of module_name is the current module.

If you specify a process that is executing one or more program modules, the process is
included once for each program module.

To enter a user name that is different from yours, you must be registered as privileged.

* exclude_process Ç È
Removes a process or processes from the debug process set. If you specify a process
number, you must specify the debug process number of the process that you want to
remove. If you specify -all, the request removes all processes in the set. You cannot
specify both a process number and -all.

* list_processes
Lists all processes currently in the debug process set. The output includes the following
information for each process in the debug set.

 the mp_debug process number

 the state of the process. Possible states are running (R), active (*), suspended at
debug request level (S), and dead (D)

 the user name of the process

 the name of the process

 the name of a program module being executed in the process, if there is one

 the module name of the module running the process. If all slave processes are on
the same module, the module name does not appear.

* mp_login
Creates and displays a new login process. You must exit that new login process before you
can continue with other mp_debug requests. The mp_login request displays a new login
process only when activated on window-terminal devices. If you issue mp_login on a
nonwindow-terminal device, the request behaves the same way as the ..login command.

process_number
-all
2-566

mp_debug
Note that if you issue ..login from within mp_debug when using a window-terminal
device, mp_debug displays the following message.

Using ..login from within mp_debug starts a new login
process but does not display it by default. To access this
login you have to use the window term CYCLE command to access
the new login.
To avoid this situation use mp_login.

* use_process process_number
Activates the specified process. Enter the debug process number that was assigned by
the start_process or include_process request. If you are unsure of the process
number, you can use the list_processes request to display it.

* suspend_process process_number
Suspends the activity of the specified process and calls the debugger for the suspended
process. This request has the same effect as breaking an OpenVOS process and
selecting debug. Enter the debug process number that was assigned by the
start_process or include_process request. If you are unsure of the process
number, you can use the list_processes request to display it.

* restart [process_number]
Restarts a process or processes. If you specify a process number, specify the debug
process number of the process that you want to restart. By default, restart restarts all
suspended processes.

You can restart a process in a multi-process debugging session by issuing a continue
command. In this case, only the active process is restarted. However, using the
continue command in this way is not recommended, since the multi-process
debugger will pass the command directly along to the active process without
completely updating the command’s state.

* start_process command_line [-process_name process_name]
[-output_path output_path_name] [-priority priority]
 [-privileged] [-module module_name] [-current_dir path_name]
 [-wait_time seconds]

Creates and starts a process. There are two differences between the multi-process debug
start_process request and the OpenVOS start_process command.

 The mp_debug request adds a debug command at the beginning of the command
line. It calls the debugger before the new process begins to run.

 With mp_debug, you cannot specify -cpu_limit as you can when you invoke
start_process as a command.

See the description of the start_process command for more information on the
options that are available with the start_process request.
OpenVOS Commands Reference Manual (R098) 2-567

mp_debug
* stop
Removes all processes from the debug process set. This request is equivalent to an
exclude_process -all request.

* quit
Removes all processes from the debug process set, then terminates the multi-process
debugging session and returns you to command level. The quit request has no display
form.

Note: Do not exit mp_debug using the <Control>-c keystroke. This keystroke may
not terminate all slave processes.

* help [-match string]
Lists mp_debug requests. If you specify -match string and specify a character
string, the help request lists the mp_debug requests whose names contain the string.
By default, help lists all mp_debug requests.

Examples
The following example illustrates a multi-process debugging session. In this session, the user
invokes the mp_debug command to observe the overseer process on another module.

mp_debug
mp_debug: include_process process1 -user Smith.East -module m10
mp_debug: include_process process1 -user Smith.East -module m21
mp_debug: list_processes
 1 R Smith.East process1 (m10)
 2 R Smith.East process1 (m21)
 mp_debug: use_process 2
 mp_debug: suspend_process 2
 2: Entering debug.
 2: New language is machine.
 mp_debug: list_processes
 1 R Smith.East process1 (m10)
 2 *S Smith.East process1 (m21)
 mp_debug: trace
 2: # 5: 00FD60D0x s$read_raw (00256BDEx)
 2: # 4: 00FD6608x get_input_char (line 679 in
module emacs_key_control)
 2: # 3: 00FD6B1Cx get_input_seq (line 541 in
module emacs_key_control)
 2: # 2: 00FD6F30x emacs (line 874 in module emacs)
 mp_debug: restart
 mp_debug: quit

 ready 12:13:00 3.332 36

Related Information
 See also the descriptions of the debug and start_process commands.
2-568

nls_edit_form
nls_edit_form 2-

Purpose
This command invokes the Forms Editor.

Display Form

--------------------------------- nls_edit_form---------------------------------
input_path:
form_path:
-into: no
-prefix: no
-library: accept_field_definitions
-edit: yes
-backup: yes
-force_write: no
-basic: no
-cobol: no
-fortran: no
-pascal: no
-pl1: no
-pl1_template: yes
-c: no
-processor: default
-mapping_rules: default
-sort_into_by_alignment: yes
-flag_word_size: 32
-produce_symtab: yes
OpenVOS Commands Reference Manual (R098) 2-569

nls_edit_form
Command Line Form

nls_edit_form input_path [form_path] [-into] [-prefix] [-library field_definitions_directory_name] [-no_edit] [-no_backup] [-force_write] [-basic] [-cobol] [-fortran] [-pascal] [-pl1] [-no_pl1_template] [-c] [-processor processor_string] [-mapping_rules mapping_string] [-no_sort_into_by_alignment] [-flag_word_size number] [-no_produce_symtab]
Arguments* input_path Required

The path name of an input form definition file. The path name cannot be an extended
name. A .form file is a programming source file. If the file exists, its name must have
the suffix .form. You can omit the suffix when specifying the name in the command.
If the file does not exist, the Forms Editor behaves as though the file exists but is empty.
You cannot expect to edit or compile a .form file on a release that is earlier than the
release on which the .form file was originally created unless the .form file contains
only features supported by the earlier release.

* form_path
The path name of the file to which the edited form definition is to be written. If
form_path does not have the suffix .form, the command adds that suffix. By default,
nls_edit_form writes the form definition to a file in the current directory with the
same name as the file specified in the input_path argument. If the specified file does
not exist when you write out the form, the Forms Editor creates it. The form_path
cannot be an extended name.

The form being edited is given the simple name of the output form definition file
without the suffix .form. A form name should not exceed 15 characters; otherwise, the
names of some automatically generated include files may exceed 32 characters and be
truncated.

Note: Do not give a form the same name as the program that displays it. Both a
form and its related program require that object modules have unique names.
2-570

nls_edit_form
* -into <CYCLE>
Creates a field-values file for each programming language specified by the language
arguments. The Forms Editor assigns the name form_name.incl.language to the
field-values file (an include file) and places the file in the current directory. You can
override this argument with the Forms Editor <MENU>-S request.

* -prefix <CYCLE>
Adds a prefix to each field-identifier name in any field-IDs file that the Forms Editor
generates. The default prefix is the name of the form followed by an underline. You can
specify a different prefix with the Forms Editor <MENU>-S request. You can also override
this argument with the Forms Editor <MENU>-S request.

If you specify -prefix, the Forms Editor also adds the prefix to each variable name
in any OpenVOS BASIC or OpenVOS FORTRAN field-values file that it generates.
The field-values files for other languages are not affected.

* -library field_definitions_directory_name
Specifies a directory for storing and retrieving field definition files. The Forms Editor
searches the directory for field definition files when you issue the <MENU>-R request, and
writes field definition files to the directory when you issue the <MENU>-E request. If you
specify -library but do not specify a name, the command uses a subdirectory of your
current directory named accept_field_definitions. If the directory you specify,
either directly or by default, does not exist when you issue a <MENU>-E request, the
Forms Editor creates that directory.

* -no_edit <CYCLE>
Creates new language include files and a new object module from an existing form
definition file without editing the form. If you also specify -force_write, the Forms
Editor also writes a new form definition file. By choosing -no_edit, you can run the
Forms Editor in either a batch process or a started process. By default, the Forms Editor
reads the form definition file, displays a representation of the form, and allows you to
edit it.

* -no_backup <CYCLE>
Specifies that no backup file is to be created for the input_path file. By default, if the
input_path and form_path files are in the same directory, the Forms Editor
renames the old file to input_path.form.backup. The backup file is created each
time you write out the form using the <MENU>-W request; it replaces a previous backup
file of the same name, if one exists.

* -force_write <CYCLE>
Writes a new form definition file (form_name.form) when you invoke
nls_edit_form with -no_edit. By default, -no_edit produces the object module
and specified include files only. Use -force_write with -no_edit to generate a
.backup form file or to rename your form without re-editing it.

Note: Do not specify the rename command to rename a form; object and include
files must be renamed, and prefixes in include files must be reassigned.
OpenVOS Commands Reference Manual (R098) 2-571

nls_edit_form
* -basic <CYCLE>
Creates OpenVOS BASIC versions of the field-IDs file and the field-values file. By
default, the Forms Editor does not create OpenVOS BASIC versions of the files. When
revising a form, the command uses the already-specified language. You can override
the existing value with the Forms Editor <MENU>-S request.

* -cobol <CYCLE>
Creates OpenVOS COBOL versions of the field-IDs file and the field-values file. By
default, the Forms Editor does not create OpenVOS COBOL versions of the files.
When revising a form, the command uses the already-specified language. You can
override the existing value with the Forms Editor <MENU>-S request.

* -fortran <CYCLE>
Creates OpenVOS FORTRAN versions of the field-IDs file and the field-values file. By
default, the Forms Editor does not create OpenVOS FORTRAN versions of the files.
When revising a form, the command uses the already-specified language. You can
override the existing value with the Forms Editor <MENU>-S request.

* -pascal <CYCLE>
Creates OpenVOS Pascal versions of the field-IDs file and the field-values file. By
default, the Forms Editor does not create OpenVOS Pascal versions of the files. When
revising a form, the command uses the already-specified language. You can override
the existing value with the Forms Editor <MENU>-S request.

* -pl1 <CYCLE>
Creates OpenVOS PL/I versions of the field-IDs file and the field-values file. By
default, the Forms Editor does not create OpenVOS PL/I versions of the files. When
revising a form, the command uses the already-specified language. You can override
the existing value with the Forms Editor <MENU>-S request.

* -no_pl1_template <CYCLE>
Specifies that OpenVOS PL/I include files are to be generated as based structures. (See
the Explanation section of this command description for details.) When revising a form,
the command uses the already-specified language. You can override this argument with
the Forms Editor <MENU>-S request.

* -c <CYCLE>
Creates OpenVOS C versions of the field-IDs file and the field-values file. By default,
the Forms Editor does not create OpenVOS C versions of the files. When revising a
form, the command uses the already-specified language. You can override the existing
value with the Forms Editor <MENU>-S request.

* -processor processor_string <CYCLE>
Specifies the processor for which object code is to be generated. The values of
processor_string are as follows:

 default
 pentium4

If you are creating a form that is to run on a module using an IA-32 processor, specify
the pentium4 value. By default, processor_string is the processor type of the
current module. The default value is default.
2-572

nls_edit_form
* -mapping_rules mapping_string <CYCLE>
Specifies one of the following data-alignment rules for include files generated by
nls_edit_form.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. By default, the data alignment rules specified by default are used.
(See the Explanation section of this command description for details.) When revising a
form, the command uses the already-specified language. You can override this
argument with the Forms Editor <MENU>-S request.

* -no_sort_into_by_alignment <CYCLE>
Specifies that the alignment of data items in the field-values file overrides all other
sorting criteria. By default, this argument is yes. (See the Explanation section of this
command description for details.) When revising a form, the command uses the
already-specified language. You can override this argument with the Forms Editor
<MENU>-S request.

* -flag_word_size number <CYCLE>
Specifies the size of the bit flag words in the field-values file. The values of number
are 8, 16, and 32. By default, number is 32. When revising a form, the command uses
the already-specified language. You can override this argument with the Forms Editor
<MENU>-S request.

* -no_produce_symtab <CYCLE>
Produces a form object module without a run-time symbol table. Because the form’s
run-time symbol table is small, specify -no_produce_symtab only if there is a
shortage of virtual memory.

Explanation
The nls_edit_form command invokes the Forms Editor. After you issue
nls_edit_form, your process is at the editor request level. At editor request level, you can
make a number of requests. One request, to quit the Forms Editor, returns your process to
command level. To issue the quit request, press the <MENU> key and then type the letter q or Q.

Note: The nls_edit_form command invokes the new Forms Editor, and the
edit_form command invokes the old Forms Editor. See the OpenVOS Forms
Management System manuals for more information.

If you specify the path name of an existing input form definition file when you issue the
nls_edit_form command, the Forms Editor reads the file and displays a representation of
the defined form. If you are migrating a Forms-based application from a release earlier than
VOS Release 15.0.0, see the manual Migrating VOS Applications from Continuum
Systems (R607) for more information.
OpenVOS Commands Reference Manual (R098) 2-573

nls_edit_form
The Forms Editor trims trailing spaces from all values you enter into the editor’s request
forms and from all lines you enter into the form you are constructing. It also deletes all blank
lines from the bottom of the form. When you write out the form definition file and the other
files described earlier, the files reflect these deletions.

If you specify -into when you invoke the Forms Editor, but do not specify any of the
languages at that time, you can specify languages using the Forms Editor requests. If you do
not specify any of the language arguments in the command line or in the Forms Editor, -into
is ignored.

If you specify -into, -prefix, -mapping_rules, -sort_into_by_alignment,
-flag_word_size or any of the language arguments (-basic, -cobol, -fortran,
-pascal, -pl1, -pl1_template, or -c) for a particular form, these arguments are saved
in the form definition file. You do not have to respecify these arguments when using the Forms
Editor requests or in future invocations of the Forms Editor on that form.

If you specify -pl1_template, all OpenVOS PL/I include files are generated as based
structures. Field-values structures can then be declared using the PL/I like attribute. You
should specify -pl1_template or the Forms Editor <MENU>-S request to prevent possible
longmap or shortmap mismatches in the generated include file.

The -mapping_rules argument allows you to specify the data-alignment rules for include
files generated by nls_edit_form. The value default indicates the system-wide default.
The default is site-settable. The value shortmap specifies that the shortmap alignment rules
are to be used for the include files. The value longmap specifies that the longmap alignment
rules are to be used for the include files. The values default/check, shortmap/check,
and longmap/check are equivalent to default, shortmap, and longmap, respectively.

Note that -mapping_rules affects include files differently, based on the language specified.
In OpenVOS C and OpenVOS Pascal, when you specify -mapping_rules, the include files
will contain explicit longmap or shortmap keywords in field-values structures. In OpenVOS
PL/I, these keywords are generated only if you specify the -pl1_template argument or the
Forms Editor <MENU>-S request. In PL/I, if you do not specify -pl1_template or the Forms
Editor <MENU>-S request, you must add the longmap and shortmap keywords manually.
OpenVOS COBOL, BASIC, and FORTRAN do not allow the definitions of structure
templates. For these three languages, the Forms Editor generates an include file for the body
of the structure, which you include in your program within the structure definition itself. To
do this in OpenVOS COBOL, for example, you would specify the following:

01 structure1.
copy 'struct_info.incl.cobol'.

The -sort_into_by_alignment argument determines whether the alignment of the data
items in the field-values file overrides all other sorting criteria. The default is yes. This
argument is used to avoid compiler warnings if you compile with the -mapping_rules
default/check, shortmap/check, or longmap/check argument. This argument also
minimizes the size of the field-values file because no padding will be required.

The -flag_word_size argument specifies the size of the bit flag words in the field-values
file. (The Forms Editor organizes the OpenVOS Pascal boolean data type, the PL/I bit(1)
data type, and the C bit data type into bit flag words.) The values of number are 32, 16, and
2-574

nls_edit_form
8. The default is 32. Bit array fields that are larger than the flag word size are not allowed in
any language. If you are using FMS with an OpenVOS C program, you should specify the
value 32.

Access Requirements
You need read access to a form definition file in order to read it. You need write access to a
form definition file, include file, or object module in order to write it.

Related Information
See the OpenVOS Forms Management System manuals for a complete description of the
Forms Editor requests.
OpenVOS Commands Reference Manual (R098) 2-575

pascal
pascal 2-

Purpose
This command compiles an OpenVOS Pascal source module.

Display Form

------------------------------------ pascal ------------------------------------
source_file_name:
-define:
-processor: default
-mapping_rules: default
-list: no -xref: no
-table: no -production_table: no
-optimize: yes -check: no
-mapcase: no -profile: no
-cpu_profile: no -statistics: no
-check_overflow: no -check_conformance: no
-silent: no -full: no
-nesting: no -system_programming: no
-optimization_level: 3 -check_uninitialized: no
2-576

pascal
Command Line Form

pascal source_file_name [-define variable_name...] [-processor processor_string] [-mapping_rules mapping_string] [-list] [-xref] [-table] [-production_table] [-no_optimize] [-check] [-mapcase]

¢ £
[-statistics] [-check_overflow] [-check_conformance] [-silent] [-full] [-nesting] [-system_programming] [-optimization_level number] [-check_uninitialized]

Arguments* source_file_name Required
The path name of an OpenVOS Pascal source module.

* -define variable_name
Defines variables to be used by the preprocessor. These variables are used during the
preprocessor phase of the compilation. Preprocessor variables can contain letters,
digits, or the underline character (_), in any position. (See the Explanation section of
this command description and the description of the preprocess_file command for
details.)

* -processor processor_string <CYCLE>
Specifies the processor on which the program module (.pm) is to run. The display form
for the -processor argument restricts the values that you can choose to values for the
processor family of the current module.

If the current module uses a processor from the IA-32 family, or if you specify, on the
command line, the -processor argument with the pentium4 value, the allowed
processor_string values are as follows:

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors. To determine the default value, issue the display_error

-profile
-cpu_profile
OpenVOS Commands Reference Manual (R098) 2-577

pascal
m$default_processor command. By default, the compiler produces code intended
for the processor specified by default.

* -mapping_rules mapping_string <CYCLE>
Specifies one of the following data alignment rules for a given compilation.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. To determine the default value, issue the display_error
m$default_mapping command. By default, the compiler uses the data alignment
rules specified by default. (See the Explanation section of this command description
for details.)

* -list <CYCLE>
Creates a compilation listing. A compilation listing shows all source statements from
the source module and include files, as well as a summary of all data definitions and
the path names of include files used. You need not specify -list if you specify -full,
-nesting, or -xref, since those arguments create a compilation listing in addition to
other listings. By default, the compiler does not generate a compilation listing.

* -xref <CYCLE>
Creates a compilation listing and an alphabetized cross-reference listing of all data
actually referenced in the program. By default, the compiler does not generate a
cross-reference listing.

* -table <CYCLE>
Creates a symbol table in the object module, for use by the debugger. The compiler also
performs some related operations. (See the Explanation section of this command
description for details.) In addition, -table suppresses interstatement code
optimization, which results in code that is slower than normal. Specifying -table sets
the maximum optimization level to 1, unless you explicitly set the level to 0. By default,
the compiler does not create a symbol table, suppress interstatement code optimization,
or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -table and -production_table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -production_table <CYCLE>
Creates a symbol table in the object module, for use by the debugger in a production
environment. Only variables actually referenced in the program are placed in the
symbol table. The compiler also performs some related operations. (See the
Explanation section of this command description for details.) Unlike -table,
2-578

pascal
-production_table does not suppress interstatement code optimization. As a
result, invoking the set and continue requests of the debug command can cause
unpredictable results. Also, the contents of variables in registers cannot be accurately
displayed with the display request of the debug command. In addition, if the
optimization level is greater than 2, the contents of any variables may not be accurately
displayed with the display request of the debug command. Specifying
-production_table sets the maximum optimization level to 3, unless you explicitly
specify some other value. By default, the compiler does not create a symbol table,
suppress interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -production_table and -table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -no_optimize <CYCLE>
Generates the object code without optimizing it. Optimization produces more compact
object code by removing unnecessary or redundant computations. Specifying
-no_optimize sets the optimization level to 0. This overrides any other specification
of the optimization level. By default, the compiler optimizes the object code.

* -check <CYCLE>
Adds code to the object module that checks for the following errors at run time:

 out-of-bounds array subscripts
 out-of-range string references in the predefined procedure substr
 out-of-range assignments to variables of enumerated or subrange types
 more than 256 elements assigned to variables declared to be sets
 out-of-range arguments to the predefined function chr. The range is 0 to 255.

If an array subscript is assigned a constant, the error-checking code may find the error
at compile time because of constant folding. Otherwise, the errors are found at run time.
By default, the compiler does not check and does not insert the checking code.

* -mapcase <CYCLE>
Interprets all uppercase letters except those in character-string constants as lowercase
letters. If you specify -mapcase and the source module contains an external variable
name or entry name, you may not be able to bind the resulting object module. (See the
Explanation section of this command description for details.) By default, the compiler
distinguishes between uppercase and lowercase letters.

* -profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement executes when the program runs. (See the description of the profile and
add_profile commands.) By default, the compiler does not insert the counting code.
You cannot specify both -profile and -cpu_profile in the same command.

* -cpu_profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement executes, the amount of CPU time (in milliseconds) spent executing each
OpenVOS Commands Reference Manual (R098) 2-579

pascal
statement, and the number of page faults taken executing each statement when the
program runs. (See the description of the profile and add_profile commands.) By
default, the compiler does not insert the counting code. Note that the code inserted by
this argument uses much more CPU time, but provides more useful information, than
the code inserted by -profile. You cannot specify both -cpu_profile and
-profile in the same command.

* -statistics <CYCLE>
Displays statistics about the compilation as it proceeds. The compiler displays the
version number of the compiler as well as the following statistics for each phase.

 disk I/O information
 elapsed real time
 amount of storage used
 number of page faults taken
 elapsed CPU time
 time when the compiler completed the phase

The compiler also displays statistical information for the entire compilation, such as the
number of source lines and the symbol table size.

You can specify -statistics to see the progress of the compilation and to determine
the phase in which an error occurs. If the compiler produces a listing, it puts the
statistics in the listing. By default, the compiler does not display compilation statistics.

* -check_overflow <CYCLE>
Generates code that detects the fixed-point arithmetic overflow condition when the
program runs. By default, the compiler does not insert the checking code. In that case,
the operating system will detect some instances of fixed-point arithmetic overflow at
run time.

* -check_conformance <CYCLE>
Verifies that certain constructs conform to ANSI rules. Specifically, it verifies that the
type of an actual parameter matches the type of its corresponding pass-by-reference
formal parameter if the formal parameter’s data type is a subrange. By default, the
compiler does not check for matching subrange types.

* -silent <CYCLE>
Suppresses the warning messages of severity-1 or severity-0 errors on the terminal
during compilation. The compiler, nevertheless, puts the messages in an error file and
in any listing it produces. By default, the compiler writes all error messages on your
terminal.

* -full <CYCLE>
Creates, from the compiled object code, an assembly language listing with added
comments, as well as a compilation listing. The compiler uses a disassembler to
produce the listing. By default, the compiler does not create an assembly language
listing.
2-580

pascal
* -nesting <CYCLE>
Produces a compilation listing, with the nesting level of source statements in the listing:
the top level is 0, the next level is 1, and so forth. By default, the compiler does not
place the nesting level of source statements in any listing it produces.

* -system_programming <CYCLE>
Diagnoses alignment padding within longmapped records. By default, the compiler
does not perform this checking. (See the VOS Pascal Language Manual (R014) for
more information on longmapped records.)

* -optimization_level number <CYCLE>
Specifies the degree of optimization. The possible values are 0, 1, 2, 3, and 4. (See the
Explanation section of this command description for details.)

* -check_uninitialized <CYCLE>
Issues diagnostics for all references to uninitialized variables if you also specify the
value of -optimization_level as 3 or 4. If you specify this argument and a value
for -optimization_level that is less than 3, the compiler issues an error. This
argument is useful when verifying new code or checking for possible bugs, but it can
return misleading diagnostics, as in the case of variables that are initialized within a
conditional statement. The categories of uninitialized variables diagnosed by the
compiler vary, depending on whether you choose both -check_uninitialized and
an optimization level of at least 3, or choose only an optimization level of at least 3.

Explanation
The pascal command compiles an OpenVOS Pascal source module into an object module.

The source module’s name must have the suffix .pascal. You can either supply or omit the
suffix when you specify source_file_name. The compiler generates an object module,
puts it in your current directory, and names it. The name of the object module is the name of
the source module with the suffix changed from .pascal to .obj.

When you are compiling for an ftServer module at all optimization levels, the module on
which you are compiling must have at least 30,000 pages of paging partition available to
avoid running out of virtual memory. In addition, the module on which you are compiling
should have 64MB of physical memory available to achieve optimal compiler performance.

Using the -define Argument
The -define argument defines variables to be used during the preprocessor phase of the
compilation. For example, if you specify the following on the command line, the preprocessor
variables var_a and var_b will be initially defined during the preprocessing phase of the
compilation:

pascal prog1 -define var_a var_b
OpenVOS Commands Reference Manual (R098) 2-581

pascal
You use preprocessor variables with preprocessor statements to perform conditional
compilation on a program. Conditional compilation enables you to switch on or off various
statements in a program. This is useful, for example, if you want your program to compile
different lines of source code on different processors. There are six preprocessor statements.

 $define
 $undefine
 $if
 $else
 $elseif
 $endif

Preprocessor statements must begin in the first column of the source program. Therefore,
indentation of nested $if statements is not allowed.

A preprocessor statement must be contained on a single line. A line containing a preprocessor
statement cannot contain comments or parts of the source language. (An exception is the
$endif statement, which ignores any text following it on the line, thus allowing you to
comment on the source code.)

To comment out a preprocessor statement, the comment delimiters must surround the
statement on the same line, or the comment delimiters must open and close on lines
surrounding the preprocessor statement. A comment delimiter cannot appear on the same line
as the statement if the corresponding comment delimiter appears on a different line. Examples
of valid and invalid comments follow.

Valid:

{
$define pentium4
}

Valid:

(* $define pentium4 *)

Invalid:

{
$endif }

For more information on the preprocessor, see the description of the preprocess_file
command.

Using the -processor Argument
The -processor argument allows you to specify the processor on which the program is to
run. The -processor argument also allows you to perform cross-compilation on a source
module if the Pascal cross compiler is available on your system. Cross-compilation occurs
when a compiler running on one processor family translates a source module into object code
for another processor family. The IA-32 cross compiler generates code to run on ftServer
2-582

pascal
modules. Specify the value pentium4 for the -processor argument to target an ftServer
module.

Depending on the value specified in the -processor argument, the compiler automatically
defines one preprocessor variable for the processor family and one or more preprocessor
variables corresponding to the processor type(s), as shown in Table 2-25.

25

If you specify -processor pentium4 on the command line, the preprocessor variables
__PENTIUM4__, __IA32__, and __i386 are defined.

If the value specified in the -processor argument indicates the IA-32 processor, the
maximum number of bytes available for each function’s initial stack frame is 2,147,483,584
bytes.

The amount of automatic storage you can actually declare is somewhat less than these limits
because temporary variables generated by the compiler also count towards the limit.

Note: Although the OpenVOS Pascal compiler supports extremely large values (such
as 2,147,483,646), the operating system does not support them.

Using the -mapping_rules Argument
The -mapping_rules argument allows you to specify the data alignment rules for a given
compilation. The value default indicates the system-wide default. The default is
site-settable. The value shortmap specifies that the shortmap alignment rules are to be used
for the source module. The value longmap specifies that the longmap alignment rules are to
be used for the source module. The values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively, except
that they also diagnose alignment padding within records. For example, if you specify
default/check, the compiler displays a severity-0 message stating how many bytes of
padding exist between fields within a record. The %options mapping directives override
-mapping_rules values, but alignment padding within records is still diagnosed if you
specify one of the checking values.

For more information on data alignment rules, see the VOS Pascal Language Manual (R014).

Using the -full, -nesting, -list, or -xref Argument
If you specify the -list, -nesting, -full, or -xref argument, the compiler creates a
compilation listing file and puts it in your current directory. The name of the compilation
listing is source_file_name.list. Specifying -full creates an assembly language
listing in addition to a compilation listing. Specifying -nesting adds numbers showing the
nesting depth of each source statement in a compilation listing. Specifying -xref creates a
list of cross-references in addition to a compilation listing.

Table 2-25. Predefined Preprocessor Variables

Processor Value Preprocessor Variable

default Varies, depending on the default system processor

pentium4 __PENTIUM4__, __IA32__, and __i386
OpenVOS Commands Reference Manual (R098) 2-583

pascal
Using the -table or -production_table Argument
If you specify the -table argument, the compiler creates a symbol table, and allocates
storage and generates addresses for all external references, including any that are not used.
Symbol-table capacity is 2,147,483,647 nodes. The compiler generates internal subroutines
that calculate size, offset, and bound expressions that determine the characteristics of
adjustable data. These subroutines allow the debugger to display and modify variable-length
data according to its current length. In addition, the compiler suppresses interstatement code
optimization.

If you specify the -production_table argument, the compiler performs all of the same
operations, except that it does not suppress interstatement code optimization, and only
variables actually referenced in the program are placed in the symbol table. Code produced
with -table executes more slowly than code produced with -production_table. Code
produced with -production_table can yield unpredictable results if you invoke the set
and continue debugger requests.

Using the -mapcase Argument
When you compile a source module specifying the -mapcase argument, and the module
contains an external variable name or entry name with one or more uppercase letters, you may
not be able to bind the resulting object module. If the binder encounters a reference to the
original name (for example, in a binder control file), it does not recognize the original name
and its lowercase version as the same name.

Optimizations for ftServer Modules
The -optimization_level argument allows you to optimize programs at different levels.
When you are compiling a source module to run on ftServer modules, the levels of
optimizations are 1, 2, 3, and 4. Specifying optimization level 3 or 4 causes the compiler to
perform level 3 optimizations.

If you specify optimization level 0, the compiler performs the following local optimizations.

 local register allocation
 elimination of unreachable code

If you specify optimization level 1, the compiler performs all level 0 optimizations plus the
following other local optimizations.

 local pattern replacement
 short-circuit evaluation of Boolean expressions
 recognition of algebraic identities
 constant folding
 local combination of common subexpressions within a statement
 peephole optimizations within a single statement
 result incorporation

If you specify optimization level 2, the compiler performs all level 1 optimizations plus the
following global optimizations.

 branch retargeting
 elimination of unreachable code
2-584

pascal
 global combination of common subexpressions
 removal of invariant expressions from loops
 subsumption
 peephole optimizations across statement boundaries
 global register allocation

If you specify optimization level 3, the compiler performs all level 2 optimizations plus the
following global optimizations.

 constant propagation
 removal of invariant assignments from loops
 strength reduction
 linear test replacement
 elimination of dead assignments
 elimination of useless loops
 check for uninitialized variables
 elimination of dead code and dead stores
 instruction scheduling
 no allocation of stack space by automatic variables whose values are kept in registers

Specifying the Optimization Level
The level of optimization is determined by the arguments -no_optimize, -table, and
-optimization_level. Specifying -no_optimize sets the optimization level to 0.
Specifying -table sets the level to 1, unless you explicitly set the level to 0. The
-optimization_level argument sets the level to any of the permitted levels: 0, 1, 2, or 3.
The compiler sets the actual level to the lowest level set by any of the three arguments. By
default, the level is 3.

Note: If you compile a program with either the -profile or -cpu_profile
argument, you must specify an optimization level lower than 3. Otherwise, -profile
or -cpu_profile might not return accurate information, since high optimization
levels can cause code to be moved from one statement to another.

Using the -check_uninitialized Argument
The optimization level for a source module also affects the functionality of the
-check_uninitialized argument.

 If you select the -check_uninitialized argument and an optimization level of at
least 3, the compiler diagnoses all instances of uninitialized variables within the source
module. In this case, the compiler diagnoses variables that are initialized as part of code
executed conditionally.

 If you do not select the -check_uninitialized argument but do select an
optimization level of at least 3, the compiler diagnoses instances of variables within the
source module that it knows are uninitialized. In this case, the compiler does not
diagnose variables that are initialized as part of code executed conditionally.

 If you select an optimization level of less than 3, the compiler issues an error and does
not diagnose uninitialized variables within the source module even if you select
-check_uninitialized.
OpenVOS Commands Reference Manual (R098) 2-585

pascal
Interpreting Compiler Diagnostics
If the compiler discovers any errors in your source module, it displays an error message on
your terminal. However, severity-1 and severity-0 messages are not displayed on your
terminal when you specify -silent. The compiler also creates an error file named
source_file_name.error in the current directory and writes the error messages to the
file. The compiler also appends the error messages to a compilation listing if it produces one.
The system deletes any .error file if a subsequent compile to the same source file is
successful (contains no errors).

The OpenVOS Pascal compiler diagnoses five types of errors.

SEVERITY 0: Advice
SEVERITY 1: Warning
SEVERITY 2: Correctable error
SEVERITY 3: Uncorrectable error: translation can continue
SEVERITY 4: Uncorrectable error: translation cannot continue

The text of the error message explains the cause of the error.

A severity-0 error, although valid Pascal, indicates that improvement is possible, usually in
the area of performance. The source module is syntactically correct, so the compiled object
module can be bound and executed, but probably with less than optimum efficiency.

A severity-1 error, although valid Pascal, is probably a programming error. Since the source
module is syntactically correct at the point of a severity-1 error, however, the compiler
continues to compile the source. The compiled object module can be bound and executed, but
the program probably will not perform as expected.

A severity-2 error is invalid Pascal, but the compiler can reinterpret the source in such a way
that it can continue to compile the program. The compiler proceeds as if the faulty code were
replaced with the most likely syntactically correct code. The compiled object module can be
bound and executed, but the program probably will not perform as expected.

A severity-3 error is invalid Pascal, and the compiler cannot reinterpret the source in such a
way that it can continue to compile the program into a usable object module. Nevertheless,
the compiler continues to process the program to detect additional errors. However, the object
module is not created.

A severity-4 error is invalid Pascal, and the compiler cannot reinterpret the source in such a
way that it can continue to process the program from the point of the severity-4 error. The
object module is not created.

Note: If the compilation results in more than 100 errors, in any combination (excluding
severity-0 errors), compilation terminates.

The compiler always overwrites an existing object module having the same name as the
object module it produces.
2-586

pascal
Access Requirements
You need read access to the source module to compile it. You need modify access to the
directory from which you are issuing the compile command and in which the .obj file will
be created.

Examples
The following command compiles inv_report.pascal, generates code that will perform
a series of range checks when the object module runs, and produces a compilation listing file
inv_report.list in your current directory.

pascal inv_report -check -list

Related Information
See the VOS Pascal Language Manual (R014) for a complete description of the OpenVOS
Pascal language.
OpenVOS Commands Reference Manual (R098) 2-587

pl1
pl1 2-

Purpose
This command compiles an OpenVOS PL/I source module.

Display Form

------------------------------------- pl1 --------------------------------------
source_file_name:
-define:
-processor: default
-mapping_rules: default
-list: no -xref: no
-table: no -production_table: no
-optimize: yes -check: no
-mapcase: no -profile: no
-cpu_profile: no -statistics: no
-fixedoverflow: no -silent: no
-full: no -nesting: no
-system_programming: no -optimization_level: 3
-check_uninitialized: no -max_fixed_bin: 31
-store_args: no
2-588

pl1
Command Line Form

pl1 source_file_name [-define variable_name...] [-processor processor_string] [-mapping_rules mapping_string] [-list] [-xref] [-table] [-production_table] [-no_optimize] [-check] [-mapcase]

¢ £
[-statistics] [-fixedoverflow] [-silent] [-full] [-nesting] [-system_programming] [-optimization_level number] [-check_uninitialized] [-max_fixed_bin number] [-store_args]

Arguments* source_file_name Required
The path name of an OpenVOS PL/I source module.

* -define variable_name
Defines variables to be used by the OpenVOS preprocessor. These variables are used
during the preprocessor phase of the compilation. Preprocessor variables can contain
letters, digits, or the underline character (_), in any position. (See the Explanation
section of this command description and the description of the preprocess_file
command for details.)

* -processor processor_string <CYCLE>
Specifies the processor on which the program module (.pm) is to run. The display form
for the -processor argument restricts the values that you can choose to values for the
processor family of the current module.

-profile
-cpu_profile
OpenVOS Commands Reference Manual (R098) 2-589

pl1
If the current module uses a processor from the IA-32 family, or if you specify, on the
command line, the -processor argument with the pentium4 value, the allowed
processor_string values are as follows:

 default
 pentium4

The default value indicates the system-wide default. Unless your system
administrator has reset this value, default is pentium4 for modules using IA-32
processors. To determine the default value, issue the display_error
m$default_processor command. By default, the compiler produces code intended
for the processor specified by default.

* -mapping_rules mapping_string <CYCLE>
Specifies one of the following data alignment rules for a given compilation.

 default
 default/check
 shortmap
 shortmap/check
 longmap
 longmap/check

The default value indicates the system-wide default. The default alignment method
is site-settable. To determine the default value, issue the display_error
m$default_mapping command. By default, the compiler uses the data alignment
rules specified by default. (See the Explanation section of this command description
for details.)

* -list <CYCLE>
Creates a compilation listing. A compilation listing shows all source statements from
the source module and include files, as well as a summary of all data definitions and
the path names of include files used. You need not specify -list when you specify
-full, -nesting, or -xref; these arguments create a compilation listing in addition
to other listings. By default, the compiler does not generate a compilation listing.

* -xref <CYCLE>
Creates a compilation listing and an alphabetized cross-reference listing of all data
actually referenced in the program. By default, the compiler does not generate a
cross-reference listing.

* -table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger. The compiler also performs some related operations. (See the Explanation
section of this command description for details.) In addition, -table suppresses
interstatement code optimization, which results in code that is slower than normal.
Specifying -table sets the maximum optimization level to 1, unless you explicitly set
the level to 0. By default, the compiler does not create a symbol table, suppress
interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.
2-590

pl1
If you specify both -table and -production_table, the compiler produces only a
production table and sets the maximum optimization level to 3, unless you explicitly
specify some other value.

* -production_table <CYCLE>
Creates a symbol table in the object module, for use by the OpenVOS Symbolic
Debugger in a production environment. Only variables actually referenced in the
program are placed in the symbol table. The compiler also performs some related
operations. (See the Explanation section of this command description for details.)
Unlike -table, -production_table does not suppress interstatement code
optimization. As a result, the set and continue requests of the debug command can
lead to unpredictable results. Also, the contents of variables in registers cannot be
accurately displayed with the display request of the debug command. In addition, if
the optimization level is greater than 2, the contents of any variables may not be
accurately displayed with the display request of the debug command. Specifying
-production_table sets the maximum optimization level to 3, unless you explicitly
specify some other value. By default, the compiler does not create a symbol table,
suppress interstatement code optimization, or perform any related operations.

Note: A symbol table greatly increases the size of an object module.

If you specify both -production_table and -table, the compiler produces only a
production table and sets the optimization level to 3, unless you explicitly specify some
other value.

* -no_optimize <CYCLE>
Generates the object code without optimizing it. Optimization produces more compact
object code by removing unnecessary or redundant computations. Specifying
-no_optimize sets the optimization level to 0. This overrides any other specification
of the optimization level. By default, the compiler optimizes the object code.

* -check <CYCLE>
Checks for out-of-bounds array subscripts and out-of-range substring references. The
compiler checks while compiling and inserts code to further check when the program
is run. By default, the compiler does not check or insert checking code.

* -mapcase <CYCLE>
Interprets all uppercase letters except those in character-string constants as lowercase
letters. If you specify -mapcase and the source module contains an external variable
name or entry name, you may not be able to bind the resulting object module. (See the
Explanation section of this command description for details.) By default, the compiler
distinguishes between uppercase and lowercase letters.

* -profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement is executed when the program runs. (See the description of the profile and
add_profile commands.) By default, the compiler does not insert the counting code.
You cannot specify both -profile and -cpu_profile in the same command.
OpenVOS Commands Reference Manual (R098) 2-591

pl1
* -cpu_profile <CYCLE>
Inserts code in the compiled program that counts the number of times each source
statement is executed, the amount of CPU time (in milliseconds) spent executing each
statement, and the number of page faults taken executing each statement when the
program runs. (See the description of the profile and add_profile commands.) By
default, the compiler does not insert the counting code. The code inserted by this
argument uses much more CPU time, but provides more useful information, than the
code inserted by -profile. You cannot specify both -cpu_profile and -profile
in the same command.

* -statistics <CYCLE>
Displays statistics about the compilation as it proceeds. The compiler displays the
version number of the compiler, and the following statistics for each phase:

 disk I/O information
 elapsed real time
 amount of storage used
 number of page faults taken
 elapsed cpu time
 time when the compiler completed the phase

The compiler also displays statistical information for the entire compilation, such as the
number of source lines and the symbol table size.

You can specify -statistics to see the progress of the compilation and to determine
the phase in which an error occurs. If the compiler produces a listing, it puts the
statistics in the listing. By default, the compiler does not display compilation statistics.

* -fixedoverflow <CYCLE>
Generates code to check for fixed-point arithmetic overflow when the program is run
and signals the fixedoverflow condition when it occurs. By default, the compiler
does not insert the checking code. Some instances of fixed-point arithmetic overflow
may nevertheless be detected when the program runs.

* -silent <CYCLE>
Suppresses the warning messages of severity-1 or severity-0 errors on your terminal
during compilation. The compiler, nevertheless, puts the messages in an error file and
in any listing it produces. By default, the compiler writes all error messages on your
terminal.

* -full <CYCLE>
Creates from the compiled object code an assembly language listing with added
comments, as well as a compilation listing. The compiler uses a disassembler to
produce the listing. By default, the compiler does not produce an assembly language
listing.

* -nesting <CYCLE>
Produces a compilation listing with the nesting level of source statements in the listing:
the top level is 0, the next level is 1, and so forth. By default, the compiler does not print
the nesting level of source statements in any listing it produces.
2-592

pl1
* -system_programming <CYCLE>
Produces more stringent checking of the program during compilation. The checking
diagnoses the following:

 references to members of a structure without the level-1 structure name
 some cases of implicit data type conversion
 missing members in a label array for which no default case exists
 alignment padding in structures (if the source module’s data alignment method

is longmap)

* -optimization_level number <CYCLE>
Specifies the degree of optimization. The possible values are 0, 1, 2, 3, and 4. (See the
Explanation section of this command description for details.)

* -check_uninitialized <CYCLE>
Issues diagnostics for all references to uninitialized variables if you also specify the
value of -optimization_level as 3 or 4. If you specify this argument and an
optimization level of less than 3, the compiler issues an error. This argument is useful
when verifying new code or checking for possible bugs, but it can return misleading
diagnostics, as in the case of variables that are initialized within a conditional
statement. The categories of uninitialized variables diagnosed by the compiler vary,
depending on whether you choose both -check_uninitialized and an
optimization level of at least 3, or choose only an optimization level of at least 3.

* -max_fixed_bin number
Specifies the maximum precision (either 31, which is the default, or 63) for fixed binary
values in a PL/I compilation unit. You can override it with the max_fixed_bin option
of the %options preprocessor statement. See the OpenVOS PL/I Language
Manual (R009) for more information about the max_fixed_bin option.

* -store_args <CYCLE>
This argument has no effect on programs compiled for ftServer modules but has been
retained for compatibility with existing software build scripts.

Explanation
The pl1 command compiles an OpenVOS PL/I source module into an object module.

The name of the source module must have the suffix .pl1; you can either supply or omit the
suffix when you give source_file_name. The compiler generates an object module, puts
it in your current directory, and names it. The name of the object module is the same as the
name of the source module with the suffix changed from .pl1 to .obj.

The OpenVOS PL/I compiler invokes two preprocessors: the OpenVOS preprocessor and the
PL/I preprocessor. The -define argument can be used with the OpenVOS preprocessor;
-define does not affect the PL/I preprocessor. See the OpenVOS PL/I Language
Manual (R009) and VOS PL/I User’s Guide (R145) for more information on the PL/I
preprocessor.

When you are compiling for an ftServer module at all optimization levels, the module on
which you are compiling must have at least 30,000 pages of paging partition available to
OpenVOS Commands Reference Manual (R098) 2-593

pl1
avoid running out of virtual memory. In addition, the module on which you are compiling
should have 64MB of physical memory available to achieve optimal compiler performance.

Using the -define Argument
The -define argument defines variables to be used during the preprocessor phase of the
compilation. For example, if you specify the following on the command line, the preprocessor
variables var_a and var_b will be initially defined during the preprocessing phase of the
compilation:

pl1 prog1 -define var_a var_b

You use preprocessor variables with preprocessor statements to perform conditional
compilation on a program. Conditional compilation enables you to switch on or off various
statements in a program. This is useful, for example, if you want your program to compile
different lines of source code on different processors. There are six preprocessor statements.

 $define
 $undefine
 $if
 $else
 $elseif
 $endif

Preprocessor statements must begin in the first column of the source program. Therefore,
indentation of nested $if statements is not allowed.

A preprocessor statement must be contained on a single line. A line containing a preprocessor
statement cannot contain comments or parts of the source language. (An exception is the
$endif statement, which ignores any text following it on the line, thus allowing you to
comment on the source code.)

To comment out a preprocessor statement, the comment delimiters must surround the
statement on the same line, or the comment delimiters must open and close on lines
surrounding the preprocessor statement. A comment delimiter cannot appear on the same line
as the statement if the corresponding comment delimiter appears on a different line. Examples
of valid and invalid comments follow.

Valid:

/*
$define
*/

Valid:

/* $define pentium4 */

Invalid:

/*
$endif */
2-594

pl1
For more information on the OpenVOS preprocessor, see the description of the
preprocess_file command.

Using the -processor Argument
The -processor argument allows you to specify the processor on which the program is to
run. The -processor argument also allows you to perform cross-compilation on a source
module if the PL/I cross compiler is available on your system. Cross-compilation occurs
when a compiler running on one processor family translates a source module into object code
for another processor family. The IA-32 cross compiler generates code to run on ftServer
modules. Specify the value pentium4 for the -processor argument to target an ftServer
module.

Depending on the value specified in the -processor argument or the corresponding
%options processor option, the compiler automatically defines one preprocessor variable
for the processor family and one or more preprocessor variables corresponding to the
processor type(s), as shown in Table 2-26.

26

If you specify -processor pentium4 on the command line, the preprocessor variables
__PENTIUM4__, __IA32__, and __i386 are defined.

If the value specified in the -processor argument indicates the IA-32 processor, the
maximum number of bytes available for each function’s initial stack frame is 2,147,483,584
bytes.

The amount of automatic storage you can actually declare is somewhat less than these limits
because temporary variables generated by the compiler also count towards the limit.

Note: Although the OpenVOS PL/I compiler supports extremely large values (such as
2,147,483,646), the operating system does not support them.

Using the -mapping_rules Argument
The -mapping_rules argument allows you to specify the data alignment rules for a given
compilation. The value default indicates the system-wide default. The default is
site-settable. The value shortmap specifies that the shortmap alignment rules are to be used
for the source module. The value longmap specifies that the longmap alignment rules are to
be used for the source module. The values default/check, shortmap/check, and
longmap/check are equivalent to default, shortmap, and longmap, respectively, except
that they also diagnose alignment padding within structures. For example, if you specify
default/check, the compiler displays a diagnostic message stating how many bytes of
padding exist within a structure. The %options mapping directives override
-mapping_rules values, but alignment padding within structures is still diagnosed if you
specify one of the checking values.

Table 2-26. Predefined Preprocessor Variables

Processor Value Preprocessor Variable

default Varies, depending on the default system processor

pentium4 __PENTIUM4__, __IA32__, and __i386
OpenVOS Commands Reference Manual (R098) 2-595

pl1
Using the -full, -nesting, -list, or -xref Argument
If you specify the -list, -nesting, -full, or -xref argument, the compiler creates a
compilation listing file and puts it in your current directory. The name of the compilation
listing is source_file_name.list. Specifying -full gives you an assembly language
listing in addition to a program listing. Specifying -nesting adds numbers showing the
nesting depth of each source statement in a program listing. Specifying -xref gives you a
list of cross-references in addition to a program listing. See the VOS PL/I User’s
Guide (R145) for examples of each type of listing.

Optimizations for ftServer Modules
The -optimization_level argument allows you to optimize programs at different levels.
When you are compiling a source module to run on ftServer modules, the levels of
optimizations are 1, 2, 3, and 4. Specifying optimization level 3 or 4 causes the compiler to
perform level 3 optimizations.

If you specify optimization level 0 (or -no_optimize), the compiler performs the following
local optimizations.

 local register allocation
 elimination of unreachable code

If you specify optimization level 1, the compiler performs all level 0 optimizations plus the
following other local optimizations.

 local pattern replacement
 short-circuit evaluation of Boolean expressions
 recognition of algebraic identities
 constant folding
 local combination of common subexpressions within a statement
 result incorporation
 peephole optimizations within a single statement

If you specify optimization level 2, the compiler performs all level 1 optimizations plus the
following global optimizations.

 branch retargeting
 global combination of common subexpressions
 removal of invariant expressions from loops
 subsumption
 peephole optimizations across statement boundaries
 global register allocation

If you specify optimization level 3, the compiler performs all level 2 optimizations plus the
following global optimizations.

 constant propagation
 removal of invariant assignments from loops
 strength reduction
 linear test replacement
 elimination of dead assignments
 elimination of useless loops
2-596

pl1
 check for uninitialized variables
 elimination of dead code and dead stores
 instruction scheduling
 inline expansion
 no allocation of stack space by automatic variables whose values are kept in registers

As stated above, unreachable code is eliminated at all optimization levels on ftServer
modules. Sometimes, however, you might want your program to contain some code that will
be executed only during a debugging session, not during normal program execution. To
prevent the compiler from eliminating such unreachable code, you might consider changing
your program as follows.

declare always_zero fixed bin(15) volatile static initial (0);

if (always_zero ^= 0) then
/* Code that should not be eliminated goes here */

If you delete the volatile attribute from the preceding declaration, the compiler will
eliminate the unreachable code. See the OpenVOS PL/I Language Manual (R009) for more
information on volatile.

Specifying the Optimization Level
The arguments -no_optimize, -table, and -optimization_level determine the
optimization level for a source module. By default, the level is 3.

Table 2-27 describes how each of these compiler arguments affects the optimization level for
a source module.

27

Note: If you compile a program with either the -profile or -cpu_profile
argument, you must specify an optimization level lower than 3. Otherwise, -profile
or -cpu_profile might not return accurate information, since high optimization
levels can cause code to be moved from one statement to another.

Table 2-27. Optimization-Related Arguments

Argument Optimization Level for a Source Module

-optimization_level Specifies the level of optimization that the compiler uses.
Allowed values are 0, 1, 2, 3, and 4. The default level is 3.

-no_optimize Specifies optimization level 0. This argument overrides the
-optimization_level argument as well as the
optimization level associated with the -table argument if
either of these arguments is specified.

-table Specifies a maximum optimization level of 1. This argument
overrides the -optimization_level argument if that
argument is specified with a value greater than 0. If you
specify this argument, the compiler does not perform any
global optimizations.
OpenVOS Commands Reference Manual (R098) 2-597

pl1
Using the -check_uninitialized Argument
The optimization level for a source module also affects the functionality of the
-check_uninitialized argument.

 If you select the -check_uninitialized argument and an optimization level of at
least 3, the compiler diagnoses all instances of uninitialized variables within the source
module. In this case, the compiler diagnoses variables that are initialized as part of code
executed conditionally.

 If you do not select the -check_uninitialized argument but do select an
optimization level of at least 3, the compiler diagnoses instances of variables within the
source module that it knows are uninitialized. In this case, the compiler does not
diagnose variables that are initialized as part of code executed conditionally.

 If you select an optimization level of less than 3, the compiler issues an error and does
not diagnose uninitialized variables within the source module even if you select
-check_uninitialized.

Using the -table or -production_table Argument
If you specify the -table argument, the compiler creates a symbol table, and allocates
storage and generates addresses for all external references, including any that are not used.
Symbol-table capacity is 2,147,483,647 nodes. The compiler generates internal subroutines
that calculate size, offset, and bound expressions that determine the characteristics of
adjustable data. This allows the OpenVOS Symbolic Debugger to display and modify
variable-length data according to its current length. In addition, the compiler suppresses
interstatement code optimization and only allocates storage for the references that have been
used.

If you specify -production_table, the compiler performs all of the same operations that
it performs for -table, except that it does not suppress interstatement code optimization, and
only variables actually referenced in the program are placed in the symbol table (most
unreferenced variables are from include files). Code produced with -table executes more
slowly than does code produced with -production_table. Code produced with
-production_table can produce unpredictable results if you invoke the OpenVOS
Symbolic Debugger set and continue requests.

Using the -mapcase Argument
When you compile a source module with the -mapcase argument, and the module contains
an external variable name or entry name with one or more uppercase letters, you may not be
able to bind the resulting object module. If the binder encounters a reference to the original
name (for example, in a binder control file), it will not recognize the original name and its
lowercase version as the same name.

Interpreting Compiler Diagnostics
If the compiler discovers any errors in your source module, it displays an error message on
your terminal. Severity-1 and severity-0 messages are not displayed on your terminal when
you specify the -silent argument. The compiler also creates an error file named
source_file_name.error in the current directory and writes the error messages to the
file. The compiler also appends error messages to a compilation listing if it produces one. The
2-598

pl1
system deletes any .error file if a subsequent compile to the same source file is successful
(contains no errors).

The OpenVOS PL/I compiler diagnoses five types of errors.

SEVERITY 0: Advice
SEVERITY 1: Warning
SEVERITY 2: Correctable error
SEVERITY 3: Uncorrectable error: translation can continue
SEVERITY 4: Uncorrectable error: translation cannot continue

The text of the error message explains the cause of the error.

A severity-0 error, although valid PL/I, indicates that improvement is possible, usually in the
area of performance. The source module is syntactically correct, so the compiled object
module can be bound and executed, but probably with less than optimum efficiency.

A severity-1 error, although valid PL/I, is probably a programming error. Since the source
module is syntactically correct at the point of a severity-1 error, however, the compiler
continues to compile the source. The compiled object module can be bound and executed, but
the program probably will not perform as expected.

A severity-2 error is invalid PL/I, but the compiler can reinterpret the source in such a way
that it can continue to compile the program. The compiler proceeds as if the faulty code were
replaced with the most likely syntactically correct code. The compiled object module can be
bound and executed, but the program probably will not perform as expected.

A severity-3 error is invalid PL/I, and the compiler cannot reinterpret the source in such a way
that it can continue to compile the program into a usable object module. Nevertheless, the
compiler continues to process the program to detect additional errors. However, the object
module is not created.

A severity-4 error is invalid PL/I, and the compiler cannot reinterpret the source in such a way
that it can continue to process the program from the point of the severity-4 error. The object
module is not created.

Note: If the compilation results in more than 100 errors, in any combination (excluding
severity-0 errors), compilation terminates.

The compiler always overwrites an existing object module having the same name as the
object module it produces.

Access Requirements
You need read access to the source module to compile it. You need modify access to the
directory from which you are issuing the compile command, in which the .obj file will be
created.

Examples
The command pl1 sort_reports -xref -table -no_optimize -check compiles
the OpenVOS PL/I source module sort_reports.pl1 in the current directory, producing
OpenVOS Commands Reference Manual (R098) 2-599

pl1
a compilation listing that includes a cross-reference listing and an OpenVOS Symbolic
Debugger symbol table so that you can use the OpenVOS Symbolic Debugger in pl1 mode
to debug the program. The compiler also inserts out-of-bounds array subscript-checking
code. The name of the object module created is sort_reports.obj. It is put in the current
directory. If the compiler finds any errors, it creates an error file named
sort_reports.error and writes the error messages to it. The compiler puts the error file
in the current directory.

Related Information
See the OpenVOS PL/I Language Manual (R009) for a complete description of the OpenVOS
PL/I language.
2-600

position_tape
position_tape 2-

Purpose
This command positions the tape mounted on a specified tape drive, or on a tape drive to
which a specified port is attached.

Display Form

Command Line Form

position_tape tape_device_or_port_name [-rewind] [-end_of_volume]

Arguments* tape_device_or_port_name Required
The name of a tape device or the name of a port attached to a tape drive, holding the
tape to be positioned.

* -rewind <CYCLE>
Rewinds the tape to the beginning of the volume before performing any other
positioning. By default, position_tape does not rewind the tape.

* -end_of_volume <CYCLE>
Positions the tape to the end of the volume so that it can append a new file to the
volume. The tape is rewound first if you specify -rewind. Otherwise, the tape is
positioned to the end of the volume before any other positioning operation. By default,
position_tape does not position the tape to the end of the volume.

-------------------------------- position_tape ---------------------------------
tape_device_or_port_name:
-rewind: no
-end_of_volume: no
-relative:
-absolute:
-file_id:
-file_number:

-relative relative_number_of_files
-absolute absolute_number_of_files

-file_id file_id
-file_number file_number
OpenVOS Commands Reference Manual (R098) 2-601

position_tape
* -relative relative_number_of_files
Positions the tape a number of files before or after the current position. Specify the
number of files with relative_number_of_files. If
relative_number_of_files is positive, position_tape moves the tape forward
that many files. If the value is negative, it moves the tape backward the given number
of files. The command does this positioning after rewinding or positioning to the end
of the volume if you specify either -rewind or -end_of_volume. The command
leaves the tape at the beginning of a file in an unlabeled tape and at the beginning of a
file label in a labeled tape. You can specify only one of the following arguments:
-relative, -absolute, -file_id, and -file_number.

* -absolute absolute_number_of_files
Positions the tape a number of files from the beginning of the tape. Specify the number
of files with absolute_number_of_files. The command does this positioning
after rewinding or positioning to the end of the volume if you specify either -rewind
or -end_of_volume. It leaves the tape at the beginning of a file in an unlabeled tape
and at the beginning of a file label in a labeled tape. You can specify only one of the
following arguments: -relative, -absolute, -file_id, and -file_number.

* -file_id file_id
Positions the tape to a given tape file, specified by its file ID. The tape file must be after
the current position of the tape. The tape must be labeled. The command leaves the tape
at the beginning of the label of the specified file. It does this positioning after rewinding
or positioning to the end of the volume if you specify either -rewind or
-end_of_volume. You can specify only one of the following arguments: -relative,
-absolute, -file_id, and -file_number.

* -file_number file_number
Positions the tape to a given file, specified by its file number. The tape must be labeled.
The command leaves the tape at the beginning of the label of the specified file. It does
this positioning after rewinding or positioning to the end of the volume if you specify
either -rewind or -end_of_volume. You can specify only one of the following
arguments: -relative, -absolute, -file_id, and -file_number.

Explanation
The position_tape command positions a mounted tape to the beginning or the end of the
tape volume or to a given file on the tape volume.

To use the position_tape command, you must first explicitly attach a port and explicitly
mount a tape. As a convenience, you can specify a tape device or a port name as a value for
tape_device_or_port_name. The position_tape command does not implicitly attach
a port or mount a tape. For more information, see the Explanation section in the mount_tape
command description.

After you position the tape, you can issue a command that will perform another operation on
the tape.

You can reposition reel tapes and 1/2-inch cartridge tapes. You can also overwrite selected
portions of existing data on these tapes. You can only reposition 1/4-inch cartridge tapes to
their beginning or end. You cannot reposition a 1/4-inch cartridge tape to a file or overwrite
2-602

position_tape
selected portions of existing data on these tapes. You can overwrite all the existing data on a
1/4-inch tape, if you position the tape to its beginning.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, read_tape, restore_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-603

posixpath
posixpath 2-

Purpose
This command converts a relative or full OpenVOS path name into a full POSIX path name.

Display Form
None.

Command Line Form

posixpath ® ¯
Arguments* path_name

The name of a file, or a relative or absolute path name.

* --help
Displays a brief help message that describes the command.

* --version
Displays a brief version string.

Explanation
The posixpath command converts the path_name argument, which is a relative or full
OpenVOS path name, into a full POSIX path name. The resultant POSIX path name always
begins with a slash character (/).

The three arguments are all mutually exclusive.

This command is primarily for use with interactive shells such as bash. Users who are
experienced with OpenVOS commands may prefer to use the (posix_path) command
function instead of the posixpath command.

Examples
The following command converts an OpenVOS path name into a POSIX path name.

posix_path %es#mRaid4>system>gnu_library>bin
/system/gnu_library/bin

path_name
--help
--version
2-604

posixpath
Related Information
See the description of the vospath command and the description of the (posix_path)
command function.
OpenVOS Commands Reference Manual (R098) 2-605

preprocess_file
preprocess_file 2-

Purpose
This command is a stand-alone preprocessor for text files. The command creates an output
text file by copying lines from an input text file into the output text file, based on preprocessor
statements specified in the input text file.

Display Form

Command Line Form

preprocess_file source_file_name [output_file_name] [-define variable...]
Arguments* source_file_name Required

The path name of the source file to be processed. When the source file is processed, an
output file named source_file_name.pout is created in the current directory.

* output_file_name
The path name of an output file. The default path name is
current_directory>source_file_name.pout. If you do not specify the suffix
.pout, the preprocessor will add it to the output file automatically.

* -define variable
Defines variables to be used by the preprocessor. These variables are used by the
preprocessor, not by the source file itself. Preprocessor variables can contain letters,
digits, or underline characters (_), in any position.

Explanation
The preprocess_file command expands a source file named source_file_name into
an output file named source_file_name.pout. Based on the preprocessor statements
specified in the source file, preprocess_file copies lines from the source file into an
output file that the command creates. You can use this command to preprocess any text file.
Stratus recommends that you use the c_preprocess command to preprocess OpenVOS C

------------------------------- preprocess_file --------------------------------
source_file_name:
output_file_name:
-define:
2-606

preprocess_file
programs, and that you use the cpp command to preprocess OpenVOS Standard C programs.
(See the c_preprocess and cpp command descriptions for more information.)

The output_file_name argument allows you to specify the name of the .pout output file
to be created. By default, the file is placed in the current directory.

The -define argument defines variables to be used by the preprocessor. For example, to
make the variables var_a and var_b in program1 available to the preprocessor, specify the
following:

preprocess_file program1 -define var_a var_b

Any variables specified with the -define command line argument are established as defined
at the beginning of the compilation. All other variables are initially undefined. A source file
can contain no more than 100 preprocessor variables.

Before you can compile, bind, and execute a source_file_name.pout source file, you
need to rename it source_file_name.language. To avoid the possibility of using the
wrong compiler with the preprocessed file, you may want to include the language extension,
for example, .pl1, when specifying the source_file_name.

Caution: If you rename the .pout source file, do not give it the same name as the
original source file, or the original will be overwritten.

The Preprocessor Statements
Preprocessor statements allow you to conditionally compile a source file. Conditional
compilation enables you to switch on or off various statements in a source file. This is useful,
for example, if you want a program to compile different lines of source code on different
processors.

There are six preprocessor statements.

 $define
 $undefine
 $if
 $else
 $elseif
 $endif

Note that OpenVOS COBOL and assembly language programs require the @ lead-in character
for statements, instead of the $ character. The preprocessor statements in OpenVOS COBOL
and assembly language programs are @define, @undefine, @if, @else, @elseif, and
@endif. Note that where this discussion refers to the $ character, the @ character is also
implied.

Preprocessor statements must begin in the first column of the source file. Indentation of
nested $if statements is, therefore, not allowed.

A preprocessor statement must be contained on a single line. A line containing a preprocessor
statement cannot contain comments or parts of the source language. (An exception is the
OpenVOS Commands Reference Manual (R098) 2-607

preprocess_file
$endif statement, which ignores any text following it on the same line, thus allowing you to
comment on the source code.)

The following sections describe each preprocessor statement.

The $define Statement
The $define statement defines a preprocessor variable inside a source file. The syntax is as
follows:

$define identifier

An identifier can contain letters, digits, or an underline character (_), in any position. For
more information on defining preprocessor variables, see the description of the -define
argument earlier in the Explanation section.

The $undefine Statement
The $undefine statement undefines a preprocessor variable. The syntax is as follows:

 $undefine identifier

The $if Statement
The $if statement conditionally evaluates an expression as true or false. The syntax is as
follows:

$if expression

Expressions are simple expressions using the NOT, AND, and OR operators. Parentheses
have their usual grouping meaning. Table 2-28 lists the operators and lead-in character for
each command.

28

The order of operator precedence is NOT, AND, and OR.

In an expression, preprocessor variables that are defined evaluate to true. If the expression
evaluates to true, all statements up to the next $else, $elseif, or $endif statement are
processed, unless processing is explicitly disabled by another preprocessor statement;
otherwise, they are skipped.

You cannot specify a preprocessor variable by itself. Instead, you must pass it as an argument
to the defined function. There cannot be any spaces between the lead-in character and the

Table 2-28. Preprocessing Operators and Lead-In Characters

Command AND OR NOT Lead-In Character

bind
cobol
create_table
fortran
pascal
pl1

&
and
&
.and.
and
&

|
or
|
.or.
or
|

^
not
^
.not.
not
^

$
@
$
$
$
$
2-608

preprocess_file
preprocessor statement. All other tokens must be separated by at least one space. See the
Examples section for examples of the defined function.

The limit for nested $if and $elseif statements is 32.

The $else Statement
The $else statement conditionally processes the lines up to the next $endif statement. The
syntax is as follows:

$else

The $elseif Statement
The $elseif statement conditionally evaluates an expression as true or false. The syntax is
as follows:

$elseif expression

See ‘‘The $if Statement” for more information.

The $endif Statement
The $endif statement closes the most recent $if or $elseif statement. The syntax is as
follows:

$endif [ignored_text]
An $endif statement is required for each $if and $elseif statement specified.

You can optionally place text after the $endif to comment the source code. The preprocessor
ignores the text if it is preceded by a space.

Differences between preprocess_file and Compiler Preprocessing
This section explains the differences between the preprocessing performed by the
preprocess_file command and the preprocessing performed by the compilers.

Comments
All of the compilers recognize comments in source files. The preprocess_file command,
however, treats comments as if they were normal text. This difference can affect your results.
For example, the following text would be treated as a comment (that is, ignored) by the PL/I
compiler, but not by the preprocess_file command.

/*
$define abc
*/

The preprocess_file command would not recognize /* and */ as comment delimiters
and would consider $define abc to be executable code. Therefore, you should be careful
when commenting out code in source files that you plan to preprocess with the
preprocess_file command.

See the descriptions of the compiler commands for examples of valid and invalid comments.
OpenVOS Commands Reference Manual (R098) 2-609

preprocess_file
Output Files
Just as the .pout file created by preprocess_file contains only the lines of source code
to be executed, the .list file created by the compiler commands also shows you which lines
of code will be executed. If you specify the -list argument in a compiler command, the
compiler inserts three plus signs (+++) in front of each line in the .list file that will not be
executed. (An asterisk, rather than three plus signs, is inserted in the .list files for the bind
command.) For example, the plus signs in the following .list file designate which lines of
code will not be executed if you specify the command pl1 test -list -define a_code.
All unmarked lines will be executed. (Note that only the pertinent part of the .list file is
shown, not the entire file.)

1 a:
2 procedure;
3 declare i fixed bin(15);
4
5 +++$if defined (a_code) | defined (b_code)
6 i = 1;
7 +++$else
8 +++ i = 2;
9 +++$endif

10
11 put list (i);
12 end a;

See the Examples section of this command description to compare the preceding output
against the .pout file created when preprocess_file preprocesses the same PL/I
program.

Access Requirements
You need read access to the source file to process it. You need modify access to the directory
in which the .pout file will be created.

Examples
Example 1.
The following OpenVOS PL/I program, test.pl1, uses preprocessor statements to perform
conditional compilation.

 a:
 procedure;
 declare i fixed bin(15);

 $if defined (a_code) | defined (b_code)
 i = 1;
 $else
 i = 2;
 $endif

 put list (i);
 end a;
2-610

preprocess_file
If you specify the preprocess_file test.pl1 -define a_code command, the
command produces the following file, test.pl1.pout.

a:
 procedure;
declare i fixed bin(15);

 i = 1;

put list (i);
end a;

The .pout file contains only the source code that will be compiled. Since a_code was
defined, the line i = 1; will be compiled.

If you specify the preprocess_file test.pl1 command without defining a_code or
b_code, the line i = 2; is processed rather than i = 1;.

Example 2.
The following OpenVOS COBOL program, test.cobol, uses preprocessor statements to
perform conditional compilation.

data division.
 working-storage section.
 @if defined (use_i)
 01 i pic 9.
 @elseif defined (use_j)
 01 j pic 9.
 @endif

 procedure division.
 main.
 @if defined (use_i)
 move 1 to i.
 display i.
 @elseif defined (use_j)
 move 2 to j.
 display j.
 @endif
 stop run.

If you specify the command preprocess_file test.cobol without defining use_i or
use_j, the command produces the following file, test.cobol.pout.

data division.
 working-storage section.

 procedure division.
 main.

 stop run.
OpenVOS Commands Reference Manual (R098) 2-611

preprocess_file
Since neither preprocessor variable was defined, the .pout file contains no executable code.
As a result of preprocessing, during compilation, the compiler will not allocate any storage
for the variables i and j, and will not execute any move or display statements. In this way,
preprocessor statements can save system resources.

Error Codes
The following table explains some error codes this command might return.

Error Code Explanation

e$pp_too_many_variables (4693) Too many variables were defined. The limit is
100 variables.

e$pp_preprocess_failed (4694) An error occurred during preprocessing.

e$pp_control_line_error (4695) An error was encountered. Typically, this error
indicates a misspelled control name.

e$pp_syntax_errors_in_expression
(4699)

An expression in an $if or $elseif statement
could not be parsed successfully.

e$pp_invalid_variable_name (4698) An invalid variable name was encountered in a
$define or $undefine statement or within a
defined() function reference.

e$pp_expression_stack_overflow
(4700)

Too many nested $if statements were
specified. The nesting limit is 32.

e$pp_expression_stack_underflow
(4701)

An unexpected $endif statement was
encountered (no unclosed $if statement
preceded the $endif statement).

e$pp_unclosed_if (4702) The source program ended with an unclosed
$if statement.

e$pp_unexpected_elseif (4703) An $elseif statement was encountered, but no
$if statement was currently active.

e$pp_unexpected_else (4704) An $else statement was encountered, but no
$if statement was currently active.

e$pp_unexpected_end_expression
(4705)

An $endif statement was encountered, but no
$if statement was currently active.

e$pp_missing_left_paren (4696) An expression, $define statement, or
$undefine statement is missing a left
parenthesis.

e$pp_missing_right_paren (4697) An expression, $define statement, or
$undefine statement is missing a right
parenthesis.
2-612

preprocess_file
Related Information
See also the command descriptions of c_preprocess, cpp, vcpp, cobol, fortran,
pascal, and pl1. For a description of the create_table command, see OpenVOS System
Administration: Configuring a System (R287).

e$pp_no_value_defined (4706) A preprocessor variable is expected to be
defined.

e$pp_unexpected_syntax (4707) The syntax is unexpected; the word defined is
expected.

e$pp_too_many_tokens (4708) An expression exceeds the limit of 100 tokens.

e$pp_left_over_tokens (4709) An expression has been specified incorrectly.

Error Code Explanation
OpenVOS Commands Reference Manual (R098) 2-613

print
print 2-

Purpose
This command puts a print request into a print queue for printing.

Display Form

------------------------------------ print -------------------------------------
file_names:
-queue: standard
-title:
-destination:
-module:
-device:
-header:
-footer:
-index:
-defer_until:
-interpret_tabs:
-exception_handling: replace
-copies: 1 -line_numbers: no
-delete: no -raw: no
-page_breaks: yes -use_fortran_controls: no
-indentation: 0 -page_size:
-top_margin: 3 -bottom_margin: 3
-line_length: -wrap: no
-queue_priority: -notify: no
-first_page: 1 -last_page: 0
-pass_thru: no
2-614

print
Command Line Form

print file_names . . . [-queue queue_name] [-title title_string] [-destination destination_string] [-module module_name] [-device device_name] [-header header_string] [-footer footer_string] [-index index_name] [-defer_until date_time] [-interpret_tabs start_column,spacing] [-exception_handling exception_string] [-copies number] [-line_numbers] [-delete] [-raw] [-no_page_breaks] [-use_fortran_controls] [-indentation number] [-page_size number] [-top_margin number] [-bottom_margin number] [-line_length number] [-wrap] [-queue_priority number] [-notify] [-first_page page_number] [-last_page page_number] [-pass_thru]
Arguments* file_names Required

One or more names or star names of files to be printed. You can specify any type of file.

* -queue queue_name
Prints the file on the printer controlled by the print queue queue_name. By default,
print puts the file into the standard queue. The standard queue is usually
associated with a default printer on which the file is printed, but this depends on the site
configuration.

* -title title_string
Prints the character string title_string on the header page that precedes the
printout of your file. In the command line, if the string contains spaces, you must
enclose it in apostrophes. By default, the file name appears as the title on the header
page. The title_string value has a maximum length of 132 characters.
OpenVOS Commands Reference Manual (R098) 2-615

print
* -destination destination_string
Prints the character string destination_string at the top of the header page that
precedes the printout of your file. In the command line, if the string contains spaces,
you must enclose it in apostrophes. By default, your person name appears as the
destination on the header page.

* -module module_name
Specifies the module containing the specified print queue. By default, print uses your
current module.

* -device device_name
Specifies a device name or star name. If you specify a device, the request is printed only
on a device that matches the specified name or star name. If you do not specify a device,
the request is printed on the first available printer controlled by the specified queue. If
you specify a device that is not available, the request remains in the queue until the
specified device becomes available. If you specify a device name unknown to the
operating system, the following error message is displayed:

Device name is not known to the system.

* -header header_string
Prints the character string header_string on every page of the output. For top
margins of three or more lines, header_string appears at the left margin on the
second line; for top margins of one or two lines, header_string appears on the first
line. By default, no header is printed. If you print a file that incorporates formatting
features of the edit command, or if you specify -no_page_breaks, print ignores
this argument. The header_string value has a maximum length of 132 characters.

* -footer footer_string
Prints the character string footer_string on every page of the output. For bottom
margins of three or more lines, footer_string appears at the left margin on the
second line from the bottom; for bottom margins of one or two lines, footer_string
appears on the bottom line. By default, no footer is printed. If you print a file that
incorporates formatting features of the edit command, or if you specify
-no_page_breaks, print ignores this argument. The footer_string value has a
maximum length of 132 characters.

* -index index_name
Specifies an index that controls the order in which the records in a specified file are
printed. By default, the records are printed in the order in which they appear in the file.

* -defer_until date_time
Defers printing the file until some time after date_time. The date_time value can
be a character string in the standard form.

yy-mm-dd_hh:mm:ss

It can also be a character string in any form accepted by the (date_time) command
function. In this case, the string must be enclosed in apostrophes. See Chapter 1,
‘‘OpenVOS Command Functions,” for examples of acceptable date/time input strings.
2-616

print
* -interpret_tabs start_column,spacing
Interprets occurrences of the ASCII tab character. You must specify the column number
start_column of the first tab stop and the number spacing of positions between tab
stops. A comma must separate the two numbers. You cannot specify
-interpret_tabs and -raw in the same command.

* -exception_handling exception_string <CYCLE>
Specifies how to handle nonprinting characters in the text. The possible values are
replace, ignore, and abort. If you specify replace, the operating system prints
the hexadecimal number representing the ASCII code for the nonprinting character. If
you specify ignore, the operating system ignores nonprinting characters. If you
specify abort, the operating system cancels this print request if a nonprinting
character is encountered, and continues with the next request in the queue. By default,
the print command uses replace. You cannot specify ignore and -raw in the same
command.

* -copies number
Prints multiple copies of each specified file. By default, the command prints one copy.

* -line_numbers <CYCLE>
Prints the file with line numbers. By default, the command prints the file without line
numbers.

* -delete <CYCLE>
Deletes the file after it is printed.

* -raw <CYCLE>
Prints the file literally; all character sequences that are normally control sequences for
the printer (and not printed) are replaced with the ASCII digits representing the
hexadecimal value of the bytes. You cannot specify raw and either
-exception_handling ignore or -interpret_tabs in the same command.

* -no_page_breaks <CYCLE>
Prints the file without page breaks and automatically sets the top and bottom margins
to 0. By default, files are printed with page breaks.

* -use_fortran_controls <CYCLE>
Interprets any of the following characters as a FORTRAN printing control character
when it appears in column 1 of a file. The command treats all other characters as space
characters.

†The command does not support the - (minus) FORTRAN printing control character.

Character Printing Instruction

1
0
+ †

space character

Skip to the next page
Double space
Overstrike the previously written record
Skip to the next line
OpenVOS Commands Reference Manual (R098) 2-617

print
The command disregards any generic/canonical control sequences it encounters in the
first column. (Generic/canonical control sequences are those that a user has entered in
the body of text of a file.)

* -indentation number
Sets the left margin for the body of the document as well as the headers and footers to
the column designated by number. By default, print sets the left margin to the first
printing position on the line.

* -page_size number
Sets the number of lines on a page. After printing number lines, including top and
bottom margin lines, the printer skips to a new page. By default, the page size default
value for the print queue is used. The -page_size value can be a maximum of 254
lines long.

* -top_margin number
Sets the number of lines in the top margin of each printed page. By default, the top
margin value is 3. The first line of the file that appears on each page is printed on the
first line after the top margin (line 4). If you print a file that incorporates formatting
features of the edit command, or if you specify -no_page_breaks, print ignores
this argument. The -top_margin value can contain a maximum of 254 lines.

* -bottom_margin number
Sets the number of lines in the bottom margin of each printed page. By default, the
bottom margin value is 3. The last line of the file that appears on each page is printed
on the line immediately before the bottom margin. If you print a file that incorporates
formatting features of the edit command, or if you specify -no_page_breaks,
print ignores this argument. The -bottom_margin value can contain a maximum of
254 lines.

* -line_length number
Specifies the number of character positions per line. The line length includes any
indentation. By default, the line length is set to the default value for the print queue.

* -wrap <CYCLE>
Continues the printing of overflow from a long line on a subsequent line or lines.
Overflow consists of the character or characters at the end of a line that will not fit into
the positions available within the specified margins. By default, long lines are
truncated.

* -queue_priority number
Sets the print request’s priority in the print queue. The value of -queue_priority can
be from 0 to 9, with 9 representing the highest queue priority. If you assign a queue
priority to a print request, print inserts the request in the queue before all requests
with lower queue priority. By default, the queue priority of a print request with a size
less than or equal to 20 disk blocks is 5, and that of a print request with a size greater
than 20 disk blocks is 4.
2-618

print
* -notify <CYCLE>
Tells the print command to send you a message when the printing of your job is
complete. By default, the command does not notify you when your print job is
complete.

* -first_page page_number
Specifies that the request should start printing at the given page. All pages prior to the
specified page are ignored.

* -last_page page_number
Specifies that the request should stop printing at the given page. All pages after the
specified page are ignored.

* -pass_thru <CYCLE>
Passes any new line control codes embedded in the file through to the printer. The
command appends the new line control code to each record in the sequential file. You
can use -pass_thru and -device to ensure that the file is printed on the device for
which it was generated. The new line control codes are defined by your system
administrator in the spooler_configuration.v1.tin file. For more information
on this file, see the manual VOS System Administration: Administering the Spooler
Facility (R286).

Explanation
The print command puts a print request into a print queue for printing on a line printer or a
letter-quality printer. A print request includes the path name of a file or the path names of
several files to be printed.

You can print any type of file with the print command.

At the beginning of a print job, the printer produces header pages that give information about
the printout that follows. If you specify -title or -destination, you can specify an
alternative title or destination for the printout of your file. Since title_string and
destination_name can be any character string, you can specify any title and person, office,
location, or other entity that you want. This is particularly useful if you are remotely situated
from the printer that produces your printout.

When the file is a formatted file produced by the word processing editor, the print command
sets the page size. Other text formatting is dependent on the formatting controls in the file.

Use -top_margin and -bottom_margin to specify margins of less than or more than 3
lines. With a margin of 1 or 2, if you also supply a header or footer string, the header or footer
is printed on the first line of the margin. If you specify a margin of 0, no header or footer is
printed. A margin of 0 is useful for printing unbroken output, such as address labels. The
header and footer strings can contain the following variables, which the operating system
replaces with current values when it prints the file:

 &file_name& (the path name of the file)
 &page_number& (the page number of the printed file)
 &date_time& (the current date and time)
 &user_name& (the user name of the requester)
OpenVOS Commands Reference Manual (R098) 2-619

print
The page-number variable always begins at 1 for each copy, and is incremented each time a
page is printed. You can restrict the portion of a file the system prints by giving the
-first_page and/or -last_page arguments to the command. To begin the print job
somewhere other than the beginning of a file, use the -first_page argument, and all pages
prior to the specified page are not printed. Similarly, to cause the system to stop printing
before the end of a file, use the -last_page argument, and all pages after the specified page
are not printed.

The date-and-time variable is the date and time that the operating system starts to print the
file. A separate print job is started for each file you want printed.

If you specify -header, -footer, top_margin, or -bottom_margin when printing a file
that incorporates formatting features of the edit command, the operating system disregards
your choices. Some combinations of print command arguments may yield unpredictable
results when you use them on formatted files (for example, the -wrap and -line_numbers
arguments).

You can print a file on another system to which you have access if:

 the queue and the file are on the same system
 the requesting process and the file are on the same system
 the system that the file is on does not require that users of your system be registered

Note that on a Remote 3270 printer you should not use the -pass_thru option to print a file
including control characters (for example: LF or CR). Otherwise, a spooler will go offline due
to a command reject operation.

Access Requirements
You need read access to a file in order to print it. You need modify access to the directory that
contains the file in order to specify -delete.

Examples
Example 1.
To print two copies of the file make_reports.list in the current directory and delete the
file after it is printed, use the following command.

print make_reports.list -delete -copies 2

Example 2.
The following command prints the specified files after 11 P.M.

print *.cobol *.list -defer_until 23:00:00

Example 3.
To print the file memos in the current directory with the specified header, use this command.

print memos -header 'The memos file of &user_name&.'

The name of the user making the request is filled in when the file is printed.
2-620

print
Example 4.
To print five pages from the middle of the file sales_reports, use this command.

print sales_reports -first_page 5 -last_page 10

Related Information
The list_print_requests command displays the status of all print requests you have
made with the print command. The cancel_print_requests command cancels one or
more print requests. The display_print_status command provides information about
the status of the available spoolers. The display_print_defaults command describes
the print defaults in effect for a specified queue. The list_devices -type printer
command shows a list of available printers.
OpenVOS Commands Reference Manual (R098) 2-621

profile
profile 2-

Purpose
This command generates a file that contains performance information about the statement
execution of one or more program modules.

Display Form

Command Line Form

profile profile_file_name... [-pm_paths new_path_name...]

¢ £
[-no_wrap] [-module_name object_module_name] [-first_line number] [-last_line number] [-threshold number] [-no_includes] [-changes_only] [-output_path path_name]

----------------------------------- profile ------------------------------------
profile_file_names:
-pm_paths:
-list: no
-sort:
-wrap: yes
-module_name:
-first_line: 1
-last_line:
-threshold: 100
-includes: yes
-changes_only: no
-output_path:

-list
-sort sort_code
2-622

profile
Arguments* profile_file_names Required
The path name of one or more profile files. You cannot use star names. If the system
automatically generates a profile file, the file name has the suffix
.process_id.profile (process_id is the program’s process ID, or PID). If you
manually create a profile file, the file name usually has the suffix .profile. Program
modules can have either a fixed or stream file organization. You must have compiled at
least one object module in each program module and specified the -ql or -qc option
(for OpenVOS Standard C programs) or the -profile or -cpu_profile argument
(for programs compiled with one of the other OpenVOS compilers). To include
alignment fault instead of page fault information, you must have bound the object
module(s) with the -profile_alignment_faults argument of the bind command.

Note: When the system automatically generates a profile file, it creates a new
profile file each time, rather than overwriting the old files. To prevent the disk
from filling up with old profile files, a system administrator should be aware of
this issue and develop a plan for deleting these files.

If you specify more than one .profile name, you must also give the -output_path
argument.

* -pm_paths new_path_name...
Specifies the new path name of one or more program modules used to create the profile
files, if you have moved one or more program modules to another directory. You cannot
use star names to specify the path names.

If you specify this argument, you must provide the same number of program module
paths as there are profile file names, even if you moved only one program module to
another directory. Also, you must list them in the same order as the profile file names.

* -list <CYCLE>
Combines the performance information with a source listing in a side-by-side format.
By default, the command combines only the statement line numbers with the
performance data from the .profile file in the output. The executing program
produces this .profile file.

Note: You cannot specify -list and -sort at the same time.

* -sort sort_code <CYCLE>
Sorts the output by frequency, by cost in CPU time, or by coverage of statement
execution. There are five possible values for sort_code.

 count
 cpu
 faults
 coverage
 coverage_summary

Specify count to select frequency, cpu to select CPU execution time, or faults to
select page faults or alignment faults. Specify coverage or coverage_summary to
OpenVOS Commands Reference Manual (R098) 2-623

profile
display information about the number and percentage of statements that actually
executed.

If you do not specify sort_code, profile sorts the source lines and performance
data in the order of the statements in the source module. If the object module was
compiled with -profile specified, you can only sort by count.

Note: You cannot specify -sort and -list at the same time.

* -no_wrap <CYCLE>
Truncates to 79 characters any lines in the output file that exceed 79 characters. By
default, no lines are truncated, and if output is written to a device only 80 columns
wide, any lines longer than 80 characters wrap.

* -module_name object_module_name
Specifies an object module that is one of several in a program module. The command
reports on the performance of that one object module within the program module. You
cannot supply the .obj suffix when specifying an object_module_name.

* -first_line number
Specifies a line number designating the first line of a section of source code. By default,
the value is 1. If you do not specify object_module_name, -first_line is
ignored.

* -last_line number
Specifies a line number designating the last line of a section of source code. If you do
not specify object_module_name, -last_line is ignored.

* -threshold number
Specifies the value for the CUM % column that determines when profile output is
stopped. The threshold argument can have a value between 1 and 100; the default is
100. The value of threshold is meaningful only when the output includes a CUM %
column, that is, when sort_code is cpu, count, or faults, and the program is
compiled with -cpu_profile specified.

For example, if you set threshold to 90 and specify -sort cpu, the command
output stops when the CUM % column reaches 90 percent.

* -no_includes <CYCLE>
Prevents the expansion of include files when you specify -list. By default, if you
specify -list, all included files will be expanded. If you specify -no_includes and
executable code exists in the include files, the profile information for the executable
code will not be shown.

* -changes_only <CYCLE>
Specifies that changed source lines only are used to compute the following values in
the .plist file:

 number of statements executed
 number of statements not executed
 total number of statements
2-624

profile
If you do not specify this argument, unchanged source lines are added when these
values are computed.

Note: You cannot specify this argument unless you specify the coverage or
coverage_summary value in the -sort argument.

* -output_path path_name
Specifies the path name of the output file if you specify more than one profile file name.
You must specify a path name if you specify more than one profile file name. The
command builds the output file name by adding .plist to path_name.

If you specify only one profile file name, by default the command creates an output file
in the current directory and builds the output file name by replacing the .profile
suffix of the profile file with .plist.

Explanation
The profile command generates a file that contains performance information about the
statement execution of one or more object modules in one or more program modules. The
command uses as input one or more profile files created by executing program modules that
you have compiled with certain arguments or options. The command operates in one of four
modes, and generates a .plist output file, which you can display with a text editor or the
display command.

Preparing to Use the profile Command
Before you can use the profile command, you must perform the following steps.

1. Compile one or more object module(s) and specify the -profile or -cpu_profile
argument, or specify the -ql or -qc option if you are using the OpenVOS Standard C
compiler.

When you specify -profile or -ql, the compiler inserts code to count the number of
times each source statement is executed when the program runs. The compiler also
marks the object module so that the object module produces one profile file every time
it runs. If the operating system spawns more than one task containing the object
module, only the first task generates its own profile file.

If you compile a source module with -profile or -ql, the profile command
output contains the statement numbers and the number of times the statement was
executed.

When you specify -cpu_profile or -qc, the compiler inserts code to obtain the
amount of CPU time spent executing each statement, the number of page or alignment
faults taken for each statement, and the number of times each statement executes. The
compiler also marks the object module so that the object module produces one profile
file every time it runs. If the operating system spawns more than one task containing
the object module, all of the execution information is stored in one profile file.

If you compile a source module with -cpu_profile or -qc, the profile command
output contains the statement numbers, the number of times the statement was
executed, the CPU time (in milliseconds) spent executing the statement, and the
OpenVOS Commands Reference Manual (R098) 2-625

profile
number of page or alignment faults taken while the statement was being executed. For
more information on profiling alignment faults, see the section ‘‘Using the
-profile_alignment_faults Compiler Argument.”

2. Bind these object modules into one or more program modules. If you specify the
-profile_alignment_faults binder argument on an ftServer module, the
profile command determines the number of alignment faults instead of the number
of page faults.

3. Execute the program module(s). When you execute the program module, it produces a
profile file. A profile file contains performance information about all of the object
modules compiled with -profile or -cpu_profile and bound together in one or
more executing program modules. If the system automatically generates a profile file,
the file name has the suffix .process_id.profile (process_id is the program’s
process ID, or PID). If you manually create a profile file, the file name usually has the
suffix .profile. When you run the program, the operating system puts the profile file
in your current directory and overwrites existing profile files with the same name.

4. If you plan to use the profile command in differential mode, you must run the
compare_files command using the current version of the source file and an older
version. See the following section, ‘‘Modes of Operation of the profile Command,”
for more information about differential mode.

Modes of Operation of the profile Command
As described in the following sections, you can use the profile command in the following
modes:

 uncombined, non-differential mode
 combined mode
 differential mode
 combined and differential mode

Uncombined, Non-differential Mode
Use this mode to examine statement execution of one or more object modules in one program
module. To use this mode, specify one value for profile_file_names. When you specify
only one value for profile_file_names, by default, the command creates an output file
with the extension .plist in the current directory.

Combined Mode
Use this mode to merge code coverage information about object modules that are common to
more than one program module. This information may be helpful if a single program module
does not execute every line in an object module. To use this mode, specify two or more
profile_file_names (including their path names) of program modules that contain
common object modules. When you specify two or more values for profile_file_names,
you must also specify a value for the -output_path argument that contains an output file
name with the extension .plist. If you do not add the .plist extension, the command adds
it to the output path name.

Note: Common object modules have the same name and same compile date and time.
You can check the compile date and time of an object module used by a program
2-626

profile
module by issuing the display_program_module -module_map command. You
can also check the compile date and time of an object module by issuing the
display_object_module_info command.

In combined mode, the file output_path.plist contains per-line execution counts for all
object modules unique to any of the specified program modules. Also, for all object modules
common to two or more of the specified program modules, it contains combined per-line
execution counts.

Differential Mode
Use this mode to directly measure such data as the percentage of code coverage for specific
numbers of lines of changed code in a program module.

Note: Before using the profile command in differential mode, you must have the
profile file generated by the program module, the source file or files for each object
module in the program module, and a comparison file for a current and older version
for all object files being profiled.

Create the comparison files with the compare_files command. Specify the current source
file as path_B. Specify that the comparison file created by -output_path be in the same
directory as the current version of the source file, and that the comparison file have the
extension .cmpf, as shown in the following examples. Note that if a source file name is
longer than 32 characters with the .cmpf extension, you must truncate it to accommodate the
.cmpf extension.

When you specify the -changes_only argument and the coverage or
coverage_summary value of the -sort argument, the profile command performs
differential profiling. In this case, you do not specify the comparison file name. Instead, the
command assumes that the comparison file(s) follow the previously described naming
conventions. The command checks that each pair of source files and comparison files has a
consistent name and that the comparison file has a later creation date than the source file.

If a properly named comparison file does not exist in the same directory as the current version
of a source file, the command displays the message:

profile (advisory): error_code. Continuing...

and performs non-differential profiling for that object module. The error_code may
indicate lack of access to the comparison file, a circular link, a module being off-line, or one
of many other possible problems. If the profile command encounters a zero-length
comparison file, the command assumes that there are no source changes.

In this mode, the command writes performance information only about lines that are different
in the current and older versions of the source files lines to the .plist file.

Source File Name Name of compare_files Output

object_module.x.pl1 object_module_x.pl1.cmpf

setalignment_fault_mode.pascal setalignment_fault_mode.pasca.cmpf
OpenVOS Commands Reference Manual (R098) 2-627

profile
Combined and Differential Mode
Use the combined and differential modes together when you want to examine the execution
history of changed lines in an object module or modules that is included in more than one
program module. Before using the profile command in combined and differential mode,
issue the compare_files command to generate a comparison file for the current and older
versions of the object modules’ source code. To issue the profile command in combined
and differential mode, specify profile_file_names of the program modules that include
the common object module(s), and specify the -changes_only argument and the
coverage or coverage_summary value of the -sort argument.

Using the -pm_paths Argument
If you specify the -pm_paths argument, exactly the same number of pm paths must exist as
there are profile file names, and the order that you specify the pm paths must correspond to
the order in which you specify the profile file names. In addition, when you issue the
profile command, the program module must be the same version as the executing program
(not a re-bound version).

Controlling the Output of the profile Command
As described in the following sections, you can control the output of the profile command
in any mode by specifying the -profile or -cpu_profile compiler arguments, and by
specifying one or more of the following profile command arguments:

 -list
 -no_includes
 -sort
 -module_name
 -first_line
 -last_line

Using the -profile or -cpu_profile Compiler Argument
If you compile the source module with -profile (or -ql) compiler argument, the profile
command lists the statement numbers and the number of times the statement was executed.

If you compile the source module with -cpu_profile or (-qc) compiler argument, the
command lists the statement numbers, the number of times the statement was executed, and
the CPU time (in milliseconds) spent executing the statement. The command also lists the
number of page faults taken while the statement was being executed unless you are using an
ftServer module and you specify the -profile_alignment_faults binder argument after
compiling the object modules, in which case the command lists the alignment faults taken
while the statement was being executed.

Note: If a program module contains a call to a subroutine, the .plist entry for the
calling statement includes the subroutine only if the subroutine is not itself profiled.

Using the -profile_alignment_faults Compiler Argument
If you bind the object modules with the -profile_alignment_faults argument on an
ftServer module, the profile command lists the number of alignment faults (instead of page
faults) taken while the statement was being executed.
2-628

profile
Using the -list or -no_includes Argument
To display the code for each statement number in the .plist file, give the -list argument
to the command. You can also use the -no_includes argument to suppress the display of
the header files in the .plist file. If you specify -list, the command adds the actual source
code next to the execution history for line number in the .plist file. The profile
command can only find the source module if it is in the same directory in which it was
compiled. The source module must be the same one that was used to compile the program
module.

Using the -sort Argument
You can specify one of five values for the -sort argument to control how and what type of
execution history information is sorted in the .plist file. Note that the -sort argument
only examines executable statements; it ignores comments and blank lines. Note also that the
-list and -sort arguments are mutually exclusive.

 If you specify -sort count, the command sorts the execution history of each source
statement in order of decreasing frequency of statement execution.

 If you specify -sort cpu, the command sorts the execution history of each source
statement in order of decreasing CPU time consumed.

 If you specify -sort faults, the command sorts the execution history of each source
statement in order of decreasing numbers of page or alignment faults taken during the
execution of each statement.

 If you specify -sort coverage, the command lists the following information.

– the number of statements in the program
– the number and percentage of statements that executed
– the line numbers of the statements that are not executed
– the number of statements contained on those lines

 If you specify -sort coverage_summary, the command lists the following
information.

– the number of statements in the program
– the number and percentage of statements executed for each module
– the total number and percentage of statements that executed

Using the -module_name Argument
If you specify a value for the -module_name argument, performance information is
displayed for the object module identified by object_module_name rather than for the
entire program module in which the specified object module is contained.
OpenVOS Commands Reference Manual (R098) 2-629

profile
Using the -first_line or -last_line Argument
If you specify a value for the -first_line argument, performance information is displayed
for source statements starting with the line identified by the -first_line number value.
If you specify a value for the -last_line argument, performance information is collected
for source statements up to the line identified by the -last_line number value. The
-first_line and -last_line arguments only apply if you specify the -module_name
argument.

Using the -threshold Argument
If you specify a value for the -threshold argument, you can reduce the size of the .plist
file by eliminating statements you do not need to include. For example, if you specify a value
of 90 for threshold, the listing continues until the CUM % column reaches 90 percent.

Access Requirements
To use the profile command, you need modify access to the current directory. You also
need read access to the files you specify in the profile_file_names argument and to the
program module used to create the profile file.

Examples
Example 1.
This example uses the profile command in non-differential, non-combined mode to
examine the execution history of the following sample.pl1 source module. This source
module converts a set of Celsius temperatures to Fahrenheit.

1 sample:
2 procedure;
3
4 declare fahrenheit float bin(24);
5 declare celsius float bin(24);
6 declare degrees fixed bin(15);
7
8 put edit (' CELSIUS', ' FAHRENHEIT')
9 (a (10), x (1), a (11));
10 put skip;
11
12 do degrees = 0 to 100 by 10;
13 celsius = degrees;
14 fahrenheit = 9 * celsius / 5 + 32;
15 put edit (celsius, fahrenheit)
16 (f (10), x (1), f (11, 1));
17 put skip;
18 end;
19
20 end sample;
2-630

profile
Perform the following steps to examine the execution history of the sample.pl1 source
module.

1. Compile the sample.pl1 source code using the -profile or -cpu_profile
option.

pl1 sample -profile

2. Bind the sample object module.

bind sample

3. Execute the sample.pm program module. When you execute the sample.pm program
module, it generates a sample.profile file that contains the execution history for the
Celsius to Fahrenheit conversion.

sample

CELSIUS FAHRENHEIT
 0 32.0
 10 50.0
 20 68.0
 30 86.0
 40 104.0
 50 122.0
 60 140.0
 70 158.0
 80 176.0
 90 194.0
 100 212.0

4. Issue the profile command to generate the sample.plist file from the
sample.profile file.

profile sample.profile
OpenVOS Commands Reference Manual (R098) 2-631

profile
5. You would then issue the display_file command to display the sample.plist
file. This file shows the frequency of execution of statements 1 through 20.

display_file sample.plist

Profile of: sample

 Number of statements: 10
Statements Executed: 10 (100.00% of statements)

STATEMENT COUNT

 1 1
 8 1
 10 1
 12 1
 13 11
 14 11
 15 11
 17 11
 18 11
 20 1

TOTALS: 60

Example 2.
The following are examples of the difference between non-differential and differential output.
Non-differential output shows the total number of statements in a program module and the
total number of statements executed in a program module.

Coverage of : sample_new

Number of statements: 17
Statements Executed: 12 (70.58% of statements)

STATEMENTS NOT EXECUTED
... ...

LINE NUMBER OF
NUMBER STATEMENTS

24 - 30 5
2-632

profile
Differential output shows the total number of changed statements in a program module and
the total number of changed statements executed in a program module.

Coverage of : sample_new

Number of statements: 10 (changed statements only)
Statements Executed: 5 (50.00% of changed statements)

CHANGED STATEMENTS NOT EXECUTED

LINE NUMBER OF
NUMBER STATEMENTS

24 - 30 5

Related Information
For information about accumulating profile data, see the description of the add_profile
command. For information about comparing old and current versions of a file, see the
compare_files command. For information on using the program counter to measure
performance, see the description of the harvest_pc_samples and
analyze_pc_samples commands.
OpenVOS Commands Reference Manual (R098) 2-633

propagate_access
propagate_access 2-

Purpose
This command copies entries in the access control list and the default access control list of a
directory to all subordinate directories.

Display Form

Command Line Form

propagate_access [directory_name]

[-exclude subdirectory_names . . .] [-user user_name]
Arguments* directory_name

The name of a directory. The command replaces entries in the access control lists and
default access control lists of subordinate directories with entries in the access control
list and default access control list of the directory directory_name. By default, the
command uses the current directory.

* -exclude subdirectory_names
Specifies the names or star names of subordinate directories to be excluded from this
command’s actions. The command does not replace entries in the access control lists
and default access control lists of these directories. By default, the command uses all
subordinate directories.

* -user user_name
Propagates only one access control list entry or one default access control list entry. The
user_name value can be a user star name. If you specify -user but omit a value for
user_name, propagate_access uses your user name. By default, the command
completely replaces the access control lists and default access control lists of the
subordinate directories with the access control list and default access control list of the
directory directory_name.

------------------------------- propagate_access -------------------------------
directory_name: urrent_directory
-exclude:
-user:

c

2-634

propagate_access
Explanation
The propagate_access command adds or replaces entries in the access control lists and
default access control lists of specified directories that are subordinate to the directory
directory_name.

When you create a directory, the directory inherits the access control list and the default
access control list of the containing directory. But the operating system does not update the
access control lists and default access control lists of subordinate directories when you
subsequently change the access control list or default access control list of a containing
directory. You can use the propagate_access command to update these lists so they match
the new lists on the superior directory.

Access Requirements
To propagate the access control list and default access control list of a directory to subordinate
directories, you need modify access to the directory.

Examples
Suppose that this is the directory hierarchy of %s1#d02.

The following command replaces the access control lists and default access control lists of
the directories b, c, and d, but not those of directories e, f, and g, with the access control list
and default access control list of directory a.

propagate_access (current_dir) -exclude e

%s1#d02

a

b

dc f

e

g

OpenVOS Commands Reference Manual (R098) 2-635

propagate_access
Related Information
For more information about access control, see the command descriptions of
display_access, display_default_access_list, give_default_access,
remove_access, and remove_default_access. For a detailed discussion of access, see
OpenVOS Commands User’s Guide (R089) and OpenVOS System Administration:
Registration and Security (R283).
2-636

read_tape
read_tape 2-

Purpose
This command reads tape files to disk files in your directory hierarchy.

Display Form

Command Line Form

read_tape tape_device_or_port_name [file_names] . . . [-file_ids file_ids . . .] [-delete] [-truncate]

® ¯
[-multi_reel]

Arguments* tape_device_or port_name Required
The name of the tape device, or the name of the port attached to the tape drive, holding
the tape from which the files are to be read.

* file_names
Specifies one or more disk files to which read_tape is to read the tape files. By
default, the command reads a file specified in the -file_ids argument to the current
directory and gives it the same name you specified in the -file_ids argument. If you
do not specify a file ID, it reads the tape file at the current position of the tape to a disk
file in the current directory with the same name as the file ID of the tape file. In this
case, the tape must be a labeled tape. The file names cannot be extended names.

---------------------------------- read_tape -----------------------------------
tape_device_or_port_name:
file_names:
-file_ids:
-delete: no
-truncate: no
-relative:
-sequential: no
-stream:
-multi_reel: no

-relative record_size
-sequential

-stream output_type
OpenVOS Commands Reference Manual (R098) 2-637

read_tape
* -file_ids file_ids
Specifies one or more file IDs of the tape files that read_tape is to read. The operating
system disregards this argument if the tape is unlabeled. The tape must be positioned
to the tape file having a file ID equal to the first file_ids term, and the file IDs of the
subsequent tape files must be the same as the subsequent file_ids terms. If you
specify a star name, the operating system reads all the files that match the star name on
the tape, beginning at the current file. The command names the disk files with the tape
file IDs if you omit file_names. By default, the command does not check the tape file
IDs.

* -delete <CYCLE>
Deletes, without asking, an existing disk file with the same name as a file to be created
by the command. By default, the command asks you whether to delete a disk file that
would have a conflicting path name with a file created by this command.

* -truncate <CYCLE>
Truncates an existing disk file with the same file name as a file to be created by the
command.

* -relative record_size
Specifies the organization of the disk file(s) that read_tape is to create. The
record_size is the maximum record size. If you specify -relative, you cannot
specify -sequential or -stream. By default, the command creates a fixed disk file
if the tape file is type f (fixed) or type fb (fixed block), and creates a sequential file
otherwise.

* -sequential <CYCLE>
Specifies the organization of the disk file(s) that read_tape is to create. If you specify
-sequential, you cannot specify -relative or -stream. By default, the command
creates a fixed disk file if the tape file is type f (fixed) or type fb (fixed block), and
creates a sequential file otherwise.

* -stream output_type <CYCLE>
Specifies the organization of the disk file(s) that read_tape is to create. The possible
values are output_by_record and output_raw. If you specify
output_by_record, the command inserts a line-feed character at the end of each
record it reads to the disk file; otherwise, it does not insert the line-feed character. If
you specify -stream, you cannot specify -relative or -sequential. If you
specify -stream but do not specify an output type, the value of output_type is
output_by_record. By default, the command creates the following: a fixed disk file
if the tape file is type f (fixed) or type fb (fixed block); a stream file if the tape is a
UNIX format; or a sequential file if the tape is of any other format.

* -multi_reel <CYCLE>
Allows the read_tape command to read files that span tape volumes; also, the
volume_id differs between succeeding reels. If all reels have the same value for the
volume_id field, this argument is not needed for read_tape to process the tapes
correctly.
2-638

read_tape
Explanation
The read_tape command reads the files selected by file_ids from the tape volume
mounted on the specified tape drive or on the tape drive connected to the specified port.

If the tape is labeled, read_tape reads as many files as the number of file names you give
or the number of file IDs you give, whichever is greater. If you specify an asterisk for the
-file_ids argument, read_tape reads all the files on the tape. If you specify a star name
for one of the file IDs, the command reads all the files on the tape that match any of the file
IDs, beginning at the current file. If you try to read more files than the tape contains, the
command reads as many files as are available, and returns the message File not found.

If the tape is unlabeled, read_tape reads as many files as the number of file names you give.
For unlabeled tapes, it disregards a -file_ids argument; therefore you must specify
file_names. Unlabeled tapes can be read past the end-of-volume mark, if there is additional
data.

The read_tape command reads the character set information, that is, character set and shift
mode, stored with each file on tape, and it sets the correct character set information on each
file that it reads.

If you have not yet used the attach_port command to attach a port, the read_tape
command implicitly attaches the port. If you have not yet used the mount_tape command
to mount a tape, the read_tape command implicitly mounts the tape before executing.
When execution is completed, if read_tape implicitly mounted a tape, it implicitly
dismounts the tape. If it implicitly attached a port, it implicitly detaches the port. For more
information, see the Explanation section in the mount_tape command description.

Access Requirements
By default, you have write access to the tape device, with which you can read from and write
to a tape. If your system administrator restricts access to the tape device, you need read access
to use read_tape.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, restore_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-639

ready
ready 2-

Purpose
This command displays a prompting message on your terminal.

Display Form

Command Line Form

ready [-format format_code]
Arguments* -format format_code <CYCLE>

Specifies the format of the message. The permitted values are brief, medium, and
long. By default, the value is medium.

Explanation
The ready command displays a prompting message on the default_output port of your
process.

The brief format of the message is as follows:

ready:

The medium format of the message is as follows:

ready time_of_day

The long format of the message is as follows:

ready time_of_day cpu_time page_faults

The time_of_day value has the form hh:mm:ss, where hh is the hour, mm is the minute of
the hour, and ss is the second of the minute. The cpu_time value is the amount of central
processor time in seconds that your process used since the previous ready message. The
page_faults value is the number of page faults your process took since the previous ready
message.

------------------------------------ ready -------------------------------------
-format: edium m
2-640

ready
The ready command can be used in command macros to tell you when execution has reached
checkpoints in the macro at which the ready command is issued. In this context, prompting
messages are usually disabled.

Related Information
See also the description of the set_ready command.
OpenVOS Commands Reference Manual (R098) 2-641

remove_access
remove_access 2-

Purpose
This command removes entries from the access control lists of files, directories, and devices.

Display Form

Command Line Form

remove_access path_names . . . [-user user_names . . .] [-all]
Arguments* path_names Required

One or more names or star names of files, directories, or device access lists. The path
name for device access lists is >system>acl>access_list_name. The command
removes the specified entry or entries from the access control lists of each of these files,
directories, or devices.

* -user user_names
Specifies one or more user names or star names. The command removes entries of these
user names from the access control lists. By default, the command uses your user name.

* -all <CYCLE>
Removes all entries from the access control lists. If you also specify one or more user
names, -all takes precedence, and all entries will be removed from the access control
lists of the specified path names. By default, the command uses your user name.

Explanation
The remove_access command removes entries from the access control lists of the files,
directories, and devices specified by the path_names argument. The -user and -all
arguments determine which entries the command removes.

The path_names argument for device access lists contains the file name
access_list_name. This file name matches the value for the access_list_name field
for each device in a set in the devices.tin file. The access_list_name file contains the

-------------------------------- remove_access ---------------------------------
path_names:
-user: current_user
-all: no
2-642

remove_access
access control list (ACL) for a device or set of devices. The operating system creates the ACL
from the devices.tin file. A user can remove user names from the ACL by issuing the
remove_access command. The system then automatically updates the ACL. If the
access_list_name field for a device does not have a value, no ACL is created, and all users
can access that device.

Access Requirements
To remove entries from the access control list of a file, you need modify access to the
directory containing the file.

To remove entries from the access control list of a directory, you need modify access to the
directory containing the directory.

To remove entries from the access control list of a device, you need modify access to the
directory that lists the device.

Examples
Suppose the file make_reports.cobol in the current directory has the following access
control list.

Smith.Sales -- write
*.Sales -- read
. -- null

The following command removes the last entry in the list.

remove_access make_reports.cobol -user *.*

Related Information
For more information about access, see the command descriptions of display_access,
display_access_list, display_default_access_list, give_default_access,
propagate_access, and remove_default_access. For a detailed discussion of access,
see OpenVOS Commands User’s Guide (R089) and OpenVOS System Administration:
Registration and Security (R283).
OpenVOS Commands Reference Manual (R098) 2-643

remove_default_access
remove_default_access 2-

Purpose
This command removes entries from the default access control lists of directories.

Display Form

Command Line Form

remove_default_access directory_names . . . [-user user_names . . .] [-all]
Arguments* directory_names Required

One or more names or star names of directories. The command removes entries from
the default access control list of each directory.

* -user user_names
Specifies one or more user names or star names. The command removes entries of these
user names from the default access control lists. By default, the command uses your
user name.

* -all <CYCLE>
Removes all entries from the default access control lists of each directory. If you also
specify one or more user names, -all takes precedence, and all entries will be removed
from the default access control lists of the specified directories. By default, the
command uses your user name.

Explanation
The remove_default_access command removes entries from the default access control
lists of the directory you specify in the directory_names argument. The -user and -all
arguments determine which entries the command removes.

Access Requirements
To remove entries from the default access control list of a directory, you need modify access
to the directory.

---------------------------- remove_default_access -----------------------------
directory_names:
-user: current_user
-all: no
2-644

remove_default_access
Examples
Suppose the following is the default access control list of the current directory.

Smith.Sales -- write
Jones.* -- write
*.Accounting -- read
. -- null

The following command removes the last entry in the list.

remove_default_access -user *.*

Related Information
For more information about access, see the command descriptions of display_access,
display_default_access_list, give_default_access, remove_access, and
propagate_access. For a detailed discussion of access, see OpenVOS Commands User’s
Guide (R089) and OpenVOS System Administration: Registration and Security (R283).
OpenVOS Commands Reference Manual (R098) 2-645

rename
rename 2-

Purpose
This command changes the name of a file, directory, or link.

Display Form

Command Line Form

rename old_name
new_name [-delete] [-no_files] [-dirs] [-links] [-all] [-brief]

Arguments* old_name Required
The path name or star name of objects to be renamed. If old_name is not a star name,
the command renames the specified object, regardless of its type. If old_name is a star
name, the command renames all objects that match, subject to the control arguments
-files, -dirs, -links, and -all.

* new_name Required
The new name or star name of the objects. The file name must conform to the rules for
valid file names on the module where the file is being renamed.

If you use a star name and the character strings that replace the asterisks cause
new_name to exceed the maximum length of a file name, the leftmost characters
beyond that limit are truncated.

------------------------------------ rename ------------------------------------
old_name:
new_name:
-delete: no
-files: yes
-dirs: no
-links: no
-brief: no
2-646

rename
* -delete <CYCLE>
Deletes a file or directory or unlinks a link that has the same path name as the new name
of the renamed object. By default, the command asks you whether to delete the existing
object. If you do not delete the existing object, the command does not rename the
specified object.

* -no_files <CYCLE>
Suppresses the renaming of all files whose names match old_name. This has an effect
only if old_name is a star name. By default, the command renames only the specified
files. If you specify -dirs or -links in the lineal form, the default becomes
-no_files. In that case, you must also specify -files if you also want to rename
files.

* -dirs <CYCLE>
Renames all directories whose names match old_name. This has an effect only if
old_name is a star name. By default, the command renames no directories except
when you specify -all.

* -links <CYCLE>
Renames all links whose names match old_name. This has an effect only if old_name
is a star name. By default, the command renames no links unless you specify -all.

* -all <CYCLE>
Renames all files, directories, and links whose names match old_name. This has an
effect only if old_name is a star name. By default, if you do not specify the -dirs or
the -links argument and old_name is a star name, the command renames only files.

* -brief <CYCLE>
Suppresses the display of each object that matches a star name before the object is
renamed. By default, the command displays the names.

Explanation
The rename command renames a file, directory, or link.

The argument old_name identifies the object or objects to be renamed, and the argument
new_name specifies the new name(s). Either name can be a star name. If the asterisks in the
star name can be replaced with definite character strings, and the result is the object name,
then the star name matches the object name. For example, the star name S*s matches the
objects Sales, September.Sales, Smith.wages, but does not match
Sales.September.

If new_name contains an asterisk, when an object is renamed, the asterisk is replaced either
by the characters that an asterisk in old_name represents, or by the entire old name, if
old_name does not contain an asterisk.

Note: If old_name is a star name that matches the name of more than one object of the
specified type, then new_name must be a star name.

See the copy_file command for a description of how star names function.
OpenVOS Commands Reference Manual (R098) 2-647

rename
If you specify -delete, the operating system deletes a file or a directory or unlinks a link
whose path name matches the path name of the renamed object.

Use -no_files to rename directories and links, but not files. The standard usage of the
command is to rename files, but it can also rename other objects. Use -no_files in
conjunction with either -dirs or -links or both.

Access Requirements
To rename an object, you need modify access to the directory in which it resides.

Examples
The following command renames the file make_report.cobol.

rename make_report.cobol make_report.old.cobol -delete

The new name of the file is make_report.old.cobol. The command also deletes a file or
directory or unlinks a link named make_report.old.cobol, if one exists in the current
directory.
2-648

reserve_device
reserve_device 2-

Purpose
This command reserves a device for a batch process.

Display Form

Command Line Form
reserve_device device_path_name

Arguments* device_path_name Required
The path name of a device, such as a tape drive or a disk, to be reserved for a batch
process.

Explanation
The reserve_device command reserves a device for a batch process to be started by the
current process. If you specify (terminal_name) as the device_path_name, messages
will not appear on the message line (usually line 25) of the screen. Use the
cancel_device_reservation command to reactivate messages.

Access Requirements
By default, you have write access to a tape device. If your system administrator restricts
access to the tape device, you need read access to read from tapes, or write access to read from
and write to tapes.

Related Information
For more information on device reservations and batch processes, see the command
descriptions of batch, cancel_batch_requests, cancel_device_reservation,
display_batch_status, list_batch_requests, and move_device_reservation.

-------------------------------- reserve_device --------------------------------
device_path_name:
OpenVOS Commands Reference Manual (R098) 2-649

reset_eof
reset_eof 2-

Purpose
This command truncates or extends a stream file to the specified offset.

Display Form

Command Line Form
reset_eof source_file [offset] [-ask] [-all] [-brief]

Arguments* source_file Required
The path name of a stream file. If source_file is a star name, the command affects
only 64-bit stream files.

* offset
A value between 0 and 549,235,720,192 that indicates the byte offset of the new
end-of-file (EOF). The value 549,235,720,192 requires that the 64-bit stream file in
question has a fixed 256-block extent. If the EOF is set at this value, the command
cannot add bytes past this location.

If offset is 0, this command is equivalent to the truncate_file command.

* -ask <CYCLE>
Controls whether the command asks you before modifying the file. If source_file
is a star name, the default is yes; otherwise, the default is no. Unless you specify
-no_ask explicitly, the command always asks in situations where the command would
result in extending an ordinary stream file so that it grows by more than 1024 blocks.

---------------------------------- reset_eof ---------------------------------
source_file:
offset: 0
-ask:
-all:
-brief:
2-650

reset_eof
* -all
Determines whether the command modifies ordinary stream files as well as 64-bit
stream files. If source_file is a star name, the default is no; otherwise, the default is
yes.

* -brief
Suppresses providing details about the result of each completed operation. If
source_file is a star name, the default is no; otherwise, the default is yes.

Explanation
The reset_eof command extends or truncates a stream file to a specified offset.

If the file is longer than the value of offset, the command truncates it. If it is shorter, the
command extends it with binary zero fill. Extending a 64-bit stream file is quick, and even
extending to the maximum value, takes very little time and disk space. This is because these
files may be sparse, meaning that blocks containing all binary zeros are not allocated. This is
not true for normal stream files; therefore, extending them may take a long time and use
significant disk space. The command can truncate normal stream files located on modules
running any release prior to OpenVOS 17.2.x, but the command can extend only those files
located on modules running Release 17.2.x or later.

The command displays an error message for each eligible stream file for which the
truncation/extension operation fails. If the file is not a star name, the command also displays
a message if source_file is not an eligible stream file. If the operation succeeds, the
command does not display a message unless you specify -no_brief. In that case, the
message has one of the following formats:

filename has been truncated by N bytes.
or

filename has been extended by N bytes.

If the file is already the size indicated by offset, the command displays the following
message:

filename is already N bytes long.

If you specify a star name, the command displays a similar message for each file modified as
the result of the operation unless you specify -brief. In that case, the command displays
messages only when it cannot perform the operation (for example, due to access of the
underlying capacity of the file). Unless you specify -no_brief, the command does not
display messages for files matching the star pattern that are not eligible stream files or that
already have the requested length.

The offset is always relative to the beginning of the file, not the current size. Therefore,
specifying an offset of 0 truncates the file completely and is equivalent to using the
truncate_file command. If you want to truncate the file and retain allocated blocks, you
must use truncate_file because reset_eof does not provide the -retain argument.

Table 2-29 lists the maximum offset values for dynamically allocated extent (DAE) files of
various extents. (You cannot specify this command for statically allocated extent (SAE) files.)
OpenVOS Commands Reference Manual (R098) 2-651

reset_eof
29

Examples
The following example is equivalent to specifying the truncate_file command.

reset_eof *x* 0
Do you want to truncate flex by 540100000011 bytes? (yes, no) n
Do you want to truncate flex.pm by 16384 bytes? (yes, no) n
Do you want to truncate flex1.pm by 16384 bytes? (yes, no) y

The following example adds 10,000,000 blocks to the stream1 file.

reset_eof stream1 10000000
Extending eof to 10000000 will add 1220 blocks to the file.
Do you want to extend stream1 by 5000000 bytes? (yes, no) y

Related Information
See also truncate_file.

Table 2-29. Maximum Offset Values for DAE Files

Extent Size Maximum Offset

1 2,145,452,032 (applies to all normal
stream files regardless of their extent size)

8 17,163,616,256

16 34,327,232,512

32 68,654,465,024

64 137,308,930,048

128 274,617,860,096

256 549,235,720,192

flex 540,142,534,656
2-652

restore_object
restore_object 2-

Purpose
This command restores directories, files, or links saved with the save or save_object
command.

Display Form

Command Line Form

restore_object tape_device_or_port_name path_name object_type [destination_dir] [-volume_id volume_id] [-no_restore_acls] [-pack] [-first] [-replace] [-unattended] [-keep_dates]
Arguments* tape_device_or_port_name Required

The name of a tape device, or the name of a port attached to a tape drive holding the
object to be restored, or the name of a port attached to a disk file.

* path_name Required
The relative or full path name of the saved object. A relative path name is evaluated
relative to the current directory. The command restores an object if the path name saved
with the object matches the path name you specify.

-------------------------------- restore_object --------------------------------
tape_device_or_port_name:
path_name:
object_type: file
destination_dir: current_dir
-volume_id:
-restore_acls: yes
-pack: no
-first: no
-replace: no
-unattended: no
-keep_dates: no
OpenVOS Commands Reference Manual (R098) 2-653

restore_object
* object_type <CYCLE>
The type of object to be restored. The possible object types are file, directory, and
link. By default, the type is file.

* destination_dir
Specifies the path name of the destination directory. The command restores the saved
object to the destination directory. By default, the command uses your current
directory.

* -volume_id volume_id
Specifies the tape volume ID of the first save tape in a set of save tapes. When you
restore an object saved on tape, you must supply the volume ID of the first save tape
volume. Supply the volume ID either with volume_id or when asked by the
command. (The save_object command stores the volume ID of any additional save
tape on the preceding save tape, so it is not necessary to specify more than the first
volume ID.)

When the tape is already mounted, restore_object checks the volume ID specified
against the volume ID of the tape. If they differ, the command asks if you want to use
the volume ID of the tape. If so, it replaces the volume ID specified with the volume ID
of the tape; otherwise the command aborts.

When the port specified in tape_device_or_port_name is attached to a disk file,
the command disregards this argument.

* -no_restore_acls <CYCLE>
Omits the saved access control list of an object when restoring the object. By default,
the command restores any saved access control list.

* -pack <CYCLE>
Packs a file being restored and discards deleted records. You cannot specify -pack if
the file has separate-key or item indexes. By default, the command does not pack the
file.

* -first <CYCLE>
Restores the earliest copy of the saved object. By default, the command restores the
latest version of the saved object.

* -replace <CYCLE>
Deletes and replaces (with the restored object) an already existing object that has the
same name. The command overrides the safety switch and/or expiration date on any file
or link to be replaced. By default, the command does not delete the existing object. If
the object is a file or a link, you get a message that it already exists; if the object is a
directory, you get a message that information can be restored to that object.

* -unattended <CYCLE>
Causes tape drives with automatic loaders to switch from one tape to the next, without
user intervention. This argument has no effect on tape drives for ftServer modules.

* -keep_dates <CYCLE>
Specifies whether to restore the original values of the date-time-used (DTU),
date-time-modified (DTM), and date-time-saved (DTS) attributes of the saved object.
2-654

restore_object
If it is set, the DTS value is set to the current time. By default (no), the value of the DTS
attribute is 0, and the value of the DTM attribute is the time that the object was restored.
Specify yes to restore the original values of these attributes.

Explanation
The restore_object command restores an object saved earlier with a save or
save_object command. An object is a directory, file, or link. You must have saved the
object with the save command or the save_object command in order to use
restore_object.

The saved object can be on a save tape or in a disk file.

If you specify the name of a directory as the object to be restored, restore_object restores
the directory and all directories, files, and links in it.

If you are restoring an object to a tape and have not yet attached a port with the attach_port
command, the restore_object command implicitly attaches a port. If you have not yet
mounted a tape with the mount_tape command, the restore_object command
automatically mounts a tape before executing. When execution is completed, if
restore_object implicitly attached a port, it implicitly detaches the port, forcing the tape
to be unloaded. For more information, see the Explanation section in the mount_tape
command description.

If you are restoring an object to a disk file, you must first attach a port with the attach_port
command. Then specify the port name for the tape_device_or_port_name argument of
the restore_object command. When execution is completed, you must detach the port
with the detach_port command.

You must switch tapes manually when restoring saved objects on more than one tape.

The path_name is the path name of the object in the file system at the time it was saved. This
path name identifies the object on the save tape or in the disk file. The path name may be
changed after the object is restored. The restore_object command matches the
path_name you give with the command, to the path name of the object on the save tape or
in the disk file. The path name matched in each case is a full path name.

If you give the restore_object command a relative path_name, the command expands it
before comparing it to the path name on tape or disk. You must be careful, therefore, to give
a relative path_name only when your current directory is the directory from which the object
was originally saved. In this case, the resulting full path name, expanded relative to your
current directory, is the same as the path name the object had when it was saved.

If the saved object is a directory, the restore_object command uses the path_name you
give with the command as the common path name of the files, links, and subdirectories (if
any) that it is to restore.

The path name of the object after restoration is the restore path name. If the restore path name
of a saved file conflicts with the path name of an existing link or directory, the
restore_object command creates a new name for the file by generating a unique string
and adding the suffix .restore to it. The command creates a new name in the same way for
OpenVOS Commands Reference Manual (R098) 2-655

restore_object
a link whose restore path name conflicts with the path name of an existing file or directory.
See the description of the -replace argument for more information.

Note: The display_file_status command shows index names in order of the
index address inside the file. This order may change if the file is specified as the subject
of the copy_file, move_file, restore_object, or save_object command.

When you specify -pack, all indexes are re-created, regardless of file organization, though
in some cases the resulting indexes are empty. It is not possible to delete a record from a fixed
file with no record index. If you ask the operating system to delete a record from such a file,
it updates embedded-key and deleted-record indexes appropriately, but does not actually
delete the record. Therefore, such records reappear if their file is packed.

If you specify -first, the object restored is the earliest version of the saved directory, file,
or link; otherwise, it is the latest version.

Access Requirements
By default, you have write access to a tape device, with which you can read from and write
to a tape. If your system administrator restricts access to the tape device, you need read access
to use restore_object. You also need modify access to the directory in which the
restore_object command restores the object.

Examples
Example 1.
Suppose #tape.2.0 is a tape drive on which you have mounted a tape volume. The
following command saves your current directory on the tape.

save_object #tape.2.0

The restore_object command asks you for the volume ID of the tape volume mounted on
#tape.2.0. To restore the directory to its original place in the hierarchy, mount the save tape
and issue this command.

restore_object #tape.2.0

Example 2.
In this example, the port a_port is attached to the drive on which you have mounted the save
tape. You must supply the volume ID of the save tape when the command prompts you for it.

Generally, you will supply a path name for the save_object and restore_object
commands. The following commands are equivalent if the full path name of your current
directory is %s1#d02>Sales>Smith.

restore_object a_port %s1#d02>Sales>Smith>weekly_report
restore_object a_port weekly_report
restore_object a_port (current_dir)>weekly_report

Example 3.
The following command restores a large volume of weekly reports in the directory
%s1#d02>Rpts>Fred. These reports are saved on several tapes, and the system in use is
2-656

restore_object
equipped with automatic tape loaders that switch from tape to tape, as needed, to restore the
contents of the entire directory.

restore_object a_port -unattended %s1#d02>Rpts>Fred>weekly_report*

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, read_tape, save_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape. For information about the save and restore commands,
see OpenVOS System Administration: Backing Up and Restoring Data (R285).
OpenVOS Commands Reference Manual (R098) 2-657

save_object
save_object 2-

Purpose
This command saves a directory, file, or link to a tape or to a disk.

Display Form

Command Line Form

save_object tape_device_or_port_name path_name [-volume_id volume_id] [-number_of_volumes number] [-log log_name] [-tape_log tape_log_name] [-compression] [-unattended]
Arguments* tape_device_or_port_name Required

The name of a tape drive, or the name of a port attached to a tape drive, holding the tape
to be saved, or the name of a port attached to a disk file.

* path_name Required
The relative or full path name of an object to be saved.

* -volume_id volume_id
Specifies an ANSI tape volume ID. By default, if you are saving an object to a tape,
save_object asks for a tape volume ID when it is ready to write the tape.

When the tape is already mounted, save_object checks the specified volume ID
against the volume ID of the tape. If the volume IDs differ, the command asks if you
want to use the volume ID of the tape. If so, it replaces the volume ID specified with
the volume ID of the tape; otherwise, the command aborts.

--------------------------------- save_object -----------------------------------
tape_device_or_port_name:
path_name:
-volume_id:
-number_of_volumes:
-log:
-tape_log:
-compression: if_available
-unattended: no
2-658

save_object
If you are saving an object to a disk, this argument is ignored.

* -number_of_volumes number
Specifies the number of tape volumes to be saved. The number must be a value
between 2 and 255. If you specify this argument, you must also specify the
-volume_id argument.

* -log log_name
Creates a log file in which save_object logs information about every object it saves.
The logged information is the full path name of the saved object and the volume ID of
the tape on which the object is saved. The command appends the logged information to
the end of the log file, so it does not overwrite any data in the file. By default,
save_object does not create a log file.

* -tape_log tape_log_name
Creates a file tape_log_name where the volume IDs of the save tapes are logged. The
command appends each volume ID to the end of the tape log file, so it does not
overwrite any data in the file.

If you are saving an object to a disk, this argument is ignored.

* -compression <CYCLE>
Enables you to select data compression if you have a tape drive that supports data
compression. This argument has no effect on tape drives for ftServer modules.

The -compression argument has a default value of if_available. This default
value enables data compression when the tape drive supports it but generates no error
if the tape drive does not. You can use tape drives with the data compression capability
without changing your existing macros.

Note: Compressibility of data may vary widely.

* -unattended <CYCLE>
Causes tape drives with automatic loaders to switch from one tape to the next, without
user intervention. This argument has no effect on tape drives for ftServer modules.

Explanation
The save_object command saves an object to a tape or to a disk. The command writes the
saved object so that you can restore it with the restore_object command.

An object is a directory, file, or link. If you specify the name of a directory as the object to be
saved, save_object saves the directory and all directories, files, and links in it.

If you are saving an object to a tape and have not yet attached a port with the attach_port
command, the save_object command implicitly attaches a port. If you have not yet
mounted a tape with the mount_tape command, the save_object command automatically
mounts a tape before executing. When execution is completed, if save_object implicitly
attached a port, it implicitly detaches the port, forcing the tape to be unloaded. For more
information, see the Explanation section in the mount_tape command description.
OpenVOS Commands Reference Manual (R098) 2-659

save_object
If you are saving an object to a disk file, you must first attach a port with the attach_port
command. Then specify the port name for the tape_device_or_port_name argument of
the save_object command. When execution is completed, you must detach the port with
the detach_port command.

You must switch tapes manually when saving objects that require more than one tape.

The save_object command, like restore_object, provides a means of backing up and
restoring single objects of any type.

In contrast to the save command, save_object is provided so you can back up any objects
to which you have appropriate access. It is not used for backing up the whole system or even
a whole module. The save command is described in OpenVOS System Administration:
Backing Up and Restoring Data (R285).

During execution of save_object, if any media or drive errors occur, the system displays a
message to describe the situation and then prompts for a course of action.

The path name of each object is saved with the object, thereby retaining a record of its name
and its original location in the hierarchy. Thus, when restoring the object with
restore_object, you can restore it to its original location in the hierarchy. You can also
restore the object to another location by explicitly specifying a destination other than the
object’s original location.

Note: The display_file_status command shows index names in order of the
index address inside the file. This order may change if the file is specified as the subject
of the copy_file, move_file, restore_object, or save_object command.

Access Requirements
By default, you have write access to a tape device. If your system administrator restricts
access to the tape device, you need write access to use save_object.

You need status access to the directory containing the object you intend to save.

Example
The following example illustrates a command line that saves a directory, and the directories,
files, and links contained in it.

save_object #tape.1.0 >Sales>Smith>weekly_reports -volume_id REPORT

This command saves Smith’s directory weekly_reports to a tape on the tape device
#tape.1.0, on the current module. The tape volumes are named REPORT.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, read_tape, restore_object, set_second_tape,
set_tape_drive_params, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape. For information about the save and restore commands,
see OpenVOS System Administration: Backing Up and Restoring Data (R285).
2-660

send_message
send_message 2-

Purpose
This command enables a user or some other process to send a message to users who are
logged in.

Display Form

Command Line Form

send_message person [text] [-module module_name] [-no_beep] [-system] [-no_check_receivers]
Arguments* person Required

The user name or star name of the person to whom the message is directed.

* text
The text of the message. It can be up to 60 characters long if you use the display form
and 256 characters long if you use the command line form. If you enter the person
argument and the text argument on the command line, text must be enclosed by
apostrophes if it contains any spaces or any command-line characters such as (,), !,
or ;. By default, send_message enters a dialogue mode where it prompts you for
messages with an arrow. Each line you type while in this mode is sent as a separate
message to person. To exit this mode, type a line with a single period.

* -module module_name
Specifies a module name or star name. By default, send_message sends the message
to all modules on the current system on which the specified user is logged in.

--------------------------------- send_message ---------------------------------
person:
text:
-module: *
-beep: yes
-system: no
-check_receivers: yes
OpenVOS Commands Reference Manual (R098) 2-661

send_message
* -no_beep <CYCLE>
Suppresses sending an audible beep to the user’s terminal with the message. By default,
send_message sends a beep. In dialogue mode, the terminal beeps only once, when
the first line of the message is sent.

* -system <CYCLE>
Sends the message to the message line of the terminal. If the message does not fit on
the message line of the terminal, -system is ignored. By default, send_message
displays the message on the next line of the screen as normal output to the terminal.

Window terminal devices display the message in the status area, regardless of whether
you specify -system or not. For a message that exceeds one line, only the first line is
initially displayed in the status area. You can view subsequent lines by issuing the
UPDATE_STATUS request (see the Window Terminal Programmer’s Guide for
Asynchronous Communications (R194) for more information about this request).

* -no_check_receivers <CYCLE>
Adds your message to the message queue without waiting for the operating system to
verify that the specified person is logged in. By default, send_message waits for this
verification before adding your message to the message queue, and informs you if
person is not logged in.

Explanation
The send_message command enables a user or some other process to send a message to
users’ terminals. Only users who are logged in receive the message.

When you specify -no_check_receivers, send_message operates much more
efficiently. This is most useful in a batch process, when you want a message sent to a person
if that person is logged in, and not sent otherwise.

If you specify a period (.) for person, the message is sent to user_name.* (user_name
being you). This is useful if you include send_message in a command macro. For example,
if you use send_message to notify yourself that a process is complete, that message is sent
to you regardless of your current group_name.

You can use the send_message command to send messages over the Remote Service
Network.

Examples
Example 1.
To send a relatively short message to user Smith, include your text in the command line.

send_message Smith 'Our meeting with Bob and Susan is at 9.'

By including -system in the command line above, the message appears on the message line
of Smith’s terminal rather than on the next line of the screen.
2-662

send_message
Example 2.
If you have a longer message, you can send it line by line by omitting the text in the command
line and entering dialogue mode.

send_message Smith
->

As each line is sent, you are prompted for the next line with an arrow. To exit the dialogue,
type a single period on a line. You do not enter dialogue mode if you specify -system.

Related Information
For additional information about sending messages over the Remote Service Network, see the
description of the send_message request of the maint_request command in the
OpenVOS System Administration: Administering and Customizing a System (R281).
OpenVOS Commands Reference Manual (R098) 2-663

set
set 2-

Purpose
The set command assigns, clears, or displays environment variables.

Display Form
None.

Command-Line Form
set [var [=value]]

Arguments* var
Deletes the environment variable named var; does nothing if var does not exist.

* var=value
The string specified by value is assigned to the environment variable named var.

Explanation
The set command sets a single environment variable. If you do not specify an environment
variable, the command displays the names and values of all environment variables.

Some system environment variables are read-only and cannot be modified or removed.

This command ignores extra or invalid arguments.

If you do not specify =value, the command deletes the environment variable.
2-664

set_cpu_time_limit
set_cpu_time_limit 2-

Purpose
This command sets the upper bound on the amount of CPU time a process can consume
before it is stopped.

Display Form

Command Line Form

set_cpu_time_limit cpu_limit [process_name] [-user current_user] [-module module_name]
Arguments* cpu_limit Required

The amount of CPU time, in seconds, that the designated process is allowed to consume
before being stopped.

* process_name
The name or star name of the processes for which the CPU time limit is to be set. By
default, set_cpu_time_limit sets the time limit on the process issuing the
command.

* -user current_user
Specifies one or more user names or star names. The command sets the CPU time limit
on those processes designated by process_name that belong to the specified users. By
default, set_cpu_time_limit uses your user name. To specify another user name,
your process must be privileged.

* -module module_name
Specifies the module on which the processes are running. By default,
set_cpu_time_limit uses the current module.

------------------------------ set_cpu_time_limit ------------------------------
cpu_limit:
process_name:
-user: current_user
-module:
OpenVOS Commands Reference Manual (R098) 2-665

set_cpu_time_limit
Explanation
The set_cpu_time_limit command sets a CPU time limit for one or more processes. The
process is stopped when the accumulated CPU time of the process exceeds cpu_limit. If
you set cpu_limit to 0, the process can consume an unlimited amount of CPU time.
2-666

set_default_open_options
set_default_open_options 2-

Purpose
This command sets the default open options for one or more directories.

Display Form

Command Line Form

set_default_open_options directory_names . . . [-cache_mode default_cache_mode] [-no_brief]
Arguments* directory_names Required

One or more names or star names of directories for which default open options are to
be set. You must specify at least one directory name before you can bring up the display
form for this command.

* -cache_mode default_cache_mode <CYCLE>
Specifies the default cache mode. This argument has the following values:

 None—If you do not specify one of the other values for -cache_mode, or if you
do not specify -cache_mode on the command line, leaving the argument blank
leaves the cache mode unchanged.

 normal—Specifies that the cache mode is normal (that is, neither memory
resident nor transient).

 memory_resident—Specifies that files with this value stay in cache until the
portion of the cache that is reserved for memory-resident files is filled.

 transient—Specifies that files with this value are evicted quickly from cache.

* -no_brief <CYCLE>
By default (the value yes), the command displays the path name for only those
directories that this command modifies. For example, it does not modify directories that

----------------------------- set_default_open_options --------------------------
directory_names:
 -cache_mode:
 -brief: yes

*

OpenVOS Commands Reference Manual (R098) 2-667

set_default_open_options
currently have their default open options set as requested. If you specify the value no,
the command displays all of the path names that are examined.

Explanation
This command sets the default open options for all directories that match the specified star
names. Files that are located in the directory or that are created in that directory in the future
will inherit the directory’s default open options unless you explicitly set open options for the
file or its indexes. A newly created directory inherits its default open options from its parent
directory.

If you set the -brief argument to no, the command displays each of the path names that the
command examines. When a change is made, the command also displays the before and after
values of the default open options. These values are displayed as canonical strings
representing the option values (these values are also used in the display_dir_status
command).

If the command cannot process one of the files, it displays an error message and continues on
to the next file to match the specified directory names.

For detailed information about the open options, see the manual OpenVOS System
Administration: Administering and Customizing a System (R281). See also the description of
the s$set_default_open_options subroutine in the OpenVOS Subroutines manuals.

Access Requirements
You must have modify access to the directory.

Related Information
See also the descriptions of the display_default_open_options,
display_open_options, and set_open_options commands.
2-668

set_dir_limits
set_dir_limits 2-

Purpose
This command sets limits on directory growth.

Display Form

Command Line Form

set_dir_limits directory_names [-max_entries entries] [-dft_max_entries entries] [-max_blocks blocks] [-dft_max_blocks blocks] [-ask] [-brief]
Arguments* directory_names Required

The names of directories whose limits are to be changed. You can specify star names.
You must specify at least one name before you can show the display form for this
command. You cannot change the name in the display form. If you specify a single
name that does not contain a star, the display form shows any limit values for that
directory that you have not explicitly specified on the command line.

* -max_entries entries
Specifies the maximum number of entries (that is, a file, subdirectory, or link) that can
be created in the specified directory. Values can range from 1 to 32,700. Since the
operating system does not enforce entry limits for standard directories, you can specify
a value only when directory_names does not reference a specific standard directory,
in which case an error is issued. When you specify multiple names or a star name, the
command ignores this value for standard directories.

----------------------------- set_dir_limits ------------------------------
directory_names:
-max_entries:
-dft_max_entries:
-max_blocks:
-dft_max_blocks:
-ask: no
-brief: no
OpenVOS Commands Reference Manual (R098) 2-669

set_dir_limits
If there are already more entries than the number specified, the operating system does
not allow more entries to be added until sufficient existing entries have been deleted. If
you do not specify a value, the directory’s current value is unchanged.

* -dft_max_entries entries
Specifies the default number of -max_entries values for subdirectories created in the
applicable directory; this does not affect any existing subdirectories.. Values range from
1 to 32,700. You can specify a value only when directory_names does not reference
a specific standard directory, in which case any value is diagnosed. When you specify
multiple names or a star name, the command ignores this value for standard directories.
If you do not specify a value, the directory’s current value is unchanged.

* -max_blocks blocks
Specifies the maximum number of blocks allowed for a directory. Values range from 1
to 8720. However, if directory_names represents a specific standard directory, the
maximum value is 527. Any attempt to grow a directory past the specified number of
blocks results in an error. For expandable directories, the smaller of the block limit and
entry limit is enforced.When you specify multiple names or a star name, and the value
is greater than 527, the command issues a warning for standard directories but does not
change them. If you do not specify a value, the directory’s current value is unchanged.

Typically, directories do not shrink in size, so setting -max_blocks to less than the
current size prevents further growth but does not reduce the directory size. Instead, use
the consolidate_dir command for this purpose.

* -dft_max_blocks blocks
Specifies the default block growth of subdirectories created in the specified directories.
Values range from 1 to 8720. For standard directories in which this value is greater than
527 or for any expandable directory, newly created subdirectories are expandable;
otherwise, they are standard. This argument allows a standard directory to be set so that
all new subdirectories are expandable; such directories have an entry limit of 32,700 by
default. If you do not specify a value, the directory’s current value is unchanged.

* -ask <CYCLE>
Asks for confirmation that the command should change the directory. If more than one
directory name is affected, -ask defaults to yes. Otherwise, -ask defaults to no.
However, any explicit designation overrides the default.

* -brief <CYCLE>
By default (no), the command issues a message showing the changes made to each
directory whose limits were modified because of this command. Specifying yes
suppresses these messages. If a directory required no changes, the command does not
issue a message unless you have specified a specific directory. If the -ask argument
has resulted in a query indicating confirmation of the change to be made, the command
issues no further message involving the changing of that limit.
2-670

set_dir_limits
Explanation
The set_dir_limits command sets the following types of limits on directory growth:

 Number of blocks. The operating system enforces a limit on block growth. A standard
directory can grow to 527 blocks, while an expandable directory can grow to 8720
blocks. Block usage of expandable directories can be limited to lower than this, and for
directories on a module running OpenVOS Release 18.x or later, block usage of
standard directories can be limited to lower than 527 blocks.

 Number of entries. The operating system enforces limits on entries only for expandable
directories. The most entries that can exist in any kind of directory is 32,700. Because
of the block limit of 527 on standard directories, the number of entries can never exceed
32,700 and thus enforcement is not necessary.

You cannot set directory limits on a directory located on a disk for which restricted
expand mode is set. Any attempt to do so results in an error message. You can use the
display_disk_label command to see if a disk has restricted expand mode set. For
information about setting and displaying information about restricted expand mode, see the
descriptions of the set_dir_expand_mode and display_disk_label commands,
respectively, in OpenVOS System Administration: Disk and Tape Administration (R284).

Examples
The following example sets the maximum number of entries for the directory d1 to 1000.

set_dir_limits d1 -max_entries 1000
 Resetting entry limits of %s1#m1>Sales>d1 from 32700 to 1000.

The following example sets the maximum number of blocks for the directory d2 to 200.

set_dir_limits d2 -max_blocks 200
 Resetting block limits of %s1#m1>Sales>d2 from 100 to 200.

In the following example, the command sets all directories starting with d to have 2000 as
their maximum number of entries and 500 as their maximum number of blocks.

set_dir_limits d* -max_entries 2000 -max_blocks 500
 OK to reset limits of directory %s1#m1>Sales>d1?
 (yes, no) yes
 Resetting entry limits of %s1#m1>d1 from 1000 to 2000.
 Resetting block limits of %s1#m1>d1 from 8720 to 500.
 OK to reset block limits of %s1#m1>Sales>d2 from 527 to 500?
 (yes, no) yes

Related Commands
See also the command descriptions of consolidate_dir, display_dir_status,
and set_dir_type.
OpenVOS Commands Reference Manual (R098) 2-671

set_dir_type
set_dir_type 2-

Purpose
This command converts a directory’s type from standard to expandable, and vice versa.

Display Form

Command Line Form

set_dir_type directory_names [-type] [-ask] [-brief] [-reset_limits]
Arguments* directory_names Required

The names of directories whose type is to be changed. You can specify star names. You
must specify at least one name.

* -type <CYCLE>
Determines the type of the directory: expandable (the default) or standard. The
growth limits set on the directory are the maximum supported by that directory type:
8720 blocks for expandable directories and 527 blocks for standard directories. You can
set growth limits independently with the set_dir_limits command.

* -ask <CYCLE>
Asks for confirmation that the command should change the directory. If a directory
name is specified as a star name, -ask defaults to yes. Otherwise, -ask defaults to no.
However, any explicit designation overrides the default.

* -brief <CYCLE>
By default (no), the command issues a message showing the changes made to each
directory whose type was modified because of this command. Specifying yes
suppresses these messages. If a directory required no changes, the command does not

 --------------------------------- set_dir_type -------------------------------
 directory_names:
 -type: expandable
 -ask:
 -brief: no
 -reset_limits: no
2-672

set_dir_type
issue a message. If the -ask argument has resulted in a query indicating confirmation
of the change to be made, the command issues no further message.

* -reset_limits <CYCLE>
Resets a directory’s limits to the default values for the specified type, without changing
the type. When a directory’s type is changed, limits are always set to the defaults for
the new type. By default (no), no change occurs for directories of the type specified in
the -type argument.

Explanation
The set_dir_type command converts standard directories to expandable, and expandable
to standard, as long as the directory has not exceeded allowable standard directory growth
restrictions. You can also use the command to reset the limit values of a directory to the
defaults without changing the type.

You can always convert standard directories to expandable, but if an expandable directory has
grown beyond standard limits, you cannot convert it back to standard. If you attempt to do so,
you may see one of the following error messages:

Cannot revert directory of this size to standard.
or

Cannot revert directory with author entries to standard.

If the disk’s directory expand mode is restricted and you attempt to set a directory to
expandable, the set_dir_type command displays the following error message:

set_dir_type mydir -type expandable
set_dir_type: Expandable directories are prohibited on this disk.
%s1#raid8>mydir

You can use the display_disk_label command to see if a disk has restricted expand
mode set. For information about setting and displaying information about restricted expand
mode, see the descriptions of the set_dir_expand_mode and display_disk_label
commands, respectively, in OpenVOS System Administration: Disk and Tape
Administration (R284).
OpenVOS Commands Reference Manual (R098) 2-673

set_dir_type
Examples
In the following example, assume that d1 is expandable and d2 is standard, and that both have
default limits.

set_dir_type d*
OK to change %s1#m1>Sales>d2 to an expandable directory? (yes, no) y
ready 15:36:28

set_dir_type d1
%s1#m1>Sales>d1 is already an expandable directory.
ready 15:37:20

set_dir_type d1 -type standard
ready 15:46:21

set_dir_type d* -type expandable -no_ask
Changing %s1#m1>Sales>d1 to an expandable directory.
ready 15:47:16

Related Commands
See also the command descriptions of consolidate_dir, display_dir_status,
and set_dir_limits.
2-674

set_expiration_date
set_expiration_date 2-

Purpose
This command sets an expiration date on a file.

Display Form

Command Line Form

set_expiration_date file_name [date/time]
Arguments* file_name Required

The name or star name of a file or set of files. The command sets the expiration date on
all files with matching names.

* date/time
A date and time. The date/time value can be a character string in the standard form.

yy-mm-dd_hh:mm:ss

It can also be a character string in any form accepted by the (date_time) command
function. In this case, the string must be enclosed in apostrophes.

By default, set_expiration_date removes the expiration date from the selected
files.

Explanation
The set_expiration_date command gives the file an expiration date attribute to protect
the file against premature deletion. You cannot delete a file that has an expiration date later
than the present time.

Use set_expiration_date with date/time to add or change a file’s expiration date;
omit date/time to remove the expiration date if there is one. Use the
display_file_status command to view a file’s expiration date if one has been set.

See Chapter 1, ‘‘OpenVOS Command Functions,” for examples of acceptable date/time input
strings.

----------------------------- set_expiration_date ------------------------------
file_name:
date/time:
OpenVOS Commands Reference Manual (R098) 2-675

set_expiration_date
If you use the copy_file or copy_dir commands to copy a file or files for which you have
set the expiration date, even if you specify the -keep_dates argument, these commands
remove the expiration date from the copied files. If you use the move_dir command to move
a file or files for which you have set the expiration date, even if you specify the -keep_dates
argument, this command removes the expiration date from the moved files.

If you use the move_file command to move a file or files for which you have set the
expiration date, this command preserves the expiration date in the moved files.

Related Information
For a complete list of file attributes, see the description of the display_file_status
command.
2-676

set_external_variable
set_external_variable 2-

Purpose
This command sets an external static variable within a program module to a specified value.
For tasking programs, the value is only changed in task number one.

Display Form

Command Line Form

set_external_variable external_variable_name
-in file_name
-to string [-type string]

Arguments* external_variable_name Required
The name of the external variable whose value is to be set.

* -in file_name Required
The path name of the program module containing the external variable. The program
module can have either a fixed or stream file organization.

* -to string Required
The value to which external_variable_name will be set.

* -type string <CYCLE>
Specifies the data type of the variable. The possible values are integer, char, or
char_varying. The default is char. The length of external_variable_name is
defined in the program module. Integers must be signed and either 16 or 32 bits.

------------------------------ set_external_variable -------------------------
external_variable_name:
-in:
-to:
-type: char
OpenVOS Commands Reference Manual (R098) 2-677

set_external_variable
Explanation
The set_external_variable command sets an external static variable within a program
module to a specified value. The variable must be defined as static external within the
program. You must specify the variable name as it is defined in the program. You must also
specify the program and the new value of the variable. You can specify a data type that is the
same as or different from the definition within the program, as long as it is compatible with
the variable’s function within the program. That is, if you assign a numeric value and specify
a type of char_varying, you cannot perform arithmetic operations on that variable.

Examples
The following command sets the value of the variable record_size, in the program
monthly_sales, to an integer value of 60.

set_external_variable record_size -in monthly_sales -to 60 -type
integer

Related Information
To determine the current value of the variable, use the get_external_variable
command.
2-678

set_file_allocation
set_file_allocation 2-

Purpose
This command sets the number of disk blocks that the operating system allocates for a
particular file each time that file needs more disk space.

Display Form

Command Line Form

set_file_allocation file_names allocation

Arguments* file_names Required
The name or star name of the file or files whose allocation size you want to set.

* allocation Required
The number of disk blocks to be allocated each time a file needs more disk space. The
value can be from 0 to 2000. The value 0 or 1 means to use the default allocation size.
The operating system allocates allocation disk blocks if enough free blocks exist on
a given volume member. Typically, the blocks are allocated adjacently, but this is not
guaranteed. Choosing an allocation size that corresponds to a valid extent size for DAE
files (for example, 8, 32, 64, and so on) guarantees that the blocks are adjacent if
possible (that is, if that number of unused adjacent blocks exist on the disk). Unlike
with DAE files, allocation succeeds without error using noncontiguous blocks if
sufficient adjacent blocks are unavailable.

Explanation
The set_file_allocation command sets the number of disk blocks that the operating
system allocates for a file specified by file_names each time the file needs more disk space.

If you do not set the allocation size of a file, the operating system uses a default value to
determine how many blocks to allocate when disk space is needed. Disks configured for
fast-access allocation have a default value of 8; for all other disks, the default value is 1. You
can choose to allocate from 1 to 2000 disk blocks. Specifying the value 0 or 1 tells the
operating system to use the default value (either 1 or 8). The number of disk blocks allocated
and their location depend upon available disk space, fragmentation, the structure of file maps,
and the structure of the free space table.

-------------------------------- set_file_allocation ----------------------------
file_names:
allocation:
OpenVOS Commands Reference Manual (R098) 2-679

set_file_allocation
If the file is extent-based, the new allocation size takes effect after all of the extents are used.
New blocks are then allocated n blocks at a time, whenever the file needs new disk space. The
set_file_allocation command has no effect on dynamically-allocated extent-based
files; allocation for such files is always based on the size of the extent.

Access Requirements
You need write access to a file to set its allocation size.

Examples
The following command sets the allocation size of the file current_reservations in the
current directory to 32 disk blocks.

set_file_allocation current_reservations 32

Related Information
See also the command descriptions of compare_files, copy_file, create_file,
delete_file, display_file_status, dump_file, locate_files, move_file, and
truncate_file.
2-680

set_implicit_locking
set_implicit_locking 2-

Purpose
This command turns implicit locking on or off for a file or set of files.

Display Form

Command Line Form

set_implicit_locking file_name [state]
Arguments* file_name Required

The name or star name of a file or set of files. The command sets the implicit locking
switch for the specified file(s).

* state <CYCLE>
The state of the implicit locking switch to set for the specified file or files. The possible
values are on and off. By default, implicit locking is set on for the specified files.

Explanation
The set_implicit_locking command turns implicit locking on or off for the file or files
whose names match file_name.

When implicit locking is on for a file, the file can be opened only for implicit locking. For
any attempt to open the file with a different locking specification, the file system overrides
that locking specification and sends no error message. See the explanation of file locking in
the OpenVOS Subroutines manuals.

Examples
The following command turns on implicit locking for the file make_report.out.

set_implicit_locking make_report.out on

In this case, one process, such as a batch process running a compiler, can append records to
the file while another process, such as your login process, reads records in the file.

----------------------------- set_implicit_locking -----------------------------
file_name:
state: on
OpenVOS Commands Reference Manual (R098) 2-681

set_implicit_locking
Related Information
For a complete list of file attributes, see the description of the display_file_status
command.
2-682

set_index_flags
set_index_flags 2-

Purpose
This command enables or disables an automatic update on indexes to files.

Display Form

Command Line Form
set_index_flags path_name

index_name [-no_automatic_update]
Arguments* path_name Required

The path name of a file with an associated index.

* index_name Required
The index associated with the file specified in path_name.

* -no_automatic_update <CYCLE>
Disables automatic update of indexes when writing or rewriting a record to a file with
embedded keys or embedded-separate keys. By default, the operating system adds new
keys to indexes.

Explanation
The set_index_flags command enables or disables an automatic update on indexes to
files. Use this command with files that have embedded-separate-key indexes.

------------------------------- set_index_flags --------------------------------
path_name:
index_name:
-automatic_update: yes
OpenVOS Commands Reference Manual (R098) 2-683

set_language
set_language 2-

Purpose
This command changes the language of the current process.

Display Form

Command Line Form
set_language language_name

Arguments* language_name <CYCLE>
The language to use for the current process. By default, the process uses the default
language as defined in the current module’s languages.tin file.

Explanation
The set_language command sets the language of the current process. The language name
you select is the name or synonym of one of the primary languages configured on your
system.

The languages and acceptable synonyms are listed in the
>system>configuration>languages.tin file. If the synonym is not in this file, once
you add it, you must use the create_table command to produce an updated
languages.table file, and then move that file to the >system directory. For more
information on this procedure, refer to the OpenVOS System Administration: Configuring a
System (R287).

The language that you select for your process influences things such as your date/time
formats, system and program module message-file selection, and word-search and
case-mapping functions.

Since language is a process attribute, different processes can use different languages. You can
create a subprocess and set its language to one different from that being used in another of
your processes. In a recursive login or a process started through the start_process
command, the initial language is that of the invoking process.

--------------------------------- set_language ---------------------------------
language_name: module_default_language
2-684

set_language
Examples
The following command sets the language of the process to Italian, provided that Italian has
been defined and configured with a name or synonym of italiano.

set_language italiano

Related Information
For more information about language use, see the descriptions of the (language_name),
(referencing_dir), and the date/time command functions, and the command
descriptions of add_library_path, list_library_paths, and set_library_paths.
See also the description of the configure_languages command in the OpenVOS System
Administration: Configuring a System (R287). For general information about national
language support, see the National Language Support User’s Guide (R212).
OpenVOS Commands Reference Manual (R098) 2-685

set_library_paths
set_library_paths 2-

Purpose
This command sets the path names of the directories defined as libraries for the current
process.

Display Form

Command Line Form

set_library_paths [library_name]

[library_path_names] [-no_check] [-no_ask]
Arguments* library_name <CYCLE>

The library whose list of directories is to be changed. Possible values for
library_name are include, object, command, and message. By default,
set_library_paths changes the directories of the include library.

* library_path_names
One or more directory path names of a library. The names can include the command
functions (current_dir) or (home_dir); if library_name is message, the
names can also include (referencing_dir) and (language_name). If enclosed in
apostrophes, the command functions are evaluated when the path names are used. By
default, set_library_paths uses the directories of the libraries defined for the
current module. If you do use the argument, but specify a null library_path_names
(''), all existing library path names are deleted. By default, the command exits without
changing any library paths.

* -no_check <CYCLE>
Omits checking the validity of each name specified for library_path_names. By
default, set_library_paths checks that each name is a valid path name, although it

------------------------------- set_library_paths ------------------------------
library_name: nclude
library_path_names:
-check: yes
-ask: yes

i

2-686

set_library_paths
does not allow device names even though they are path names, and it allows file names,
which cannot be library paths.

* -no_ask <CYCLE>
Suppresses the prompt when you specify a null string ('') for
library_path_names, asking whether to clear the paths. By default, when you
specify a null string, set_library_paths queries you before deleting all current
library path names. The -no_ask argument is meaningful only when you supply the
null string ('') for library_path_names.

Explanation
The set_library_paths command sets the list of directories that define the libraries for
the current process.

A library is one or more directories that the operating system searches for objects of a
particular type. Each module has the following libraries.

 include library
 object library
 command library
 message library

The compilers search the include library for include files; the binder searches the object
library for object modules; the command processor searches the command library for
commands and the message library for messages associated with individual commands.

A library library_name is defined by an ordered sequence of path names. The order of the
list reflects the order in which the operating system searches the directories of a library.

When the operating system looks for an object, it searches for the object in the first directory
on the library list. If the object is not in that directory, the search proceeds to the second
directory on the list, to the third, and so on. Ordinarily, the module’s default list of libraries
serves as a guide to where to find objects.

When you log in, the operating system sets the directories that define each library for your
process to the default directories that define libraries for the entire module. You can use
set_library_paths to override the default list of libraries, or to change the order in which
directories are searched. Your new list replaces the module’s list of default libraries (or any
others you have previously set). However, set_library_paths overrides the default list of
libraries for your process only, and only for the duration of your process. When you next log
in, the module’s default list of libraries applies for your process. If you want to use your own
list in preference to the default lists routinely, use set_library_paths in your
start_up.cm file.

If you specify a (current_dir), (home_dir), (referencing_dir), or
(language_name) command function in library_path_name, you can enclose the
command function in apostrophes to prevent its evaluation by the command processor when
set_library_paths executes. For example, if you specify ‘(current_dir)’ as
library_path_name and include as library_name, the command function is not
evaluated until you compile a file containing include files. You can also enclose an entire path
OpenVOS Commands Reference Manual (R098) 2-687

set_library_paths
name containing the (language_name) command function in apostrophes:
‘(language_name)>abc’ or ‘(referencing_dir)>(language_name)>abc’.

If you enter the null string for library_path_names, set_library_paths deletes all of
the existing library path names. The system first prompts you to verify whether you intend to
clear them. The -no_ask argument suppresses this prompt.

Examples
The following command sets the referencing directory of a program module as the message
library to be searched when your process uses that program module.

set_library_paths message '(referencing_dir)'

Related Information
For information about other commands that affect the libraries for your process, see the
descriptions of the add_library_path, delete_library_path, and
list_library_paths commands. See also the descriptions of the
list_default_library_paths and set_default_library_paths commands in the
OpenVOS System Administration: Administering and Customizing a System (R281). For
more information about command functions, see Chapter 1, ‘‘OpenVOS Command
Functions.”
2-688

set_line_wrap_width
set_line_wrap_width 2-

Purpose
This command sets the line width to the specified value.

Display Form

Command Line Form
set_line_wrap_width

¢ £

Arguments* width_source <CYCLE>
Specifies the source from which the command obtains the width value. Select either
system_default or from_driver. The system_default value is 79. The
from_driver value specifies that the command obtains the width from the driver.
(Note that the value of from_driver is equivalent to the value returned by the
GET_LINE_LENGTH_OPCODE opcode of the s$control subroutine.) The
width_source argument and the -line_width argument are mutually exclusive.

* -line_width width
Specifies the desired line width. The following table lists possible values for width.

The width_source argument and the -line_width argument are mutually
exclusive.

------------------------------- set_line_wrap_width -----------------------------
width_source:
-line_width:

Value Description

-2 Use the line width specified in from_driver.

-1 Use the line width specified in
system_default.

1 through the largest value
that works with the driver

Use this value for the line width.

width_source
-line_width width
OpenVOS Commands Reference Manual (R098) 2-689

set_line_wrap_width
Explanation
The set_line_wrap_width command sets the line width to the specified value.

Related Information
For more information about the value of from_driver, see the description of the
GET_LINE_LENGTH_OPCODE opcode of the s$control subroutine in the OpenVOS
Subroutines manuals.
2-690

set_open_options
set_open_options 2-

Purpose
This command sets the open options for one or more files or indexes.

Display Form

Command Line Form

set_open_options file_names . . . [-index index_name] [-cache_mode cache_mode] [-read_ahead number_of_blocks] [-preread_extents] [-active] [-no_brief]
Arguments* file_names Required

One or more names or star names of files for which open options are to be set. You must
specify at least one name before you can bring up the display form for this command.

* -index_name index_name
Specifies the index or indexes to change. The value of index_name is a string. By
default, there is no value for index_name. You can specify an asterisk (*) to set all
indexes of the file, including system-defined indexes (for example,
_deleted_record_index). If you do not want to change system-defined indexes,
specify a star name that precludes them (for example, system-defined indexes always
start with an underline character (_)), or name the specific indexes you want to change.

------------------------------- set_open_options ------------------------------
file_names:
-index:
-cache_mode:
-read_ahead:
-preread_extents:
-active: no
-brief: yes
OpenVOS Commands Reference Manual (R098) 2-691

set_open_options
* -cache_mode cache_mode <CYCLE>
Specifies the cache mode. This argument has the following values:

 default—Specifies that the value should be taken from the containing
directory’s cache mode default. This is the default value.

 None—If you do not specify one of the other values for -cache_mode, or if you
do not specify -cache_mode on the command line, leaving the argument blank
leaves the cache mode unchanged.

 normal—Specifies that the cache mode is normal (that is, neither memory
resident nor transient).

 memory_resident—Specifies that files with this value stay in cache until the
portion of the cache that is reserved for memory-resident files is filled.

 transient—Specifies that files with this value are evicted quickly from cache.

* -read_ahead number_of_blocks
Specifies the read-ahead value for the specified file. By default, number_of_blocks
is a number or is empty. This argument has no effect on indexes. If you do not specify
a value, the read-ahead value is unchanged.

* -preread_extents <CYCLE>
Specifies the preread policy for a dynamically allocated extent (DAE) file or index.
Possible values follow:

 None—If you do not specify one of the other values for -preread_extents,
or if you do not specify -preread_extents on the command line, leaving the
argument blank leaves the preread policy unchanged.

 normal—Specifies that remaining blocks in the extent (which are always
contiguous) are pre-read.

 never—Suppresses any additional blocks from being read from an extent.

 seq_only—Specifies that pre-reading blocks in an extent occurs only when a
file is being accessed sequentially.

 full—Specifies that all blocks in an extent, rather than just those ahead, are
pre-read.

If you specify this argument for a file or index that is not a DAE file or index, the
argument has no effect.

* -active <CYCLE>
Sets the open options associated with the current activation of the file. This argument
applies only to opened files and has no effect on the permanent open options of those
files. The open options set using this argument persist for only as long as the file(s) are
activated. By default (the value no), the command sets the open options that are
permanently associated with the file(s).
2-692

set_open_options
* -no_brief <CYCLE>
By default (the value yes), the command displays the path name for only those files or
indexes that this command modifies. For example, it does not modify files or indexes
that currently have their open options set as requested. If you specify the value no, the
command displays all of the path names that are examined.

Explanation
This command sets the open options for all files or indexes that match the given star names.

The default values for the -cache_mode, -read_ahead, and -preread_extents
arguments are blank in the following situations:

 If file_name is a star name
 If you specify more than one file_name
 If index_name is a star name

Otherwise, if you specify a specific file name or index, the default values shown are the
current values associated with that file or index.

If you issue this command with either a specific name or a star name but do not change the
display form, the command does not change any files or indexes. To replicate the value of one
file to others, name the file and bring up the display form, and then change the name on the
display form to another name (possibly a star name), thereby applying the initial open options
to the other files.

If you set the -brief argument to no, the command displays each of the path names that the
command examines. When a change is made, the command also displays the before and after
values of the open options. These values are displayed as canonical strings representing the
option values.

If the command cannot process one of the files, it displays an error message and continues on
to the next specified file.

For detailed information about the open options, see the manual OpenVOS System
Administration: Administering and Customizing a System (R281). See also the description of
the s$set_open_options subroutine in the OpenVOS Subroutines manuals.

Access Requirements
You must have write access to the file and modify access to the containing directory.

Related Information
See also the descriptions of the display_default_open_options,
display_open_options, and set_default_open_options commands.
OpenVOS Commands Reference Manual (R098) 2-693

set_owner_access
set_owner_access 2-

Purpose
This command sets the owner access switches of a program module.

Display Form

Command Line Form

set_owner_access file_names . . . [access]
Arguments* file_names Required

One or more names or star names of program modules whose owner-access switches
are to be set. You can omit the .pm suffix when you specify the program module names.

* access <CYCLE>
The access class to be set. There are four possible values.

 person
 group
 person_and_group
 none

The set_owner_access command sets the owner-access switches using this value.
By default, the command uses none.

Explanation
The set_owner_access command sets the owner-access switches of your program
module. This allows you to give users the ability to execute a program that manipulates files
not otherwise accessible to them, without giving them independent access to the files
themselves. This is particularly useful for database application programs, where some data
must be available to a wide group, but the availability of other data must be restricted.

------------------------------- set_owner_access -------------------------------
file_names:
access: none
2-694

set_owner_access
The two owner-access switches are the person switch and the group switch. The command
sets the values of the switches according to the value of the access class access. The
switches are set as follows:

When a user executes a program, the operating system uses the owner-access switches of the
program module to assign a temporary user name to the process. When the person switch is
true, the person component of the temporary user name is the program module owner’s person
name instead of the user’s; when the group switch is true, the group component is the owner’s
group instead of the user’s. (The owner of the program module is the same as the author of
the program module.) During program execution, the operating system uses this temporary
name to determine the process’s access rights, where necessary. (The temporary name may
be used for other things as well, such as queue message headers, while in effect.) When
execution is complete, the process’s user name reverts to the user’s user name.

When you set the owner-access switches for a program, specify a user who will not be deleted
from the registration database. After a user is deleted from the registration database, the
system will refuse to run any owner-access programs set to use that person name. You can
restore the use of these programs by assigning them a different owner or by re-registering the
user. You can prevent the user from logging in, while retaining the ability to run owner-access
programs, by setting the account-terminated flag with the registration_admin
command. For more information about registration_admin, see the manual OpenVOS
System Administration: Registration and Security (R283).

You can see the current values of the person and group switches of a program module using
the display_file_status command.

Access Requirements
To set the owner-access switches of a program module, you need modify access to the
containing directory.

Examples
Assume that Clark.Accounting is the owner of the file make_report.pm and that the
user Smith.Sales runs the program.

Access Class Person Switch Group Switch

person_and_group
person
group
none

 True
 True
 False
 False

 True
 False
 True
 False
OpenVOS Commands Reference Manual (R098) 2-695

set_owner_access
The following table shows the temporary user name of Smith’s process during the execution
of the program for all possible settings of the person and group switches of the program
module.

Related Information
See also the description of the display_file_status command.

Temporary Name Person Switch Group Switch

Clark.Accounting
Clark.Sales
Smith.Accounting
Smith.Sales

 True
 True
 False
 False

 True
 False
 True
 False
2-696

set_pipe_file
set_pipe_file 2-

Purpose
This command defines a file as a pipe file.

Display Form

Command Line Form
set_pipe_file file_name

Arguments* file_name Required
The name or star name of a file or set of files to be established as pipe files.

Explanation
The set_pipe_file command permanently defines a file as a pipe file. You can set the pipe
file attribute on any empty file of the type fixed, relative, sequential, or stream.
However, the file cannot be an indexed file or a 64-bit stream file. This attribute cannot be
turned off once it has been turned on.

A pipe file is a special file, similar to a queue, that serves as a means to pass data between
programs, input and output ports, tasks, and processes. A pipe file contains no data when
closed. Records can be read from a pipe file only after a writer opens it and begins writing
records to it. When a record in a pipe file is read, it is consumed, or removed from the file.

Data can be written to a pipe file until it is full. (A pipe file is full when its contents exceed
216, or 64K, bytes.) When a pipe file is full, a writer cannot write additional records to the file
until a reader removes data by reading it. (The file must be reduced to less than 32K before
additional records can be written.) Data can be read from the file until it is empty, that is, all
the data is consumed. When the pipe file is empty, a reader must wait until a writer adds more
data to continue reading.

When the last writer closes the pipe file, reading continues only to the last record in the file,
and a reader gets the message e$end_of_file (1025).

-------------------------------- set_pipe_file ---------------------------------
file_name:
OpenVOS Commands Reference Manual (R098) 2-697

set_pipe_file
A pipe file can be used in wait mode (the call will not return until the data is read or written)
or in no-wait mode (the call returns the message e$caller_must_wait (1277) if the data
cannot be read or written yet). A pipe file, therefore, behaves like a device with regard to wait
and no-wait modes.

A pipe file uses at most 17 disk blocks for buffering data. When no user has the pipe open,
any unconsumed data is no longer retrievable, and the pipe is empty.

Related Information
See the description of the display_file_status command for an example of setting the
pipe file attribute.
2-698

set_priority
set_priority 2-

Purpose
This command sets the execution priority for a process or set of processes.

Display Form

Command Line Form

set_priority priority [process_name] [-user user_name] [-module module_name] [-ask]
Arguments* priority Required

The priority level to be assigned to the designated process. The minimum priority is 0
and the maximum is 9. The maximum priority for a process is set in the registration file.
Use the (process_info) command function to determine the priority of your current
process.

* process_name
The name or star name of processes for which the execution priority is to be set. By
default, the command sets the priority of the process issuing the command.

* -user user_name
Specifies the name or star name of the users whose processes receive the designated
priority. By default, set_priority uses your user name. Your process must be
privileged to set the priority of another user’s process.

* -module module_name
Specifies the module on which the processes are running. By default, set_priority
uses the current module.

--------------------------------- set_priority ---------------------------------
priority:
process_name:
-user: current_user
-module:
-ask: no
OpenVOS Commands Reference Manual (R098) 2-699

set_priority
* -ask <CYCLE>
Enables set_priority to ask whether to set priority for a process with a matching
name. By default, set_priority does not prompt you to verify the priority setting of
each process.

Explanation
The set_priority command sets the execution priority for one or more processes.

Each process has a priority that defines when that process can run relative to all of the other
active processes. If your process is privileged, you can set the level of priority to any level on
any user process, including your own. If your process is not privileged, you can set the level
of priority no higher than the maximum execution priority for which you are registered and
only for your own process.

The process name identifies the process (among several processes running with a given user
name) for which the priority is to be set.

Examples
If you have more than one process and you issue the set_priority command using a star
name for process_name, the system issues the following prompt.

Verify processes to change priority.
 Smith.Sales(login)? (yes,no,info)

If you type yes at the prompt, the execution priority is changed; if you type no, the priority
remains the same. If you specify info, the system displays information about the subprocess
level, program name, and login time of the process. If the process is interactive, the system
returns the terminal name from which the process was started. The system does not return a
terminal name if the process is not interactive or if the process is logged in remotely from a
module that is not running a current version of the operating system.

The system then issues the prompt again.

Logged in at 90-01-19 07:33:26 EDT, sub-process level 0.
Running emacs.pm on %s1#t1.6
 Smith.Sales(login)? (yes,no,info)

If your process is at command level, the system returns the following information.

Logged in at 90-01-19 07:33:26 EDT, sub-process level 0.
Running on %s1#t1.6
 Smith.Sales(login)? (yes,no,info)

Related Information
See OpenVOS System Administration: Administering and Customizing a System (R281) for a
discussion on setting and defining priority levels.
2-700

set_ram_file
set_ram_file 2-

Purpose
This command sets RAM usage for a specified file or set of files.

Display Form

Command Line Form
set_ram_file file_name [state]

Arguments* file_name
The name or star name of a file or set of files.

* state <CYCLE>
Sets the state of the RAM usage for the specified file(s). Values are on (the default) and
off.

Explanation
The set_ram_file command turns RAM usage on or off for the file(s) specified in
file_name. This command also affects any indexes associated with file_name.

When RAM usage is turned on for a file, the data in the file (now called a RAM file) is
non-persistent and the file is truncated the next time it is deactivated. This allows the file to
occupy cache without any restrictions on the number of blocks that are concurrently modified.
This feature is particularly useful for temporary work files.

You can specify set_ram_file for a file with the fixed, relative, sequential, or stream
organization, and also with one- and two-way server queues. The file cannot be transaction
protected.

When you create a one- or two-way server queue, the operating system assigns RAM file
usage to the queue by default. One- or two-way server queues, by definition, are
non-persistent and are always truncated when deactivated.

If file_name has pre-allocated disk storage, all disk addresses in use when the file is
deactivated are retained. Otherwise, file_name occupies no disk space after it is truncated.

-------------------------------- set_ram_file -----------------------------------
file_name:
state: on
OpenVOS Commands Reference Manual (R098) 2-701

set_ram_file
You cannot set RAM file usage on SAE files, because truncating an SAE file reverts it to a
normal file. Similarly, truncating a RAM file with an SAE index reverts the index to a normal
index without extents.

A file cannot have both RAM usage and its safety switch set.

If a non-empty RAM file is copied using copy_file, move_file, or s$copy_file, the
newly created file does not have RAM file usage. This exception is made because a RAM file
can be non-empty only when it is currently open, and if the target file had RAM usage, the
data copied to it would be lost following completion of the operation. Note that if an attempt
is made to move any such open file, an error is reported (after the copy occurs) and the old
file is not deleted.

Server queues are assigned RAM file usage by default, and when copied or moved, always
retain RAM file usage. The contents of a server queue with RAM usage are never copied; the
new server queue is always empty.

If the containing directory of a RAM file is being copied or moved using copy_dir,
move_dir, or s$copy_dir, the file in the newly created directory retains its RAM file usage
and thus is always empty, regardless of the contents of the original file.

You cannot copy or move a file to an existing RAM file with the -truncate or -pack
command arguments or the corresponding subroutine flags. The result of such an operation
would always result in an empty file.

To use this command, you need write access on the file. The file must be empty and not
currently in use.

Examples
The following command turns on RAM usage for the file ram_example.

set_ram_file ram_example on

After specifying the command, ram_example has the characteristics of a RAM file. That is,
any blocks that are modified, and those of any current or future indexes, remain in cache
unwritten until disk activity is very low or until they must be evicted due to other demands on
the cache. The number of unwritten, modified blocks for ram_example is unlimited;
therefore, processes accessing the file never suffer delays due to excessive modified blocks.
If you also specify the set_open_options command with the -cache_mode
memory_resident argument, ram_example remains in memory without being evicted if
the size of all memory-resident files is less than or equal to the percentage of cache reserved
for them.

Related Information
See also the descriptions of the copy_file, display_file_status, and move_file
commands.
2-702

set_ready
set_ready 2-

Purpose
This command sets the form of the prompting message displayed when your process returns
to command level.

Display Form

Command Line Form

set_ready [-format format_code]
Arguments* -format format_code <CYCLE>

Selects the format of the message. There are four permitted values.

 off
 brief
 medium
 long

By default, the message is in the medium format.

Explanation
The set_ready command sets the form of the prompting message the operating system
displays on your terminal each time it returns your process to command level.

The off format code suppresses any prompting message.

The brief format of the message is as follows:

ready:

The medium format of the message is as follows:

ready time_of_day

---------------------------------- set_ready -----------------------------------
-format: edium m
OpenVOS Commands Reference Manual (R098) 2-703

set_ready
The long format of the message is as follows:

ready time_of_day cpu_time page_faults

The time_of_day value has the form hh:mm:ss, where hh is the hour, mm is the minute of
the hour, and ss is the second of the minute. The cpu_time value is the amount of CPU time
in seconds that your process used since the previous ready message. The page_faults value
is the number of page faults your process took since the previous ready message.

Related Information
See also the description of the ready command.
2-704

set_safety_switch
set_safety_switch 2-

Purpose
This command sets the safety switch for one or more files.

Display Form

Command Line Form

set_safety_switch file_name [state]
Arguments* file_name Required

The name or star name of a file or set of files. The command sets the safety switch for
the specified file(s).

* state <CYCLE>
The state of the switch, which can be either on or off. By default,
set_safety_switch sets the switches for the specified files to on.

Explanation
The set_safety_switch command sets the values of the safety switches of the files
identified by file_name.

When a file’s safety switch is on, the file is protected against operations that destroy or
damage it. When a file is protected, you cannot do the following:

 delete the file
 truncate the file
 rename the file
 move the file
 edit the file using the edit or line_edit command

------------------------------ set_safety_switch ------------------------------
file_name:
state: on
OpenVOS Commands Reference Manual (R098) 2-705

set_safety_switch
However, when a file is protected, you can do the following:

 display a file
 copy a file
 append a record to a file or delete a record from a file
 edit the file using the emacs command

Although setting the safety switch prevents the file from being truncated using the
truncate_file command, the copy_file command, and so forth, it does not prevent
some or all of its contents from being deleted by a program that opens the file for output or
updating. For example, if you open the file in emacs, you can effectively truncate it (even
with the safety switch on), by deleting all of its contents and then saving the result.

A file cannot have both RAM usage and its safety switch set.

Access Requirements
You must have modify access to the directory containing the files on which you are setting
the safety switch.

Examples
The following command turns on the safety switch of the file make_report.out.

set_safety_switch make_report.out

Related Information
The display_file_status command shows you all of a file’s attributes, including the
state of the safety switch.
2-706

set_second_tape
set_second_tape 2-

Purpose
This command specifies a magnetic tape drive that the tape facility is to use as a second tape
drive when processing multivolume tape files.

Display Form

Command Line Form

set_second_tape tape_device_or_port_name
second_tape_path_name

Arguments* tape_device_or_port_name Required
A port attached to a tape drive.

* second_tape_path_name Required
The device name of the second tape drive.

Explanation
The set_second_tape command tells the tape facility the name of a second tape drive to
attach to a port that is already attached to a tape drive. In this way, you can use the same port
to process different reels of a multivolume tape file on alternating tape drives.

Load the second tape (and fourth tape, sixth tape, and so on) on the second tape drive. (The
first drive is used for the first tape, third tape, fifth tape, and so on.) You need to mount only
the first tape reel on the first tape drive connected to tape_device_or_port_name. The
tape facility mounts the subsequent reels, and prompts you with messages to physically load
the reels. The tape facility dismounts and unloads tapes on both tape drives when you issue a
dismount_tape command with tape_device_or_port_name as the port.

Note: The set_second_tape command cannot be used with the dump_disk and
reload_disk commands.

------------------------------- set_second_tape --------------------------------
tape_device_or_port_name:
second_tape_path_name:
OpenVOS Commands Reference Manual (R098) 2-707

set_second_tape
Access Requirements
By default, you have write access to a tape device. If your system administrator restricts
access to the tape device, you need read access to read from tapes, or write access to read from
and write to tapes.

Related Information
For information about processing tapes, see the command descriptions of attach_port,
mount_tape, and dismount_tape. See also the command descriptions of dump_tape,
list_save_tape, position_tape, read_tape, restore_object, verify_save,
and write_tape.
2-708

set_tape_drive_params
set_tape_drive_params 2-

Purpose
This command sets the user tape drive parameters that override, for the duration of the port
attachment, the default drive attributes of the tape drive attached to a given port.

Display Form

Command Line Form

set_tape_drive_params tape_device_or_port_name [-disposition disposition] [-reel_retention reel_retention] [-multivolume_default value] [-message message] [-compression] [-reset_to_defaults]
Arguments* tape_device_or_port_name Required

The name of the tape device, or the name of the port attached to the tape drive, whose
parameters are to be set.

* -disposition disposition <CYCLE>
Positions a tape volume mounted on the tape drive after the operating system closes a
tape file. The possible values are rewind, reread, and next. To rewind the tape to
the beginning-of-tape mark after the operating system closes the file, use the value
rewind. For tape files closed by a program, the default is rewind.

Notes:

1. The read_tape and write_tape commands position the tape to the next tape
file (or to the end-of-volume) instead of rewinding.

2. The rewind value does not affect the disposition of multivolume tapes.

--------------------------------set_tape_drive_params---------------------------
tape_device_or_port_name:
-disposition:
-reel_retention:
-multivolume_default:
-message:
-compression:
-reset_to_defaults: no
OpenVOS Commands Reference Manual (R098) 2-709

set_tape_drive_params
To position the tape at the beginning of the tape file following the tape file that was last
read or written (or to end-of-volume if there are no more files in the volume), use the
value next. To position the tape at the beginning of the tape file that was last read or
written, use the value reread.

Note: You cannot reread a 1/4-inch cartridge tape.

* -reel_retention reel_retention <CYCLE>
Specifies whether the tape reel remains physically loaded when the port is detached.
The possible values are dismount and retain. To prevent the operating system from
unloading a tape from a device that you have detached, use the value retain.

The default value, dismount, causes the tape to be unloaded, unless you enable reel
retention with the mount_tape command. Regardless of the value of
-reel_retention, the dismount_tape command dismounts the tape and unloads
it, unless you use the -no_unload argument of dismount_tape.

* -multivolume_default value <CYCLE>
Specifies whether the operating system is to rewind and dismount a volume
automatically during a multivolume tape operation on labeled tapes. If you set the
argument to yes, the operating system automatically rewinds and dismounts the
volume. It also issues a message asking you to mount another volume. If you set the
argument to no, the operating system returns an error message when the end of the
volume is reached. To set the argument in the command line form, type the argument
and the value yes or no. To see the default value, use the display_tape_params
command.

* -message message
Specifies messages that you send to the operator each time a user or the operating
system mounts or dismounts the tape. After you set this value, the operating system
displays your message at the operator’s terminal. If you specify an empty string as the
value, the operating system does not display a message.

When a port is attached to a tape drive, the operating system sets the default value for
the -message argument to an empty string.

* -compression <CYCLE>
Enables you to select data compression if you have a tape drive that supports data
compression. This argument has no effect on tape drives for ftServer modules.

* -reset_to_defaults <CYCLE>
Specifies that all the user tape drive parameter values, except those that you are
specifying, are to revert to the default values. The default setting of this argument is no.
When you cycle this argument to no and you specify any new user tape drive
parameters with this command, the new user values are overlaid on the existing user
and default values. The new values remain in effect until the port is detached, at which
time the new values revert to the default values.
2-710

set_tape_drive_params
Explanation
The set_tape_drive_params command lets you set several attributes of the tape drive
attached to a given port. Your settings override the default tape parameter values. If you then
update the user values, the new user values are overlaid on the existing user values.

The set_tape_drive_params command does not implicitly attach a port or mount a tape.
You must attach a port explicitly with attach_port before you can use
set_tape_drive_params. Once the port is attached, you can specify either the tape device
or port name for tape_device_or_port_name, as convenient.

In most cases, you will not need to change the default tape drive parameters. To examine the
current user values, use the display_tape_params command.

For more information about default, user, and actual values, see the Appendix A, ‘‘Setting and
Displaying Tape Parameter Values.” For information about tape mounting, see Explanation in
the mount_tape command description.

Access Requirements
By default, you have write access to the tape device, with which you can read from and write
to a tape. If your system administrator restricts access to the tape device, you need read access
to use set_tape_drive_params.

Examples
Example 1.
The following command rewinds the tape to the beginning-of-tape mark after the operating
system closes the file.

set_tape_drive_params t_port -disposition rewind

Example 2.
To position the tape at the beginning of the tape file following the tape file that was last read
or written (or to end-of-volume if there are no more files in the volume), use this command.

set_tape_drive_params t_port -disposition next

Example 3.
To prevent the operating system from unloading a tape from a device when you detach the
port, use this command.

set_tape_drive_params t_port -reel_retention retain

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, read_tape, restore_object, save_object,
set_second_tape, set_tape_mount_params, set_tape_file_params,
verify_save, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-711

set_tape_file_params
set_tape_file_params 2-

Purpose
This command sets the user tape file parameters that override the default tape parameters
while a tape file is open.

Display Form

Command Line Form

set_tape_file_params tape_device_or_port_name [-file_id file_id] [-file_number file_number] [-expiration_date expiration_date] [-translation translation] [-file_format file_format] [-block_length block_length] [-record_length record_length] [-blocking_factor blocking_factor] [-reset_to_defaults]
Arguments* tape_device_or_port_name Required

The name of the tape device, or the name of the port attached to the tape drive, on which
a tape is mounted.

* -file_id file_id
Specifies the user file ID of a file on a labeled tape to be written. If you specify this
argument, the operating system writes the next tape file with file_id as its name. The
operating system disregards this argument if the tape is unlabeled.

------------------------------- set_tape_file_params ---------------------------
tape_device_or_port_name:
-file_id:
-file_number:
-expiration_date:
-translation:
-file_format:
-block_length:
-record_length:
-blocking_factor:
-reset_to_defaults: no
2-712

set_tape_file_params
For a labeled tape to be read, if you specify this argument, the operating system checks
that one of the file IDs of the tape files matches the file ID that you specify. If the IDs
do not match, the operating system tells you it could not find the file you specified and
does not read a file. By default, the operating system does not check file IDs.

* -file_number file_number
Specifies the default file number of a file on a labeled tape to be read. When you attach
a port to a tape drive, the operating system sets the default value of this parameter to 1.
If you do not reset this value, the operating system does not check the file number of
the tape file processed through the port. If you specify a number of 1 or higher, the
operating system checks that the tape file has the specified file number. If you set the
value to 0, the operating system does not check the tape file numbers.

* -expiration_date expiration_date
Specifies the date after which you can delete the contents of a file. You can read and
write an expiration date, but the tape processing commands are not affected by the
expiration date. To enter the expiration_date, use the ANSI date format (which is
the same as the IBM date format for tape labels). This six-byte field has the format
cyyddd, where:

* -translation translation <CYCLE>
Specifies the character set that the operating system is to use. The possible values are
ascii, ebcdic, and binary. When you attach a port to a tape drive, the operating
system sets the default value of this parameter to ascii.

* -file_format file_format <CYCLE>
Before you read or write a tape, specifies the format of the files to be read or written.
This argument is not necessary when reading labeled tapes. The possible values are
summarized in Table 2-30.

c =
yy =

ddd =

century (blank = 1900, 0 = 2000, 1 = 2100
year (0-99)
day (001-366)
OpenVOS Commands Reference Manual (R098) 2-713

set_tape_file_params
30

The operating system lets you create variable length unix, tar, cpio, and cpioc tape
records, but the underlying format is fixed length blocks of 512 bytes.

Note: The tar, cpio, and cpioc archive formats are the only valid file formats on
tapes with a tape_format of unix.

* -block_length block_length
Specifies the block length used when reading or writing a tape. When reading a tape,
the block length must match that of the data on the tape. In most cases, the operating
system default is sufficient, but occasionally it is necessary to alter it. Block length must
always be an integral multiple of the record length, and in some file formats, must equal
the record length. Alternatively, you can specify the block length, or both the block
length and the record length, or else both the record length and the blocking factor. The
record length multiplied by the blocking factor equals the block length.

* -record_length record_length
Specifies the record length used when reading or writing a tape. When reading a tape,
the record length must match that of the data on the tape. The operating system default
is sufficient in most cases, but occasionally it is necessary to alter it. Block length must
always be an integral multiple of the record length, and in some file formats, must equal
the record length. Alternatively, you can specify the block length, or both the block
length and the record length, or else both the record length and the blocking factor. The
record length multiplied by the blocking factor equals the block length.

* -blocking_factor blocking_factor
Specifies the number of records per block. Use this argument to determine the
maximum number of records that can be packed per block on a write. When you specify
a blocking factor, the operating system calculates the block length by multiplying the
record length and the blocking factor. The -file_format argument must be set to fb,
vb, or vbs for packing to occur. You cannot choose this argument and the
-block_length argument at the same time.

Table 2-30. File Formats

File Format Record Organization Blocked Spanned

f
fb
v
vb
vs
vbs
u

fixed length
fixed length
variable length
variable length
variable length
variable length
variable length

no
yes
no
yes
no
yes
no

no
no
no
no
yes
yes
no

f = fixed length
fb = fixed length, blocked
vs = variable length, spanned
u = undefined
v = variable length
vb = variable length, blocked
vbs = variable length, blocked spanned
2-714

set_tape_file_params
* -reset_to_defaults <CYCLE>
Specifies that all the user tape file parameter values except those that you are specifying
are to revert to the default values. The default of this argument is no. When you set this
argument to no and you specify any new user tape file parameters with this command,
the new user values are overlaid on the existing user and default values. The new values
are in effect until the file is closed, at which time the new values revert to the default
values.

Explanation
The set_tape_file_params command sets the user tape parameters of tape files that you
plan to read or write. The user tape parameters override the default tape parameters while a
tape file is open.

The set_tape_file_params command does not implicitly attach a port or mount a tape.
You must attach a port with attach_port before you can use the
set_tape_file_params command. You must also mount a tape with mount_tape before
you can use set_tape_file_params. Once the port is attached, you can specify either the
tape device or port name for tape_device_or_port_name, as convenient.

In most cases, you will not need to change the default tape file parameters. To examine the
current user values, use the display_tape_params command.

For more information about default, user, and actual values, see the Appendix A, ‘‘Setting and
Displaying Tape Parameter Values.” For information about tape mounting, see Explanation in
the mount_tape command description.

For the -file_format argument, labeled tapes can contain files with any of the formats
given in Table 2-30. Unlabeled tapes can contain files having either undefined-length or
fixed-length record formats. Undefined-length records are the same on both labeled and
unlabeled tapes. On unlabeled tapes, fixed-length records have one or more records packed
into a single tape block. Make the block length an exact multiple of the record length. If you
do not, and the operating system writes a partial record to end the block, the operating system
reports the remaining part of the record as an error. You cannot use variable-length record
formats with unlabeled tapes. If you try to specify a variable-length record format, the
operating system defines undefined-length records instead.

The operating system can process files containing records with the formats defined by ANSI
and IBM for tape files. ANSI allows files with fixed-length or variable-length records. IBM
allows files with fixed-length, variable-length, and undefined-length records. The operating
system can also process undefined-length records on ANSI-labeled tapes.

Note: ANSI and IBM label tapes have the default expiration date value of none
(“ 00000”—note the leading space).

The file format names shown in Table 2-30 are the names for use with OpenVOS; they are not
the names specified on non-OpenVOS tapes. The names translate into record formats on both
ANSI-format tapes and unlabeled tapes, and into record formats and block attributes on
IBM-format tapes. Table 2-31 shows OpenVOS names and equivalent names in ANSI, IBM,
and unlabeled formats.
OpenVOS Commands Reference Manual (R098) 2-715

set_tape_file_params
31

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, read_tape, restore_object, save_object,
set_second_tape, set_tape_drive_params, set_tape_mount_params,
verify_save, and write_tape.

Table 2-31. Tape File Format Names

File
Format

ANSI-
Record
Format

IBM-
Record
Format

IBM-
Block
Attribute

Unlabeled
Record
Format

f
fb
v
vb
vs
vbs
u

F
F
D
D
S
S
U

F
F
V or D
V or D
V or D
V or D
U

blank
B
blank
B
S
R
blank

F
F
U
U
U
U
U
2-716

set_tape_mount_params
set_tape_mount_params 2-

Purpose
This command determines the user tape mount parameters that override, for the duration of
the mount, the default mount attributes of the mount_tape command.

Display Form

Command Line Form

set_tape_mount_params tape_device_or_port_name [-volume_id volume_id] [-owner_id owner_id] [-tape_format tape_format] [-cartridge_no cartridge_no] [-access_rights access_rights] [-reset_to_defaults]
Arguments* tape_device_or port_name Required

The name of the tape device, or the name of the port attached to the tape drive, on which
a tape is mounted.

* -volume_id volume_id
Identifies the volume with a character string. If you specify a volume ID, then mount a
tape, the operating system checks the specified volume ID against the volume ID on the
tape label.

* -owner_id owner_id
Identifies the owner with a character string. When you attach a port to a tape drive, the
operating system sets the default value of this parameter to your person name. If you
specify an owner ID, then mount a tape, the operating system checks the specified
owner against the owner ID on the tape label.

------------------------------- set_tape_mount_params --------------------------
tape_device_or_port_name:
-volume_id:
-owner_id:
-tape_format:
-cartridge_no:
-access_rights:
-reset_to_defaults: no
OpenVOS Commands Reference Manual (R098) 2-717

set_tape_mount_params
* -tape_format tape_format <CYCLE>
Specifies the format of the tape, including the format of the label at the beginning of
the tape and the markers that begin and end each tape file.

The possible values for tape_format are: ansi for ANSI-labeled tapes, ibm for IBM
OS/VS-labeled tapes, ibm_mvs for tapes to be used on MVS/RACF systems, unix for
tapes that have UNIX tar, cpio, or cpioc formats, and unlabeled for unlabeled tapes.

The operating system also sets the default translation mode according to the tape format
you specify. When you choose the format ansi or unix, the default translation mode
is ascii; when you choose the format ibm or ibm_mvs, the default translation mode
is ebcdic; and when you choose the format unlabeled, the default translation mode
is binary. You can set the default translation mode by giving the -translation
option of the set_tape_file_params command. In this case, be careful to choose a
translation mode that is consistent with the specified tape format. The -translation
option overrides any default.

* -cartridge_no cartridge_no
Determines the tape that is mounted next. Only 0 (or blank) is allowed.

* -access_rights access_rights <CYCLE>
Specifies the access to set on the tape to be mounted. The possible values are
read_write and readonly. When you attach a port to a tape drive, the operating
system sets the default value of this parameter to read_write. You can use the
mount_tape command to override the default setting of the -access_rights
argument. If you plan only to read tapes, it is safer to specify readonly. If you specify
readonly, the tape facility accepts a tape with or without a write ring, but does not
allow you to write to the tape.

* -reset_to_defaults <CYCLE>
Specifies that all the user tape mount parameter values, except those that you are
specifying, are to revert to the default values. The default of this argument is no. When
you set this argument to no and you specify any new user tape mount parameters with
this command, the new user values are overlaid on the existing user and default values.
The new values are in effect until the tape is dismounted, at which time the new values
revert to the default values.

Explanation
The set_tape_mount_params command determines the user tape mount parameters that
override, for the duration of the mount, the default mount attributes of the mount_tape
command.

This command does not implicitly attach a port or mount a tape. You must attach a port
explicitly with attach_port before you can use set_tape_mount_params. Once the port
is attached, you can specify either the tape device or port name for
tape_device_or_port_name, as convenient.

In most cases, you will not need to change the default tape mount parameters. You can
examine the default tape mount parameters by using the display_tape_params command.
2-718

set_tape_mount_params
If you do choose to change the default mount parameters, issue the
set_tape_mount_params command before mounting the tape with mount_tape or with
a command that mounts the tape implicitly.

For more information about default, user, and actual values, see the Appendix A, ‘‘Setting and
Displaying Tape Parameter Values.” For information about tape mounting, see the
Explanation section in the mount_tape command description.

The ANSI tape format, the IBM OS/VS and MVS label formats, and the UNIX tar (Tape
ARchive), cpio (CoPy I/O), and cpioc (cpio -c) header formats are some of the most
commonly used formats in the computer industry. Unlabeled tapes are those that do not have
ANSI labels, IBM OS/VS or MVS labels, or UNIX tar, cpio, or cpioc headers. You can
process a labeled tape with a nonstandard label by treating it as an unlabeled tape. A
nonstandard label is one that does not correspond to the ANSI, IBM OS/VS, IBM MVS,
UNIX tar, UNIX cpio, or UNIX cpioc standards.

Note: The difference between the ibm OS/VS and ibm_mvs formats is important only
when you are writing a tape that is to be read by one of these systems. OpenVOS
ignores the difference between the two formats when reading a tape. For example, you
can specify the ibm OS/VS format and still read a tape written with an IBM System
MVS/370 tape label, or vice versa.

When the operating system processes an unlabeled tape, all records are treated as data
records. A tape mark, which is a zero-length block, is treated as an end-of-file mark. Two
consecutive tape marks define an end-of-volume mark. Any label records encountered on an
unlabeled tape are returned as data.

Because OpenVOS uses ANSI tape labels by default, ANSI terms are used for tape label
fields. Table 2-32 lists the names of the fields and the equivalent IBM OS/VS and MVS label
names.

32

Access Requirements
By default, you have write access to the tape device, with which you can read from and write
to a tape. If your system administrator restricts access to the tape device, you need read access
to use set_tape_mount_params.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,

Table 2-32. ANSI and IBM Tape Label Fields

ANSI IBM

Volume ID
Owner ID
File ID
Block Length
Record Length

Volume Serial Number
Owner Name and Address Code
Data Set Identifier
Block Length
Record Length
OpenVOS Commands Reference Manual (R098) 2-719

set_tape_mount_params
mount_tape, position_tape, read_tape, restore_object, save_object,
set_second_tape, set_tape_drive_params, set_tape_file_params,
verify_save, and write_tape. See also OpenVOS System Administration: Disk and Tape
Administration (R284).
2-720

set_terminal_parameters
set_terminal_parameters 2-

Purpose
This command sets the terminal parameters for your terminal or window terminal device.

The command’s display and command line forms differ, depending on your OpenVOS
terminal’s device type. Therefore, this command description contains the display form and
command line form for terminal devices and for window terminal devices. The argument
descriptions are presented in order, with the unique window-terminal arguments interspersed
with the non-window terminal arguments, and the additional window-terminal arguments at
the end of the argument descriptions.

To determine your terminal’s device type, issue the following command at OpenVOS
command level.

display_device_info (terminal_name)

The value of the type field shown in the output of this command is your terminal type.

Display Form for Terminal Device

---------------------------- set_terminal_parameters ----------------------------
-line_length: 0
-terminal_type: v102
-setup:
-escape: ‘
-system_message:
-prompt_message:
-continue_message: +
-pause_message: --PAUSE--
-pause_lines: 23
-tabs1: 6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81
-tabs2: 86,91,96,101,106,111,116,121,126
-break_enabled: yes
-black_on_white: no
-cursor_format: steady_block
-key_click_on: no
-smooth_scroll: no
-interrupt_key_enabled: yes

C8
OpenVOS Commands Reference Manual (R098) 2-721

set_terminal_parameters
Command Line Form for Terminal Device

set_terminal_parameters [-line_length line_length]

[-terminal_type terminal_type] [-setup setup_name] [-escape escape_char] [-system_message system_message] [-prompt_message prompt_message] [-continue_message continue_message] [-pause_message pause_message] [-pause_lines pause_lines] [-tabs1 tabs1] [-tabs2 tabs2] [-no_break_enabled] [-black_on_white] [-cursor_format cursor_format] [-key_click_on] [-smooth_scroll] [-no_interrupt_key_enabled]
Display Form for Window Terminal Device

--------------------------- set_terminal_parameters --------------------------
-line_length: 80
-terminal_type: cac_xterm
-setup:
-system_message:
-prompt_message:
-continue_message: +
-pause_message: --PAUSE--
-pause_lines: 24
-max_typeahead_lines: 10
-tabs1: 6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81
-tabs2: 86,91,96,101,106,111,116,121,126
-break_action: signal_and_discard
-cursor_format: blinking_block
-wait_cursor_format: off
-forms_style: overlay
-key_timeout: 5
-escape: ` -break_to_wmgr: yes
-black_on_white: no -initial_overlay_on: no
-key_click_on: no -cancel_doesnt_abort: no
-smooth_scroll: no -return_doesnt_unpause: no
-interrupt_key_enabled: yes -return_doesnt_tab: no
-clear_reused_screen_pages: no -allow_multiple_users: no
2-722

set_terminal_parameters
Command Line Form for Window Terminal Device

set_terminal_parameters [-line_length line_length_number]

[-terminal_type terminal_type] [-setup setup_name] [-system_message system_message] [-prompt_message prompt_message] [-continue_message continue_message] [-pause_message pause_message] [-pause_lines pause_lines_number] [-max_typeahead_lines max_typeahead_lines] [-tabs1 tabs1] [-tabs2 tabs2] [-break_action break_action] [-cursor_format cursor_format] [-wait_cursor_format cursor_format] [-forms_style forms_style] [-escape escape_char] [-no_break_to_wmgr] [-black_on_white] [-initial_overlay_on] [-key_click_on] [-cancel_doesnt_abort] [-smooth_scroll] [-return_doesnt_unpause] [-no_interrupt_key_enabled] [-return_doesnt_tab] [-clear_reused_screen_pages] [-allow_multiple_users] [-key_timeout number]
Arguments* -line_length line_length_number

Sets the terminal’s line length. Setting a line length that is too small may affect the
display form function; the effect depends on the command being displayed. The
operating system displays up to one less character on a line than
line_length_number. If a line’s length equals or exceeds line_length_number,
the operating system uses as many additional terminal lines as necessary to display all
the characters. The value of line_length_number can range from 16 to 160, and
includes the length of the prompt message. By default, the operating system uses the
current value set for your terminal. If you specify both line_length_number and a
new terminal_type on the same command line, the operating system ignores
line_length_number and uses the value implicit in the new terminal type. To set the
line length for a new terminal type, you must reinvoke the command.

Note: If you are logged into a window terminal, you cannot change the
-line_length value.
OpenVOS Commands Reference Manual (R098) 2-723

set_terminal_parameters
* -terminal_type terminal_type <CYCLE>
Sets the terminal type. Use the list_terminal_types command to list all possible
values of terminal_type. Cycling through this field displays the same values as the
list_terminal_types command. By default, the operating system uses the current
value set for your terminal. When you set terminal_type to a new value, the
operating system uses the values for line_length_number, escape_char, and
pause_lines_number that are implicit in the new terminal type, and ignores any new
values given for these arguments on the command line. To change the values implicit
in the new terminal type, you must reinvoke the command.

* -setup setup_name
Sets the dimensions of the screen. The permissible values are determined by the setup
configuration section of the .ttp file for the particular terminal type. All terminal
types supported by Stratus use setup names of the form HxV, where H is the number of
lines and V is the number of columns. By default, the operating system uses the default
value for the specified terminal type.

* -escape escape_char
Sets the escape character. The default value for the escape character is the grave accent
(‘), the ASCII character with the hexadecimal representation 60x. By default, the
operating system uses the current value set for your terminal. If you specify both
escape_char and a new terminal_type on the same command line, the operating
system ignores escape_char and uses the value implicit in the new terminal type. To
set the escape character for a new terminal type, you must reinvoke the command.

* -system_message system_message
Specifies the character string that the operating system displays on line 25 of your
terminal, if the terminal has a 25th line. The system_message can be up to 53
characters long. This message is displayed once, when the command is executed. By
default, the operating system uses the current value set for your terminal.

* -prompt_message prompt_message
Specifies the character string that the operating system displays when it is ready to
accept a command or request. For window terminals, the prompt_message can be up
to 32 characters long; otherwise, the prompt_message can be up to 8 characters long.
By default, the operating system uses the current value set for your terminal.

* -continue_message continue_message
Specifies the character string that the operating system displays at the beginning of a
continued line. For window terminals, the continue_message can be up to
32 characters long; otherwise, the continue_message can be up to 8 characters long.
By default, the operating system uses the current value set for your terminal.

* -pause_message pause_message
Specifies the character string that the operating system displays after it has displayed
the number of terminal lines specified by pause_lines. For window terminals, the
pause_message can be up to 32 characters long; otherwise, the pause_message can
be up to 20 characters long. By default, the operating system uses the current value set
for your terminal.
2-724

set_terminal_parameters
* -pause_lines pause_lines_number
Specifies the number of terminal lines that the operating system displays on your screen
before pausing. If you set pause_lines_number to zero, no pauses occur in output
to the terminal. If you set pause_lines_number to a value greater than zero, the
operating system displays pause_message after pausing and waits for you to press the
<RETURN> key, the <ENTER> key, the key that invokes the CANCEL function, or the key that
invokes the NO PAUSE function. If you press <RETURN> or <ENTER>, the operating system
displays the next number of terminal lines (determined by pause_lines_number) of
output from the current command. If you press the key that invokes the CANCEL
function, the operating system aborts the rest of the output from the current command
and returns you to command level. If you press the key that invokes the NO PAUSE
function, the operating system scrolls any remaining output from the current command
onto the screen without further pauses. By default, or if you specify a negative number,
the operating system uses the current value set for your terminal. If you specify both
pause_lines_number and terminal_type on the same command line, the
operating system ignores pause_lines_number and uses the value implicit in the
new terminal type. To set pause_lines_number for a new terminal type, you must
reinvoke the command.

If the value of pause_lines_number is a negative number, if the value is greater than
the screen size of the specified terminal type, or if the value is the same as the
argument’s current setting, OpenVOS sets -pause_lines to the value implicit in the
new terminal type.

* -tabs1 tabs1
Sets a group of tab stops for your terminal. The argument tabs1 must be a sequence
of column numbers in increasing order. The numbers must be separated by commas. If
there are tab stops set for -tabs2, then the largest column number specified in tabs1
must be less than the smallest column number specified in tabs2. By default, the
operating system uses the current tabs1 values set for your terminal.

* -tabs2 tabs2
Sets a second group of tab stops for your terminal. The argument tabs2 must be a
sequence of column numbers in increasing order. The numbers must be separated by
commas. If there are tab stops set for -tabs1, then the smallest column number
specified in tabs2 must be greater than the largest column number specified in tabs1.
If you specify -tabs2 and there are no tab stops set for -tabs1, the operating system
assigns the values you specify for tabs2 to tabs1 instead. By default, the operating
system uses the current tabs2 values set for your terminal.

* -no_break_enabled <CYCLE>
Disables the function of the <CTRL><BREAK> key sequence. For more information on
specifying the break level, see the OpenVOS Commands User’s Guide (R089). By
default, the operating system uses the current value set for your terminal.

* -black_on_white <CYCLE>
Displays dark characters on a light background (inverse video). By default, the
operating system uses the current value set for your terminal.
OpenVOS Commands Reference Manual (R098) 2-725

set_terminal_parameters
* -cursor_format cursor_format <CYCLE>
Sets the form of the cursor. There are five possible values.

 blinking_block
 blinking_underline
 steady_block
 steady_underline
 off

By default, the operating system uses the current value set for your terminal.

* -wait_cursor_format cursor_format
Sets the format of the wait cursor that is displayed in the lower left corner of the window
while a window terminal is waiting for a response. There are five values.

 blinking_block
 blinking_underline
 steady_block
 steady_underline
 off

By default, the operating system uses the current value set for your terminal.

* -forms_style forms_style <CYCLE>
Determines how display forms are displayed. There are three possible values.

 overlay
 insert
 scroll

If you specify the overlay style and later press the key that invokes the DISPLAY
FORM function for a command, the operating system causes the command’s display
form to overlay the primary window. When you press the <ENTER> key or the key that
invokes the CANCEL function, the display form disappears and command line prompt
appears on the next line.

If you specify the insert style and later press the key that invokes the DISPLAY FORM
function, the operating system causes the command’s display form to scroll up the
primary window as is done by non-window terminal devices. When you press the
<ENTER> key or the key that invokes the CANCEL function, the command line prompt
appears following the display form.

If you specify the scroll style and later press the key that invokes the DISPLAY FORM
function for a command, the operating system causes the command’s display form to
scroll up the primary window. When you press the <ENTER> key or the key that invokes
the CANCEL function, the operating system scrolls the primary window down so that the
display form disappears. It then displays the command line prompt on the next line.

By default, the operating system uses the current value set for your terminal.
2-726

set_terminal_parameters
* -key_click_on <CYCLE>
Enables key clicks. By default, the operating system uses the current value set for your
terminal.

* -smooth_scroll <CYCLE>
Enables smooth scrolling on your terminal. By default, the operating system uses the
current value set for your terminal.

* -no_interrupt_key_enabled <CYCLE>
Disables the INTERRUPT key function when you are executing edit, edit_form,
nls_edit_form, or a program using the forms processor. By default, the INTERRUPT
key function is enabled.

* -max_typeahead_lines number
Specifies the maximum number of lines you can type ahead before the operating
system reads the lines.

Note: This argument is only available to window terminal users.

* -break_action break_action <CYCLE>
When using a window terminal, determines the function of the <CTRL><BREAK> key
sequence and replaces the -break_enabled argument. You can specify one of the
following values.

For more information on specifying the break level, see the OpenVOS Commands
User’s Guide (R089).

Note: This argument is only available to window terminal users.

* -clear_reused_screen_pages <CYCLE>
Specifies that the window manager clear a new page of terminal memory before
displaying a subsequent application screen. By default, the window manager uses the
existing application screen as a basis for displaying a subsequent application screen.
This argument affects how the window manager animates the display of application
screens; it does not affect the final appearance of application screens.

Value Description

signal_and_discard Signal a break and discard input (equivalent to
-break_enabled).

signal_only Signal a break, but do not discard input.

return_nul_char When calling set_terminal_parameters from an application,
break returns a null character instead of signalling. Stratus does not
recommend the use of this value from the command line.

return_error When calling set_terminal_parameters from an application,
break returns an error code instead of signalling. Stratus does not
recommend the use of this value from the command line.

ignore Ignore breaks (equivalent to -no_break_enabled).
OpenVOS Commands Reference Manual (R098) 2-727

set_terminal_parameters
Usually, specifying a value of no improves display time because many application
screens have a similar appearance. The disadvantage is that some information from an
old screen appears momentarily on a subsequent screen when the window manager first
displays the subsequent screen. You may notice this problem if you have a slow
terminal or are connected to the Stratus module over a slow communications line.
Specifying a value of yes may help reduce this problem, depending on the terminal
type.

Note: This argument is only available to window terminal users that have
terminals with multiple pages of screen memory.

* -break_to_wmgr <CYCLE>
Specifies that the window manager is invoked when you press the <BREAK> key. To get
to break level, press the <BREAK> key while in window manager mode. In other words,
you must press the <BREAK> key twice to get to break level. If you specify a value of no,
pressing the <BREAK> key executes the break action. The default value is to invoke the
window manager.

If you are running a command or application which does not use terminal independent
keystroke translation, specifying the default value lets you invoke the window manager.
If you specify a value of no, you cannot access the window manager from a command
or application which does not use terminal independent keystroke translation.

Note: This argument is only available to window terminal users.

* -initial_overlay_on <CYCLE>
Specifies the value of the insert/overlay mode switch. By default, the overlay switch is
on when a window is first opened. On subsequent opens of a window, you can set the
insert/overlay mode with the insert/overlay mode function key.

Note: This argument is only available to window terminal users.

* -cancel_doesnt_abort <CYCLE>
Prevents the CANCEL key function from aborting the display of output. When you give
this argument, pressing the key that invokes the CANCEL function causes the display of
a command-level message that explains the proper way to abort a pause. If you do not
give this argument, pressing the key that invokes the CANCEL function aborts the
display of output.

Note: This argument is only available to window terminal users.

* -return_doesnt_unpause <CYCLE>

Prevents the <RETURN> key from releasing a pause when there is no current input record
at command level. When you give this argument, pressing the <RETURN> key when there
is no current input record causes the display of a command-level message that explains
the proper way to release a pause. If you do not give this argument, the <RETURN> key
releases the pause when there is no current input record. In either case, the <RETURN> key
enters the input record when one exists.

Note: This argument is only available to window terminal users.
2-728

set_terminal_parameters
* -return_doesnt_tab <CYCLE>

In a display form, prevents the <RETURN> key from tabbing in every direction. When you
give this argument, pressing the <RETURN> key moves the cursor to the first field on the
next line instead of performing a tab, and you must press the <TAB> key to tab
horizontally to a field in the display form. If you do not give this argument, the <RETURN>
key enables the cursor to tab in every direction in a display form.

Note: This argument is only available to window terminal users.

* -allow_multiple_users <CYCLE>
Allows window terminal devices to be shared on an individual basis. This argument
takes effect immediately for the specified device.

Note: This argument is only available to window terminal users.

* -key_timeout number
Specifies the number of seconds that the buffer retains a partially typed generic input
request before returning it to the application. This argument allows the <ESC> key to be
returned to those applications that are looking for it on terminals where the <ESC> key
begins function-key sequences. You can specify a value of 0 through 25 seconds for
number. The value 0 disables the timeout. The default value is 5 seconds.

Note: This argument is available only to window terminal users.

Explanation
The set_terminal_parameters command sets the parameters for the terminal attached
to your process’s default_input port. The parameter settings take effect immediately for
the current terminal, but only for the duration of the current process. When the port closes,
the channel or subchannel reverts to the default parameters specified in the device table or
specified by the update_channel_info command.

The set_terminal_parameters command processes arguments in the following order:
-terminal_type is first, -setup is next, and the other arguments follow. You can specify
the -terminal_type, -setup, and other arguments on the same command line.

When you invoke the display form of this command, the operating system displays some of
the current values of the parameters.

Pressing the key that invokes the INTERRUPT function when you are editing or using the
forms processor is equivalent to logging in when your process is at command level. See the
Preface of this manual for information about how to invoke the INTERRUPT function for your
terminal.

If you are a window terminal user, you can specify additional arguments in the display form
of the set_terminal_parameters command. These arguments are
-max_typeahead_lines, -break_action, -wait_cursor_format,
-clear_reused_screen_pages, -break_to_wmgr, -initial_overlay_on,
-cancel_doesnt_abort, -return_doesnt_unpause, and -return_doesnt_tab.

Note: You cannot specify the window-terminal specific arguments in command line
form or in a macro such as start_up.cm.
OpenVOS Commands Reference Manual (R098) 2-729

set_terminal_parameters
You can invoke set_terminal_parameters when you use the debugger, but the results
are unpredictable.

Examples
The following command switches a V105 terminal into 132-column mode.

set_terminal_parameters -setup 132x24

Related Information
For more information about the characteristics of your terminal device, see the description of
the display_device_info and display_terminal_parameters commands in this
manual. For more information on window terminals, see the Window Terminal User’s
Guide (R256).
2-730

set_text_file
set_text_file 2-

Purpose
This command sets the default character set and shift mode of an existing file.

Display Form

Command Line Form

set_text_file file_names [-character_set character_set] [-shift_mode shift_mode] [-force]
Arguments* file_names Required

The name of a file.

* -character_set character_set <CYCLE>
Assigns one of the following default character sets to the file.

 none
 ascii
 latin_1
 latin_9
 kanji
 katakana
 hangul
 simplified_chinese
 chinese1
 chinese2
 user_dbcs

By default, a value of none is assigned to the file. Specify a character set only for a
fixed, relative, or sequential file.

-------------------------------- set_text_file --------------------------------
file_names:
-character_set: none
-shift_mode: all
-force: no
OpenVOS Commands Reference Manual (R098) 2-731

set_text_file
* -shift_mode shift_mode <CYCLE>
Specifies the shift combinations allowed in the file. The values for shift_mode are
single, locking, all, and none. By default, both single- and locking-shift
combinations (all) are allowed. The -shift_mode argument is ignored if the value
of character_set is none.

* -force <CYCLE>
Changes the shift mode and default character set of a non-empty file. This allows you
to set file attributes on files predating this release of the operating system, to support
multiple character sets in such files. The set_text_file command performs no
validation or conversion of the file.

Set the character set attribute to the character set of the file. For best performance, set
the shift mode to single. For most efficient use of disk space, set the shift mode to
all (both single and locking shifts allowed). If embedded single or locking shifts are
present in the file, data may not be interpreted correctly. In such cases, follow the
conversion steps described in the Explanation section to guarantee the data’s
correctness.

By default, you can set these attributes only for an empty file.

Explanation
The set_text_file command sets the default character set and shift mode of an existing
file.

Character sets that are supported for fixed, relative, or sequential files include ASCII, Latin
alphabet No. 1, Latin alphabet No. 9, kanji, katakana, hangul, simplified Chinese, Chinese1,
Chinese2, and a user-defined double-byte character set. Indexes on files having one of these
default character sets are allowed only if the file’s shift mode allows no shifts; indexes are not
allowed for files with a multiple-byte default character set.

The default character set and shift mode of a file are attributes used by file and I/O services
to store and present text file data in a compatible format. Changing these attributes changes
the way data is interpreted, so using this command for non-empty files, with the -force
argument, may cause unexpected results. Use -force only if you have specific knowledge
of the actual contents of a file and can ensure valid results. Otherwise, a file whose contents
disagree with its new character set and shift mode settings is misinterpreted when accessed;
you may be unable to print it or perform other operations on it. If this situation occurs,
immediately reset the attributes to the original values and convert the file using the
convert_text_file command. You cannot return a file whose attributes have been
erroneously set with this command to its previous state once you have written to it.
2-732

set_text_file
You can safely set any file to binary by specifying -character_set none and
-shift_mode none. When you set a non-empty file to something other than binary,
however, set the character set to the character set representing the majority of the file’s data.
This minimizes translation during file operations. The set_text_file command itself
performs no actual translation or conversion. However, changing the character set of a text
file containing unshifted right graphic set characters may alter the semantics of those
characters, since they are interpreted as characters according to the new default character set
and shift mode. If the semantics of the file could change as a result of changing the file’s
attributes, use convert_text_file to convert the data to conform with the file’s new text
attributes.

If the shift mode is locking or all, file data is stored as compactly as possible at the expense
of I/O execution speed. The -shift_mode argument is ignored if a file’s character_set
value is none. Changing a file’s default character set to none from one of the other values
effectively converts it back to binary format.

Access Requirements
To set a file’s default character set and shift mode, you need modify access to its containing
directory.

Examples
The following command sets the text file attributes of a relative file named
European_report.

set_text_file European_report -character_set latin_1
-shift_mode single

The default character set becomes Latin alphabet No. 1, and the shift mode allows single
shifts.

If no shifts are allowed, the file can only contain one character set as specified with the
character set attribute.

Related Information
See the descriptions of the create_file command for information on creating a text file,
and the convert_text_file command for information on converting the contents of an
existing text file to conform to a new default character set or shift mode.
OpenVOS Commands Reference Manual (R098) 2-733

set_time_zone
set_time_zone 2-

Purpose
This command sets the time zone for your current process. The operating system changes the
time of day in your process to correspond to the new time zone.

Display Form

Command Line Form

set_time_zone time_zone [difference] [-daylight]
Arguments* time_zone Required

A code for the new time zone.

* difference
The difference in minutes between the new time and Greenwich Mean Time (GMT). If
you set the zone to one of the predefined codes, you do not need to supply this value.
If the new time_zone is not one of the predefined time zones, you must provide a
difference value.

* -daylight <CYCLE>
Sets the daylight time zone flag. By default, the daylight time zone flag is set to off.

Explanation
The set_time_zone command sets the one, two-, or three-letter code for the time zone of
your current process and adjusts the time in your process to the new time zone.

Table 2-33 lists the time zones that OpenVOS supports, as well as the corresponding
differences from GMT.

-------------------------------- set_time_zone ---------------------------------
time_zone:
difference:
-daylight: no
2-734

set_time_zone
33

Table 2-33. Time Zones Supported in OpenVOS

Code Description

Difference
from GMT
(in Minutes)

Implements
Daylight
Savings

adt Atlantic Daylight -180 yes

ast Atlantic Standard -240 no

at Azores -120 no

bst British Summer 60 yes

bt Baghdad 180 no

cad Central Australia Daylight 630 yes

cas Central Australia Standard 570 no

cdt Central Daylight -300 yes

cet Central European 60 no

chd China Daylight 540 yes

cht China Time 480 no

cst Central Standard -360 no

ead East Australia Daylight 660 yes

eas East Australia Standard 600 no

edt Eastern Daylight -240 yes

eet Eastern Europe 120 no

est Eastern Standard -300 no

fst French Summer 120 yes

fwt French Winter 60 no

gmt Greenwich Mean 0 no

gst Greenland Standard -180 no

hdt Hawaii-Aleutian Daylight -540 yes

hfe Heure Francaise d’Ete 120 yes

hfh Heure Francaise d’Hiver 60 no

hkt Hong Kong 480 no

hst Hawaii-Aleutian Standard -600 no

ist Indian Standard 330 no
OpenVOS Commands Reference Manual (R098) 2-735

set_time_zone
jst Japan Standard 540 no

jt Java 450 no

kdt Alaska Daylight -540 yes

kst Alaska Standard -600 no

mas Malaysia Standard 480 no

mdt Mountain Daylight -360 yes

mes Middle Europe Summer 120 yes

met Middle Europe 60 no

mew Middle Europe Winter 60 no

mst Mountain Standard -420 no

ndt Newfoundland Daylight -150 yes

nst Newfoundland Standard -210 no

nt Nome -660 no

nzd New Zealand Daylight 780 yes

nzs New Zealand Standard 720 no

pdt Pacific Daylight -420 yes

phs Philippine Standard 480 no

pst Pacific Standard -480 no

sdt Samoa Daylight -660 yes

sis Singapore Standard 480 no

sst Samoa Standard -600 no

tpe Taiwan Standard 480 no

tst Thailand Standard 420 no

ut Universal 0 no

wad West Australia Daylight 540 yes

was West Australia Standard 480 no

wat West Africa -60 no

Table 2-33. Time Zones Supported in OpenVOS (Continued)

Code Description

Difference
from GMT
(in Minutes)

Implements
Daylight
Savings
2-736

set_time_zone
The column labeled Difference is the difference between the listed time and Greenwich Mean
Time, in minutes. For example, a clock set to Eastern Standard Time reads 300 minutes earlier
than a clock set to Greenwich Mean Time.

If the time difference is for a daylight-savings time zone, then the value of the difference
argument is the time difference with Greenwich Mean Time (GMT).

You can give a predefined time zone code in either uppercase or lowercase letters.

When a process is created, its time zone is set to the time zone of the current module. If you
are in a subprocess, and you issue the set_time_zone command, the time zone for both
processes is reset.

Examples
Example 1.
The following command sets the time zone to Eastern Standard Time.

set_time_zone est

The operating system automatically sets the difference for this zone, -300 minutes.

Example 2.
Assume that you want to set the time zone to 11 hours before Greenwich Mean Time, and that
you want to represent the new time zone by the code jst. Use the following command to
make this change.

set_time_zone jst -660

Note that the time difference is given in minutes, not hours.

Setting the time zone for your process affects only how times are displayed in your process.
It has no effect on how the operating system internally stores times, such as the time-modified
attribute of a file.

wib Indonesia Standard 420 no

ydt Yukon Daylight -480 yes

yst Yukon Standard -540 no

z Zulu (Universal) 0 no

Table 2-33. Time Zones Supported in OpenVOS (Continued)

Code Description

Difference
from GMT
(in Minutes)

Implements
Daylight
Savings
OpenVOS Commands Reference Manual (R098) 2-737

sleep, vsleep
sleep, vsleep 2-

Purpose
This command puts the process that issues the command to sleep for a specified period, after
which the operating system reactivates the process.

Note: The OpenVOS GNU Tools layered product also supplies a command named
sleep. When the GNU Tools product is installed and used as directed, the GNU Tools
version of this command is found before the OpenVOS version, depending upon
command library paths. Since the OpenVOS and GNU Tools commands behave
differently, you can use the alternate name (vsleep) to ensure that you invoke the
OpenVOS version of the command.

Display Form

Command Line Form

sleep [-hours hours]

[-minutes minutes] [-seconds seconds] [-until date_time] [-forever]
Arguments* -hours hours

Puts the issuing process to sleep for the specified number of hours. By default, the value
of hours is 0.

* -minutes minutes
Puts the issuing process to sleep for the specified number of minutes. By default, the
value of minutes is 0.

------------------------------------ sleep -------------------------------------
-hours:
-minutes:
-seconds:
-until:
-forever: no
2-738

sleep, vsleep
* -seconds seconds
Puts the issuing process to sleep for the specified number of seconds. By default, the
value of seconds is 0.

* -until date_time
Puts the issuing process to sleep until a specified date and time. The date_time value
can be a character string in the standard form.

yy-mm-dd_hh:mm:ss

It can also be a character string in any form accepted by the (date_time) command
function. In this case, the string must be enclosed in apostrophes. See Chapter 1,
‘‘OpenVOS Command Functions” for examples of acceptable date/time input strings.

* -forever <CYCLE>
Puts the issuing process to sleep for an indefinite period of time.

Explanation
The sleep command suspends a process for a period of time. The suspended process is the
process that issues the command; if you invoke the sleep command from command level at
your terminal, your login process sleeps. A process is normally suspended to wait for an event
to occur.

If you specify one or more of -hours, -minutes, and -seconds, the issuing process sleeps
for the period of time given by the values you specify for hours, minutes, and seconds.

If you specify -until, the issuing process sleeps until the specified date and time. If the date
and time are in the past, the operating system reactivates the process immediately.

If you specify -forever, the process is suspended until the break condition is signaled in the
process.

Unless you specify a value for one or more arguments, the sleep command does not suspend
the process.

Related Information
For information on reactivating a sleeping process, see the description of the
break_process command.
OpenVOS Commands Reference Manual (R098) 2-739

sort, vsort
sort, vsort 2-

Purpose
This command sorts the records in one or more ASCII text files and merges the sorted files
with a set of pre-sorted files, using collating sequences and sort keys specified either in the
command or in a sort control file.

Note: The OpenVOS GNU Tools layered product also supplies a command named
sort. When the GNU Tools product is installed and used as directed, the GNU Tools
version of this command is found before the OpenVOS version, depending upon
command library paths. Since the OpenVOS and GNU Tools commands behave
differently, you can use the alternate name (vsort) to ensure that you invoke the
OpenVOS version of the command.

Display Form

------------------------------------- sort -------------------------------------
sort_path_names:
-merge_path:
-output_path:
-exceptions_path:
-duplicates_path:
-control:
-statistics: no
-position_1: 1
-length_1: 32767
-collation_1: ascending_alphabetical
-position_2:
-length_2:
-collation_2: ascending_alphabetical
-position_3:
-length_3:
-collation_3: ascending_alphabetical
-position_4:
-length_4:
-collation_4: ascending_alphabetical
-sort_in_memory: 1000
-work_dir:
2-740

sort, vsort
Command Line Form

sort Ç È
[-output_path output_path_name] [-exceptions_path exceptions_path_name] [-duplicates_path duplicates_path_name] [-control control_path_name] [-statistics] [-position_1 position_1] [-length_1 length_1] [-collation_1 collation_1] [-position_2 position_2] [-length_2 length_2] [-collation_2 collation_2] [-position_3 position_3] [-length_3 length_3] [-collation_3 collation_3] [-position_4 position_4] [-length_4 length_4] [-collation_4 collation_4] [-sort_in_memory number_of_records] [-work_dir work_directory]

Arguments* sort_path_names
One or more names or star names of files to be sorted. If you specify more than one file
by giving either a star name or multiple file names, you must also specify an output
path. In this case, sort generates a sorted file that contains the records of all of the
files. You must specify either sort_path_names or merge_path_names.

* -merge_path merge_path_names
Specifies one or more names or star names of files to be merged with any files specified
in sort_path_names. If you do not supply a value for sort_path_names, you must
also specify a value for output_path_name. For multiple files, sort generates a
merged file that contains the records of all of the files. You must specify either
sort_path_names or merge_path_names.

* -output_path output_path_name
Specifies the path name of the file that is to contain the sorted and merged records. You
can omit this argument only when sort_path_names matches a single file name; in
this case, sort replaces the single input file with the sorted file.

* -exceptions_path exceptions_path_name
Specifies the file to which sort is to write all records that do not have the form required
for the sort. The command appends the extension .sort_exc to the path name that you
specify. If you omit this argument and output_path_name is the same as
sort_path_names, the command creates a default exceptions file when
sort_path_names matches a single file and gives it the name output_path_name

sort_path_names
-merge_path merge_path_names
OpenVOS Commands Reference Manual (R098) 2-741

sort, vsort
with the extension .sort_exc appended. This reduces the chance of accidental loss of
records. If you do not use -exceptions_path, and either specify a star name that
matches more than a single file for sort_path_names, or output_path_name does
not match the first sort path name, the command does not create a default exceptions
file. In this case, exceptional records are discarded.

* -duplicates_path duplicates_path_name
Specifies the file to which sort is to write records whose sort key value or values
match the values of another record. The command writes to the output file only the first
record found in the set of records having a single sort key value. If you do not give the
suffix .sort_dup in duplicates_path_name, the operating system adds it to the
name of the file when creating it. By default, sort writes all of the records in the set
to the output file in the order that it finds them.

* -control control_path_name
Specifies the sort control file. The sort control file defines the keys to be used in the
sort. See the explanation of the sort control file later in this section. If you do not supply
it in control_path_name, the operating system adds the suffix .dd to the name of
the file when searching for it.

* -statistics <CYCLE>
Displays the sort’s statistics on your terminal as the sort proceeds. By default, the
operating system does not display the statistics.

* -position_1 position_1
Specifies the position in a record of the substring to be used as the primary sort key. By
default, the first position in the record is the primary sort key.

* -length_1 length_1
Specifies the length of the substring to be used as the primary sort key. By default, the
value is 32,767.

* -collation_1 collation_1 <CYCLE>
Specifies the collating sequence for the primary sort key that the command is to use.
There are eight possible values.

ascending_alphabetical descending_alphabetical
ascending_ascii descending_ascii
ascending_numerical descending_numerical
ascending_ebcdic descending_ebcdic

By default, the collating code is ascending_alphabetical.

* -position_2 position_2 -length_2 length_2* -position_3 position_3 -length_3 length_3* -position_4 position_4 -length_4 length_4

Specify the positions in a record and the lengths of the secondary, tertiary, and
quaternary sort keys.
2-742

sort, vsort
* -collation_2 collation_2 <CYCLE>* -collation_3 collation_3 <CYCLE>* -collation_4 collation_4 <CYCLE>

Specify the collating sequences the command is to use with the secondary, tertiary, and
quaternary sort keys. By default, the collating sequence is
ascending_alphabetical.

* -sort_in_memory number_of_records
Specifies the number of records to be sorted in memory at one time. The command sorts
faster for a higher number. You must specify at least 100 records and at most
10,000 records. By default, the command sorts 1,000 records in memory at one time.

* -work_dir [work_directory]
Specifies that the temporary work files created when sorting the designated files reside
in a specified directory. The directory can be on the same or another disk of the current
module. If you specify -work_dir but do not specify work_directory, sort uses
the current directory. By default, the command uses the process directory of the current
module.

Explanation
The sort command sorts the records in a file or set of files and writes the sorted records to
an output file.

Specify the file(s) to be sorted in the argument sort_path_names. The arguments can be
devices. The sort command also merges the records in a set of files; specify the files with
-merge_path.

The sort command writes the sorted records to the output file specified in -output_path.
You can omit this only when sort_path_names matches a single file name; in this case, the
operating system overwrites the input file with the sorted file.

If you do not specify either -output_path or a control file (that is, a single file for
sort_path_names), the command creates a new file with the same organization and
characteristics as the specified file. This new file replaces the sorted file. See the Examples
section for examples.

You can use the control file to specify many characteristics of the output file; if you use the
control file, the command does not use attributes of the sorted file.

As a result of the sort, separate-key indexes are truncated, and embedded key indexes are
modified and will be correct.

Note: The sort command may not create 64-bit stream files as expected.

Specifying Sort Keys
The sort command sorts records using keys specified either in the command or in a sort
control file. You can specify up to four keys in the command, or up to 32 keys in a sort control
file. In the command or control file, specify the positions, the lengths, and the collating
sequences of the keys.
OpenVOS Commands Reference Manual (R098) 2-743

sort, vsort
In a sort command, you must specify a primary key if you specify a secondary key, both of
these if you specify a tertiary key, and all keys if you specify a quaternary key.

The primary key determines the sorted order of two records if their primary key values differ;
otherwise, the secondary key determines the sorted order when the primary key values of the
records are equal and the secondary key values differ; and so on.

If any record to be sorted is shorter than the minimum record size implied by a key
specification, the sort command rejects the record and writes it to the exceptions file or
device, if one was specified. In particular, if the last byte of the record plus 1 is less than the
starting point of the key, the record is placed in the exceptions file. For example, assume you
have four records.

Red
Yellow
Green
Blue

Sorting with -position_1 equal to 4 does not place Red in the exceptions file. Sorting with
-position_1 equal to 5 places Red in the exceptions file. Blue is not placed in the
exceptions file.

To remove blank lines from a file, you must specify a value of 2 for -position_1.

Specifying Collation Codes
The ascending collation codes sort records into ascending order, and the descending codes
sort records into descending order.

When you select either of the two ASCII collation codes, the sort command interprets the
data in the keys as ASCII characters and sorts the records according to the ASCII collating
sequence.

When you select either of the two alphabetical collation codes, the sort maps all of the
alphabetical characters in a key to a common case before sorting them, using the actual values
to resolve ties. The sort command trims leading and trailing spaces from keys and reduces
multiple spaces to one space in key values so that an alphabetical sort puts records into
alphabetical order.

When you select either of the two numerical collation codes, the key fields can contain only
characters that represent valid optionally signed constants and leading and trailing spaces.
The sort command trims the spaces from the key values. The resulting values are sorted as
numbers so the records are put into ordinary numerical order.

When you select either of the two EBCDIC collation codes, the sort command sorts the keys
according to the EBCDIC collating sequence. The records, nonetheless, must be ASCII
records.

Specifying a Working Directory
If you specify -work_dir, the command creates the temporary work files it needs in a
specified directory. If you want to sort a large file, and the current disk is relatively full, you
can use work space on an emptier disk in the current module. (Use the display_disk_info
2-744

sort, vsort
command to determine how much disk space is in use.) If you omit -work_dir, the
command creates the work files in the process directory of the current module. In either case,
if the directory in which the work files are to be created is located on a disk with inadequate
space, the command aborts the sort, displays an error message, and returns you to command
level.

Sort Control Files
Instead of supplying the sorting parameters as arguments in a command, you can specify them
in a sort control file. A sort control file names and describes the fields of a record in the file
or files to be sorted and merged. Next, it specifies the key or keys, which are simply the fields
in the records, used to sort the records. Finally, it can specify indexes to be created for the
sorted output file.

All data in a sort control file must be word-aligned, except pictured data, unaligned
non-varying character-string data, and unaligned bit-string data.

The following is an example of a sort control file.

field:
 name char(32) varying,
 age decimal(2),
 height decimal(2),
 weight decimal(3),
 modes bit(8),
 attributes char(64) varying;
key:
 age descending,
 name space_suppress,
 attributes order(user_collation) substr(5,10);
user_collation:
 'aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ';
index:
 name no_duplicates order(alphabetical);
organization:
 relative;
end;

In the preceding example, the fields supply the following information:

 field defines the records in the file to be sorted

 key specifies the fields of the records to be used as keys for sorting

 user_collation specifies the sequence in which the records are to be collated

 index designates an index or indexes that the operating system is to create when it
makes the output file
OpenVOS Commands Reference Manual (R098) 2-745

sort, vsort
 organization specifies the organization of the sorted output file. Extended
sequential files are denoted by sequential[N], where N represents one of the various
types of extended sequential files. See the description of the create_file command
for more information about extended sequential files.

 end is the last statement in this sort control file

If sort_path_names is an OpenVOS COBOL file, you must specify cobol using the
language statement. The following is an example of an OpenVOS COBOL sort control file.

language: cobol;

field:
 name pic 'x(32)',
 age pic '9(02)',
 height pic '9(02)',
 weight pic '9(03)',
 modes comp-4,
 attributes pic 'x(64)';
key:
 age descending,
 name space_suppress,
 attributes order(user_collation) substr(5,10);
user_collation:
 'aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ';
index:
 name no_duplicates order(alphabetical);
organization:
 relative;
 end;

Using the field Statement
Use the field statement to declare the fields in a record in the file to be sorted. The
declaration must name the field and declare its data type. All bytes from the beginning of the
record to a position that is guaranteed to contain all of the keys used in the sort must be
declared; you may need to add fields as fillers between the fields you want to use as keys.

A field statement has the following general form.

field:field_descriptor . . .;

The field_descriptor is the name of the field followed by the data type of the field, that
is, field_name data_type. When you give several field_descriptor terms in one
field statement, you must separate them with commas. A field name can contain up to
32 characters, letters, and numbers; the first character must be a letter.
2-746

sort, vsort
The following table shows the possible OpenVOS PL/I field data types.

The variables N, P, and Q are unsigned integers. The operating system uses the default values
shown in the table if you do not specify a value for these variables. The size of the
corresponding fields is also shown in the table.

The following table shows the possible OpenVOS COBOL field data types.

The variable i represents the number of integral digits; the variable f represents the number
of fractional digits for comp-6 fields.

At least one field statement is required in a sort control file, but you can give more than one.
The sequence of fields within a field statement and the sequence of field statements
define the sequence of fields in a record. For example, the following field statements define

OpenVOS PL/I Data Type Defaults Size

bit [(N)]
bit [(N)] aligned
char [(N)]
char [(N)] varying
char [(N)] aligned
char [(N)] varying aligned
fixed binary [(P)]
float binary [(P)]
fixed decimal [(P [,Q])]
float decimal [(P)]
picture 'picture-string'

N = 1
N = 1
N = 1
N = 1
N = 1
N = 1
P = 15
P = 24
P = 9,Q = 0
P = 7

N bits
2*ceiling(N/16) bytes
N bytes
N+2 bytes
2*ceiling(N/2) bytes
2*ceiling(N/2)+2 bytes
2*ceiling(P/15) bytes
4*ceiling(P/24) bytes
4*ceiling(P/9) bytes
4*ceiling(P/7) bytes
Length of picture-string bytes

OpenVOS COBOL Data Type Defaults Size

display pic 'x(N)'
display-2 pic 'x(N)'
display sync left pic 'x(N)'
comp-1
comp-2
comp-3 pic 's9(i)V9(f)'
comp-4
comp-5
comp-6 pic 's9(i)V9(f)'

N = 1
N = 1
N = 1
P = 24
P = 53

None
P = 15
P = 31

None

N bytes
2*!ceil(N/2)+2 bytes
2*!ceil(N/2)
4 bytes
8 bytes
(i+f)/2 + 1
2 bytes
4 bytes
4 bytes if i+f <= 9,
8 bytes otherwise
OpenVOS Commands Reference Manual (R098) 2-747

sort, vsort
the same sequence of record fields as the single field statement shown in the earlier
example.

field: name char(32) varying;
field: age decimal(2);
field: height decimal(2);
field: weight decimal(3);
field: modes bit(8);
field: attributes char(64) varying;

The order of the field statements defines the order of the fields in the records.

The keywords field and fields are interchangeable.

Using the key Statement
A key statement tells sort which collating sequence and field to use when sorting. At least
one of each is required. A key statement contains a field name, declared in a field
statement, a definition of a substring of the field to be used as the key, an indication of how
to treat space characters in the key, and the collating sequence to use when sorting the keys.
A key statement has the following general form.

key:key_descriptor . . .;

A key_descriptor consists of the name of a field declared in a field statement and one
or more options. If you specify more than one key_descriptor, separate them with a
comma.

A key_descriptor has the following general form.

® ¯ ¢substr (P [,L])£

® ¯

The options space_suppress and no_space_suppress tell the sort command whether
to trim leading and trailing spaces and reduce multiple spaces inside a field to one space. You
can specify only one of these options in a key descriptor. If you omit both in a key descriptor,
the value is space_suppress when the collating sequence is alphabetical or
numerical, and no_space_suppress otherwise.

The option substr(P [,L]) defines a substring of the field as the key. The integer P is the
position of the first character or bit in the substring, and the optional integer L is the length of
the substring. When you omit L, the last character or bit of the field is the last character or bit
of the substring. The sort command extracts a substring from a record before suppressing
spaces. If you omit a substr option from a key descriptor, the entire field is used as the key.

space_suppress
no_space_suppress

ascending
descending

order(ascii)
order(alphabetical)
order(alphabetical)
order(numerical)
order(ebcdic)
order(user_collation)
2-748

sort, vsort
The options ascending and descending specify the direction of the sort order. If you omit
both of these options from a key descriptor, the value is ascending.

The options order(ascii), order(alphabetical), order(numerical),
order(ebcdic), and order(user_collation) specify the collating sequence used to
sort the keys. The collating sequence codes have the same meaning as the previously
described codes you can give in a sort command. You can specify one of these collating
sequences only when the key is a character string. The code order(user_collation) tells
the sort command to use the collating sequence you give in a user_collation statement.
If you omit an order option, the value is alphabetical.

At least one key statement is required in a sort control file, but you can give more than one.
The sequence of fields within a key statement and the sequence of key statements define the
sequence of keys used to sort the records. For example, the following key statements define
the same sequence of keys as the single key statement shown in the earlier example.

key: age descending;
key: name space_suppress;
key: attributes order(user_collation) substr(5,10);

The keywords key and keys are interchangeable.

If you specify an order(user_collation) option in a key descriptor, you must give one
and only one user_collation statement in the sort control file. The user_collation
statement has the following general form.

user_collation: 'character_string';

character_string is the collating sequence.

Using the index Statement
An index statement tells the operating system to create an index or indexes for the output
file. It contains the name of the index, which must be the name of a field, an option specifying
whether duplicate keys are allowed in the index, and the collating sequence used to sort the
index. The index statement has the following general form.

index: index_descriptor . . .;

An index_descriptor consists of the name of a field declared in a field statement and
one or more options. The field must be declared as a character string (char for OpenVOS
PL/I, display for OpenVOS COBOL). If you specify more than one index_descriptor,
separate them with a comma.

The index_descriptor has the following general form.

field_name ¢ £ ® ¯
duplicates

no_duplicates

order(ascii)
order(alphabetical)
order(numerical)
OpenVOS Commands Reference Manual (R098) 2-749

sort, vsort
The options duplicates and no_duplicates determine whether duplicate keys are
allowed in the index. You can give only one; if you omit both, the value is no_duplicates.

The options order(ascii), order(alphabetical), and order(numerical) define
the collating sequence used to sort the keys in the index. You can give only one; if you omit
all three, the value is order(ascii).

An index statement is not required in a sort control file. You can give more than one. Also,
you can use the keyword indexes for the keyword index.

Using the organization Statement
An organization statement specifies the organization of the output file. If you omit this
statement, the organization of the output file is the same as the organization of the input file.

Using the language Statement
You must use the language statement to specify OpenVOS COBOL as the language of the
field descriptions in the sort control file. If you omit this statement, the sort command
defaults to OpenVOS PL/I.

Examples
In the following example, assume that seq_file is a sequential file with dynamic extents of
8 and implicit locking set.

sort seq_file

After the sort, seq_file has the same file characteristics as it did before the sort.

In the following example, assume that rel_file is a relative file with a maximum record
size of 10 and an embedded key index.

sort rel_file file_a -output_path new_file

After you specify the preceding command, new_file has the same characteristics as
rel_file, including its index. If new_file had existed before the sort, the command would
delete it and replace it with a new file with rel_file’s characteristics.

Related Information
For more information on creating indexes, see the description of the create_index
command. For more information on OpenVOS COBOL data types, see the VOS COBOL
Language Manual (R010). For more information on PL/I data types, see the OpenVOS PL/I
Language Manual (R009).
2-750

start_logging
start_logging 2-

Purpose
This command starts logging the I/O traffic through a port to a log file or I/O device.

Display Form

Command Line Form

start_logging path_name [port_name] [-append] [-file] [-record] [-no_reads] [-no_writes] [-opcode]
Arguments* path_name Required

The log file or I/O device.

* port_name
The port to be logged. By default, the start_logging command logs the first five
ports. See the Explanation section for more information.

* -append <CYCLE>
Appends the logged records to the end of the log file. By default, the operating system
truncates the log file before writing to it.

* -file <CYCLE>
Includes with a logged record the full path name of the file to which the logged record
was written, or from which the logged record was read. By default, the operating
system does not log the name of the file.

-------------------------------- start_logging ---------------------------------
path_name:
port_name: default_output
-append: no
-file: no
-record: no
-reads: yes
-writes: yes
-opcode: no
OpenVOS Commands Reference Manual (R098) 2-751

start_logging
* -record <CYCLE>
Includes with a logged record its record number and, when the access mode is
indexed, the key used to access the record. By default, the operating system does not
log the record number and key.

* -no_reads <CYCLE>
Omits from the log any records that are read through the port. By default, the operating
system logs all records that it reads through the port.

* -no_writes <CYCLE>
Omits from the log any records that are written through the port. By default, the
operating system logs all records that it writes through the port.

* -opcode <CYCLE>
Includes with a logged record a code for the operation (opcode) performed on the
record. By default, the operating system does not log an opcode.

Explanation
The start_logging command begins copying into a log file or to an I/O device the records
that pass through a port. Note that forms-related input is terminal specific and therefore not
logged.

The path_name argument specifies the log file or I/O device to which the logged records are
written. If you specify a file that does not exist, the operating system creates a sequential file
with the name path_name. If path_name is an I/O device that pauses after a given number
of lines of display, your own process pauses after that number of lines has been displayed on
the device, and you must respond to the device’s pause message to continue logging.

The port_name argument specifies the port that is to be logged. If you omit this argument,
the operating system logs the first five ports. However, if you specify the
attach_default_output command before you specify the start_logging command
with the default port name value of default_output, the operating system logs only the
default_output port.

If you specify the attach_default_output and detach_default_output commands
within a logging session, the operating system creates a zero-length file. For example:

start_logging log1.log
attach_default_output log.ado
list_port_attachments
detach_default_output
stop_logging

To create the expected log results, specify attach_default_output and
detach_default_output outside the logging session. For example:

attach_default_output log.ado
start_logging log1.log
list_port_attachments
stop_logging
detach_default_output
2-752

start_logging
Specifying -append appends logged records to the log file; otherwise, the file is truncated
first.

Specifying -file includes with the logged copy the path name of the source file or
destination file of a record passing through the port.

Specifying -record logs the record number and, when the access mode is indexed, the key
used to access each record.

Specifying -opcode includes a code with each logged record to indicate the action
performed on the record.

The -no_reads and -no_writes arguments allow you to select the type of I/O access
through the port that is logged.

A file can simultaneously be the log file of more than one port in your process.

Examples
Example 1.
Use the following command to start logging your default_output port to the file
log_file.90-04-10 in the current directory.

start_logging log_file.90-04-10

If the file log_file.90-04-10 does not exist, the operating system creates it. The log file
will contain copies of the records written through your default_output port.

Example 2.
Suppose that the current directory is %s1#d02>Sales>Smith, and that the only file it
contains is a small sample file named file_A. The following sequence of commands logs a
list of the files in the current directory, and produces a log file named log_file.

start_logging log_file
list -all
stop_logging
OpenVOS Commands Reference Manual (R098) 2-753

start_logging
The contents of log_file might look like this.

list

Files: 2, Blocks: 1

w 1 file_A
w 0 log_file

Directories: 1

m 1 directory_A

Links: 0

stop_logging

Example 3.
If you specify -opcode in the command line, the log file contains opcodes for each record
logged. If you issue the list command for files only, the contents of log_file might look
now like this:

%s1#d02>Sales>Smith>log_file 90-10-12 12:21:30 EST

/************** s$start_logging ****************/
call s$start_logging(terminal, '%s1#d02>Sales>Smith>log_file', 25,
0);
/***/

/***************** s$control *******************/
call s$control(terminal, 224, ***, 0);
/***/

/***************** s$control *******************/
call s$control(terminal, 230, ***, 0);
/***/

/***************** s$control *******************/
call s$control(terminal, 226, ***, 0);
/***/

/**************** s$seq_read *******************/
call s$seq_read(terminal, 300, 4, '...', 0);
/******************* '...' *********************/
list
/***/

/***************** s$control *******************/
call s$control(terminal, 1, ***, 0);
/***/

(Continued on next page)
2-754

start_logging
(Continued)

/**************** s$seq_write ******************/
call s$seq_write(terminal, 0, '...', 0);
/******************* '...' *********************/

/***/

/**************** s$seq_write ******************/
call s$seq_write(terminal, 19, '...', 0);
/******************* '...' *********************/
Files: 2, Blocks: 1
/***/

/**************** s$seq_write ******************/
call s$seq_write(terminal, 0, '...', 0);
/******************* '...' *********************/

/***/

/**************** s$seq_write ******************/
call s$seq_write(terminal, 15, '...', 0);
/******************* '...' *********************/
w 1 file_A
/***/

/**************** s$seq_write ******************/
call s$seq_write(terminal, 17, '...', 0);
/******************* '...' *********************/
w 0 log_file
/***/

/**************** s$seq_write ******************/
call s$seq_write(terminal, 0, '...', 0);
/******************* '...' *********************/

/***/

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-755

start_logging
(Continued)

/***************** s$control *******************/
call s$control(terminal, 224, ***, 0);
/***/

/***************** s$control *******************/
call s$control(terminal, 230, ***, 0);
/***/

/***************** s$control *******************/
call s$control(terminal, 226, ***, 0);
/***/

/**************** s$seq_read *******************/
call s$seq_read(terminal, 300, 12, '...', 0);
/******************* '...' *********************/
stop_logging
/***/

/***************** s$control *******************/
call s$control(terminal, 1, ***, 0);
/***/

/************** s$stop_logging *****************/
call s$stop_logging(terminal, 0);
/***/

Related Information
See also the descriptions of the attach_default_output, detach_default_output,
and stop_logging commands.
2-756

start_process
start_process 2-

Purpose
This command creates and starts a noninteractive process.

Display Form

Command Line Form

start_process command_line [-process_name process_name] [-output_path output_path_name] [-priority priority_number] [-privileged] [-module module_name] [-current_dir directory_name] [-wait] [-root] [-cpu_limit cpu_time] [-memory_pool memory_pool_number]
Arguments* command_line Required

The command line that the started process is to execute.

* -process_name process_name
Names the process. By default, start_process gives the process a name derived
from the first word in command_line. If it is a valid path name, the command uses the
file-name portion with any suffixes removed. If the resulting name is longer than 32
characters, the command uses the first 32 characters. If the resulting file name contains
an apostrophe or is invalid, the command uses the name start_process.

-------------------------------- start_process ---------------------------------
command_line:
-process_name:
-output_path:
-priority:
-privileged: no
-module:
-current_dir: current_dir
-wait: no
-root: no
-cpu_limit:
-memory_pool: default
OpenVOS Commands Reference Manual (R098) 2-757

start_process
* -output_path output_path_name
Specifies an output file or device to attach to the default_output port of the started
process. If you specify #null for output_path_name, the output is discarded. By
default, start_process attaches the port to a file in your current directory. The
command derives the name of the file from the first word in the command_line
argument. If it is a valid path name, the command uses the file-name portion with any
suffixes removed and appends the suffix .out. If the resulting file name is too long, the
command uses the first 28 characters and appends the .out suffix. If the resulting file
name contains an apostrophe (‘) or is invalid, the command uses the name
start_process.out.

* -priority priority_number
Specifies the priority of the started process. The range of process priorities is from
0 to 9. Only a privileged user can start a process with a priority higher than the
maximum priority of the current process. By default, start_process gives the new
process the same priority as your current process. You can use the (process_info)
command function to determine the priority of your current process.

* -privileged <CYCLE>
Starts the process as a privileged process. By default, the process is not privileged. Only
a privileged process can start another privileged process.

* -module module_name
Specifies the module on which the process is started. By default, start_process
starts the process on your module.

* -current_dir directory_name
Sets the current directory of the started process to directory_name. By default,
start_process uses your current directory. Specifying a new current directory does
not change the default location of the output path.

* -wait <CYCLE>
Finishes executing the commands in command_line before returning your process to
command level. By default, start_process immediately returns your process to
command level after starting the process.

* -root <CYCLE>
Starts the process with the user name root.root. By default, this command uses the
user name of the current process to start the process. Only a process with a user name
of Overseer.System or root.root can specify this argument. This argument is
intended for use within the module_start_up.cm file.

* -cpu_limit cpu_time
Specifies the upper boundary on the amount of CPU time, in seconds, that the started
process can consume. By default, start_process puts no limit on the amount of
CPU time the started process can use.

* -memory_pool memory_pool_number <CYCLE>

When starting a process, this argument specifies the CPU memory pool with which the
process will be associated. Allowed values are default and 0 for ftServer modules. If
2-758

start_process
you do not specify a value, the default value is default, which indicates that
OpenVOS is using memory pool 0.

Explanation
The start_process command creates and starts a new process.

The home directory of a started process is the same as the home directory of the starting
process. If the home directory contains the startup command macro, the operating system
executes it before executing the commands in command_line. Abbreviations in the
command line command_line are expanded using the abbreviations file of the started
process, not the starting process.

If you specify -wait, the command processor waits until the command or commands in
command_line finish before starting the next command. You can use -wait when the
command is in a command macro, and the rest of the macro depends on the results of the
started process.

The -memory_pool argument specifies the memory pool with which a process will be
associated. All ftServer modules have only one memory pool.

All messages sent by the start_process command to the system error log contain the date
and time on which the process was started.

Examples
Example 1.
The following command starts a process to compile the OpenVOS COBOL source module
make_reports.cobol in the current directory.

start_process 'cobol make_reports -list'

The operating system names the process cobol. It creates the default output file cobol.out
in the current directory.

Example 2.
This command starts a process that executes the program program1.pm.

start_process program1.pm -output_path results

The operating system names this process program1 and creates an output file results.out
in the current directory for output messages.

Related Information
For information on creating an interactive subprocess after your initial login, see the
description of the login command. For information on how to stop a started process, see the
description of the stop_process command.
OpenVOS Commands Reference Manual (R098) 2-759

stop_logging
stop_logging 2-

Purpose
This command stops logging a port.

Display Form

Command Line Form

stop_logging [port_name]
Arguments* port_name

The port to stop logging. By default, stop_logging uses your default_output
port.

Explanation
The stop_logging command tells the operating system to stop logging the port
port_name or your default_output port.

If the log file or device is not logging any other port, the operating system closes the file or
clears the port.

Examples
The following command stops logging the port accounts_recv in the current directory.

stop_logging accounts_recv

Related Information
See also the descriptions of the attach_default_output, detach_default_output,
and start_logging commands.

--------------------------------- stop_logging ---------------------------------
port_name: efault_output d
2-760

stop_process
stop_process 2-

Purpose
This command stops a process or set of processes.

Display Form

Command Line Form

stop_process [process_name]

[-user user_name] [-module module_name] [-no_ask]
Arguments* process_name

The name or star name of a process or set of processes to be stopped. The command
stops all of the processes whose names match process_name, except for the process
issuing the command. If process_name is a star name and you do not specify
-no_ask, the command asks you for confirmation before stopping each process. By
default, the operating system stops all processes identified by -user or -module.

* -user user_name
Specifies the name or star name of a user or set of users. This allows you to stop only
the processes named process_name that were started by the specified users. By
default, the operating system uses your user name. The command does not stop the
process from which you issue the command. Your process must be privileged to stop
another user’s process.

* -module module_name
Specifies the module executing the processes to be stopped. By default, the operating
system uses the module executing your login process.

--------------------------------- stop_process ---------------------------------
process_name:
-user: current_user
-module:
-ask: yes

*

OpenVOS Commands Reference Manual (R098) 2-761

stop_process
* -no_ask <CYCLE>
Suppresses the prompt, when you specify a star name for process_name, asking
whether to stop a process with a matching name. By default, the operating system asks
before stopping each process.

Explanation
The stop_process command stops the processes specified by process_name belonging
to the user user_name on the module module_name.

Use stop_process to stop a process started by mistake or to stop a process that is looping
indefinitely or otherwise in error.

If your process is not privileged, you can only stop processes that have your person name. A
privileged process can stop any process except the process issuing the command. (The
stop_process command cannot stop the process issuing it. See the description of the
logout command.)

The stop_process command terminates a process without creating a keep module; to
suspend a noninteractive process for debugging purposes, use the break_process
command.

When the operating system stops a process, it closes all files the process opened that can be
closed, detaches all ports the process attached, detaches all events the process attached, and
unlocks all locks the process locked.

If you are stopping certain system processes, you are prompted for confirmation before those
processes are stopped, even if you specify -no_ask.

Examples
Example 1.
If you have more than one process and you issue the stop_process command using a star
name for process_name, the system issues the following prompt.

Verify processes to be stopped.
 Smith.Sales(login)? (yes,no,info)

If you type yes at the prompt, the process is stopped; if you type no, the process continues
uninterrupted. If you specify info, the system displays information about the subprocess
level, program name, PID (that is, the process identifier of the process), and login time of the
process. If the process is interactive, the system returns the terminal name from which the
process was started. The system does not return a terminal name if the process is not
interactive or if the process is logged in remotely from a module that is not running a current
version of the operating system.

The system then issues the prompt again.

Logged in at 90-02-19 07:33:26 EDT, sub-process level 0.
Running emacs.pm on %s1#t1.6, PID 011D88DDx.
 Smith.Sales(login)? (yes,no,info)
2-762

stop_process
If your process is at command level, the system returns the following information.

Logged in at 90-02-19 07:33:26 EDT, sub-process level 0.
Running on %s1#t1.6, PID 011D88DDx.
 Smith.Sales(login)? (yes,no,info)

Example 2.
To stop the processes named update_reports and update_accounts that you started
earlier on the current module, use this command.

stop_process update_*

Example 3.
The stop_process command can stop a process that has locked a file in order to unlock the
file. Stopping a process releases all of the resources the process reserved, including locked
files. Suppose a file, receipts, is locked but you do not know which process locked it. The
who_locked command tells you. With that information, you can stop the process.

For example, the following command tells you the names of the processes that currently have
receipts locked.

who_locked receipts

Suppose that only the process update_receipts has receipts locked, and that
update_receipts is preventing you from using it. (Perhaps update_receipts is a long
interactive session or is looping infinitely.) Issue this command.

stop_process update_receipts

The command stops the process update_receipts and consequently unlocks receipts.

Related Information
For information on starting a process, see the description of the start_process and login
commands. For information on stopping a process and keeping a record for debugging, see
the description of the break_process command. For information on stopping your login
process, see the logout command. For information on sending signals to one or more
processes, see the description of the kill command.
OpenVOS Commands Reference Manual (R098) 2-763

tail_file
tail_file 2-

Purpose
This command enables you to display the last part of a file or files.

Display Form

Command Line Form
tail_file file_path_name [-records num_records] [-match character_string] [-follow] [-no_check_lockers]

Arguments* file_path_name Required
The path name or star names of the file or files you want to display. The files may
contain only ASCII text and standard control characters. They may not contain any
word processing format information.

* -records num_records
Begins displaying the file at the designated number of lines from the end of the file. If
you omit this argument, the command displays the last ten lines of the file.

* -match character_string
Displays only the lines in the files that contain the character string
character_string. The command disregards the case of the alphabetical characters.

* -follow <CYCLE>
If the file is implicitly locked by another program or other programs, causes the
command to read from the end of the file until the file is unlocked or BREAK is signalled.
If a star name matches more than one file, the -follow argument is ignored.

* -no_check_lockers <CYCLE>
When used with the -follow argument, causes the command to display the file even
when there are no other processes that have the file open. If you omit this argument, and

---------------------------------------tail_file -------------------------------
file_path_name:
-records: 10
-match:
-follow: no
-check_lockers: yes
2-764

tail_file
invoke tail_file with the -follow argument, the command stops displaying the file
when no other processes have the file open or when BREAK is signalled.

Explanation
The tail_file command enables you to display the last part of an ASCII text file or files,
depending upon the criteria you choose. If you give the command with only a file name or
star name, and no arguments, the command displays the last 10 lines of the file or files.

The -match argument allows you to display only the lines containing the string
character_string. If character_string contains spaces, you must enclose the string
in apostrophes (‘). This argument is convenient for displaying only the portions of a file that
contain a particular string and for identifying all files that contain the string.

You can use the -follow argument to display output added to an implicitly locked file by a
background process as the process executes. In order for the command to display this
information, the file must be open for implicit locking by all processes accessing the file.

When invoked with the -check_lockers argument and the -follow argument, the
tail_file command continues to display the file contents, including any output added by
another process which has the file locked implicitly, until all processes have closed the file or
BREAK is signalled.

You can use the -no_check_lockers argument to track a file even when no other processes
have the file open. This is particularly useful for displaying system error log files which may
receive error reports at irregular intervals, and therefore may not be open by a process at all
times.

Access Requirements
You must have read access to the specified file or files in order to display them.

Examples
The following examples show several uses of this command.

Example 1.

 Type this command to display the last ten lines of the file reports.

tail_file reports

Example 2.

Type this command to display the last 30 lines of the file rpts.93 along with all other
files which match the star name rpts.*

tail_file rpts.* -records 30
OpenVOS Commands Reference Manual (R098) 2-765

tail_file
Example 3.

Type this command to display the last 15 lines of the file rpts.93, followed by any
lines that are appended to rpts.93 between the initiation and completion of the
tail_file command.

tail_file rpts.93 -records 15 -follow -no_check_lockers

Related Information
See also the description of the display_file command.
2-766

temacs
temacs 2-

Purpose
This command provides an alternate version of the Emacs text editor for use within the bash
shell. It creates stream files, uses the traditional key bindings, and accepts POSIX-style path
names.

Display Form

Command Line Form

temacs [file_names . . .]

[-start_up_path start_up_path_name] [-num_windows number] [-backup] [-keystrokes] [-keystrokes_dir keystrokes_path_name] [-flow_control] [-nls] [-dictionary dictionary_path_name] [-organization organization] [-record_size record_size] [-character_set character_set] [-shift_mode shift_mode] [-pathname_style style_name] [-compatibility method_name]

------------------------------------ emacs -------------------------------------
file_names:
 -start_up_path: current_start_up_path_name
 -num_windows: 1
 -backup: no
 -keystrokes: no
 -keystrokes_dir: current_directory
 -flow_control: no
 -nls: no
 -dictionary: current_dictionary_path_name
 -organization: stream
 -record_size:
 -character_set: none
 -shift_mode: none
 -pathname_style: posix
 -compatibility: traditional
OpenVOS Commands Reference Manual (R098) 2-767

temacs
Arguments
Note: Except for the -organization, -pathname_style, and -compatibility
arguments, the arguments of the temacs command are identical to those shown in the
description of the emacs command. See the description of the emacs command for
more information about the arguments not shown here.

* -organization organization <CYCLE>
Specifies one of the following types of file organization for the new file.

 sequential
 stream
 relative
 fixed

By default, the temacs command creates a stream file. In contrast, the non-POSIX
emacs command creates a sequential file by default.

* -pathname_style style_name <CYCLE>
Determines whether Emacs interprets path names as POSIX-style (slash-separated or
greater-than-separated) path names or as OpenVOS-style (greater-than-separated) path
names. Possible values for style_name are posix or vos. By default, the temacs
command interprets all path names as POSIX-style path names. In contrast, the
non-POSIX emacs command interprets all path names as OpenVOS-style path names
by default.

This argument applies to all input path names, whether on the command line, given to
prompts, or processed by the <ESC><TAB> completion action. It also applies to the path
names that are arguments to the -dictionary, -start_up_path, and
-keystrokes_dir arguments. This argument has no effect on output path names;
Emacs always displays OpenVOS-style path names.

* -compatibility method_name <CYCLE>
Determines whether Emacs commands and mode settings are initialized to their
“traditional” values (that is, GNU Emacs values) or to OpenVOS-specific values.
Possible values are vos or traditional. By default, the temacs command initializes
its commands and mode settings to traditional values. In contrast, the non-POSIX
emacs command initializes its commands and mode settings to OpenVOS-specific
values.

Description
The temacs command is a shell script that provides an alternate version of the Emacs text
editor for use within the bash shell. When you are within the bash shell and specify the
temacs -form command, the display form for the emacs command appears. However, the
default values for the -organization, -pathname_style, and -compatibility
arguments differ from those of the non-POSIX emacs command.

Access Requirements
You need read access to a file in order to read it into an Emacs buffer. To write the contents
of an Emacs buffer to a file, you need modify access to the directory and write access to the
2-768

temacs
file (which can be specified in the default access list for the directory or the access list for the
file).

Examples
In the following example, the bash command opens a bash shell. The temacs command
then opens a file named test in Emacs.

ready 13:22:32
bash
bash-2.05$ temacs test

Related Information
See the VOS Emacs User’s Guide (R093) for a complete description of Emacs requests. See
also the descriptions of the emacs and vemacs commands.
OpenVOS Commands Reference Manual (R098) 2-769

text_data_merge
text_data_merge 2-

Purpose
This command generates form letters by replacing identifiers in documents with character
strings, using records read in from a value file.

Display Form

Command Line Form

text_data_merge primary_file [-value_file value_file_name] [-data_definition_file data_definition_file_name] [-output_file output_file_name] [-sample] [-notify]
Arguments* primary_file Required

The name of an input form letter that contains text and instructions that the operating
system uses when it generates output form letters through reformatting and text
substitution. The primary file must be in one of four formats: edit, emacs, SOS-WP,
or plain text.

* -value_file value_file_name
Specifies the file whose records contain the values to be substituted for the identifiers
in the primary file. The value file can be a mailing list, such as a purchased or internal
list, or can be created with the create_table command or a text editor. In any case,
you must describe the record structure in a data description file specified in the
-data_definition_file argument. By default, the operating system looks for a file
named primary_file.value in the current directory; if no such file exists, you
receive an error message and return to command level.

------------------------------- text_data_merge --------------------------------
primary_file:
-value_file:
-data_definition_file:
-output_file:
-sample: no
-notify: no
2-770

text_data_merge
* -data_definition_file data_definition_file_name
Specifies the file that describes the format of the data in the value file. By default, the
operating system looks for a file named primary_file.dd in the current directory; if
no such file exists, you receive an error message and return to command level.

* -output_file output_file_name
Specifies the name of the file that contains the merged form letters after
text_data_merge finishes generating them. By default, the command creates a file
named primary_file.tdm_out in the current directory. In either case, the command
opens the output file before attempting to open any input files. If it cannot open any
input file, the command writes an error message to the output file.

* -sample <CYCLE>
Performs a sample merge rather than a full merge. A sample merge merges only the first
record in the value file with a copy of the primary file, so that you can verify the
correctness of the merge before running a full merge. A full merge merges all records
in the value file.

* -notify <CYCLE>
Sends a message when all merges are completed.

Explanation
The text_data_merge command generates form letters by replacing identifiers within the
text of a primary document with character strings from records read from a value file.

The command writes the results to an output file that contains one merged copy of the primary
document for each record in the value file. The output form letters, separated by page breaks,
are ready to print. The text_data_merge command can be called interactively or through
the batch processing system.

The text_data_merge command uses four files (note that these files cannot have extended
names):

1. a primary file containing the form letter and identifiers to be replaced

2. a value file containing the fields to replace the identifiers in the primary file

3. a data definition file defining the records in the value file

4. an output file containing the merged form letters after the program has executed.

You must provide the first three files before invoking text_data_merge. The fourth is
created by the program. All four files are described in the following sections.

Primary Files
A primary file is a combination of the following:

 text
 text_data_merge functions
 embedded replacement references
OpenVOS Commands Reference Manual (R098) 2-771

text_data_merge
The following example creates a primary file and names it form_letter.

&LET h1 = 'Acme Corporation'
&LET h2 = '100 Main Street'
&LET h3 = 'Boston, Ma. 02111'

&FORMAT OFF
 &h1&
 &h2&
 &h3&

 &Name&
 &Street&
 &City&
&FORMAT ON

Dear &Name&,

In reference to your account, number &AccountNo&, please note
the status of your payment schedule.

&FILE 'document1'&

 .
 .
 .

May we expect a prompt reply?

&FORMAT OFF
 Sincerely,
 Joyce Jones
 Account Department
&FORMAT ON

The text_data_merge functions and embedded replacement references are described later
in this section.

All text_data_merge functions and embedded replacement references are delimited by the
& character, unless a different delimiter character is specified. (See the description of the
&SET_DELIMITER function later in this command description.) Embedded references have
the form &identifier&, with a delimiter on each side of the identifier name. These
references are replaced by the corresponding value of that identifier from the current record
in the value file. Functions have the form &KEYWORD qualifiers; they must begin a line,
with the delimiter character in column one; any text on the line other than the function is
disregarded.

The parsing of embedded references begins at the opening & and terminates at the next &, at
which time text_data_merge attempts to make a replacement as described.

If the text_data_merge command finds a space within the identifier string, or if the end of
the line is reached, the command views this potential identifier simply as text and includes it
2-772

text_data_merge
in the form letter unchanged. It then continues to search for another text_data_merge
code. This is not considered to be an error in the primary file.

Embedded Replacement References
Table 2-34 lists the replacement references that you can use to create primary files. These
references are described in the text that follows.

34

* &identifier&
The identifier is the name of a field defined in the data definition file or the name
of a local variable. There cannot be any spaces within identifier or between an
ampersand (&) and identifier.

* &FILE 'string'&
The #FILE reference reads the contents of the secondary file string in an output form
letter. The value of string must be a string constant that names a file. It cannot be a
local variable name or the name of an identifier from the current record in the value
file. The secondary file is processed like the primary file, and all functions and
references are interpreted as the text is included. Once the end of the file is reached, the
text_data_merge command continues to process the primary file.

Note: The #FILE reference can only appear within a primary file, not a
secondary file. If the #FILE reference appears within a secondary file,
text_data_merge aborts.

* &IF string1=string2 THEN identifier ELSE identifier&
The strings string1 and string2 can be values of an identifier taken from the
current record of the value file, the names of local variables, string constants of the form
'string_constant', or text_data_merge functions.

The identifier in the THEN and ELSE clauses can be an identifier from the value file
or the name of a local variable.

If the ELSE clause is missing, the value of the second identifier is assumed to be the null
character string.

* &LET identifier = 'string_constant'
This function must start in column 1 and be the only text on the line. When the
text_data_merge command processes the primary file, all occurrences of
&identifier& are replaced with string_constant.

Table 2-34. Embedded Replacement References

Reference Reference Type

&identifier& Simple replacement reference

&FILE 'string'& File reference

&IF string1 = string2 THEN identifier
ELSE identifier&

Conditional replacement
reference

&LET identifier = 'string_constant' Local variable
OpenVOS Commands Reference Manual (R098) 2-773

text_data_merge
Text Data Merge (TDM) Functions and Keywords* &function&
A function can be one of the following keywords.

The date, day, and time will be in this form.

January 1, 1990
Tuesday
10:00 am

* &keyword value
These functions must begin in column 1 and be the only text on the line. The values for
keyword and value are as follows:

&TDM ON/OFF
If you set TDM to OFF, the text_data_merge command does not attempt to find
functions or references in any text that appears after the line on which the
function appears. If you set TDM to ON, the command looks for functions and
references in the text. The default value of TDM is ON.

&FORMAT ON/OFF
Unformatted text files can be formatted using the &FORMAT ON/OFF command.
When you request formatting, the right margin is set to column 70. The first and
second lines of each paragraph keep their current starting columns, and the
remainder of the paragraph is indented to the same column as the second line.
However, the left margin of every line in the output file must be at least
10 columns; if the left margin of any line is less than 10, it is set to exactly
10 columns.

For plain, unformatted text, if you set FORMAT to OFF, the text_data_merge
command does not format any text that appears after the line on which the
function appears. The text appears precisely as entered in the primary file. The
default value of FORMAT is ON.

When the primary file is a formatted document created using the word processing
editor, the reformatting of the output file is totally controlled by the format
information specified in the primary file. In this case, it is unnecessary to use the
#FORMAT control function.

Keyword Description

DATE The local date when the text_data_merge command began running

DAY The local day of the week when the text_data_merge command began
running

TIME The local time when the text_data_merge command began running
2-774

text_data_merge
&SET_DELIMITER to 'delimiter_char'
This function changes the text_data_merge delimiter character to the valid
delimiter you specify. (The text_data_merge command will always recognize
&SET_DELIMITER, even if you have set the delimiter to some character other
than an ampersand (&).)

Value File
You can create a value file using either the create_table command or a text editor. This
file is usually named primary_file.value.

To create a value file using the create_table command, you must create a .tin (table
input) file such as the following:

/ =Name D. Clarke
 =Street 1 Shady Lane
 =City Riverside, MA 01701
 =AccountNo 36225

/ =Name J. Smith
 =Street 5 Pleasant Drive
 =City Marlboro, MA 01752
 =AccountNo 22591

With this .tin file as input, the create_table command produces a table file that looks
like this.

D. Clarke 1 Shady Lane Riverside, MA 01701 36225
J. Smith 5 Pleasant Drive Marlboro, MA 01752 22591

This table file can be a value file; for example, form_letter.value. Note that in the table
file, all records must be the same length; if the length of the information contained in a field
is less than the length of the field as defined in the data definition file, the field is padded on
the right with spaces. (A description of data definition files appears in the ‘‘Data Definition
File” section.)

See the OpenVOS System Administration: Configuring a System (R287) for a description of
the create_table command and for information about .tin files and table files.

To create a value file with an editor, first create the file by invoking the create_file
command. Set -organization to fixed and -record_size to the total length of the
fields you want to enter. Then, using an editor, type records into the file, being sure to
blank-fill any fields that are shorter than the maximum length specified in the file.

Default delimiter:
Valid delimiter characters:

&
& @ # $ % ^ * +
~ | \ [] < > { }
OpenVOS Commands Reference Manual (R098) 2-775

text_data_merge
Data Definition File
The data definition file describes the format of the value file to enable the
text_data_merge command to process the records. The data definition file, usually a file
with the suffix .dd, must be in a form like this.

organization: fixed;

field: Name char (20);
field: Street char (25);
field: City char (25);
field: AccountNo char (5);

end;

The field specifications in this file, form_letter.dd, match the format of the data in the file
form_letter.value.

Output File
When you invoke the text_data_merge command interactively, the command writes all
error messages both to your terminal and to an error file with the name
output_file.error.

If no errors occur while the text_data_merge command processes, no
text_data_merge codes appear in the output file, since these codes are all interpreted by
the command. However, if the program cannot interpret any codes in the primary file, the
program stops after the first merge completes, producing only one copy of the form letter. If
this occurs, all codes that text_data_merge does not recognize are left in the output file
text.

After the merge finishes, look at the output file to verify that the resulting form letter is
correct, and that all codes were interpreted as expected.

Examples
Assume that the current directory contains the following files.

 form_letter, the sample primary file
 form_letter.value, the sample value file
 form_letter.dd, the sample data definition file
 document1, a text file referenced by &FILE that begins with 'The terms of our

agreement...'

The following command will produce one output form letter in the output file
form_letter.tdm_output.

text_data_merge form_letter -sample
2-776

text_data_merge
The contents of the file will look like this.

 Acme Corporation
 100 Main Street
 Boston, Ma. 02111

D. Clarke
1 Shady Lane
Riverside, MA 01701

Dear D. Clarke,

In reference to your account, number 36225, please note
the status of your payment schedule.

'The terms of our agreement...'
 .
 .
 .

May we expect a prompt reply?

 Sincerely,
 Joyce Jones
 Account Department

‘0C

The ‘0C characters that appear between documents in such an output file are a page-break
instruction for a printer.

The command that generates the previous form letter also produces an empty error file named
form_letter.error.
OpenVOS Commands Reference Manual (R098) 2-777

translate_links
translate_links 2-

Purpose
This command changes a system name, disk name, or directory name in link targets
throughout a directory hierarchy. This command is useful when you move a disk from one
system to another or when you change the name of a disk or a system.

Display Form

Command Line Form

translate_links [-root_dir root_dir_path_name]

[-old_system old_system_name] [-new_system new_system_name] [-old_disk old_disk_name] [-new_disk new_disk_name] [-old_dir old_dir_path_name] [-new_dir new_dir_path_name] [-log]
Arguments* -root_dir root_dir_path_name

Specifies the directory that is the root of the directory hierarchy throughout which the
operating system is to change the disk or system name. The default value is the current
directory.

* -old_system old_system_name
Specifies the system name to be changed. This argument is required if -new_system
is specified.

-------------------------------- translate_links -------------------------------
-root_dir: urrent_dir
-old_system:
-new_system:
-old_disk:
-new_disk:
-old_dir:
-new_dir:
-log: no

c

2-778

translate_links
* -new_system new_system_name
Specifies the new system name. This argument is required if -old_system is
specified.

* -old_disk old_disk_name
Specifies the disk name to be changed. This argument is required if -new_disk is
specified.

* -new_disk new_disk_name
Specifies the new disk name. This argument is required if -old_disk is specified.

* -old_dir old_dir_path_name
Specifies the path name to be changed. This argument is required if -new_dir is
specified. If -old_dir is specified, then -old_system and -old_disk must be
omitted.

* -new_dir new_dir_path_name
Specifies the new path name. This argument is required if -old_dir is specified.

* -log <CYCLE>
Displays the names of the old and new targets of each link as the names are changed.
By default, translate_links does not display the names.

Explanation
The translate_links command changes a system name, a disk name, and a directory
name throughout the specified directory hierarchy.

The name of the command reflects the fact that disk names, system names, and directory
names are stored in links throughout a directory hierarchy.

If you specify both -old_system and -old_disk, a link is translated only if its target is on
%old_system_name# old_disk_name.

If you specify -old_disk but omit -old_system, a link is translated only if its target is on
%current_system# old_disk_name.

This command checks for and deletes circular links. (A circular link is a link that points to
itself.)

Access Requirements
You need modify access to a directory in order to translate its links.
OpenVOS Commands Reference Manual (R098) 2-779

translate_links
Examples
The following command changes the name of the disk disk_2 to the new name, d02,
throughout the current directory hierarchy.

translate_links -old_disk disk_2 -new_disk d02

Related Information
The translate_links command is one of the steps in the procedure for changing a disk
name or a system name. For more information, see the OpenVOS System Administration:
Configuring a System (R287).
2-780

truncate_file
truncate_file 2-

Purpose
This command truncates a specified file and all of its indexes.

Display Form

Command Line Form

truncate_file file_name . . . [-retain] [-brief]
Arguments* file_name Required

One or more names or star names of files to be truncated.

* -retain <CYCLE>
Retains the allocated disk space for the files when they are truncated. You cannot
specify this argument for statically-allocated extents (SAE) files. By default, the
operating system frees the disk space.

* -brief <CYCLE>
Suppresses the display of each file name that matches a star name before the file is
truncated. By default, truncate_file displays the name(s).

Explanation
The truncate_file command truncates the specified file to zero length and truncates all
of the file’s indexes. The command deletes all the records of the file, but neither the file nor
any of its indexes is deleted.

Note: You cannot set RAM file usage on SAE files, because truncating an SAE file
reverts it to a normal file. Similarly, truncating a RAM file with an SAE index reverts
the index to a normal index without extents. See set_ram_file for more
information about RAM files.

-------------------------------- truncate_file ---------------------------------
file_name:
-retain: no
-brief: no
OpenVOS Commands Reference Manual (R098) 2-781

truncate_file
Access Requirements
You must have write access to a file in order to truncate it.

Examples
The following command truncates the file receipts in the current directory.

truncate_file receipts -retain

The command also retains the disk blocks already allocated to the file. When records are
written to the file, the retained disk space will be reused before new disk blocks are allocated.

Related Information
See also the command descriptions of compare_files, copy_file, create_file,
display_file_status, dump_file, locate_files, and move_file.
2-782

unbundle
unbundle 2-

Purpose
This command extracts files that were combined with the bundle command.

Display Form

Command Line Form
unbundle source_file[destination_dir] [-extract_only star_name...] [-no_overwrite] [-backup] [-keep_dates] [-restore_acls] [-list_only] [-brief]

Arguments* source_file Required
Either the path name of a file that was created with the bundle command, or the path
name of a file, received as email, that contains a uuencoded or MIME (base64) encoded
attachment.

If the file was created with the bundle command, you must specify all of the suffixes,
just as they appear in the file’s name. You cannot specify a star name.

If the file was received as email, you can name it was any suffix or with no suffix.

Table 2-35 shows the suffixes that the bundle command appends to destination files.

--------------------------------- unbundle ---------------------------------
source_file:
destination_dir:
-extract_only:
-overwrite: yes
-backup: no
-keep_dates: no
-restore_acls: no
-list_only: no
-brief: no
OpenVOS Commands Reference Manual (R098) 2-783

unbundle
35

Some file-transfer programs (for example, Microsoft® Internet Explorer®) may
translate all but the last period to underscores. Therefore, a name such as
sendfile.save.evf.gz may be translated to sendfile_save_evf.gz. The
unbundle command accepts either version of the name.

* destination_dir
The path name of the directory where you want the extracted files restored. If the
directory contains files of the same name as one of the extracted files, the old file is
silently overwritten unless you specify -no_overwrite.

* -extract_only star_name
Specify this argument only when you do not want to extract all of the files in the bundle
source. Enter a list of star names that you want to extract from the bundle source. They
must be object names, but you cannot specify a directory. If you specify more than one
star_name on the command line, separate the names with spaces and enclose the
whole list in quotes. (You do not need quotes when you enter the names into the display
form.) For example:

unbundle sendfile mydir -extract_only '*.doc *.help'

* -no_overwrite <CYCLE>
Specifies that the command does not silently overwrite any files. By default (the value
yes), the command silently overwrites existing files that have the same names as those
being extracted from the bundle.

Note that this argument applies to final extracted files only. The unbundle command
always overwrites intermediate scratch files, which are created and deleted during the
unbundling process, even if you specify -no_overwrite.

Table 2-35. Suffixes Appended by the bundle Command

Source File Suffix Description bundle Command Arguments Specified

.bz2 Binary stream for_ftp -no_short_suffix
-compress_using bzip2

.gz Binary stream for_ftp -no_short_suffix

.ftp Binary stream for_ftp -short_suffix

.evf Binary stream for_ftp -compress_using none

.rsn Binary sequential for_rsn

.uue ASCII sequential uuencode

.uu ASCII stream uuencode_stream

.b64 Alphanumeric sequential base64

.b Alphanumeric stream base64_stream
2-784

unbundle
* -backup <CYCLE> (Privileged)
Specifies whether to restore the original values of the date-time-used (DTU),
date-time-modified (DTM), and date-time-saved (DTS) attributes of the files and
directories in the bundled file. If it is set, the DTS value is set to the current time. By
default (no), the value of the DTS attribute is 0, and the value of the DTM attribute is
the time that the object was restored. Specify yes to restore the original values of these
attributes.

You can use this privileged argument to get temporary access to any object to overwrite
it, and to restore the saved ACL of each object. For more information, see the
description of the restore command in OpenVOS System Administration: Backing
Up and Restoring Data (R285).

* -keep_dates <CYCLE>
Specifies whether to restore the original values of the DTU, DTM, and DTS attributes
of the files and directories in the bundled file. If it is set, the DTS value is set to the
current time. By default (no), the value of the DTS attribute is 0, and the value of the
DTM attribute is the time that the object was restored. Specify yes to restore the
original values of these attributes. Specify yes to restore the original values of these
attributes.

* -restore_acls <CYCLE>
Specifies whether to restore access control lists (ACLs) and default access control lists
(DACLs). By default (no), ACLs are not restored.

* -list_only <CYCLE>
Lists the path names of the files in the bundled file on the screen. By default (no), the
files are extracted from the bundled file and placed into the destination directory, but
path names are not listed on the screen. If you specify yes, you can also specify the
-brief argument to suppress display of the intermediate file extraction steps and show
only the file names.

* -brief <CYCLE>
Announces each step in the unbundling process on the screen as it occurs. By default
(no), all output to the screen is suppressed except for error messages.

Explanation
The unbundle command extracts files that were combined with the bundle command.

If the bundling operation resulted in a destination file larger than 2 GB, the bundle command
generated multiple compressed save files as well as a .toc file. If this .toc file is not located
with the save files, the unbundle command fails.

If you specify the -backup argument with the -no_restore_acls argument and/or the
-no_keep_dates argument, unbundle restores ACLs and dates (that is, it ignores
-no_restore_acls and -no_keep_dates).

Related Information
See the description of the bundle command.
OpenVOS Commands Reference Manual (R098) 2-785

unlink
unlink 2-

Purpose
This command deletes one or more links.

Display Form

Command Line Form

unlink link_names . . . [-no_ask] [-brief]
Arguments* link_names Required

One or more names or star names of links to be unlinked.

* -no_ask <CYCLE>
Suppresses the prompt that asks you whether to unlink a link with a matching name,
when a link_names term is a star name. By default, the command asks you before
unlinking a link with a matching name.

* -brief <CYCLE>
Suppresses the display of the name of each link that matches a star name before it
unlinks the link.

Explanation
The unlink command deletes one or more links specified by link_names.

Unless you specify -no_ask, when you give a star name in the command, the unlink
command asks whether you want to unlink each link whose name matches the star name. You
can decide which links with matching names to unlink.

When you are answering a series of questions about a set of links whose names match a
link_names term, the unlink command does not unlink any link in the set until it has asked
you about all of them. If you abort the command before answering all the questions about the
set, none of the links in the set is unlinked. After you have answered the command’s questions

------------------------------------ unlink ------------------------------------
link_names:
-ask: yes
-brief: no
2-786

unlink
about all the names that match one link_names term, however, the unlink command
unlinks the links in that set before asking you questions about the next set of names.

Specifying -brief suppresses messages telling you which links are being unlinked.

Access Requirements
You need modify access to the directory containing a link to unlink it.

Examples
To unlink all links in the current directory whose names begin with make_reports., use this
command.

unlink make_reports.*

Related Information
See the description of the link command for information about how to create a link.
OpenVOS Commands Reference Manual (R098) 2-787

update_batch_requests
update_batch_requests 2-

Purpose
This command modifies a pending batch request.

Display Form

Command Line Form

update_batch_requests process_names . . . [-user user_name] [-no_ask] [-command_line command_line] [-output_path output_path_name] [-process_name process_name] [-process_priority process_priority] [-queue_priority queue_priority] [-privileged] [-restart] [-queue queue_name] [-module module_name] [-defer_until date_time] [-control control_file_name] [-after process_names] [-cpu_limit cpu_time] [-notify]

---------------------------- update_batch_requests -----------------------------
process_names:
-user:
-ask: yes
-command_line:
-output_path:
-process_name:
-process_priority:
-queue_priority:
-privileged:
-restart:
-queue: normal
-module:
-defer_until:
-control:
-after:
-cpu_limit:
-notify: no
2-788

update_batch_requests
Arguments* process_names Required
One or more names or star names of batch processes to be updated. Unless you specify
-no_ask, when you give a process name that is a star name, the command asks you
before updating any process with a matching name.

* -user user_name
Specifies one or more user names or star names. This updates the batch requests
matching process_names that the specified users submitted. By default,
update_batch_requests uses your user name and allows you to update only your
own batch requests.

* -no_ask <CYCLE>
Suppresses the prompt, when a process_names term is a star name, asking whether
to update a batch process with a matching name. By default, the operating system asks
before updating a process.

* -command_line command_line
Modifies the command line of a batch request.

* -output_path output_path_name
Changes the output path of the batch request.

* -process_name process_name
Renames the batch request.

* -process_priority process_priority
Resets the execution priority of the process to any level, from the minimum priority to
the existing maximum priority.

* -queue_priority queue_priority
Resets the priority of the process within the queue. The queue priority can be any level
between 0 and 9, with 9 being the highest level.

* -privileged <CYCLE>
Makes the batch process a privileged process. A process must be privileged in order to
request a privileged batch process. To update a deferred job to a privileged process, the
original submitter of the deferred job must have been privileged.

* -restart <CYCLE>
Restarts the batch request if processing is interrupted, for example, by a system
shutdown.

* -queue queue_name
Specifies the queue to be searched for batch requests. By default, the batch command
puts your batch request in the normal queue, either on the module specified by the
-module argument or on the current module.

* -module module_name
Identifies the module on which the queue is located.
OpenVOS Commands Reference Manual (R098) 2-789

update_batch_requests
* -defer_until date_time
Changes the time at which the batch request is to be executed. The date_time value
can be a character string in the standard form.

yy-mm-dd_hh:mm:ss

It can also be a character string in any form accepted by the (date_time) command
function. In this case, the string must be enclosed in apostrophes.

* -control control_file_name
Changes the control file for the batch process.

* -after process_names
Specifies the process name of a request currently in the queue. The newly issued batch
request is not executed until the process identified by process_names has been
executed. By default, the operating system executes the batch request after other
requests with a higher priority in the queue have been executed. You can supply
multiple names with this argument.

* -cpu_limit cpu_time
Changes the upper bound on the amount of CPU time, in seconds, that the batch process
can consume before it is stopped.

* -notify <CYCLE>
Displays a message on the status line of your terminal when the process finishes.

Explanation
The update_batch_requests command modifies the batch request in the batch queue.
Using the update_batch_requests command, you can change the command line, the
order of requests in the queue, or the time to which a job is deferred.

You can use this command only until the batch process starts to run. Once the process starts
running, you can no longer update its parameters using update_batch_requests.

If you want to use the update_batch_requests command to hurry the batch request
through the queue, use -queue_priority.

You must specify which batch requests to update by their process names.

Access Requirements
You must have write access to the queue file of the batch queue in order to update batch
requests submitted by other users. In this case, you can also specify batch requests by user
name.

Related Information
See the OpenVOS Commands User’s Guide (R089) for information about batch control files.
To display the batch processes you have submitted, use the list_batch_requests
command. The batch processor gives the batch request a queue sequence number, which the
list_batch_requests command displays. See also the command descriptions of batch,
cancel_batch_requests, display_batch_status, reserve_device,
2-790

update_batch_requests
move_device_reservation, and cancel_device_reservation. See Chapter 1,
‘‘OpenVOS Command Functions,” for examples of acceptable date/time input strings.
OpenVOS Commands Reference Manual (R098) 2-791

update_print_requests
update_print_requests 2-

Purpose
This command modifies a pending print request.

Display Form

---------------------------- update_print_requests -----------------------------
file_names:
-user:
-queue: standard
-module:
-title:
-destination:
-device:
-header:
-footer:
-index:
-exception_handling: ’’
-interpret_tabs:
-defer_until:
-ask: yes -copies:
-indentation: -page_size:
-top_margin: -bottom_margin:
-line_length: -line_numbers:
-delete: -raw:
-page_breaks: -use_fortran_controls:
-wrap: -queue_priority:
-notify: -pass_thru:
-first_page: -last_page:
2-792

update_print_requests
Command Line Form

update_print_requests file_names . . . [-user user_name] [-queue queue_name] [-module module_name] [-title file_name] [-destination destination_address] [-device device_name] [-header header_string] [-footer footer_string] [-index index_name] [-exception_handling string] [-interpret_tabs start_column, spacing] [-defer_until date_time] [-no_ask] [-copies number] [-indentation indentation] [-page_size] [-top_margintop_margin] [-bottom_margin bottom_margin] [-line_length line_length] [-line_numbers] [-delete] [-no_raw] [-no_page_breaks] [-use_fortran_controls] [-wrap] [-queue_priority queue_priority] [-notify] [-pass_thru] [-first_page first_page] [-last_pagelast_page]
Arguments * file_names Required

One or more explicit names or star names of print processes to be updated. Unless you
specify -no_ask, when you give a file name that is a star name, the command asks you
before updating any print request with a matching name.

* -user user_name
Specifies the name and group of the user originally submitting the print request. This
name can be a star name. By default, the command uses your user name and allows you
to update only your own print requests.

* -queue queue_name
Specifies the print queue that contains all the specified requests that are being
processed. If you want to update print requests in more than one print queue, you must
invoke update_print_requests for each print queue you want to specify.
OpenVOS Commands Reference Manual (R098) 2-793

update_print_requests
* -module module_name
Specifies the module that contains the print queue in which requests are located.

* -title file_name
Specifies the name of the file queued for printing. By default, the command selects the
next file owned by you in the queue.

* -destination destination_address
Specifies the destination of the hardcopy after the job is printed. By default, the
command prints with the original destination for your user ID.

* -device device_name
Specifies the name of the printer to which the job is queued. By default, the command
leaves the print request queued with the original printer setting.

* -header header_string
Specifies the information you want printed at the top of hardcopy output. By default,
the command leaves the original header at the top of the hardcopy output.

* -footer footer_string
Specifies the information you want printed at the end of the hardcopy output. By
default, the command leaves the original footer at the end of the hardcopy output.

* -index index_name <CYCLE>
Specifies an index that controls the order in which the records in a specified file are
printed. By default, the command leaves the original index unchanged.

* -exception_handling string <CYCLE>
Specifies how to handle nonprinting characters in the text. The possible values are
replace, ignore, abort and ''. If you specify replace, the operating system
prints the hexadecimal number representing the ASCII code for the nonprinting
character. If you specify ignore, the operating system ignores nonprinting characters.
If you specify abort, the operating system cancels this print request if a nonprinting
character is encountered, and continues with the next request in the queue. If you
specify '' or omit this argument, update_print_requests replaces the original
setting. You cannot specify ignore and -raw in the same command.

* -interpret_tabs start_column,spacing
Interprets occurrences of the ASCII tab character. You must specify the column number
start_column of the first tab stop and the number spacing of positions between tab
stops. A comma must separate the two numbers. You cannot specify
-interpret_tabs and -raw in the same command. By default, the command prints
the request with its original setting.

* -defer_until date_time
Changes the time at which the print request is to be executed. The date_time value
must be a character string in the standard form. By default, the command executes the
print request at the original date and/or time.
2-794

update_print_requests
* -no_ask <CYCLE>
Suppresses the prompt, when a file_names term is a star name, asking whether to
update a print request with a matching name. By default, the operating system asks
before updating a print request.

* -copies number
Prints multiple copies of each specified file. By default, the operating system prints the
original number of copies specified.

* -indentation indentation
Sets the left margin to the column designated by indentation. By default, the
operating system sets the left margin to the original position on the line.

* -page_size page_size
Sets the number of lines on a page. After printing page_size lines, including top and
bottom margin lines, the printer skips to a new page. By default, the command uses the
original page size.

* -top_margin top_margin
Sets the number of lines in the top margin of each printed page. By default, the value
of top_margin is 3. The first line of the file that appears on each page is printed on
the first line after the top margin (line 4). If you print a file that incorporates formatting
features of the edit command, or if you specify -no_page_breaks, this argument is
ignored.

* -bottom_margin bottom_margin
Sets the number of lines in the bottom margin of each printed page. By default, the
value of bottom_margin is 3. The last line of the file that appears on each page is
printed on the line immediately before the bottom margin. If you print a file that
incorporates formatting features of the edit command, or if you specify
-no_page_breaks, print this argument is ignored.

* -line_length line_length
Specifies the number of character positions per line. The line length includes any
indentation. By default, the command sets the line length to the original requested
value.

* -line_numbers <CYCLE>
Prints the file with line numbers. By default, the command prints the request with the
original value.

* -delete <CYCLE>
Deletes the file after it is printed. By default, the command does not delete the file after
it is printed.

* -raw <CYCLE>
Prints the file literally; all character sequences that are normally control sequences for
the printer (and not printed) are replaced with the ASCII digits representing the
hexadecimal value of the bytes. You cannot specify -raw and either
-exception_handling ignore or -interpret_tabs in the same command. By
default, the command prints the file without any control sequences displayed.
OpenVOS Commands Reference Manual (R098) 2-795

update_print_requests
* -no_page_breaks <CYCLE>
Prints the file without page breaks and automatically sets the top and bottom margins
to 0. By default, the command prints the file with its original value.

* -use_fortran_controls <CYCLE>
Interprets any of the following characters as a FORTRAN printing control character
when it appears in column 1 of a file. The command treats all other characters as space
characters.

The command disregards any generic/canonical control sequences it encounters in the
first column. (Generic/canonical control sequences are those that a user has entered in
the body of text of a file.)

* -wrap <CYCLE>
Continues the printing of overflow from a long line on a subsequent line or lines.
Overflow consists of the character or characters at the end of a line that will not fit into
the positions available within the specified margins. By default, the command truncates
long lines.

* -queue_priority queue_priority
Sets the print request’s priority in the print queue. The value of queue_priority can
be from 0 to 9, with 9 representing the highest queue priority. If you assign a queue
priority to a print request, update_print_requests inserts the request in the queue
before all requests with lower queue priority. By default, the command, the queue
priority of a print request with a size less than or equal to 20 disk blocks is 5, and that
of a print request with a size greater than 20 disk blocks is 4.

* -notify <CYCLE>
Tells the print command to send you a message when the printing of your job is
complete.

* -pass_thru <CYCLE>
Passes any control codes embedded in the file through to the printer. You can use
-pass_thru with the -device argument to ensure that the file is printed on the device
for which it was generated.

* -first_page first_page
Specifies that the request should start printing at the given page. All pages prior to the
specified page are ignored.

* -last_page last_page
Specifies the last page of the file to be printed. All pages after the specified page are
ignored.

Character Printing Instruction

1
0
+
space character

Skip to the next page
Double space
Overstrike the previously written record
Skip to the next line
2-796

update_print_requests
Explanation
The update_print_requests command modifies your print requests that exist in the print
queue. Using the update_print_requests command, you can alter many characteristics
of the hardcopy output.

You can use this command only until the job begins printing. Once the print job starts running,
you can no longer update its parameters using update_print_requests.

To alter queued print requests, you must specify which print jobs to update by giving their
file names, your user name, the print queue, and the module name on which your print
requests are to be processed. In addition, you can specify other arguments to alter print output
in numerous ways. When you give an argument to this command, the field is updated to the
new value you specify. If you do not specify a new value for an argument, the operating
system uses the original value specified.

Example
To change various arguments for your print requests, you could list the print requests in the
queue, and then alter whatever arguments you desire. For example, the following long listing
of a print job shows the various attributes of the job in the print queue.

Request: 01
User: A_West.Dev
Destination: A1
Time: 93-01-25 14:48:12 EST
Path Name: %d#m26_user>Dev>Adam_West>progs>forms

Queue Priority: 5

 Attributes: waiting
 Title: forms.c
 Header: none.
 Footer: none.

 Copies: 01 File size: 01 Sort index: none.
 Line length: 00 Page size: 00 Indent: 01
 Line numbers: no Page Breaks: yes Delete: yes
 Edited: no Wrap: yes Controls: canonical
 Notify: yes
ready 14:50:20

If you wanted to change certain parameters, either after listing the queued print request, or
remembering what attributes of the output you wished to change, you could, for example,
change the destination, the indentation, and the number of copies printed. To change those
attributes, you would issue the following command.

update_print_requests forms -destination b1 -indentation 05 -copies 3

Related Information
To display the print processes you have submitted, use the list_print_requests
command. The print processor gives the print request a queue sequence number, which the
OpenVOS Commands Reference Manual (R098) 2-797

update_print_requests
list_print_requests command displays. See also the command descriptions of print,
cancel_print_requests, and display_print_status.
2-798

update_process_cmd_limits
update_process_cmd_limits 2-

Purpose
This command changes the command limits for an existing process or set of processes.

Display Form

---------------------------- update_process_cmd_limits-----------------------------
process_name:
-user: current_user
-module: current_module
-initial_total_limit:
-initial_heap_limit:
-initial_stack_limit:
-initial_cpu_limit:
-initial_file_limit:
-initial_keep_limit:
-initial_port_limit:
-maximum_total_limit:
-maximum_heap_limit:
-maximum_stack_limit:
-maximum_cpu_limit:
-maximum_file_limit:
-maximum_keep_limit:
-maximum_port_limit:
-ask: yes
OpenVOS Commands Reference Manual (R098) 2-799

update_process_cmd_limits
Command Line Form

update_process_cmd_limits [process_name]
[-user user_name] [-module module_name] [-initial_total_limit number] [-initial_heap_limit number] [-initial_stack_limit number] [-initial_cpu_limit number] [-initial_file_limit number] [-initial_keep_limit number] [-initial_port_limit number] [-maximum_total_limit number] [-maximum_heap_limit number] [-maximum_stack_limit number] [-maximum_cpu_limit number] [-maximum_file_limit number] [-maximum_keep_limit number] [-maximum_port_limit number] [-no_ask]

Arguments* process_name
The name or star name of existing processes for which you want to change the process
command limits. By default, if the value of -user is the current_user and the value
of -module is current_module, then the command sets the process limits of the
current process. Otherwise, the default process name is an asterisk (*), indicating all
processes of the specified user on the specified module.

* -user user_name
Specifies a name or user star name indicating one or more users whose processes
receive the specified command limits. By default, the command uses your user name.
Your process must be privileged to set any limits for another user’s process or to
increase any of the maximum limits for your own processes. If your process is not
privileged, you can decrease any of the maximum limits or change any of the initial
limits for your own processes.

* -module module_name
Specifies the name or star name of modules on which the processes are running. By
default, the command uses the current module.

* -initial_total_limit number
Specifies, in bytes, the initial value for a command’s current total virtual-space limit
when started in the selected process(es), if the command does not explicitly specify a
total virtual-space limit itself.
2-800

update_process_cmd_limits
* -initial_heap_limit number
Specifies, in bytes, the initial value for a command’s current heap-space limit when
started in the selected process(es), if the command does not explicitly specify a
heap-space limit itself.

* -initial_stack_limit number
Specifies, in bytes, the initial allocation for stack space for a command when started in
the selected process(es), if the command does not explicitly specify a stack-allocation
size itself.

* -initial_cpu_limit number
Specifies, in seconds, the initial value for a command’s CPU time limit when started in
the selected process(es).

* -initial_file_limit number
Specifies, in bytes, the initial value for a command’s stream file size limit when started
in the selected process(es).

* -initial_keep_limit number
Specifies, in bytes, the initial value for a command’s keep module size limit when
started in the selected process(es).

* -initial_port_limit number
Specifies the initial value for a command’s number of attached ports limit when started
in the selected process(es). The number is an integer.

* -maximum_total_limit number
Specifies, in bytes, the upper bound on total virtual-space usage for commands run in
the selected process(es). You must be privileged or the root process to increase any
process’s maximum total virtual-space limit.

* -maximum_heap_limit number
Specifies, in bytes, the upper bound on heap growth for commands run in the selected
process(es). You must be privileged or the root process to increase any process’s
maximum heap limit.

* -maximum_stack_limit number
Specifies, in bytes, the upper limit on stack allocations for commands run in the
selected process(es). You must be privileged or the root process to increase any
process’s maximum stack allocation.

* -maximum_cpu_limit number
Specifies, in seconds, the upper limit on CPU time for commands run in the selected
process(es). You must be privileged or the root process to increase any process’s
maximum CPU time.

* -maximum_file_limit number
Specifies, in bytes, the upper limit on stream file size for commands run in the selected
process(es). You must be privileged or the root process to increase any process’s
maximum stream file size.
OpenVOS Commands Reference Manual (R098) 2-801

update_process_cmd_limits
* -maximum_keep_limit number
Specifies, in bytes, the upper limit on keep module size for commands run in the
selected process(es). You must be privileged or the root process to increase any
process’s maximum keep module size.

* -maximum_port_limit number
Specifies the upper limit on the number of attached ports for commands run in the
selected process(es). The number is an integer. You must be privileged or the root
process to increase any process’s maximum number of attached ports.

* -no_ask <CYCLE>
Specifies that the operating system not ask when you specify a star name for
process_name. The default value is yes. If you do not specify a star name for
process_name, the command ignores this argument.

Explanation
The update_process_cmd_limits command controls the two sets of command limits
associated with a process. The purpose of command limits is to control the amount of a
resource that an executing program can use. A system administrator can adjust the limits to
prevent runaway programs from using excessive resources or simply to enforce a degree of
fairness on the use of system resources.

The two sets of command limits are each composed of the following resource limits:

 The heap limit controls the growth of the user heap, which you can access with facilities
such as the PL/I allocate statement, the C malloc routine, or the s$allocate
subroutine.

 The stack limit controls the space allocated for the user stack, which supplies PL/I
automatic storage or C auto storage. Note that the stack fence moves when the stack
limit is changed; thus, the stack limit is actually a stack allocation.

 The total space limit controls the total quantity of virtual-address space that a command
uses. The total space comprises the heap space, the stack space, the space defined by
the program module, and any s$connect_vm_region3 space that does not overlay
any of the three other types of space.

 The CPU time limit controls the maximum number of CPU seconds that a process can
consume before it is stopped.

 The stream file size limit controls the maximum size of a stream file that the process
can create.

 The keep module size limit controls whether or not the system should attempt to create
a keep module.

 The number of attached ports limit controls the number of ports that can be attached by
the process.

The first set of limits, called the maximum set of limits, defines the highest size that any
command run in the process can use for any of these resources.
2-802

update_process_cmd_limits
The second set of limits, called the initial set of limits, is defined by
update_process_cmd_limits. These define the limits on a command when it first starts,
only when the program module for the command does not contain specifications on the limits
it requires. These limit values, either from the program module or from the initial set,
initialize each command’s current limits. These current limits are checked whenever a
command wants to change any of its limits. The command can adjust the current limits up or
down as it runs by using the s$set_current_cmd_limit subroutine, which is described
in the OpenVOS Subroutines manuals. The current limits cannot be set greater than their
respective maximum limits.

Note: The value 2,147,483,647 represents infinity on modules running releases
prior to OpenVOS Release 17.2.x, while the value 9,223,372,036,854,775,807
represents infinity on modules running OpenVOS Release 17.2.x and later. If you
invoke update_process_cmd_limits on a module running OpenVOS
Release 17.2.x or later and attempt to set process limits on a module running OpenVOS
Release 17.1.x or earlier, the command returns the error e$out_of_range (1038) for
arguments whose values fall between the old and current infinity values.

Explanation of the Arguments
This section provides detailed information about some of this command’s arguments.

The update_process_cmd_limits command provides new values for the maximum and
initial values for resource limits to the processes specified by process_name, belonging to
the user user_name, on the module module_name.

If your process is privileged or the root process, you can set these limits on any user process,
including your own. If your process is not privileged or the root process, you can set these
limits only for your own process, and you cannot increase any of the maximum limits, even
for your own process.

Note: If you specify an infinite value (that is, the value infinity) for any of the
numeric arguments, the update_process_cmd_limits command no longer
enforces an administrative limit for that argument. Specifying the actual value
9,223,372,036,854,775,807 does not necessarily mean an infinite value for modules
running OpenVOS Release 17.2.x or later.

The -initial_total_limit argument specifies, in bytes, the initial current limit on the
total space of any command started in the specified process if you did not specify the
maximum program size during binding of the program module. The total space is equal to the
size to which the program module space, the user heap, the user stack, and the
(non-overlaying, independent) s$connect_vm_region3 areas can grow. If you did specify
the maximum program size when binding the program module, the command uses the
bind-time value. You can specify infinity or a value between 131,072 and 2,145,779,712
bytes, inclusive, for this argument. However, this value cannot be greater than the value of the
-maximum_total_limit argument.

The -initial_heap_limit argument specifies, in bytes, the initial limit for the heap of
any command started in the specified process if you did not specify the maximum heap size
when binding the program module. If you did specify the maximum heap size when binding
the program module, the command uses the bind-time value. You can specify infinity or
OpenVOS Commands Reference Manual (R098) 2-803

update_process_cmd_limits
a value between 32,768 and 2,145,746,944 bytes, inclusive, for this argument. However, this
value cannot be greater than the value of the -maximum_heap_limit argument.

The -initial_stack_limit argument specifies, in bytes, the initial allocation for the
stack of any command started in the specified process if you did not specify the stack size
when binding the object modules that make up the command’s program module. If you did
specify the stack size when binding the object modules, the program module uses the bound
value.You can specify infinity or a value between 32,768 and 1,072,005,120 bytes,
inclusive, for this argument. The default value is 8,388,608 bytes. However, this value cannot
be greater than the value of the -maximum_stack_limit argument, nor can it be set to
infinity.

The -initial_cpu_limit argument specifies the initial maximum number of CPU
seconds that a process can consume before it is stopped. You can specify any non-negative
value up to infinity for this argument. However, this value cannot be greater than the value
of the -maximum_cpu_limit argument.

The -initial_file_limit argument specifies, in bytes, the initial size of a stream file
opened for append or output access. You can specify any non-negative value up to infinity
bytes for this argument. However, this value cannot be greater than the value of the
-maximum_file_limit argument.

The -initial_keep_limit argument specifies whether the operating system should
attempt to create a keep module. If you specify a value of 0, the operating system does not
attempt to create a keep module. If you specify any other non-negative value up to infinity
bytes, the operating system attempts to create a keep module and limits its size to the specified
number of bytes. This value cannot be greater than the value of the -maximum_keep_limit
argument.

The -initial_port_limit argument specifies the initial number of ports that can be
attached by the process. You can specify a value between 5 and 4096, inclusive. The default
value is 4096. However, this value cannot be greater than the value of the
-maximum_port_limit argument, nor can it be infinity.

The -maximum_total_limit argument specifies, in bytes, the maximum limit for the
stack, heap, program module space, and (independent, non-overlapping)
s$connect_vm_region3 space for the specified process. The value that you specify for this
argument must be no less than the value of the -initial_total_limit argument. By
default, the minimum allowed value is 131,072 bytes, and the maximum allowed value is
either 2,145,779,712 bytes or infinity. (That is, you can set this value to infinity, but if
you set it to any other value, it must be less than or equal to 2,145,779,712.)

The -maximum_heap_limit argument specifies, in bytes, the maximum limit for the heap
in the specified process. The value that you specify for this argument must be no less than the
value of the -initial_heap_limit argument and no greater than the value you specify in
the -maximum_total_limit argument. By default, the minimum allowed value is 32,768
bytes, and the maximum allowed value is either 2,145,746,944 bytes or infinity. That is,
you can set this value to infinity, but if you set it to any other value, it must be less than or
equal to 2,145,746,944.
2-804

update_process_cmd_limits
The -maximum_stack_limit argument specifies, in bytes, the maximum limit for the stack
of the specified process. The value that you specify for this argument must be no less than the
value of the -initial_stack_limit argument and no greater than the value you specify
in the -maximum_total_limit argument. By default, the minimum allowed value is
32,768 bytes, and the maximum allowed value is either 1,072,005,120 bytes or infinity.
Specifying any value between 1,072,005,120 or infinity results in an error. However,
setting this argument to infinity is not advised, because it prevents a program from raising
the current stack limit up to the maximum stack limit.

Note: If you have abbreviations or command macros that attempt to set
-maximum_stack_limit to a value that is greater than either of the allowed values,
the command fails. Change any such references to a value that is less than or equal to
the allowed values.

The -maximum_cpu_limit argument specifies the maximum number of CPU seconds that
a process can consume before it is stopped. The value that you specify for this argument must
be no less than the value of the -initial_cpu_limit argument. The maximum allowed
value is infinity.

The -maximum_file_limit argument specifies, in bytes, the maximum size of a stream
file opened for append or output access. The value that you specify for this argument must be
no less than the value of the -initial_file_limit argument. The maximum allowed
value is infinity.

The -maximum_keep_limit argument specifies whether the operating system should
attempt to create a keep module. If you specify a value of 0, the operating system does not
attempt to create a keep module. If you specify any other non-negative value up to infinity
bytes, the operating system attempts to create a keep module and limits its size to the number
of bytes specified. The value that you specify for this argument must be no less than the value
of the -initial_keep_limit argument.

The -maximum_port_limit argument specifies the maximum number of ports that can be
attached by the process. The value that you specify for this argument must be no less than the
value of the -initial_port_limit argument, and it must be between 5 and 4096. The
default value is 4096. You cannot specify a value of infinity.

Your system administrator cannot change the minimum allowed values for any of the
-maximum_* arguments. However, your system administrator can change the maximum
default value for a module for any or all of these arguments. If you are a privileged user, you
can increase the value and even specify a value larger than the default maximum value for a
module. If you do not specify a value, OpenVOS uses the default maximum limit.

Process Address Space
Each OpenVOS process has two gigabytes of address space that can be used for various
purposes. OpenVOS recognizes five uses: the program module, dynamically-allocated shared
virtual memory (SVM), user heap, user stack, and system data. OpenVOS allocates the
address space to these five uses in the order shown in Figure 2-6. Note that the process address
space may include other, small subregions that are not shown in Figure 2-6.
OpenVOS Commands Reference Manual (R098) 2-805

update_process_cmd_limits
6

Figure 2-6. Default Process Address Space on ftServer Modules

Notes:

1. For the specific ranges and default values related to the process address space,
see Table B-1.

2. The boundaries between areas that are shown by solid lines are fixed; you
cannot adjust them.

3. The boundaries between areas that are shown by broken lines are fluid; you
can adjust them.

4. You can adjust the boundary between the SVM and the user heap by setting
the value of high_water_mark in the binder control file. This boundary is
established when the program starts execution; you cannot change it during
execution.

Program Module

System Data

Shared Virtual Memory

grows

grows

grows

User Stack

User Heap

00000000x

08000000x

40000000

78000000

7FE60000

High-Water Mark

80000000
2-806

update_process_cmd_limits
5. The boundary between the user heap and the user stack is dynamically
computed by using the values specified for the current stack and heap command
limits.

6. If the length of the SVM is 0, OpenVOS does not allow dynamic creation of
SVM in the process.

7. The size of the system data area is subject to change in future OpenVOS
releases. Therefore, you should avoid writing software that depends on the
location or size of this area.

8. The figure is not shown to scale.

A description of the process address space illustrated in Figure 2-6 follows.

 The program module contains a program’s machine code instructions, unshared static
data, shared static data, and (optionally) debugger symbol table.

 The shared virtual memory (SVM) is an area of virtual address space shared by several
processes.

 The user heap is an area of virtual address space where the operating system allocates
dynamic variables using the s$allocate subroutine or language-specific memory
allocation statements. Space in a heap must be allocated and freed dynamically.

 The user stack is an area of virtual address space consisting of an ordered series of stack
frames associated with the execution of a program.

 The system data is an area of the virtual address space consisting of data for use by the
operating system.

Module Default Command Limits
When a new process is created, it takes its first set of initial and maximum command limits
from the module’s default command limits. The system administrator establishes these limits.

You can display the module’s default command limits with the
list_default_cmd_limits command. Your system administrator can change the initial
and maximum default limits with the update_default_cmd_limits command. Both
commands are documented in OpenVOS System Administration: Administering and
Customizing a System (R281).

Table 2-36 lists the default values (in bytes) for the initial and maximum module default
command limits. This table also lists the lower bounds for the initial and maximum limits.
The lower bounds cannot be changed; the maximum or initial limits cannot be less than the
lower bounds. Table 2-36 shows the default values and lower bounds for an ftServer module.

Note: The values shown in Table 2-36 are the operating system default values.
However, system administrators frequently specify lower values by executing the
update_default_cmd_limits command in module_start_up.cm. For that
reason, you should use the list_default_cmd_limits command to view the limits
in use on your module.
OpenVOS Commands Reference Manual (R098) 2-807

update_process_cmd_limits
36s

The following list describes how the process initial, current, and maximum command limit
values are determined, and how actual memory use is controlled.

 The process initial command limits are equal to the values in the Initial Limit column
in Table 2-36, or to the values of the -initial_total_limit,
-initial_heap_limit, and -initial_stack_limit arguments specified by the
update_default_cmd_limits command.

 The current command limits are equal to the -max_program_size,
-max_heap_size, and -max_stack_size arguments in the bind command (note
that these binder values cannot exceed the module default maximum values). If no
values are specified for those arguments, then the current command limits are equal to
the values in the Initial Limit column in Table 2-36, or to the values of the
-initial_total_limit, -initial_heap_limit, and
-initial_stack_limit arguments specified with the
update_default_cmd_limits or update_process_cmd_limits commands.
Your program can modify the current command limits with the
s$set_current_cmd_limit subroutine.

 The actual amount of memory used by a program module changes as it executes, but is
constrained by the current command limits.

Note: At the beginning of a command’s execution, the OpenVOS program loader
reserves stack space for a command equal to the value of the bind
-max_stack_size argument or update_process_cmd_limits
-initial_stack_limit argument. In contrast, the OpenVOS program loader
reserves 32 kilobytes for the command’s heap space, no matter the value
specified in the bind -max_heap_size argument or
update_process_cmd_limits -initial_heap_limit argument. The
actual heap space can grow until it reaches the current heap or total process
address space limit. The OpenVOS program loader also reserves space for the
code, shared, and unshared static regions.

For example, if you specify a 32 MB process initial stack size, a 32 MB process
initial heap size, and a 34 MB process total process address space, only 2 MB of
space are actually available for code, shared, and unshared regions, the heap, and
dynamically-allocated SVM. If you specify an 8 MB process initial stack size, a

Table 2-36. Default Values on an ftServer Module

Memory Category

Maximum Limit
Lower Bound
(in bytes)

Maximum Limit
Upper Bound
(in bytes)

Initial Limit
(in bytes)

Total process address space size 131,072 infinity†

† The maximum possible value for any of these limits

infinity

Total heap size 32,768 infinity infinity

Total stack space size 32,768 infinity 8,388,608
2-808

update_process_cmd_limits
34 MB process initial heap size, and a 34 MB process total process address
space, 26 MB of space are actually available for code, shared, and unshared
regions, the heap, and dynamically-allocated SVM.

 The process maximum command limits are equal to the values in the Maximum Limit
column in Table 2-36, or are set by the -maximum_total_limit,
-maximum_heap_limit, and -maximum_stack_limit arguments in the
update_default_cmd_limits or update_process_cmd_limits commands.
Your program can modify the process maximum command limits with the
s$set_current_cmd_limit subroutine. If privileged, your process can increase or
decrease these limits. If not privileged, your process can only decrease these limits.

If you use the s$set_current_cmd_limit subroutine to specify a current limit that is
equal to the existing usage of a resource, OpenVOS prevents further increases in size. You
cannot specify a current limit that is less than the existing usage.

You can specify a combined current stack limit and a current heap limit that is larger than the
1 GB user address space. For example, if you specify a .8 GB maximum stack size and a
.8 GB maximum heap size, the operating system will reserve .8 GB for the stack. The heap
will only grow to .2 GB minus the size of the code, shared, and unshared static regions. After
this point, heap allocations will fail.

Figure 2-7 illustrates the effects of setting process initial, current, and maximum command
limits. For simplicity, assume that this illustration applies only to one type of limit (either
heap, stack, or total). The horizontal lines represent the process initial and maximum default
command limits and the lowest allowed limits for a module. The numbered vertical lines
represent changes in the execution of a command, or the process limits for a command. These
changes are described after the figure. The dotted line indicates the actual memory usage.
OpenVOS Commands Reference Manual (R098) 2-809

update_process_cmd_limits
7

Figure 2-7. Effects of Setting Process Initial, Current, and Maximum Command Limits

Examples
Example 1.
The following scenario describes how a program can use the s$set_current_cmd_limit
subroutine to override the initial default command limits for that program.

1. A command (program module) begins execution. Since no memory limits have been
bound into the program module, and no initial process command limits have been
specified for the process, OpenVOS sets the current limits to the initial default
command limits.

2. When the actual memory usage reaches the current limit, the program module calls the
s$set_current_cmd_limit subroutine to raise the current limit.

3. Execution of the program module terminates. The current limits also expire.

Example 2.
The following scenario describes the procedure for and the effect of explicitly lowering the
process maximum command limits for all programs started by the current process. It also
shows the use of the s$set_current_cmd_limit subroutine to raise the current limit of
memory usage.

1. The user invokes the update_process_cmd_limits command to set the process
maximum command limits lower than the default maximum command limits. Another
command (program module) begins execution. Memory limits have been bound into
this program module. OpenVOS sets the current limits equal to the binder values.

Binder Limit

Binder and
Current Limit

Initial Default Limit

Max Default Limit

Lower Bounds

Time

1 2 3 4 5 6

Current Limit

Max Process
Limit

Current Limit

Current Limit

Actual Memory Use
2-810

update_process_cmd_limits
2. When the actual memory usage reaches the current limit, the program module calls the
s$set_current_cmd_limit subroutine to raise the current limit.

3. Execution of the program module terminates. The user-specified binder and current
limits also expire. The process maximum command limits apply to any command
beginning execution in this process space.

Example 3.
If you invoke the update_process_cmd_limits command and do not specify a value for
process_name or specify a star name for process_name, the system issues the following
prompt.

Verify processes to update command limits.
 Smith.Sales(login)? (yes,no,info)

If you type yes at the prompt, the command limits are changed; if you type no, the command
limits remain the same. If you specify info, the system displays information about the
subprocess level, program name, and login time of the process. If the process is interactive,
the system returns the terminal name from which the process was started. The system does
not return a terminal name if the process is not interactive or if the process is logged in
remotely from a module that is not running a current version of the operating system. For
example:

Logged in at 90-01-19 07:33:26 EDT, sub-process level 0.
Running emacs.pm on %s1#t1.6

If your process is running a program, the system also displays the name of the program
module and then issues the prompt again. For example:

Logged in at 90-01-19 07:33:26 EDT, sub-process level 0.
Running on %s1#t1.6
 Smith.Sales(login)? (yes,no,info)

Related Information
To list the initial and maximum resource limits for an existing process, use the
list_process_cmd_limits command. For information about setting the heap
(max_heap_size), stack (max_stack_size), and total (max_program_size) limits in a
bound program module, see the bind command description. For information about setting
and listing the default resource limits for all new processes on a module, see the descriptions
of the update_default_cmd_limits and list_default_cmd_limits commands in
OpenVOS System Administration: Administering and Customizing a System (R281). For
information about the s$set_current_cmd_limit and s$get_current_cmd_limit
subroutines, see the OpenVOS Subroutines manuals.
OpenVOS Commands Reference Manual (R098) 2-811

use_abbreviations
use_abbreviations 2-

Purpose
This command defines the abbreviations file that the command processor will subsequently
use to expand abbreviations in your command lines and debugging commands.

Display Form

Command Line Form

use_abbreviations [abbreviations_file_name]
[-off]

Arguments* abbreviations_file_name
The path name of an abbreviations file. By default, the operating system uses the
abbreviations file named abbreviations in your home directory. You cannot specify
both an abbreviations file name and -off.

* -off <CYCLE>
Stops using abbreviations. You cannot specify both an abbreviations file name and
-off.

Explanation
The use_abbreviations command compiles an abbreviations file, which is used to
expand the abbreviations in commands and debugging requests. If you specify -off, the
operating system stops replacing abbreviations for the life of the current process or until you
give the use_abbreviations command again.

If you give a path name, the operating system compiles the abbreviations file
abbreviations_file_name and uses that set of abbreviations. Otherwise, it compiles the
file named abbreviations in your home directory and uses that file.

The use_abbreviations command is commonly included in a user’s startup command
macro.

------------------------------ use_abbreviations -------------------------------
abbreviations_file_name:
-off: no
2-812

use_abbreviations
When using abbreviations, you can prevent expansion of part of a command line by enclosing
the part you do not want expanded in apostrophes. You can also precede all or part of your
command line with an exclamation point; the operating system removes the exclamation
point and does not expand any abbreviations in the following portion of that command line.

Access Requirements
You must have read access to the abbreviations file.

Examples
The following command starts replacing abbreviations using the abbreviations defined in the
file abbreviations contained in your home directory.

use_abbreviations

If you want to change some of your abbreviations, edit the abbreviations file with an editor
and issue a use_abbreviations command to recompile the file.

Related Information
See OpenVOS Commands User’s Guide (R089) for a description of abbreviations files.
OpenVOS Commands Reference Manual (R098) 2-813

use_message_file
use_message_file 2-

Purpose
This command sets the path name of the message file to be used for your current login session.

Display Form

Command Line Form

use_message_file [message_file_name]
Arguments* message_file_name

The path name of a message file. By default, the operating system uses the standard
system message file.

Explanation
The use_message_file command sets the path name of a message file to be used for your
current login session.

Generally, use a new message file when binding and executing a program that requires
messages not in the standard system message file, or to change the text of error messages.

The binder can initialize a variable to a message code when the message is in the standard
system message file or when you set a new message file with the use_message_file
command. The binder assigns an error status code number to an external variable that has the
same name as the message name in the current message file. When you set a new message
file with the use_message_file command, the binder uses the error status code numbers
from that message file.

Often, you declare such a variable as external rather than initializing it in the program, to
allow the binder to initialize the variable. This initializes variables to the correct values
regardless of what message file you use. If you initialize the variable in the program, the
binder does nothing to the value of the variable.

------------------------------- use_message_file -------------------------------
message_file_name:
2-814

use_message_file
You must set a new message file to bind any program module that uses messages not in the
standard system message file if you want the binder to initialize the variables; you must set a
new message file to execute any such program module. The value of message_file_name
must be a sequential file indexed by name, number, name-to-number, and number-to-name.

Related Information
See the description of the bind command for information on how the binder initializes
message variables. For information on creating a new message file, see the section “Changing
the Text of Error Messages” and the description of the make_message_file command in
the OpenVOS System Administration: Administering and Customizing a System (R281).
OpenVOS Commands Reference Manual (R098) 2-815

vcc
vcc 2-

Purpose
This command preprocesses, compiles, and/or binds a C program. This command,
which is similar to the gcc command, provides compatibility between C programs
compiled on OpenVOS and C programs compiled on UNIX.

Display Form
None.

Command Line Form
vcc file_name... [option_selection...]

Arguments* file_name Required
The name of one or more files to be preprocessed, compiled, assembled, and/or bound.
A file-name extension (for example, .c) is required.

* option_selection
Specifies one or more options. Table 2-37 briefly summarizes each option.

Note: Although the vcc command does not support all of the gcc command’s
options, it does support the most commonly-used options.

37

Table 2-37. The vcc Command Options

Option Description

-ansi If you specify -ansi, the compiler uses strict ANSI-C conformance mode. In
this mode, the compiler recognizes trigraphs and restricts all language
extensions. In addition, the compiler issues diagnostics for programming
constructs that violate the ANSI C Standard’s rules. In this mode, the compiler
does not produce an object module if it generates any warning or error
messages.

-b machine Compiles for the specified architecture. The machine value is
processor_name-stratus-vos, where processor_name is any of the
following: i386, i486, i586, or i686. The default value is the host
architecture.

-c Compiles the file but does not bind it.
2-816

vcc
-Dname[=[def]] Predefines a macro from the command line.

-dynamic Binds file_name with shared libraries, if they are available.

-E Preprocesses the file but does not compile or bind it. By default, output goes to
standard output, but you can redirect it with the -o option.

-fpic
-fPIC

During compilation, generates position-independent code that is suitable for
inclusion in a shared library. Because the vcc command generates
position-independent code by default, specifying -fpic or -fPIC has no
additional effect.

-funsigned-char
-fsigned-char

Specifies whether char data items that are declared without an explicit
signed or unsigned keyword are signed or unsigned. By default, char data
items that are declared without an explicit signed or unsigned keyword are
unsigned.

-g Creates a production symbol table for use in debugging.

--help Displays descriptions of vcc command-line options.

-Idir Specifies a directory path name in which to search for include (header) files.
The directory specified by dir is searched before the directories in the
process’s include library paths list. You can specify more than one directory to
search by using the -I option more than once. The directories are searched in
order, beginning with the one specified in the leftmost -I option.

-include
pathname

Includes the source file’s path name in the compilation before the main source
file or files.

-lname Searches for and binds in either libname.so or libname.a. The directories
searched include several standard system directories plus any that you specify
with the -L option. The binder searches and processes libraries and object
files in the order in which they are specified.

-Ldir Adds dir to the search list specified in -lname. This option is passed to the
binder as -search.

-nodefaultlibs Specifies that only the libraries you specify are passed to the binder.

-nostdlib Specifies that no startup files are passed to the binder. In addition, only the
libraries you specify are passed to the binder.

-opath Specifies the name of an output file. You can use it to set the name of a
compiled object or the name of a bound program to the file name given in
path.

-O[n] Optimizes generated code during compilation. You can also specify an
optimization level. Valid values for the optimization level given in n are 0
through 3. If you do not specify -O, the default optimization level is 0. If you
specify -O but do not specify n, the default optimization level is 2.

Table 2-37. The vcc Command Options (Continued)

Option Description
OpenVOS Commands Reference Manual (R098) 2-817

vcc
Explanation
The vcc command preprocesses, compiles, assembles, and/or binds a C program, depending
on the program’s file-name extension and on the options you specify.

Figure 2-8 illustrates the phases of the vcc command.

8

Figure 2-8. Phases of the vcc Command

-shared Produces a shared object that can then be bound with other objects to form an
executable file. This object is passed to the binder.

-static Instructs the binder not to bind file_name with shared libraries.

-symbolic Binds references to global symbols when building a shared object, and warns
about any unresolved references. This option is passed to the binder as
-Bsymbolic.

-traditional If you specify -traditional, the compiler uses a transitional conformance
mode, allowing certain usages and programming constructs that were common
in some older, “traditional” (pre-ANSI) C compilers.

-Uname Undefines a specified predefined compiler macro. The compiler does not issue
a diagnostic if the given name is not a predefined macro.

-usage Displays descriptions of vcc command-line options. This is the same as
specifying the --help option.

-v Causes the compiler to display the subprocess’s command lines to the terminal
before invoking them.

-Wc,argument Passes argument(s) directly to the compiler, replacing the commas between
arguments with spaces. There can be no spaces between -Wc and argument.

-Wl,argument Passes argument(s) directly to the binder, replacing the commas between
argument with spaces. There can be no spaces between -Wl and argument.

Table 2-37. The vcc Command Options (Continued)

Option Description

vcc

Combined preprocessor,
compiler, and assembler Binder
2-818

vcc
You must always provide the file’s file-name extension to the vcc command, except when
you specify the -o option with an executable file name. In this case, vcc automatically adds
a .pm extension to the file name.

The vcc command processes files based on their file-name extension, as described in the
following table.

Like OpenVOS files with the .obj suffix, files with the .o file-name extension are
relocatable object files. However, .o files and .obj files have different internal formats. As
a result, you cannot specify .o files with many existing OpenVOS commands (for example,
add_entry_names and display_object_module_info).

Other than the OpenVOS binder, OpenVOS commands do not allow you to work with
archives. (An archive is a single file holding a collection of other files in a structure that makes
it possible to retrieve the original individual files.) To create and work with archives, you must
use the GNU tools, which are a separately shipped product.

To maximize compatibility with the gcc command, vcc differs from the cc command as
shown in Table 2-38.

38

File-Name Extension Action

.c The command considers it a C source file and
compiles it into an object file.

.i, .s, .S The command returns an error.

Any other extension,
including .o and .a

The command considers it an object file and
passes it to the binder.

Table 2-38. Differences between the vcc and cc Commands

vcc cc

Uses an implementation of the setjmp() and
longjump() runtimes that is incompatible
with PL/I label variables and nonlocal goto’s.

Uses an implementation of the setjmp() and
longjump() runtimes that is compatible
with PL/I label variables and nonlocal goto’s.

By default, uses longmap data allocation. By default, uses shortmap data allocation.

Truncates external symbol names to 2048
characters.

Truncates external symbol names to 28 or 32
characters.

By default, uses UNIX-compatible include file
search rules.

By default, does not use UNIX-compatible
include file search rules.
OpenVOS Commands Reference Manual (R098) 2-819

vcc
Examples
The following command preprocesses, compiles, and binds sample1.c, producing
sample1.pm.

vcc sample1.c

The following command preprocesses and compiles sample1.c, producing sample1.o.

vcc -c sample1.c

The following command binds sample1.o, sample2.o, and sample3.o, producing s.pm.

vcc -o s.pm sample1.o sample2.o sample3.o

The following command preprocesses and compiles sample1.c, looking in the directory
../include for header files before looking in the directories specified in the include library
paths. Note that vcc accepts POSIX-style and OpenVOS-style path names.

vcc -c -I../include sample1.c

The following command binds sample1.o and libsamp.a, producing sample1.pm. The
archive libsamp.a must be in either the directory ../lib or in one of the directories
specified in the object library paths.

vcc sample1.o -L../lib -lsamp

The following command binds sample1.o, producing sample1.pm and sample1.map,
passing the -map and -size 64mb options to the binder.

vcc -Wl,-map -Wl,-size,64mb sample1.o

Related Information
See the description of the cc command in this manual and also the OpenVOS Standard C
User’s Guide (R364) for information about the OpenVOS Standard C compiler. See the
description of the bind command for information about shared libraries. For more
information about the GNU tools, see the GNU Tools for OpenVOS: User’s Guide (R453) and
the most recent version of the software release bulletin for OpenVOS GNU Tools (R468).
2-820

vemacs
vemacs 2-

Purpose
This command provides an alternate version of the Emacs text editor for use within the bash
shell. It creates stream files, uses OpenVOS key bindings, and accepts POSIX-style path
names.

Display Form

Command Line Form

vemacs [file_names . . .]

[-start_up_path start_up_path_name] [-num_windows number] [-backup] [-keystrokes] [-keystrokes_dir keystrokes_path_name] [-flow_control] [-nls] [-dictionary dictionary_path_name] [-organization organization] [-record_size record_size] [-character_set character_set] [-shift_mode shift_mode] [-pathname_style style_name] [-compatibility method_name]

------------------------------------ emacs -------------------------------------
file_names:
 -start_up_path: current_start_up_path_name
 -num_windows: 1
 -backup: no
 -keystrokes: no
 -keystrokes_dir: current_directory
 -flow_control: no
 -nls: no
 -dictionary: current_dictionary_path_name
 -organization: stream
 -record_size:
 -character_set: none
 -shift_mode: none
 -pathname_style: posix
 -compatibility: vos
OpenVOS Commands Reference Manual (R098) 2-821

vemacs
Arguments
Note: Except for the -organization, -pathname_style, and -compatibility
arguments, the arguments of the vemacs command are identical to those shown in the
description of the emacs command. See the description of the emacs command for
more information about the arguments not shown here.

* -organization organization <CYCLE>
Specifies one of the following types of file organization for the new file.

 sequential
 stream
 relative
 fixed

By default, the vemacs command creates a stream file. In contrast, the non-POSIX
emacs command creates a sequential file by default.

* -pathname_style style_name <CYCLE>
Determines whether Emacs interprets all path names as POSIX-style (slash-separated
or greater-than-separated) path names or as OpenVOS-style (greater-than-separated)
path names. Possible values for style_name are posix or vos. By default, the
vemacs command interprets all path names as POSIX-style path names. In contrast,
the non-POSIX emacs command interprets all path names as OpenVOS-style path
names by default.

This argument applies to all input path names, whether on the command line, given to
prompts, or processed by the <ESC><TAB> completion action. It also applies to the path
names that are arguments to the -dictionary, -start_up_path, and
-keystrokes_dir arguments. This argument has no effect on output path names;
Emacs always displays OpenVOS-style path names.

* -compatibility method_name <CYCLE>
Determines whether Emacs commands and mode settings are initialized to their
“traditional” values (that is, GNU Emacs values) or to OpenVOS-specific values.
Possible values are vos or traditional. By default, the vemacs command (as well
as the non-POSIX emacs command) initializes its commands and mode settings to
OpenVOS-specific values.

Description
The vemacs command is a shell script that provides an alternate version of the Emacs text
editor for use within the bash shell. When you are within the bash shell and specify the
vemacs -form command, the display form for the emacs command appears. However, the
default values for the -organization, -pathname_style, and -compatibility
arguments differ from those of the non-POSIX emacs command.

Access Requirements
You need read access to a file in order to read it into an Emacs buffer. To write the contents
of an Emacs buffer to a file, you need modify access to the directory and write access to the
file (which can be specified in the default access list for the directory or the access list for the
file).
2-822

vemacs
Related Information
See the VOS Emacs User’s Guide (R093) for a complete description of Emacs requests. See
also the descriptions of the emacs and temacs commands.
OpenVOS Commands Reference Manual (R098) 2-823

verify_posix_access
verify_posix_access 2-

Purpose
The verify_posix_access command displays a report for a directory or directory
hierarchy that summarizes the POSIX.1 access modes for each object.

Display Form

Command-Line Form
verify_posix_access [root_dir] [-depth number] [-long]

Arguments* root_dir
The root of the directory tree to analyze. The default value is the current directory.

* -depth number
The number of levels of subdirectories to analyze. A level of 1 indicates that only the
specified root directory should be analyzed. By default, the command analyzes all
subdirectories. The maximum depth is 15.

* -long <CYCLE>
The default report shows only the objects that have no POSIX.1 owner or group. This
argument displays the status of all objects in the report.

Explanation
This command verifies whether an entire directory tree has valid OpenVOS POSIX access
control lists. The OpenVOS POSIX.1 implementation stores the UID and GID access
permissions in the OpenVOS access control list (ACL) of an object. Native OpenVOS ACLs
are considerably more flexible and complex than the types of ACLs created by POSIX.1
Support. Only certain forms of ACLs are compatible with POSIX.1 Support. This command
helps you find objects with invalid or incomplete ACLs.

A directory’s ACL completely specifies the users and groups that have status or modify access
to the directory and can operate on its immediate contents. A file’s ACL partially specifies the

 ----------------------------- verify_posix_access ----------------------------
 root_dir: %s#m29>Marketing>Mary_Smith
 -depth:
 -long: no
2-824

verify_posix_access
users and groups that can execute, read, or write it. Files are not required to have an ACL or
even a complete ACL; each directory has a default access control list (DACL) that is searched
when a file ACL is empty or contains no ACL terms that match the identity of the user
accessing the file.

A valid POSIX.1 ACL contains at least three terms. These terms must be present on each
directory ACL, and must be present on the combination of the default ACL and the ACL of a
specific file. The terms are:

<owner-access-mode> Person.*
<group-access-mode> *.Group
<other-access-mode> *.*

If you specify one Person.* term, that term specifies the owner ID and owner access of the
object. If you specify more than one Person.* term, the single term with the least-restrictive
access specifies the owner ID and owner access. If multiple person terms have the same
access, the owner ID is undefined.

If you specify one *.Group term, that term specifies the group ID and group access of the
object. If you specify more than one *.Group term, the single term with the least-restrictive
access specifies the group ID and group access. If multiple group terms have the same access,
the group ID is undefined.

If you specify a *.* term, that term specifies other access. If you do not specify any such
term, other access is null.

OpenVOS POSIX.1 can always determine Owner, Group and Other access permissions. Any
user whose IDs do not match terms on an ACL (or on the combination of the ACL and default
ACL) has no access to the object. The challenge is to find a single Owner and Group for an
object.

Each line of the report is the status of a single object. The columns are Owner Access,
Group Access, Other Access, Object Type, and Object Name. Each of the access
columns is further subdivided into OpenVOS access mode, POSIX access mode, and a name.
When a unique Owner or Group name cannot be determined, the respective column is filled
with a question mark (?).

The first entry displayed for each directory is the DACL. This list should always represent a
valid POSIX ACL, since files frequently do not contain their own ACL.

Access Permission
This command requires status or modify permission on a directory to analyze and report on it.
OpenVOS Commands Reference Manual (R098) 2-825

verify_posix_access
Examples
!list

Files: 12, Blocks: 0
e 0 e-group
e 0 e-other
e 0 e-owner
n 0 n-group
n 0 n-other
n 0 n-owner
r 0 r-group
r 0 r-other
r 0 r-owner
w 0 w-group
w 0 w-other
w 0 w-owner

!display_access_list *

%sw#m1_user>Demo>Guest>test>e-group

e *.Stratus
e *.*

%sw#m1_user>Demo>Guest>test>e-other

e *.*

%sw#m1_user>Demo>Guest>test>e-owner

e Guest.*
e *.Stratus
e *.*

%sw#m1_user>Demo>Guest>test>n-group

n *.Stratus
n *.*

%sw#m1_user>Demo>Guest>test>n-other
n *.*

%sw#m1_user>Demo>Guest>test>n-owner

n Guest.*
n *.Stratus
n *.*

%sw#m1_user>Demo>Guest>test>r-group

(Continued on next page)
2-826

verify_posix_access
(Continued)

r *.Stratus
r *.*

%sw#m1_user>Demo>Guest>test>r-other

r *.*

%sw#m1_user>Demo>Guest>test>r-owner

r Guest.*
r *.Stratus
r *.*

%sw#m1_user>Demo>Guest>test>w-group

w *.Stratus
w *.*

%sw#m1_user>Demo>Guest>test>w-other

w *.*

%sw#m1_user>Demo>Guest>test>w-owner

w Guest.*
w *.Stratus
w *.*

!verify_posix_access test -long

Owner Group Other Obj Object
Access Access Access Type Name
------------------ ----------------- --------- ---- ------ %sw#m1_user>Demo>Guest>test
w rwx Guest w rwx Stratus n --- *.* dacl default access list
e --x ???????????? e --x Stratus e --x *.* file e-group
e --x ???????????? e --x ??????????? e --x *.* file e-other
e --x Guest e --x Stratus e --x *.* file e-owner
n --- ???????????? n --- Stratus n --- *.* file n-group
n --- ???????????? n --- ??????????? n --- *.* file n-other
n --- Guest n --- Stratus n --- *.* file n-owner
r r-x ???????????? r r-x Stratus r r-x *.* file r-group
r r-x ???????????? r r-x ??????????? r r-x *.* file r-other
r r-x Guest r r-x Stratus r r-x *.* file r-owner
w rwx ???????????? w rwx Stratus w rwx *.* file w-group
w rwx ???????????? w rwx ??????????? w rwx *.* file w-other
w rwx Guest w rwx Stratus w rwx *.* file w-owner

(Continued on next page)
OpenVOS Commands Reference Manual (R098) 2-827

verify_posix_access
(Continued)

!verify_posix_access test
Owner Group Other Obj Object
Access Access Access Type Name
------------------ ------------- -------------- ---- ------- %sw#m1_user>Demo>Guest>test
e --x ???????????? e --x Stratus e --x *.* file e-group
e --x ???????????? e --x ???????????? e --x *.* file e-other
n --- ???????????? n --- Stratus n --- *.* file n-group
n --- ???????????? n --- ???????????? n --- *.* file n-other
r r-x ???????????? r r-x Stratus r r-x *.* file r-group
r r-x ???????????? r r-x ???????????? r r-x *.* file r-other
w rwx ???????????? w rwx Stratus w rwx *.* file w-group
w rwx ???????????? w rwx ???????????? w rwx *.* file w-other
2-828

verify_save
verify_save 2-

Purpose
This command verifies that an object or set of objects, saved with the save_object or save
command, is restorable.

Display Form

Command Line Form

verify_save tape_device_or_port_name [pathnames] . . . [-volume_id volume_id] [-output output_type] [-no_verify_next_reels] [-unattended]
Arguments* tape_device_or_port_name Required

The name of the tape device or port attached to the tape drive or disk file that contains
the saved object or set of saved objects to be verified.

* pathnames
One or more path names or star names of saved objects to be verified. By default, the
command verifies all objects on the save file or tape.

* -volume_id volume_id
Specifies the volume ID of the tape containing the saved object, or of the first tape in a
set of tapes containing the saved object or objects. If the port is attached to a disk file,
this argument is ignored. By default, the verify_save command prompts you for a
volume ID.

* -output output_type <CYCLE>
Specifies the type of information to be reported by verify_save. The possible values
for output_type are none, short, and long. The short report displays the names of
the saved objects verified. The long report also includes each save_block from the

---------------------------------- verify_save ---------------------------------
tape_device_or_port_name:
pathnames:
-volume_id:
-output: short
-verify_next_reels: yes
-unattended: no
OpenVOS Commands Reference Manual (R098) 2-829

verify_save
save file/tape for the object specified. If you specify none, verify_save only reports
errors encountered while verifying the save file/tape. By default, you receive the short
report.

* -no_verify_next_reels <CYCLE>
Stops verification at the end of the tape whose volume ID you specified with
-volume_id. By default, verify_save prompts you to mount subsequent reels in a
set of save tapes, when it comes to the end of each one, and verifies them. If the port is
attached to a disk file, this argument is ignored.

* -unattended <CYCLE>
Causes tape drives with automatic loaders to switch from one tape to the next, without
user intervention. This argument has no effect on tape drives for ftServer modules.

Explanation
The verify_save command verifies that a save file, a save tape or series of save tapes, or
an object (a directory, file, or link) saved earlier with a save or save_object command can
be read later and restored with a restore or restore_object command.

If your port is attached to a tape drive, the verify_save command mounts the tape, unless
it has already been mounted (with the mount_tape command). When the tape is already
mounted, the verify_save command checks the volume ID specified against the volume
ID of the tape. If they are different, the command asks if you want to use the volume ID of
the tape. If so, it replaces the volume ID specified with the volume ID of the tape; otherwise,
the command aborts. You specify only the first volume ID, since the save or save_object
commands store the volume ID of any subsequent save tapes at the end of each save tape.

You must switch tapes manually when saved objects are located on more than one tape.

When specifying the path name of an object to be verified, use its path name at the time it was
saved. This path name identifies the object on the save file or tape.

If the saved object is a directory, the verify_save command verifies that all objects in that
directory (all files, links, and subdirectories) can be read and restored later.

You can use the verify_save command on DAE files.

Access Requirements
You need read access to the tape drive or disk file attached to your port.

Examples
Suppose a_port is a port attached to a tape drive on which you have mounted a tape volume
containing saved objects. The following command displays a short report listing the names of
all the objects saved on that volume that can be read and restored.

verify_save a_port
2-830

verify_save
The report might look like this.

save_file root_path: %s1#d02>Sales>Smith>reports
directory: %s1#d02>Sales>Smith>reports
file_name: %s1#d02>Sales>Smith>weekly_report.FW739
file_name: %s1#d02>Sales>Smith>weekly_report.FW740
file_name: %s1#d02>Sales>Smith>weekly_report.FW741
file_name: %s1#d02>Sales>Smith>weekly_report.FW742
file_name: %s1#d02>Sales>Smith>weekly_report.FW743
file_name: %s1#d02>Sales>Smith>weekly_report.FW744
file_name: %s1#d02>Sales>Smith>weekly_report.FW746
file_name: %s1#d02>Sales>Smith>weekly_report.FW747

In another example, if you specify the -output long argument for a saved object that
contains expandable directories, the output displays the *_save_block types.

verify_save port -output long

1 global_save_block (version: 1)
 save_file root_path: %s1#d02>Sales>Jones

2 directory_save_block (version: 2)
 object id: 1
 directory: %s1#d02>Sales>Jones
...
3 dir_limit_info1_save_block (version: 1)
 object id: 2
 version: 3
 max entries: 32700
 dft max entries: 0
 max blocks: 8720
 dft max blocks: 0
 path: %s1#d02>Sales>Jones

Related Information
See the descriptions of the list_save_tape, save_object, and restore_object
commands for more information on backing up objects. For information on system backup,
see the discussion on making and retrieving backup and the save and restore command
descriptions in the OpenVOS System Administration: Backing Up and Restoring
Data (R285). See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, mount_tape,
position_tape, save_object, set_second_tape, set_tape_drive_params,
set_tape_mount_params, set_tape_file_params, and write_tape.
OpenVOS Commands Reference Manual (R098) 2-831

verify_system_access
verify_system_access 2-

Purpose
This command checks that you can use the resources of a system to access files and to start
processes in that system.

Display Form

Command Line Form

verify_system_access system_name [-privileged] [-password password] [-priority priority]
Arguments* system_name Required

The name of the system you want to use.

* -privileged <CYCLE>
Checks that you can perform a privileged operation in the specified system. The
operating system tells you if you cannot perform a privileged operation. By default, the
operating system does not warn you if you cannot perform a privileged operation.

* -password password
Specifies a password to use the system. You need not give it again during your current
interactive process. By default, the operating system asks you for it, unless you are not
required to supply one. The password you enter when prompted does not appear on
your terminal.

Note: Abbreviations are not expanded.

* -priority priority
Checks that you can start a process with this priority. The operating system tells you if
you cannot start a process with this priority.

----------------------------- verify_system_access -----------------------------
system_name:
-privileged: as registered
-password:
-priority:
2-832

verify_system_access
Explanation
The verify_system_access command checks your access rights to the resources of
another system.

Before you can start a process with the start_process command, run a batch job with the
batch command, print a file with the print command, or access files in a system other than
your current system, the operating system must check that you have the proper access rights.
The verify_system_access command confirms your access rights. The operating system
retains the results of this check so that when you issue any command that accesses or uses a
module on the remote system, the operating system can complete the command.

If a remote system does not require you to supply a password, then you do not need to issue
the verify_system_access command to use the system.

Examples
The following command checks your access rights to the system s1.

verify_system_access s1 -password xskk

If you do not have the necessary access, the operating system displays this message.

You are not a registered user of the target system.

Related Information
See the command descriptions of start_process, print, and batch. For more
information about getting and setting the access for particular files and directories, see the
command descriptions of display_access, display_access_list,
display_default_access_list, and give_default_access.
OpenVOS Commands Reference Manual (R098) 2-833

vospath
vospath 2-

Purpose
This command converts a POSIX path name into an OpenVOS path name.

Display Form
None.

Command Line Form

vospath ® ¯
Arguments* path_name

The name of a file, or a relative or absolute path name.

* --help
Displays a brief help message that describes the command.

* --version
Displays a brief version string..

Explanation
The vos_path command converts the path_name argument, which is a relative or full
POSIX path name, into a full OpenVOS path name. The resultant OpenVOS path name
always begins with a percent-sign character (%).

If path_name has the form /dev/null, the result is %sys#null, where %sys is the current
system. Otherwise, path_name is expanded into a full OpenVOS path name, which
processes and removes any dot components (. or ..).

The three arguments are all mutually exclusive.

This command is primarily for use with interactive shells such as bash. Users who are
experienced with OpenVOS commands may prefer to use the (vos_path) command
function instead of the vospath command.

path_name
--help
--version
2-834

vospath
Examples
The following command converts a POSIX path name into an OpenVOS path name.

vos_path /system/gnu_library/bin
 %es#mRaid4>system>gnu_library>bin

Related Information
See the description of the posixpath command and the description of the (vos_path)
command function.
OpenVOS Commands Reference Manual (R098) 2-835

walk_dir
walk_dir 2-

Purpose
This command executes a command or starts a process in a specified directory and its
subdirectories.

Display Form

Command Line Form

walk_dir [directory_name]

[-depth depth_number] [-down_command down_command_line] [-down_start_process] [-up_command up_command_line] [-up_start_process] [-brief]
Arguments* directory_name

The path name of the directory at the top of the hierarchy. By default, the command
uses the current directory. The walk_dir command visits the subdirectories of
directory_name.

* -depth depth_number
Sets the number of levels from the root directory that the command visits. By default,
walk_dir visits all the directories in the hierarchy.

* -down_command down_command_line
Specifies a command line to be executed in each directory visited before visiting any
of its subdirectories. If the command line contains spaces, semicolons, or command
functions, the entire line must be enclosed in apostrophes. Unless you specify

----------------------------------- walk_dir -----------------------------------
directory_name: urrent_directory
-depth:
-down_command:
-down_start_process: no
-up_command:
-up_start_process: no
-brief: no

c

2-836

walk_dir
-down_start_process, you can only use internal commands in the command line.
Either -down_command or -up_command is required.

* -down_start_process <CYCLE>
Starts a subprocess to execute the command line down_command_line. By default,
your process directly executes the command line.

* -up_command up_command_line
Specifies a command line to be executed in each directory visited after visiting its
subdirectories. If the command line contains spaces, semicolons, or command
functions, the entire line must be enclosed in apostrophes. Unless you specify
-up_start_process, you can only use internal commands in the command line.
Either -up_command or -down_command is required.

* -up_start_process <CYCLE>
Starts a subprocess to execute the command line up_command_line. By default, your
process directly executes the command line.

* -brief <CYCLE>
Suppresses the display of each directory that matches a star name, before the command
executes. By default, the walk_dir command displays the names of the directories.

Explanation
The walk_dir command executes a command or starts a subprocess to execute a command
in the subdirectories of directory_name. The walk_dir command executes the command
line down_command_line and the command line up_command_line once in every
directory of the hierarchy. (If you do not specify either command line, the walk_dir
command does nothing.)

To execute the commands in all the directories, the walk_dir command changes the current
directory successively to each subdirectory in the subhierarchy, and then issues the command.
It executes the down_command_line in any directory in the hierarchy before it executes the
down_command_line in any directory below it. It executes up_command_line in any
directory in the hierarchy after it executes the up_command_line in all directories below it.
Unless you use the -down_start_process or -up_start_process arguments, you can
only use internal commands in the command line. Use the help command to display a list of
these commands.

The directory specified in directory_name is the root directory. The depth of the root
directory is 1, the depth of any directory it contains is 2 (relative to the root), the depth of a
directory contained by a level-2 directory is 3, and so forth. By default, the walk_dir
command walks to the bottom of the subhierarchy.

The walk_dir command does not chase links. If a directory contains links to other
directories, the command line specified in the walk_dir command is not executed in the
linked directories.

Access Requirements
You need status access to a directory to walk through its subhierarchy.
OpenVOS Commands Reference Manual (R098) 2-837

walk_dir
Examples
To display all of the procedure names of the PL/I source modules in the directory hierarchy
%s1#d02>Sales>Jones, use the following command.

walk_dir %s1#d02>Sales>Jones -down_command 'list *.pl1'

The command visits all the directories contained in the directory and displays the following
information.

%s1#d02>Sales>Jones

list: No match for star name. %s1#d02>Sales>Jones>*.pl1

%s1#d02>Sales>Jones>memos

list: No match for star name. %s1#d02>Sales>Jones>memos>*.pl1

%s1#d02>Sales>Jones>quarterly

Files: 1, Blocks: 1

w 1 sales_report.pl1
2-838

where_command
where_command 2-

Purpose
This command tells you the type of a given command and the full path name of an external
command or command macro. The command uses your process’s command library path
names to locate the command.

Display Form

Command Line Form
where_command command_name[-use_abbreviations]

Arguments* command_name Required
The name of a command. It can be an internal command, an external command, a
command macro, or any other program module.

* -use_abbreviations <CYCLE>
According to your command search library paths, expands first and all abbreviations
before the search for the command is performed. By default, the command does not
expand abbreviations before the search occurs.

Explanation
The where_command command tells you the location of the command found using the
current command library path names. The search follows standard search rules, looking first
for an internal command, then through the command libraries, searching each directory for a
command macro, then for a program module.

The argument command_name can be an internal command, an external command, a
command macro, or any user program or command macro. Unless the command is an internal
command, the operating system displays its full path name.

The operating system also displays the type of the command. The possible values are
internal command, external command, and command macro.

-------------------------------- where_command ---------------------------------
command_name:
-use_abbreviations: no
OpenVOS Commands Reference Manual (R098) 2-839

where_command
When you give the -use_abbreviations argument, the command expands all
abbreviations, including first token abbreviations, before it performs the search, according to
the command search library paths defined in your process.

Examples
For the following examples, suppose you have this abbreviation in your abbreviations file.

first ls -by list -header

If you invoke where_command without the -use_abbreviations argument, it does not
expand the abbreviation ls, and it does not find the list command.

where_command ls
where_command: Object not found. ls

However, if you give the -use_abbreviations argument, where_command expands the
ls abbreviation, and it finds the list command.

where_command ls -use_abbreviations
list: (internal command)

Related Information
For a complete description of the search rules, see OpenVOS Commands User’s
Guide (R089).
2-840

where_path
where_path 2-

Purpose
This command locates an object specified by a path name. When the path name is a link, the
command displays the ultimate target of the path name, a statement whether the target exists,
and the name of the processing module containing the target. When the path name does not
include a link, the command displays the full path name.

Display Form

Command Line Form

where_path path_name [-link]
Arguments* path_name Required

The path name of an object. When the path name is a link, the command displays the
full path name of its ultimate target.

* -link <CYCLE>
Displays all links encountered while resolving the path name. By default, the
where_path command displays only the ultimate target of the link.

Explanation
The where_path command displays the full path name of the ultimate target of the path
name path_name. The primary use of the where_path command is to determine the
ultimate target of a link, so it is most often used when path_name is a link name.

When you specify -link, where_path displays all the links in the chain between the
specified link name and its ultimate target, including any links embedded in path names.
Embedded links are displayed in an indented fashion, to indicate the level in the hierarchy at
which the link was encountered. In the case of a circular link, the command displays the links
causing the circular link and reports the error accordingly. The command also tells you the
name of the module of the ultimate target and whether the target object exists.

---------------------------------- where_path ----------------------------------
path_name:
-link: no
OpenVOS Commands Reference Manual (R098) 2-841

where_path
Examples
Consider the following command.

where_path jones_customers

If the object does exist, then this message appears.

%s1#d03>Sales>east>Jones>customers is a directory on %s1#m1.

If the indicated path name is the ultimate target of the link jones_customers, but the object
does not exist, the command displays this message.

%s1#d02>Sales>east>Jones>customers does not exist but would be on
+%s1#m1.

If acc is a link in %s1#d02 to a directory on another module, the command might display
this message.

%s1#d04>Accounting>journal is a directory on %s1#m4.

If the ultimate target of a link is also its immediate target, -link has no effect on the result
of the command. If there are intervening links, -link is necessary to display them.

acc -> %s1#d02>Sales>journal
journal -> %s1#d04>Accounting>journal
%s1#d04>Accounting>journal is a directory on %s1#m4.
2-842

who_locked
who_locked 2-

Purpose
This command displays the names of the processes and their owners that currently have
locked a given file or device.

Display Form

Command Line Form
who_locked path_names[-brief]

Arguments* path_names Required
The path name or star name of a file, or the path name of a device. The who_locked
command tells you who locked the file or who currently has the device attached.

* -brief <CYCLE>
Displays only those files that are locked. By default, the who_locked command
displays the names of all files (locked and unlocked).

* -process_id <CYCLE>
Displays the process ID of the locking process. The process ID is displayed as an
8-digit hexadecimal value.

Explanation
The who_locked command displays the names of the processes and the names of the users
owning the processes that currently have locked the specified file or device. The output
includes the path name of each process and the module on which it is running. The
who_locked command also tells you whether the file or device is locked for reading or
writing. The who_locked command does not display the names of those who have opened
the file for dirty input if there are other locks on the file being used (such as implicit locks or
record locks).

---------------------------------- who_locked ----------------------------------
path_names:
-brief: no
-process_id: no
OpenVOS Commands Reference Manual (R098) 2-843

who_locked
Examples
The following example shows the output from the command line.

who_locked >Overseer>watch_net*.

watch_net.cm:
 Object is read locked by Overseer.System (WatchNet) on module
%s1#m2 executing watch_kernel.pm.
watch_net.out:
 Object is implicitly locked by Overseer.System (WatchNet) on
module %s1#m2 executing watch_kernel.pm.
watch_net.out.old:
 Object is not locked.

The following example shows the output when you specify the -process_id argument.

who_locked >system>command_library>overseer.pm -process_id
overseer.pm:
Object is read locked by Overseer.System (TheOverseer, pid 01208060)
on module %es#m125 executing overseer.pm.

Related Information
See also the description of the list_users command.

For information about opening a file for dirty input, see the s$open subroutine in the
OpenVOS Subroutines manuals.
2-844

write_tape
write_tape 2-

Purpose
This command writes a file or files to the tape volume on the specified tape drive or on the
tape drive connected to the specified port.

Display Form

Command Line Form

write_tape tape_device_or_port_name
file_names . . . [-file_ids file_ids . . .] [-raw_stream_files record_size]

Arguments* tape_device_or_port_name Required
The name of the tape device, or the name of the port attached to the tape drive, holding
the tape to which files are to be written.

* file_names Required
One or more names or star names of disk files that write_tape is to write to the tape.
The names cannot be extended names.

* -file_ids file_ids
Specifies the file IDs that write_tape is to write in the file labels of the tape files
when it writes to a labeled tape. If you give more file IDs than file names (or file names
that match file_names), the command disregards the extra file IDs. If you give more
file names than file IDs, the command uses the names of the files for the missing tape
file IDs.

* -raw_stream_files [record_size]
Reads the disk file to the tape in increments of record_size characters using the
s$read_raw subroutine. The record_size is the record size of the resulting tape
file; it must be an integer. If you do not specify a record size, the size of the increment
is 512. This argument can be used only when writing stream files. By default, the
command reads the disk file to the tape a record at a time.

---------------------------------- write_tape ----------------------------------
tape_device_or_port_name:
file_names:
-file_ids:
-raw_stream_files:
OpenVOS Commands Reference Manual (R098) 2-845

write_tape
Explanation
The write_tape command writes the files selected by file_names to the tape volume
mounted on the specified tape drive or on the tape drive connected to the specified port.

If you have not yet used the attach_port command to attach the port, the write_tape
command implicitly attaches a port. If you have not yet used the mount_tape command to
mount the tape, the write_tape command implicitly mounts the tape before executing.
When execution is completed, if write_tape implicitly mounted a tape, it implicitly
dismounts the tape. If it implicitly attached a port, it implicitly detaches the port. For more
information, see the Explanation section in the mount_tape command description.

When write_tape mounts the tape implicitly during multiple write operations, the tape is
rewound after the command executes; therefore, each execution overwrites the results of the
previous execution. Each time you issue the command, the following message is displayed:
Overwrite the existing content of this tape? Respond with yes or no to this
question.

The write_tape command writes the first file at the current position of the tape. Therefore,
for consecutive write operations to the same tape, use mount_tape to mount the tape so that
the tape is not rewound between operations. After writing all the files listed under
file_names, write_tape writes an end-of-volume mark and leaves the tape positioned to
the end of the volume. You cannot access data after the end-of-volume mark unless you treat
the tape as unlabeled.

The write_tape command determines the organization of the tape files it writes from the
default tape parameters for the port specified in tape_device_or_port_name.

The write_tape command stores the character set information, that is, the character set and
shift mode, with the file that it writes to tape.

The write_tape command writes only the records of a file. It does not write any indexes or
attributes of the file.

Access Requirements
By default, you have write access to a tape device. If your system administrator restricts
access to the tape device, you need write access to write to the tape device.

Related Information
See also the command descriptions of copy_tape, create_tape_volumes,
dismount_tape, display_tape_params, dump_tape, list_save_tape,
mount_tape, position_tape, read_tape, restore_object, save_object,
set_second_tape, set_tape_drive_params, set_tape_mount_params,
set_tape_file_params, and verify_save.
2-846

Appendix A:
Setting and Displaying Tape Parameter Values A-

Tape parameters control all aspects of the use of tape drives. Tape parameters allow you to
use a tape drive in a specific way, to define special properties of a mounted tape, or determine
how an object is output to tape. The tape parameters are divided into three types: drive, mount,
and file. Tape drive parameters are in effect for the entire time the port is attached. Tape mount
parameters are in effect only while the tape is mounted. Tape file parameters are only in effect
while a tape file is open.

The tape drive, mount, and file parameters are divided into default, user, and actual values.
The relationship between tape parameter types and values is shown in Table A-1. Default tape
values are system defaults and are never changed. The user sets the user tape values. User
tape values overlay the defaults and are in effect for a limited period, as defined in Table A-1.
Actual tape values are the user values overlaid on the default values and the default values
that have not been overlaid by user values. In the case of the mount and file parameters, they
may also include values from the tape label. The actual values are used for every tape
operation.

The relationship between the tape drive, mount, and file parameters and the default, user, and
actual values is shown in Table A-1. The duration heading in Table A-1 is the length of time
the default, user, and actual values are in effect.

1

Table A-1. Setting Tape Parameters

Parameter
Type

 How Set When Set Duration
Default
Values

User
Values

 Actual
Values

Drive set_tape_
drive_params

Any time after
port is
explicitly
or implicitly
attached.

System defaults.
In effect
unless user
value set.

You set.
In effect for
attached
port.

Default plus
user values.
In effect for
attached port.

Mount set_tape_
mount_params

After port
attached with
attach_port
but before tape
mount.

System defaults.
In effect unless
user value set or
tape label used.

You set.
In effect
for
mounted
tape.

Default plus
user values
or tape label
values. In
effect for
mounted tape.
OpenVOS Commands Reference Manual (R098) A-1

Setting and Displaying Tape Parameter Values
The duration of user and default tape drive, tape mount, and tape file values is further
illustrated in Figure A-1.

Mount mount_tape During
tape
mount.

System defaults.
In effect unless
user value set
or tape label
used.

You set.
In effect
for
mounted
tape.

Default plus
user values
or tape
label values.
In effect for
mounted tape.

File set_tape_
file_params

After tape
mounted
with
mount_tape.

System defaults.
In effect unless
user value set
or tape label
used.

You set.
In effect
for open
file.

Default plus
user values
or tape
label values.
In effect for
open file.

Table A-1. Setting Tape Parameters (Continued)

Parameter
Type

 How Set When Set Duration
Default
Values

User
Values

 Actual
Values
A-2 Appendix A: Setting and Displaying Tape Parameter Values

Setting and Displaying Tape Parameter Values
1

Figure A-1. Duration of User and Default Values

You can use the set_tape_drive_params, set_tape_mount_params, and
set_tape_file_params commands to change the parameter values for a tape operation so
that you can use a tape drive in a specific way, define special properties of a mounted tape, or
determine how an object is output to tape. All of these parameters have system default values.

Note: Except when you are writing tapes for use by non-Stratus systems, you usually
will have no need to change these default values or to use the
set_tape_drive_params, set_tape_mount_params, or
set_tape_file_params commands.

Setting and displaying tape parameters with the set_tape_drive_params,
set_tape_mount_params, set_tape_file_params, and display_tape_params
commands is discussed below.

Defaults

s
e
t
_
t
a
p
e
_
d
r
i
v
e
_
p
a
r
a
m
s

s
e
t
_
t
a
p
e
_
m
o
u
n
t
_
p
a
r
a
m
s

m
o
u
n
t
_
t
a
p
e

s
e
t
_
t
a
p
e
_
f
i
l
e
_
p
a
r
a
m
s

File
Open

User Tape Drive Parameters

User Tape Mount Parameters

User Tape File
Parameters

Tape
Mount

Tape
Mount

Port
Attach

Tape
Dismount

Port
Detach

Beginning of
Tape Operation
OpenVOS Commands Reference Manual (R098) A-3

Setting and Displaying Tape Parameter Values
Setting Tape Drive Parameters
You can set four tape drive parameter values with the set_tape_drive_params command,
including values that determine the following: how a tape is positioned at the end of a tape
operation, whether a tape remains loaded at the end of a tape operation, what kind of
messages a tape user receives, and whether a tape is rewound during a multivolume tape
operation.

Note: If you reset the user tape drive parameters with the set_tape_drive_params
command, the new user values are overlaid on the existing user and default values.

Setting Tape Mount Parameters
You can set the tape mount parameter values with the set_tape_mount_params or
mount_tape commands. You use the set_tape_mount_params command to change
parameters prior to mounting a tape; it determines most of the mount_tape command’s user
values. You use the mount_tape command to change the mount parameters during a tape
mount. The set_tape_mount_params command allows you to change six mount tape
parameter values; the mount_tape command allows you to change eight mount tape
parameter values; both commands allow you to change the tape format, density, volume ID,
owner ID, and access rights.

Note: If you reset the user tape mount parameters with the
set_tape_mount_params or mount_tape command, the new user values are
overlaid on the existing user and default values.

Setting Tape File Parameters
You can set eight tape file parameter values with the set_tape_file_params command
including, most importantly, the file format, block length, record length, and blocking factor.

Note: If you reset the user tape file parameters with the set_tape_file_params
command, the new user values are overlaid on the existing user and default values.

Displaying Tape Parameters
You can display the tape drive, mount, and file parameters and their default, user, and actual
values with the display_tape_params command. The display form of the
set_tape_drive_params, set_tape_mount_params, and set_tape_file_params
commands do not show any default values for <CYCLE> field parameter values.
A-4 Appendix A: Setting and Displaying Tape Parameter Values

Appendix B:
General OpenVOS Software Limits and Numerical
Definitions B-

This appendix contains a list of general OpenVOS software limits and numerical definitions.

Table B-1 contains a list of general OpenVOS software limits.

1.

Table B-1. General OpenVOS Software Limits

Subject Description Limit Notes

Abbreviations Maximum length of an
abbreviation name

32 characters

Address Space
Size

Maximum size of the
user address space

2 GB

Blocks:
Maximum in a
Non-extent
File

Sequential 523,783 Extended sequential files must
have extents

Stream, 64-bit stream,
relative, fixed

523,792

Blocks:
Maximum in
an Extent File

Sequential 523,783 E = -extent_size argument

N = -record_size argument
(rounded up to an even
number)

Extended sequential [N] min ((523,792 * E) - 9,
(524,288 * N))

Fixed min ((523,792 * E),
(524,288 * N))

64-bit stream (with fixed
extents)

523,792 * E

64-bit stream (with
flexible extents)

131,870,736

Relative min ((523,792 * E),
(524,288 * (N +2)))

Command
Functions

Maximum length of a
returned value

256 characters
OpenVOS Commands Reference Manual (R098) B-1

General OpenVOS Software Limits and Numerical Definitions
Command
Lines

Maximum length of a
command line
interpreted by command
and command macro
processor

32,767 characters Only with sufficient available
kernel memory.

Maximum length of a
command line entered
on a terminal or virtual
terminal

300 characters

Maximum length of
individual words and
quoted strings in
command lines

256 characters

Maximum number of
command or command
macro parameters

60 parameters The actual limit is determined
by the screen size and whether
the display form uses two
columns

Maximum number of
lines of source code in
an OpenVOS
compilation unit

2,147,483,647 This limit includes the source
file and all include files
referenced by the compilation
unit.

Directories Maximum number of
disk blocks that can be
assigned to a directory

527 blocks (settable to
less)

Expandable limit is 8720
blocks and 32,700 entries
(settable to less)

Maximum depth of
directory tree

25 directories

Maximum length 255 characters if
version 2 extended
names is supported;
otherwise, 32
characters

Error Codes Range of values for
codes used by OpenVOS

1 to 32,767

Range of values for
codes you can use

-1 to -32,768

Table B-1. General OpenVOS Software Limits (Continued)

Subject Description Limit Notes
B-2 Appendix B: General OpenVOS Software Limits and Numerical Definitions

General OpenVOS Software Limits and Numerical Definitions
Events Maximum number of
events per module

524,287 events

For a tasking program,
maximum number of
events per task

By default, 8704 events You can increase this value to
32,767 with the
set_tuning_parameters
command

For a nontasking
program, maximum
number of events per
process

By default, 8704 events For information on changing
the number of events, see the
description of the
-max_events_per_process
argument of the
set_tuning_parameters
command in OpenVOS System
Administration: Administering
and Customizing a
System (R281)

Files Maximum number of
concurrent opens

32,767

File Names Maximum length of a
file name

32 characters if neither
version 1 nor version 2
extended-names
support is enabled;
otherwise, 255
characters

High-Water
Mark

Range of values for the
high_water_mark
binder control file
directive

Ranges from
08000000x to
78000000x; the default
is 40000000x

Specified values less than the
minimum value are replaced by
the minimum value; specified
values greater than the
maximum value are replaced
by the maximum value

Table B-1. General OpenVOS Software Limits (Continued)

Subject Description Limit Notes
OpenVOS Commands Reference Manual (R098) B-3

General OpenVOS Software Limits and Numerical Definitions
Indexes Maximum length of a
key field

For embedded-key
indexes, the maximum
length is the total size
of the specified key
components (up to
1280 bytes)

For item, separate-key,
embedded-separate-ke
y indexes, the
maximum length is
1280 bytes by default

Maximum size of an
index

523,792 blocks For non-extent indexes

134,090,752 blocks For extent indexes

Links Maximum number of
nested links

16 links

Memory Number of pages
initially assigned to user
heap

8 pages

Maximum amount of
memory that can be
devoted to SVM regions
located outside of the
program module itself

Without modifying
high_water_mark:
939,524,096 bytes
(equal to 229,376
pages, 896 MB, or
1 GB - 128 MB)

Maximizing
high_water_mark:
1,879,048,192 bytes
(equal to 458,752
pages, 1792 MB, or
2 GB - 256 MB)

The address starts at
08000000x and stops at
high_water_mark (or at
40000000x, if
high_water_mark is not
specified)

Kernel virtual memory 2 GB

Network Maximum number of
modules per system
(connected by subrings)

32 modules

Maximum number of
systems per cluster
(connected by backbone
rings)

32 systems

Table B-1. General OpenVOS Software Limits (Continued)

Subject Description Limit Notes
B-4 Appendix B: General OpenVOS Software Limits and Numerical Definitions

General OpenVOS Software Limits and Numerical Definitions
Path Names Maximum length 256 characters

Pipe Files Maximum size 17 blocks

Ports Maximum number that
can be attached to a
process

4096 ports

Preprocessor
Symbols

Maximum length of
preprocessor symbol

256 characters

Processes Maximum number of
OpenVOS processes
(and subprocesses) on a
module

4,095 processes For more information, see the
description of the
registration_admin
command in OpenVOS System
Administration: Registration
and Security (R283)

Process
Scheduler

Interrupt time 100 milliseconds Depends on CPU type

Time slice range 2 to 4000 milliseconds

Dead-CPU time-out
value

1 minute Determines the maximum
amount of real time for which a
CPU may process instructions
without rescheduling.
OpenVOS uses the dead-CPU
time-out value to detect a dead
(or nonresponsive) CPU, as the
name indicates.

Program
Modules

Maximum size 128 MB

Queues Maximum message
length (direct queue)

3,072 bytes

Maximum message
length (virtual queue)

32,767 bytes

Maximum message
length for queue on same
module as calling
process (server and
message queues)

2 23 bytes

Maximum message
length for queue on
different module than
calling process

2 20 bytes

Table B-1. General OpenVOS Software Limits (Continued)

Subject Description Limit Notes
OpenVOS Commands Reference Manual (R098) B-5

General OpenVOS Software Limits and Numerical Definitions
Table B-2 contains a list of OpenVOS numerical definitions.

Records Maximum size of
records in stream and
sequential files

32,767 bytes

Range of length values
in deleted sequential
records

-2 to -16,386

Star Names Maximum number of
components

17

Stack Frames Maximum number of
bytes available for a
function’s initial stack
frame

2,147,483,584 bytes

System Data Maximum size 2 MB Ends at 7FE6000x

User Heap Minimum and maximum
sizes

Minimum: 32,768
bytes

Maximum if
high_water_mark is
not specified: 896 MB

Maximum if
high_water_mark is
set to 08000000:
1918 MB

Maximum if
high_water_mark is
set to 78000000:
126 MB

Starts at high_water_mark
(or at 40000000x, if
high_water_mark is not
specified) and can extend to
7FE60000x

User Stack Minimum and maximum
sizes

Minimum: 32,768
bytes

Maximum: 1022 MB

Starts at 7FE60000x and
cannot be extended lower than
40000000x; the default size is
64 MB

Virtual Circuit
Facility

Maximum number of
address extensions

255

Table B-1. General OpenVOS Software Limits (Continued)

Subject Description Limit Notes
B-6 Appendix B: General OpenVOS Software Limits and Numerical Definitions

General OpenVOS Software Limits and Numerical Definitions
2.

Table B-2. OpenVOS Numerical Definitions

Subject Description Definition Notes

Blocks The size of a block 4096 bytes

Extents Size, in blocks A multiple of 8 For statically allocated
extents (SAE) files

A power of 2
between 8 and
256

For dynamically
allocated extents
(DAE) files

File Record
Length (with
shared virtual
memory)

Record length 4096 bytes

Time
Measurement

Micro-jiffies 1/65,536 jiffy
(a jiffy is
1/65,536th of a
second) or
232.83
picoseconds
OpenVOS Commands Reference Manual (R098) B-7

General OpenVOS Software Limits and Numerical Definitions
B-8 Appendix B: General OpenVOS Software Limits and Numerical Definitions

Appendix C:
Reducing Program Module Size When Using Shared Virtual
Memory Databases C-

When applications need high-speed access to a shared database, it is often useful to create that
database in virtual memory rather than on disk. Applications with this requirement often have
several processes updating a database and many more functioning in an inquiry mode. Such
shared virtual memory databases are often tens or hundreds of megabytes in size.

In the past, the standard method for creating a shared virtual memory database was to create
a data object module with the create_data_object command. This command allows the
shared region defined by the object module to occupy the same sequence of virtual memory
addresses in each process. The object module created by this command is bound in at the
same position (usually first) in each database application.

Unfortunately, the data object module is not merely a placeholder for shared virtual memory
space. The data object module and the program modules in which the data object module is
bound both use unneeded disk space. For example, if you have a dozen applications that share
a 20 MB memory-resident database, the data object module wastes 240 MB of disk space.

An alternative to the create_data_object command is available; it eliminates the use of
disk space by program modules with shared virtual memory databases. This alternative uses
two bind directives (define and high_water_mark) to store the address and size of the
virtual memory database used by a set of applications. However, this method has two minor
disadvantages. You must manually determine the values for these bind directives. In addition,
these manually-determined values may become invalid when you make small changes to any
application in the set of applications that use the shared virtual memory database.

This appendix discusses the following topics:

 ‘‘Using create_data_object to Organize Virtual Memory”
 ‘‘Using Bind Directives to Organize Virtual Memory”
 ‘‘Using Bind Directives to Create a Shared Virtual Memory Database”
OpenVOS Commands Reference Manual (R098) C-1

Using create_data_object to Organize Virtual Memory
Using create_data_object to Organize Virtual Memory
This section describes the organization of user virtual memory on ftServer modules when you
create a shared virtual memory database with the create_data_object command.

Figure C-1 shows the organization of user virtual memory on an ftServer module. The
OpenVOS program loader puts the program module, which includes the code and static data
regions, and the symbol table and maps in the lower user memory locations. Also included as
part of the program module is a virtual memory space created with the
create_data_object command. Reserved pages for this space are located between the
lowest address and the start of the compiled program.

The heap and stack are not contained in the program module and do not have copies stored
on the disk. The OpenVOS program module loader defines the initial stack and heap space
requirements for a program module as the program module begins to execute.

On an ftServer module, the heap begins at an address defined by a default value
(0x40000000) or by the high_water_mark bind directive, and it grows toward higher
virtual memory addresses. The stack occupies higher addresses in the address space and
grows downward toward the heap.
C-2 Appendix C: Reducing Program Module Size When Using Shared Virtual Memory Databases

Using Bind Directives to Organize Virtual Memory
1

Figure C-1. Shared Virtual Memory Database in a Program Module

Using Bind Directives to Organize Virtual Memory
This section describes how to use the define and high_water_mark bind directives to
organize user virtual memory on ftServer modules. The procedure for moving a shared virtual
memory database out of a program module is described in ‘‘Using Bind Directives to Create
a Shared Virtual Memory Database.”

Figure C-2 shows the organization of user program virtual memory on an ftServer module
when you use the define and high_water_mark bind directives, and the shared virtual
memory database follows the program module and is contiguous with the heap. When you
move a shared virtual memory database to this location, the bind command no longer
allocates disk space for the shared virtual memory database.

Note: The unused pages for alignment that precede the shared virtual memory database
are explained in ‘‘Using Bind Directives to Create a Shared Virtual Memory Database.”

Fence

Code, Unshared Static,
and Shared Static

Regions

Symbol Table (Symtab)

Maps

Heap

Start of Compiled Program
(Page Boundary)

Reserved Pages for Shared
Virtual Memory

Dead Space

Address of Lowest Boundary
00002000x

Program Module
(n_vm_pages) {

Stack

Address of Highest Boundary

Beginning of Heap
(high_water_mark)

Reserved Pages for
Dynamic SVMR
OpenVOS Commands Reference Manual (R098) C-3

Using Bind Directives to Create a Shared Virtual Memory Database
Moving a shared virtual memory database to this location also has no effect on the size of the
database and does not require additional paging space on the disk.

2

Figure C-2. Shared Virtual Memory Database Not in a Program Module

Using Bind Directives to Create a Shared Virtual Memory Database
This section discusses the following topics:

 ‘‘Making and Checking the Calculations”
 ‘‘Reacting to Application and Compiler Changes”
 ‘‘Using More Than One Shared Virtual Memory Region”
 ‘‘Example of Binder Control File Changes”

To create a shared virtual memory database, you must specify the address of the shared virtual
memory region (SVMR) and the beginning of the heap or stack (high_water_mark) in the

Fence

Code, Unshared Static,
and Shared Static

Regions

Symbol Table (Symtab)

Maps

Heap

Stack

Start of SVMR

Address of Highest Boundary

Dead Space

Address of Lowest Boundary
00002000x

Reserved Pages for Shared
Virtual Memory

Unused Pages for
Alignment

Beginning of Heap
(high_water_mark)

Program Module
(n_vm_pages) {

Reserved Pages for
Dynamic SVMR
C-4 Appendix C: Reducing Program Module Size When Using Shared Virtual Memory Databases

Using Bind Directives to Create a Shared Virtual Memory Database
binder control file, and modify your application to access these values. All program modules
sharing a region of virtual memory must map the same file records into the same range of
virtual memory pages.

When you specify high_water_mark, the following rules apply:

 SVMRs must always have the same addresses, regardless of whether or not you provide
these addresses in the call to s$connect_vm_region3.

 Programs that use statically defined SVMRs can define the address of the regions
anywhere above the program module and below the heap. Therefore, for such
programs, you may need to adjust high_water_mark for large or numerous regions.

 To avoid problems, make sure that programs sharing a statically-defined SVMR have
the same high_water_mark values.

 All programs sharing a dynamic SVMR must have the same high_water_mark
values so that the given address is available in all of these programs.

 If a program uses both statically defined and dynamically allocated SVMRs, the
high_water_mark value must be the same for all involved programs.

 The high_water_mark value for each program must be large enough to
accommodate the SVMR used by that particular program.

Use the following procedure to move a shared virtual memory database.

1. For each application (program module) that uses the same space-reserving object
modules generated by create_data_object, issue the
display_program_module command with the name of the currently used program
module and the -header and -module_map arguments. Write down the name of the
program module and the values of n_vm_pages (a decimal value) and
user_boundary (a hexadecimal value), which are listed in the program module
header. Also, using the object module map, write down the code length (a hexadecimal
value) of object modules created with the create_data_object command. For more
information on the create_data_object and display_program_module
commands, see the command descriptions in this manual.

Note: The value of high_water_mark shown in the program module header
should be zero.

2. To determine the size of the largest program module, multiply the largest n_vm_pages
value by 4096 bytes per page, convert the value to hexadecimal, and subtract from it the
size of the create_data_object object module(s).

3. To determine the SVMR value, add the size of the largest program module (from
Step 2) to the user_boundary value.

Stratus recommends that you round up the initial value of SVMR by several pages so
that small source code or compiler changes will not force you to completely recalculate
the shared virtual memory values in the binder control files. For more information
OpenVOS Commands Reference Manual (R098) C-5

Using Bind Directives to Create a Shared Virtual Memory Database
about how application and compiler changes can affect this value, see ‘‘Reacting to
Application and Compiler Changes.”

Notes:

1. No tool exists that automatically establishes the value of SVMR for
multiple program modules, and takes account of the fact that each program
module probably has a different amount of storage allocated to the code
and static data. You must determine the SVMR value by using the
display_program_module command.

2. If a program module is not the largest program module in the set, some
virtual memory space in this program module is used to align the shared
virtual memory used by a set of applications. This space is equal to the
difference in size of this particular program module and the largest one in
the set sharing the virtual memory. In Figure C-2, this space is called
“Unused Pages for Alignment.”

4. In each affected application’s binder control file, remove the module directives that
reference object modules created with the create_data_object command.

Use the define bind directive to specify a symbol and an address for the SVMR. Use
the object_name that you specified with the create_data_object command as
the name of the define symbol. Your application’s use of this symbol is identical to
its use of the data object module(s) created with the create_data_object
command.

To ensure that SVMRs do not extend into the area reserved for the heap, compare the
high_water_mark value to the highest shared virtual memory address plus the size
of the data object module(s) that you created with the create_data_object
command.

5. Rebind each application that has a changed binder control file.

Making and Checking the Calculations

You can perform these calculations using hexadecimal or decimal numbers. The advantage of
using hexadecimal numbers is that all multiples of the 4096-byte page size end in 000x.

Note: All hexadecimal addresses require a 0 as the first digit. The binder fails if the first
digit is A through F.

Always check your calculations. OpenVOS does not verify the value that you specify for the
SVMR overlays the heap or the stack. If a shared virtual memory file accidentally overlays
the heap or stack, the results of continued computation cannot be predicted.

Reacting to Application and Compiler Changes

The values associated with this procedure may change over the life-cycle of the applications.
Changes in program module size can occur any time any part of an application is recompiled
and rebound. Even simple maintenance actions, such as changing the name of an error code,
can affect the page boundary values. New compiler releases may generate different code
C-6 Appendix C: Reducing Program Module Size When Using Shared Virtual Memory Databases

Using Bind Directives to Create a Shared Virtual Memory Database
sequences for the same construct, even when the same compiler options are employed. For
this mechanism to work, all programmers for the affected applications must check that the
shared virtual memory values used in the bind control files reflect the current size of the
application program modules. Stratus recommends that you round up the initial value of
SVMR by several pages so that small source code or compiler changes will not force you to
completely recalculate the shared virtual memory values in the binder control files.

Using More Than One Shared Virtual Memory Region

If your applications share more than one shared virtual memory region, you can define several
instances of SVMR such as SVMR1, SVMR2, and SVMR3. Regardless of how many regions
you define, each binder control file can contain only one high_water_mark statement.

Example of Binder Control File Changes

The following example shows binder control files that use the same data object created with
the create_data_object command. It then shows how these binder control files are
modified to add the values for SVMR.

Binder Control Files Using a Created Data Object
The following is a binder control file for a C program that uses a SHARED_VM_REGION data
object created with the create_data_object command.

name: c_example;
size: 64mb;
modules: SHARED_VM_REGION page_aligned,

c_example;
end;

The following is a binder control file for a COBOL program that uses a SHARED_VM_REGION
data object created with the create_data_object command.

name: cobol_example;
size: 64mb;
modules: SHARED_VM_REGION page_aligned,

cobol_example;
end;

The following is a binder control file for a PL/I program that uses a SHARED_VM_REGION
data object created with the create_data_object command.

name: pl1_example;
size: 64mb;
modules: SHARED_VM_REGION page_aligned,

pl1_example;
end;
OpenVOS Commands Reference Manual (R098) C-7

Using Bind Directives to Create a Shared Virtual Memory Database
Changing Binder Control Files to Use SVMR
Before adding the SVMR values to the binder control files of applications that use the same
shared virtual memory database, calculate the SVMR values. In this example, the
display_program_module command is run against the C, COBOL, and PL/I program
modules, and the following values are recorded.

To determine the size of the SVMR, use the n_vm_pages value from the COBOL
application, since it is the largest n_vm_pages value. Multiply this value by 4096, convert it
to hexadecimal, from it subtract the size of the SHARED_VM_REGION code pages, and then
add the user_boundary value.

SVMR = ((hexadecimal 5120 * 4096) - 1000000x + 8000x)
SVMR = 1400000x - 1000000x + 8000x
SVMR = 408000x

To determine whether you need to adjust the high_water_mark value, you must calculate
the ending address of the SVMR by adding the SVMR to the SHARED_VM_REGION code size
(in this case, 408000x + 1000000x). Because 1408000x is lower than the default
high_water_mark value (40000000x), you do not need to adjust the high_water_mark
value.

Note: For processes with multiple SVMRs, calculate the ending address of the SVMR
with the highest starting address.

The following is a binder control file for a C program that uses a data object created with the
define directive.

name: c_example;
size: 64mb;
define: SHARED_VM_REGION address (408000x);
modules: c_example;
end;

The following is a binder control file for a COBOL program that uses a data object created
with the define directive.

name: cobol_example;
size: 64mb;
define: SHARED_VM_REGION address (408000x);
modules: cobol_example;
end;

C COBOL PL/I

n_vm_pages 4608 5120 4976

user_boundary 00008000x 00008000x 00008000x

SHARED_VM_REGION
code size

1000000x 1000000x 1000000x
C-8 Appendix C: Reducing Program Module Size When Using Shared Virtual Memory Databases

Using Bind Directives to Create a Shared Virtual Memory Database
The following is a binder control file for a PL/I program that uses a data object created with
the define directive.

name: pl1_example;
size: 64mb;
define: SHARED_VM_REGION address (408000x);
modules: pl1_example;
end;

Using high_water_mark to Adjust the Size Reserved for the SVMR
You can use the high_water_mark bind directive to increase or decrease the size reserved
for the SVMR, but, typically, you would use it only in the following circumstances:

 To connect very large or very numerous SVMRs. In this case, you would increase
high_water_mark.

 Under conditions that require maximum stack and heap space. In this case, you would
decrease high_water_mark.

By default, the high_water_mark value is 1 GB (40000000x). This value must be greater
than 128 MB (8000000x) and less than 2 GB - 128 MB (78000000x). If you specify a value
that is less than 128 MB, OpenVOS silently (without any messages or errors) sets
high_water_mark to 128 MB. Likewise, if you specify a value that is greater than
2 GB - 128 MB, OpenVOS silently sets high_water_mark to 2 GB - 128 MB.

If you set high_water_mark to 128 MB, the program cannot use dynamic SVMRs.

If a program uses both statically defined and dynamically allocated SVMRs, the static regions
should either remain below 128 MB or grow from 128 MB toward higher addresses.

Typically, all programs that plan to use a common set of VM regions should have the same
high_water_mark value. Otherwise, there is no guarantee of correct program behavior.

The following example illustrates how to adjust the high_water_mark value. It allows
approximately 1.5 GB of reserved space for SVMRs and places a SVMR at the 128 MB
address.

name: hwm_example;
define: SHARED_VM_REGION address (8000000x);
high_water_mark: 60000000x;
modules: hwm_example;
end;
OpenVOS Commands Reference Manual (R098) C-9

Using Bind Directives to Create a Shared Virtual Memory Database
C-10 Appendix C: Reducing Program Module Size When Using Shared Virtual Memory Databases

Index Index-
Miscellaneous
#pragma options and the cc command, 1-121
#replace statement, debugger, 1-243
64-bit stream files, 1-212

A
-A compiler option, 1-113
Abbreviations, 1-497, 1-812

debugger requests, 1-243
expanding, 1-349, 1-565, 1-759, 1-812
file, 1-812
first token, 1-242, 1-565
limits, B-1
local, 1-466
preventing expansion of, 1-813

(abs) command function, 1-4
Access

copying, 1-634
default, 1-307, 1-444
to devices, 1-36, 1-197, 1-297, 1-399, 1-441,

1-551, 1-639, 1-846
to directories, 1-297, 1-307, 1-440
to files, 1-297, 1-440, 1-474
to objects, 1-297
to tapes, 1-541, 1-545, 1-718

Access codes, 1-439, 1-444
execute, 1-440, 1-444
for directories, 1-5, 1-42
for files, 1-5, 1-42
modify, 1-440
null, 1-440, 1-441, 1-444
read, 1-440, 1-441, 1-444
status, 1-440
undefined, 1-307, 1-445
write, 1-440, 1-441, 1-444

(access) command function, 1-5
Access control, 1-307, 1-440, 1-441, 1-634

displaying access, 1-296
give_access command, 1-439
give_default_access

command, 1-444
giving access, 1-439, 1-444

remove_access command, 1-642
remove_default_access

command, 1-644
removing access, 1-642, 1-644

Access control lists (ACLs), 1-296
comparing, 1-158
default, 1-307, 1-444
displaying, 1-299, 1-307
entries, 1-634
new directories, 1-205

Access requirements
for binding, 1-64
for compilation, 1-99, 1-131, 1-156, 1-436,

1-587, 1-599
for preprocessing, 1-610
to a form definition file, 1-410, 1-575

Actual tape parameters, 1-389, A-1
add_entry_names command, 1-2
add_library_path command, 1-6
add_paging_file command, 1-211, 1-323
add_profile command, 1-10
Address space

maximum size, B-1
(after) command function, 1-7
Aliases, 1-535
-align_mod16 binder argument, 1-46
Alignment, 1-46

faults, 1-628
mapping rules, 1-86, 1-92
profiling faults, 1-48

Allocating file space, 1-679
analyze_pc_samples command, 1-15

bind requirements, 1-22, 1-29
boot partition number, 1-16
CPU usage report, 1-26
examples of using, 1-20
measuring standard deviation, 1-31
PC sample statistics report, 1-25
sample output, 1-21
use with harvest_pc_samples

command, 1-450
uses raw data files, 1-16
when to use, 1-450
OpenVOS Commands Reference Manual (R098) Index-1

Index
analyze_system
dump_eit request, 1-18

ANSI C conformance and the cc
command, 1-124

ANSI labels, 1-719
ANSI rules

checking OpenVOS C programs
conformance to, 1-90, 1-101

checking Pascal programs conformance
to, 1-580

-ansi_replace compiler argument, 1-151
-ansi_rules compiler argument, 1-90, 1-101
Apostrophes in command lines, 1-1, 1-13
args machine-mode request, 1-268
args source-mode request, 1-250
Arithmetic expressions in command lines, 1-13
Arithmetic, floating point, 1-14
ascii character set, 1-177, 1-210, 1-731
ASCII tape translation, 1-236, 1-541, 1-718
(ask) command function, 1-8
Assembly

code
displaying program module

pseudo, 1-370
language

listings, 1-88, 1-120, 1-147, 1-150,
1-432, 1-580, 1-592

Assigning a device to a process, 1-649
attach_default_output command, 1-33
attach_port command, 1-35
Attributes

of directories
comparing, 1-158

of files, 1-337, 1-731
comparing, 1-164
setting, 1-173, 1-177

pipe files, 1-697
Authors of files

comparing, 1-158, 1-162
Automatic mounting, 1-500, 1-501, 1-544

B
Backing up objects

list_save_tape command, 1-500
restore_object command, 1-653
save_object command, 1-658
verify_save command, 1-829

-backup compiler argument, 1-407
Backup files, 1-403, 1-407, 1-412, 1-463
-basic compiler argument, 1-407, 1-572
batch command, 1-37
Batch control files, 1-39, 1-790
Batch processing, 1-37, 1-39, 1-106, 1-301

canceling a batch request, 1-106
canceling a device reservation, 1-108
entering a batch request, 1-37
identifying an active process, 1-478
listing a batch request, 1-477
modifying a batch request, 1-788
moving a device reservation, 1-550
reserving a device, 1-649

Batch queues, 1-38, 1-106, 1-301, 1-789
listing, 1-477

.batch suffix, 1-40
(before) command function, 1-10
BINARY tape translation, 1-236, 1-541
bind command, 1-42

use by analyze_pc_samples
command, 1-22

Bind maps, 1-47, 1-56
.bind suffix, 1-64
Binder

case sensitivity, 1-54
controlling directory searches, 1-54
displaying statistics from, 1-57
naming of program modules, 1-55
resolution of values in, 1-52
syntax of numerical values, 1-53

Binder arguments
-align_mod16, 1-46
-define_main, 1-46
-load_in_kernel, 1-47
-load_point, 1-44, 1-59
-map, 1-47
-max_heap_size, 1-44, 1-60
-max_program_size, 1-45
-max_stack_size, 1-45
-no_dynamic_tasking, 1-47
-number_of_tasks, 1-47
-pm_name, 1-45
-private_heap, 1-48
-private_stack, 1-48
-processor, 1-45, 1-56
-profile_alignment_faults, 1-48
-references_kernel, 1-48
-relocatable, 1-49
-retain_all, 1-49
-size, C-5
-stack_fence_size, 1-45, 1-60
-stack_size, 1-46
-statistics, 1-49
-subroutines_are_

functions, 1-49
-table, 1-49
-target_module, 1-46
-version, 1-46
Index-2

Index
Binder control files, 1-43, 1-64
comments, 1-65
define directive, 1-65
delimiters, 1-65
end directive, 1-65
entry directive, 1-65
high_water_mark directive, 1-66
load_point directive, 1-66
max_heap_size directive, 1-66
max_program_size directive, 1-66
max_stack_size directive, 1-66
modules directive, 1-66
name directive, 1-67
number_of_tasks directive, 1-67
options directive, 1-67, 1-70
preprocessing of, 1-55
processor directive, 1-70
region_load_point directive, 1-70
retain directive, 1-71
search directive, 1-71
section directive, 1-72
size directive, 1-72
stack_fence_size directive, 1-73
stack_size directive, 1-73
synonym directive, 1-73
syntax, 1-64
variable_arg_count directive, 1-73
variables directive, 1-73
visibility directive, 1-75

Binder preprocessing, 1-44
Binding, 1-42

access requirements, 1-64
bind maps, 1-47
for harvest_pc_samples

command, 1-450
for profile command, 1-626
shared virtual memory databases, 1-200
statistics, 1-49

Block environments in the debugger, 1-246
Blocks

size, B-7
Boot partition number

specifying in analyze_pc_samples
command, 1-16

(break) command function, 1-11
Break level, 1-77
break machine-mode request, 1-267, 1-268
break source-mode request, 1-250
break_process command, 1-77
Breakpoints, 1-244, 1-250, 1-268, 1-565
Broadcasting messages, 1-351
Buffers, 1-401

read only, 1-401

bundle command, 1-79
(byte) command function, 1-12

C
c command, 1-84
-c compiler argument, 1-408, 1-572
c debugger mode, 1-249, 1-253
.c suffix, 1-91, 1-121
c_preprocess command, 1-100
Cache

using all physical memory, 1-701
(calc) command function, 1-14
Calculating an expression, 1-14
call source-mode request, 1-251
call_thru command, 1-103
Calling process, 1-759
cancel_batch_requests

command, 1-106
cancel_device_reservation

command, 1-108
cancel_print_requests

command, 1-109
Canceling

batch requests, 1-106
device reservations, 1-108
print requests, 1-109

Canonical control sequences, 1-618, 1-796
cc command, 1-111
(ceil) command function, 1-16
change_current_dir command, 1-132,

1-134
change_password command, 1-134
Changing

passwords, 1-536
text file attributes, 1-177, 1-731
working directories, 1-132, 1-134

Character sets, 1-161
ascii, 1-177, 1-210, 1-731
chinese1, 1-177, 1-210, 1-731
chinese2, 1-177, 1-210, 1-731
hangul, 1-177, 1-210, 1-731
kanji, 1-177, 1-210, 1-731
katakana, 1-177, 1-210, 1-731
latin_1, 1-177, 1-210, 1-731
latin_9, 1-177, 1-210, 1-731
National Language Support, 1-413
shift modes, 1-210, 1-414
simplified_chinese, 1-177, 1-210,

1-731
user_dbcs, 1-177, 1-210, 1-731

Character strings, 1-2
Characters, flow-control, 1-415
OpenVOS Commands Reference Manual (R098) Index-3

Index
-check compiler argument, 1-579, 1-591,
1-117, 1-149, 1-428

-check_conformance compiler
argument, 1-580

-check_overflow compiler argument, 1-580
-check_uninitialized compiler

argument, 1-581, 1-593
-check_ansi compiler argument, 1-90, 1-101
-check_enumeration compiler

argument, 1-91, 1-116
-check_incompatible compiler

argument, 1-117
check_posix command, 1-137
-check_uninitialized compiler

argument, 1-90, 1-97, 1-116, 1-128,
1-149, 1-155, 1-430, 1-434

and optimization level, 1-581
optimization level, 1-593
optimization level affects, 1-430
pascal command, 1-585
performed at specific optimization

levels, 1-149
pl1 command, 1-598

Checking for conformance to ANSI rules, 1-580
Checking for POSIX compliance, 1-137
chinese1 character set, 1-177
chinese2 character set, 1-177
Circular links, 1-466
clear machine-mode request, 1-268
clear source-mode request, 1-251, 1-252,

1-256, 1-260
clone_dir command, 1-139
clone_file command, 1-142
COBOL

compilation levels, 1-147
data types, 1-747

cobol command, 1-144
-cobol compiler argument, 1-408, 1-572
cobol debugger mode, 1-249
.cobol suffix, 1-151
Code region

definition of, 1-807
Codes

status, 1-329
Collation sequences, 1-230, 1-742
Command functions, 1-1

(abs), 1-4
(access), 1-5
(after), 1-7
(ask), 1-8
(before), 1-10
(break), 1-11
(byte), 1-12
(calc), 1-14

(ceil), 1-16
(command_status), 1-17
(concat), 1-18
(contents), 1-19
(copy), 1-20
(count), 1-21
(current_dir), 1-22
(current_module), 1-23
(date), 1-24
(date_time), 1-28
(decimal), 1-29
(directory_name), 1-30
(end_of_file), 1-31
(exists), 1-32
(extended_names), 1-34
(extended_names_version), 1-35
(file_info), 1-37
(floor), 1-39
(given), 1-40
(group_name), 1-41
(has_access), 1-42
(hexadecimal), 1-44
(home_dir), 1-45
(index), 1-46
(iso_date), 1-47
(iso_date_time), 1-50
(language_name), 1-53
(length), 1-54
limits, B-1
(lock_type), 1-55
(locked), 1-56
(ltrim), 1-57
(master_disk), 1-58
(max), 1-59
(message), 1-60
(min), 1-62
(mod), 1-63
(module_info), 1-64
(module_name), 1-67
(name_string), 1-68
(object_name), 1-69
(online), 1-70
(path_name), 1-71
(person_name), 1-72
(posix_path), 1-73
(process_dir), 1-75
(process_info), 1-77
(process_type), 1-78
(quote), 1-79
(rank), 1-80
(referencing_dir), 1-81
(reverse), 1-82
(rtrim), 1-83
(search), 1-84
Index-4

Index
(software_purchased), 1-85
(string), 1-86
(substitute), 1-90
(substr), 1-91
(system_info), 1-92
(system_name), 1-94
(terminal_info), 1-96
(terminal_name), 1-97
(time), 1-98
(translate), 1-100
(trunc), 1-101
(unique_string), 1-102
(unquote), 1-103
(user_name), 1-104
(verify), 1-105
(vos_path), 1-106
(where_path), 1-108

Command libraries, 1-7, 1-284, 1-486, 1-687,
1-839

adding entries, 1-7
defining path names, 1-687
deleting path names, 1-285
listing path names, 1-486

Command limits
initial, 1-498
maximum, 1-498
module default, 1-498

Command lines
length limits, B-2

Command macros, 1-839
(command_status) command

function, 1-17
Command types, 1-456
Commands

external, 1-839
internal, 1-565, 1-839

Communication links, 1-104
list_gateways command, 1-484

compare_dirs command, 1-157
compare_files command, 1-160

use with links, 1-164
Comparing

directory attributes, 1-158
file attributes, 1-164
logical records, 1-159

Compilation
access requirements, 1-99, 1-131, 1-156,

1-436, 1-587, 1-599
debugging and, 1-245
disk requirements, 1-92, 1-121, 1-151,

1-430, 1-581, 1-594
errors, 1-98, 1-130, 1-155, 1-435, 1-599
information, 1-352

memory requirements, 1-92, 1-121, 1-151,
1-430, 1-581, 1-594

Compilation levels of COBOL, 1-147
Compilation listings, 1-86, 1-119, 1-130, 1-145,

1-427, 1-578, 1-583, 1-590
assembly language, 1-580
cross reference, 1-578
nesting levels, 1-581

Compiler arguments
-A, 1-113
-ansi_replace, 1-151
-ansi_rules, 1-90, 1-101
-backup, 1-407
-basic, 1-407
-c, 1-408
-check, 1-117, 1-149, 1-428, 1-579, 1-591
-check_ansi, 1-90, 1-101
-check_conformance, 1-580
-check_enumeration, 1-91, 1-116
-check_incompatible, 1-117
-check_overflow, 1-580
-check_uninitialized, 1-90, 1-97,

1-116, 1-128, 1-149, 1-155, 1-430,
1-581, 1-593

-cobol, 1-408
-compress, 1-119
-control, 1-43
-cpu_profile, 1-88, 1-150, 1-429,

1-580, 1-592
-D, 1-113, 1-817
-debugging_mode, 1-150
-default_char, 1-89, 1-116
-default_class, 1-150
-default_comp, 1-150
-default_sign, 1-145
-define, 1-44, 1-145, 1-426, 1-577,

1-589, 1-606
-definition_files, 1-100
-E, 1-113
-edit, 1-407
-extension_checking, 1-91, 1-94,

1-116, 1-127
-fixedoverflow, 1-89, 1-118, 1-429,

1-592
-force_write, 1-407
-fortran, 1-408
-fortran66, 1-429
-full, 1-88, 1-95, 1-120, 1-147, 1-429,

1-580, 1-592
-g, 1-113, 1-122, 1-129, 1-817
-g. See also -production_table
-I, 1-113, 1-817
-include, 1-114
-include_files, 1-89
OpenVOS Commands Reference Manual (R098) Index-5

Index
-into, 1-406
-language, 1-147
-library, 1-407
-linted, 1-90, 1-97
-list, 1-86, 1-95, 1-101, 1-119, 1-147,

1-427, 1-578, 1-590
-M, 1-113
-main, 1-150
-mapcase, 1-88, 1-98, 1-117, 1-129,

1-149, 1-155, 1-428, 1-579, 1-591
-mapping_rules, 1-86, 1-92, 1-115,

1-126, 1-146, 1-152, 1-409, 1-427,
1-578, 1-590

-nesting, 1-89, 1-95, 1-118, 1-581, 1-592
-O, 1-113, 1-122, 1-817
-o, 1-113, 1-817
-optimization_level, 1-90, 1-96,

1-149, 1-154, 1-430, 1-581, 1-593
-optimize, 1-87, 1-149, 1-428, 1-579,

1-591
-P, 1-113
-pascal, 1-408
-pl1, 1-408
-pl1_template, 1-408
-prefix, 1-407
-processor, 1-86, 1-92, 1-101, 1-115,

1-125, 1-146, 1-152, 1-409, 1-427,
1-431, 1-578, 1-582, 1-590, 1-595

-produce_symtab, 1-409
-production_table, 1-87, 1-97,

1-148, 1-153, 1-428, 1-579, 1-584,
1-591

-profile, 1-88, 1-149, 1-428, 1-579,
1-591

-q, 1-113
-recursive, 1-430
-registers, 1-90
-search, 1-44
-segmentation, 1-151
-short_integer, 1-430
-short_logical, 1-430
-show_include, 1-120
-show_macros, 1-89, 1-120
-silent, 1-88, 1-101, 1-150, 1-429,

1-580, 1-592
-sort_into_by_alignment, 1-409
-statistics, 1-88, 1-101, 1-119, 1-150,

1-429, 1-580, 1-592
-store_args, 1-90, 1-120, 1-593
-suppress_diag, 1-86, 1-114
-system_programming, 1-89, 1-118,

1-581, 1-593

-table, 1-87, 1-97, 1-118, 1-122, 1-129,
1-148, 1-153, 1-428, 1-578, 1-584,
1-591

-truncate_to, 1-117, 1-129
-type_checking, 1-91, 1-93, 1-116,

1-127
-U, 1-113, 1-818
-u, 1-114
-W, 1-114, 1-818
-w, 1-114
-X, 1-114, 1-124
-xref, 1-87, 1-95, 1-119, 1-147, 1-427,

1-578, 1-590
-xref_format, 1-148

Compiler diagnostics
severity 0, 1-98, 1-130, 1-155, 1-435, 1-586,

1-599
severity 1, 1-98, 1-130, 1-155, 1-435, 1-586,

1-599
severity 2, 1-98, 1-130, 1-155, 1-435, 1-586,

1-599
severity 3, 1-98, 1-130, 1-155, 1-435, 1-586,

1-599
severity 4, 1-98, 1-130, 1-155, 1-435, 1-586,

1-599
Compiler optimizations

checking uninitialized variables, 1-155
Compiler statistics, 1-88, 1-119, 1-150, 1-429,

1-580, 1-592
Compilers, 1-3

C, 1-84
COBOL, 1-144
errors, 1-155, 1-586
FORTRAN, 1-425
OpenVOS Standard C, 1-111
Pascal, 1-576
PL/I, 1-588
See also bind command, debug command,

Optimization levels, Program
modules

-compress compiler argument, 1-119
Computational types, 1-150
(concat) command function, 1-18
Connecting to a remote host, 1-103
consolidate_dir command, 1-169
constant debugger-request argument, 1-265
(contents) command function, 1-19
continue machine-mode request, 1-268
continue source-mode request, 1-252
-control compiler argument, 1-43
Control files

batch, 1-39, 1-790
bind, 1-43
Index-6

Index
binder, 1-64
sort, 1-745

Control sequences
canonical, 1-618, 1-796
generic, 1-618, 1-796

convert_stream_file command, 1-173
convert_text_file command, 1-173,

1-177
Converting

stream files, 1-173
Converting fixed files to stream files, 1-238
(copy) command function, 1-20
copy_dir command, 1-180

removes expiration dates, 1-181
use with links, 1-184

copy_file command, 1-187
removes expiration dates, 1-188
use with links, 1-191

copy_tape command, 1-195
Copying

directories, 1-182
directory access, 1-634
files, 1-190
fixed length records, 1-191
indexed files, 1-192
tapes, 1-195

Copying pipes, 1-182
(count) command function, 1-21
cpio format, 1-714, 1-719
cpioc format, 1-714, 1-719
cpp command, 1-198
CPU time, 1-10, 1-665, 1-758
CPU usage, 1-665
-cpu_profile compiler argument, 1-88,

1-150, 1-429, 1-580, 1-592
create_data_object command, 1-200,

C-1
and binder, 1-200
shared virtual memory databases, 1-201

create_deleted_record_index
command, 1-202

create_dir command, 1-205
create_file command, 1-207
create_index command, 1-226
create_record_index command, 1-233
create_tape_volumes command, 1-235
Creating

directories, 1-205
files, 1-207
form letters, 1-770
links, 1-2, 1-465
links between directories, 1-468
processes, 1-534
subprocesses, 1-537

Creating a main function, 1-46
Creation date of files, 1-181, 1-188
Cross-reference listings, 1-87, 1-119, 1-147,

1-427, 1-578, 1-590
Current

block environment, 1-245, 1-246
date, 1-24, 1-47
directory, 1-22, 1-132
environment, 1-245, 1-246
line, 1-246, 1-247
module, 1-23, 1-304
statement, 1-247
task, 1-247
time, 1-27, 1-50

(current_dir) command function, 1-22
(current_module) command

function, 1-23
Cursor format, 1-726
cvt_fixed_to_stream command, 1-238
cvt_stream_to_fixed command, 1-239

D
-D compiler option, 1-113, 1-817
DAE files. See Dynamically-allocated extents

(DAE) files
DAE indexes. See Dynamically-allocated extents

(DAE) indexes
Data alignment, 1-126, 1-153, 1-583, 1-595
Data compression, 1-542, 1-659, 1-710
Data links, external, 1-4
Data names, external, 1-3
Data types, 1-747
Date and time

displaying, 1-305
expiration, 1-181, 1-188, 1-675
set_language command affects format

of, 1-684
(date) command function, 1-24
(date_time) command function, 1-28
.dd suffix, 1-776, 1-742
debug command, 1-241

-production_table compiler argument
affects, 1-87, 1-148, 1-579, 1-591

using command macros, 1-243
using other commands, 1-243

Debug process sets, 1-564
Debugger modes, 1-250

c, 1-249, 1-253
cobol, 1-249
fortran, 1-250
machine, 1-261
pascal, 1-250
pl1, 1-250
OpenVOS Commands Reference Manual (R098) Index-7

Index
Debugger requests, 1-250, 1-267
args, 1-250, 1-268
break, 1-250, 1-267, 1-268
call, 1-251
clear, 1-251, 1-268
clearw, 1-252
continue, 1-252, 1-268
disassemble, 1-252
display, 1-252, 1-253
dump, 1-253
env, 1-254
help, 1-255
keep, 1-255
list, 1-256
listw, 1-256
position, 1-256
quit, 1-257
regs, 1-257
return, 1-257
set, 1-258
source, 1-258
source-path, 1-259
start, 1-259
step, 1-260
symbol, 1-260
task_status, 1-260
trace, 1-260
watch, 1-260
where, 1-261

Debugger-request arguments
constant, 1-265
endian_specifier, 1-270
expression, 1-249, 1-250
-include, 1-256
label, 1-248
line, 1-248
memory_reference, 1-255, 1-261,

1-262, 1-263, 1-267
number, 1-248
relational_expression, 1-265
request_list, 1-248, 1-251, 1-255
substring, 1-248
variable, 1-249

Debugging, 1-241, 1-564
arguments used for, 1-247
current block environment, 1-245
current line, 1-246, 1-247
current statement, 1-247
current task, 1-247
debugger request level, 1-242
include files, 1-256, 1-258
internal commands and, 1-243
internal subroutines, 1-584
machine mode, 1-261

object mode, 1-261
registers and, 1-257, 1-262
server processes, 1-564
source mode, 1-245
with symbol table, 1-87, 1-118, 1-148,

1-428, 1-578, 1-591
without symbol table, 1-261

-debugging_mode compiler argument, 1-150
(decimal) command function, 1-29
decode_vos_file command, 1-272
decrypt command, 1-274
Default access, 1-307, 1-444
Default access control lists (DACLs), 1-307,

1-444, 1-644
entries, 1-634
new directories, 1-205

Default batch queues, 1-106
Default character sets of text files, 1-338
Default output ports, 1-33, 1-287
Default print queues, 1-361
Default tape parameters, 1-388, 1-710, 1-718,

A-1
-default_char compiler argument, 1-89,

1-116
-default_class compiler argument, 1-150
-default_comp compiler argument, 1-150
-default_sign compiler argument, 1-145
Deferred printing, 1-616, 1-794
Deferred processing, 1-790
-define compiler argument, 1-44, 1-145,

1-426, 1-577, 1-589, 1-594, 1-606
define compiler directive and the

debugger, 1-243
$define preprocessor statement, 1-607
-define_main binder argument, 1-46
Definition files, 1-85, 1-100

field, 1-407
form, 1-406, 1-569

-definition_files compiler
argument, 1-100

delete_dir command, 1-276
delete_file command, 1-279

creating safeguards, 1-280
delete_index command, 1-282
delete_library_path command, 1-284
Deleted records, 1-202
Deleting

directories, 1-276
files, 1-279

expiration date, 1-675
indexes, 1-282
links, 1-786
print requests, 1-109
user access, 1-642, 1-644
Index-8

Index
detach_default_output
command, 1-287

detach_port command, 1-288
Detaching ports, 1-287, 1-288, 1-538
Device access lists, 1-296
Devices

access, 1-36, 1-197, 1-399, 1-441, 1-551,
1-639, 1-846

displaying path names, 1-481
freeing, 1-108
information, 1-311
printers, 1-364
reserved, 1-550
terminals, 1-392, 1-721
types, 1-482
USB, 1-393

Dictionaries, 1-402, 1-413
user, 1-413

Direct queues, 1-215
Directing output

to a device, 1-752
to a file, 1-33, 1-158, 1-163, 1-292, 1-752
to a printer, 1-333
to a terminal, 1-33, 1-292

Directories, 1-319
access, 1-307, 1-440
access control lists, 1-205
comparing attributes, 1-158
copying, 1-182
copying access, 1-634
creating, 1-205
current, 1-132, 1-303
default open options

displaying, 1-309
setting, 1-667

deleting, 1-276
home, 1-132, 1-536
libraries, 1-284
limits, B-2
linking, 1-468
listing, 1-472
listing contents, 1-472
moving, 1-553
recreating indexes, 1-555
renaming, 1-647
replacing, 1-553
restoring, 1-654
root, 1-519
status, 1-319

Directory management
backing up objects, 1-660
change_current_dir

command, 1-132

compare_dirs command, 1-157
copy_dir command, 1-180
create_dir command, 1-205
delete_dir command, 1-276
display_current_dir

command, 1-303
display_default_open_options

command, 1-309
display_open_options

command, 1-358
links, 1-466
list command, 1-473
move_dir command, 1-552
rename command, 1-646
restoring directories, 1-654
save_object command, 1-660
search paths, 1-686, 1-689
set_default_open_options

command, 1-667
set_open_options command, 1-691
walk_dir command, 1-836

(directory_name) command
function, 1-30

disassemble source-mode request, 1-252
Disk space

retaining, 1-781
Disks

displaying information, 1-321, 1-322
blocks, 1-327, 1-474
usage, 1-327, 1-473

paging partition, 1-211, 1-323
dismount_tape command, 1-236, 1-289
display command, 1-291
Display forms, display of, 1-726
display source-mode request, 1-252, 1-253

and optimized code, 1-253
and recursive procedures, 1-253

display_access command, 1-296
display_access_list command, 1-299
display_batch_status command, 1-301
display_current_dir command, 1-303
display_current_module

command, 1-304
display_date_time command, 1-305
display_default_open_options

command, 1-309
display_device_info command, 1-311
display_dir_status command, 1-319
display_disk_info command, 1-321
display_disk_usage command, 1-327
OpenVOS Commands Reference Manual (R098) Index-9

Index
display_error command, 1-329
displaying default alignment mapping value

with, 1-86, 1-115, 1-146, 1-427,
1-578, 1-590

displaying default processor value
with, 1-45, 1-86, 1-115, 1-146,
1-427, 1-578, 1-590

display_file command, 1-331
display_file_status command, 1-337
display_line command, 1-349
display_notices command, 1-351
display_object_module_info

command, 1-352
display_open_options command, 1-358
display_print_defaults

command, 1-361
display_print_status command, 1-363
display_program_module

command, 1-366
display_system_usage command, 1-382
display_tape_params command, 1-388,

1-393
display_terminal_parameters

command, 1-392
display_usb_info command, 1-393
Displaying

date and time, 1-305
device path names, 1-481
directory contents, 1-472
library paths, 1-485
literal text, 1-349
modules in a system, 1-487
port information, 1-489
print requests, 1-494
systems, 1-502
tape volume contents, 1-504
user information, 1-508

Displaying the end of a file, 1-764, 1-765
dump source-mode request, 1-253
dump_file command, 1-394
dump_record command, 1-396
dump_tape command, 1-397
Dumping

files, 1-394
files from tape, 1-397
indexes, 1-394
records, 1-396

Dynamic tasking
definition of, 1-47

Dynamically-allocated extents (DAE)
files

creating, 1-209, 1-215
recovering from failures, 1-218

indexes, creating, 1-228

E
-E compiler option, 1-113
EBCDIC tape translation, 1-236, 1-541, 1-718
edit command, 1-400
-edit compiler argument, 1-407
edit_form command, 1-405
Editing

buffers, 1-401
forms, 1-405
text files, 1-400
windows, 1-401

Editing modes
verbose, 1-463

Editors
edit command, 1-400, 1-401
forms, 1-569
line_edit command, 1-462

Electronic messages, 1-661
$else preprocessor statement, 1-607
$elseif preprocessor statement, 1-607
emacs command, 1-411, 1-767, 1-821

spell checking, 1-402
Emacs startup file

specifying, 1-412
Embedded replacement references, 1-773
Embedded-key indexes, 1-227
Embedded-separate-key indexes, 1-227
encode_vos_file command, 1-417
encrypt command, 1-420
(end_of_file) command function, 1-31
$endif preprocessor statement, 1-607
enforce_region_locks command, 1-274,

1-420, 1-423
Entry map

creating, 1-49
Entry point

specifying, 1-55
Entry points, 1-2
env source-mode request, 1-254
Environment variables

setting, 1-664
Error codes

range of values, B-2
Error messages, 1-329

from compilation, 1-155, 1-586
.error suffix, 1-98, 1-130, 1-155, 1-435,

1-586, 1-599, 1-777
Errors

C preprocessor, 1-102
compilation, 1-98, 1-130, 1-155, 1-435,

1-599
Index-10

Index
Events
limits, B-3

.ex_c suffix, 1-100
Exclamation points, 1-813

preventing abbreviation expansion, 1-813
(exists) command function, 1-32
Expanding abbreviations, 1-349, 1-565, 1-759,

1-812
in debugger requests, 1-243

Expiration dates
copy_dir command removes, 1-181,

1-676
copy_file command removes, 1-188,

1-676
files, 1-276, 1-280, 1-675
move_dir command removes, 1-553,

1-676
move_file command preserves, 1-559,

1-676
Explicit attachment, 1-500, 1-543
Explicit mounting, 1-500, 1-543
expression debugger-request

argument, 1-249, 1-250
Expressions

calculating, 1-14
conversion rules, 1-14
evaluation rules, 1-14
in command lines, 1-13
precedence of operators, 1-15

Extended names
enabling for a program module, 1-62
-extended_names argument of

bind, 1-47, 1-65
legacy, 1-35, 1-62
version 1, 1-35, 1-62
version 2, 1-35, 1-62

Extended sequential files, 1-38, 1-1, 1-208,
1-345, 1-490, 1-732, 1-746

(extended_names) command
function, 1-34

(extended_names_version) command
function, 1-35

-extension_checking compiler
argument, 1-91, 1-94, 1-116, 1-127

Extent-based files, 1-208
advantages and disadvantages, 1-215
and index size, 1-223
cannot be truncated, 1-781
converting to, 1-223
creating, 1-217
definition of, 1-216
file entry for, 1-215
fixed, 1-222

problems with disk fragmentation, 1-217
relative, 1-220

Extent-based indexes, 1-228
Extents, size, B-7
External commands, 1-839
External data names, 1-3
External entries, 1-356
External references, 1-3
External variables, 1-54

messages, 1-54
reading, 1-437
setting, 1-677
shared, 1-54
static variables, 1-73

F
Faults

alignment, 1-628, 1-629
page, 1-628, 1-629

Fences, 1-45
Field definition files, 1-407
Field descriptors, 1-746
Field statements, 1-746
File attributes, comparing, 1-164
File entry

and extent-based files, 1-215
definition of, 1-215

File management
backing up objects, 1-660, 1-816, 1-829
compare_files command, 1-160
convert_stream_file

command, 1-173
convert_text_file command, 1-177
copy_file command, 1-187
create_file command, 1-207
creation date, 1-553, 1-559
delete_file command, 1-279
display_dir_status

command, 1-319
display_file_status

command, 1-337
expiration date, 1-675
file status, 1-423, 1-675, 1-705
links, 1-466
list command, 1-473
move_file command, 1-558
rename command, 1-646
restoring files, 1-654, 1-816, 1-829
save_object command, 1-660
set_file_allocation

command, 1-679
set_text_file command, 1-731
OpenVOS Commands Reference Manual (R098) Index-11

Index
sort command, 1-741
truncate_file command, 1-781

File names
limits, B-3
maximum length, 1-207

File space, reusing, 1-233
(file_info) command function, 1-37
Files

abbreviations, 1-812
access, 1-440, 1-474
allocating disk space, 1-679
attributes, 1-337, 1-423, 1-473, 1-675,

1-697, 1-705, 1-731
backing up, 1-816, 1-829
backup, 1-403, 1-407, 1-412, 1-463
batch control, 1-790
comparing authors, 1-158, 1-162
converting to extent, 1-223
copying, 1-190
creating, 1-207
creation date, 1-181, 1-188, 1-553, 1-559
data definition, 1-771
default character set, 1-224
definition, 1-85, 1-100, 1-210
deleting, 1-279
displaying part of, 1-764, 1-765
displaying the end of, 1-764, 1-765
dumping, 1-394
editing, 1-400
expiration dates, 1-276, 1-280, 1-675
extended sequential, 1-38, 1-1, 1-208, 1-345,

1-490, 1-732, 1-746
extent-based, 1-208, 1-216
field definition, 1-407
file entry, 1-215
finding, 1-519, 1-521, 1-528, 1-531
fixed, 1-214, 1-219
form definition, 1-406, 1-569
implicit locking, 1-681
index types, 1-229
indexes, 1-191, 1-226, 1-282
indexing deleted records, 1-203
keystrokes, 1-402, 1-463
limits, B-3
links to, 1-466
listing, 1-472
log, 1-751, 1-760
maximum block number without

extents, 1-219
merging, 1-741
message, 1-7, 1-814
moving, 1-553, 1-558
number of records in, 1-208

open options
displaying, 1-358
setting, 1-691

organization, 1-208, 1-210
overwriting, 1-403
packing, 1-191, 1-552, 1-559, 1-654
pipe, 1-697
preventing accidental deletion of, 1-280
protecting, 1-675, 1-681, 1-695, 1-705,

1-843
queue, 1-214
raw, 1-617
reading from tape, 1-637
record size, 1-208
region locking, 1-423
relative, 1-213, 1-219
renaming, 1-647
restoring, 1-654, 1-816, 1-829
reusing space, 1-202
safety switches, 1-705
save, 1-829
sequential, 1-211, 1-219
setting attributes, 1-173, 1-177
shift mode, 1-224
shorthand, 1-403
size, 1-473
sort control, 1-745
sorting, 1-741
status, 1-319, 1-337, 1-705
stream, 1-212, 1-219, 1-423
stream64, 1-1, 1-213
truncating, 1-559, 1-781
unformatted, 1-774
updating indexes, 1-229, 1-683
value, 1-770
writing to tape, 1-846

Finding files, 1-519
Finding indexed files, 1-521
Finding large files, 1-528
Finding stream files, 1-531
First token abbreviations, 1-242, 1-565
Fixed files, 1-214

converting from stream, 1-239
converting to stream files, 1-238
maximum number of blocks with

extents, 1-222
maximum number of records, 1-219

-fixedoverflow compiler argument, 1-592,
1-89, 1-118, 1-429

Fixed-point arithmetic overflow, 1-89, 1-118,
1-429, 1-580, 1-592

-flag_word_size compiler
argument, 1-573, 1-575

Floating-point arithmetic, 1-14
Index-12

Index
(floor) command function, 1-39
Flow-controlled terminals

disallowed keystroke assignments, 1-415
Footers, 1-616
-force_write compiler argument, 1-407,

1-571
Form definition files, 1-406, 1-569

access requirements, 1-410, 1-575
migrating, 1-409

Form letters
creating, 1-770
text_data_merge command, 1-770

Forms editor, 1-405, 1-569
Forms Management System

Forms Editor, 1-573
request level, 1-573

fortran command, 1-425
-fortran compiler argument, 1-408, 1-572
fortran debugger mode, 1-250
.fortran suffix, 1-430
-fortran66 compiler argument, 1-429
Freeing devices, 1-108
ftServer modules

compiler optimizations, 1-95
optimization levels, 1-153

-full compiler argument, 1-580, 1-592, 1-88,
1-95, 1-120, 1-147, 1-429

Functions, command, 1-1

G
-g (production table) compiler option, 1-113,

1-122, 1-129, 1-817
Gateways, listing, 1-484
Generic control sequences, 1-618, 1-796
get_external_variable

command, 1-437
give_access command, 1-439
give_default_access command, 1-444
(given) command function, 1-40
Greenwich mean time, 1-734
(group_name) command function, 1-41

H
handle_sig_dfl command, 1-446
hangul character set, 1-177, 1-210, 1-731
harvest_pc_samples command, 1-16,

1-448
binding for use of, 1-450
data accuracy, 1-452
data collection, 1-451
execution restrictions, 1-450
length of time to collect data, 1-453

use with analyze_pc_samples
command, 1-450

when to use, 1-450
(has_access) command function, 1-42
Headers, 1-616

displaying program module, 1-372
Heap

controlling growth of, 1-57
definition of, 1-807

Heap space
size, 1-44

Help, 1-456
finding the name of a command, 1-457

help command, 1-456
help source-mode request, 1-255
(hexadecimal) command function, 1-44
high_water_mark binder control file

directive, 1-66, C-2, C-5, C-7, C-9
(home_dir) command function, 1-45
Home directories, 1-132, 1-536

I
-I compiler option, 1-113, 1-817
I/O

attaching ports, 1-35
detaching ports, 1-288
language conventions, 1-36
redirecting output, 1-33, 1-294, 1-334
start_logging command, 1-752

I/O ports, 1-108, 1-490
attaching, 1-35
default output port, 1-33, 1-159, 1-287
detaching, 1-288
explicit attachment, 1-195
implicit attachment, 1-195
tape, 1-195, 1-388, 1-540, 1-601, 1-604,

1-637, 1-709, 1-712, 1-717, 1-834,
1-845

IBM MVS labels, 1-719
IBM OS/VS labels, 1-719
$if preprocessor statement, 1-607
Implicit attachment, 1-500, 1-544
Implicit locking, 1-681
Implicit mounting, 1-196, 1-504, 1-544
-include compiler argument, 1-114
Include files and debugging, 1-256, 1-258
Include libraries, 1-7, 1-284, 1-486, 1-687

adding entries, 1-7
defining path names, 1-687
deleting path names, 1-285
listing path names, 1-486

include source-mode request, 1-256
-include_files compiler argument, 1-89
OpenVOS Commands Reference Manual (R098) Index-13

Index
(index) command function, 1-46
Index flags, 1-683
Index keys, 1-227

duplicate keys, 1-228
embedded keys, 1-228
embedded-separate keys, 1-228
null keys, 1-228
sorting (collation) sequence, 1-228

Index statements, 1-749
Indexed files, 1-282, 1-394, 1-395

copying, 1-192
dump index, 1-394, 1-395
index types, 1-227
keyed index, 1-227
locating, 1-521

Indexes
deleting, 1-202, 1-282
dumping, 1-394
embedded-key, 1-227
embedded-separate-key, 1-227
extent-based, 1-223, 1-228
item, 1-227
of files, 1-191, 1-226
preallocating space, 1-228
record, 1-202
recreating, 1-184, 1-187, 1-561
separate-key, 1-227
updating, 1-229

Indexing text files, 1-229
Infix operators in command lines, 1-13
Initial command limits, 1-498, 1-808
Interactive processes, 1-509, 1-536
Internal commands, 1-565, 1-839
-into compiler argument, 1-406, 1-574
Inverse video, 1-725
(iso_date) command function, 1-47
(iso_date_time) command function, 1-50
Item indexes, 1-227

K
kanji character set, 1-177, 1-210, 1-731
katakana character set, 1-177, 1-210, 1-731
Keep files, 1-78
Keep module, 1-242, 1-255
keep source-mode request, 1-255
Kernel loadable programs, 1-47, 1-49
Kernel processes, 1-509
Kernel references, 1-48
Key clicks, 1-727
Key statements, 1-748
Keys, data type of, 1-230
Keystrokes files, 1-402, 1-412, 1-463

creating multiple, 1-413

kill command, 1-459
.kp suffix, 1-78, 1-242

L
label debugger-request argument, 1-248
Labeled tapes, 1-504, 1-715
-language compiler argument, 1-147
Language support

file attributes, 1-177, 1-731
set_language command, 1-684

(language_name) command function, 1-53
latin_1 character set, 1-177, 1-210, 1-731
latin_9 character set, 1-177, 1-210, 1-731
ldd command, 1-461
Legacy extended names, 1-35, 1-62
(length) command function, 1-54
Levels of compilation for COBOL, 1-147
Libraries, 1-7, 1-687

adding entries, 1-6
command, 1-6, 1-284, 1-485, 1-686, 1-839
defining path names, 1-686
deleting entries, 1-284
directories, 1-6, 1-284, 1-485, 1-686
include, 1-6, 1-284, 1-485, 1-686
listing entries, 1-485
message, 1-6, 1-284, 1-485, 1-686
object, 1-2, 1-6, 1-284, 1-485, 1-686
setting path names, 1-686
shared, 1-50, 1-51, 1-75, 1-368

creating, 1-64
listing, 1-461, 1-483
naming conventions, 1-63, 1-370
setting breakpoints, 1-251

-library compiler argument, 1-407, 1-571
Library paths, 1-6, 1-284, 1-686

checking, 1-687
displaying, 1-485

Limits
general OpenVOS, B-1

line debugger-request argument, 1-248
line_edit command, 1-462
link command, 1-465
link_dirs command, 1-468
Links, 1-465, 1-841

circular, 1-466
communication, 1-104
creating, 1-2
deleting, 1-786
limits, B-4
listing, 1-472, 1-474
nested, 1-466
renaming, 1-647
specifying in move_file command, 1-561
Index-14

Index
targets, 1-184, 1-466, 1-474
to devices, 1-466
to entry points, 1-3
unlinking, 1-466, 1-786
use in compare_files command, 1-164
use in copy_dir command, 1-184
use in copy_file command, 1-191
use in move_dir command, 1-555

-linted compiler argument, 1-90, 1-97
list command, 1-471
-list compiler argument, 1-578, 1-590, 1-86,

1-95, 1-101, 1-119, 1-147, 1-427
list source-mode request, 1-256
.list suffix, 1-95, 1-130, 1-153, 1-432, 1-583,

1-596
list_batch_requests command, 1-477
list_devices command, 1-481
list_dynamic_dependencies

command, 1-483
list_gateways command, 1-461, 1-483,

1-484
list_library_paths command, 1-485
list_modules command, 1-487
list_port_attachments

command, 1-489
list_print_requests command, 1-494
list_process_cmd_limits

command, 1-497
and update_process_cmd_limits

command, 1-498
list_save_tape command, 1-500
list_systems command, 1-502
list_tape command, 1-504
list_terminal_types command, 1-506
list_users command, 1-508
Listing

device path names, 1-482
directories, 1-472
files, 1-472
gateways, 1-484
links, 1-472, 1-474
modules, 1-487
ports, 1-489
processes, 1-508
shared libraries, 1-461, 1-483
systems, 1-502
tape contents, 1-504

Listings
assembly language, 1-88, 1-120, 1-147,

1-150, 1-432, 1-580, 1-592
compilation, 1-86, 1-119, 1-145, 1-427,

1-578, 1-583, 1-590
cross-reference, 1-87, 1-119, 1-147, 1-427,

1-578, 1-590

object, 1-153, 1-430, 1-583
source, 1-153, 1-432, 1-583

Literal text, displaying, 1-349
Load point, 1-44, 1-58, 1-59
-load_in_kernel binder argument, 1-47
-load_point binder argument, 1-44, 1-59
load_point binder control file directive, 1-66
Local abbreviations, 1-466

links, 1-466
locate_expandable_dirs

command, 1-517
locate_files command, 1-517, 1-519,

1-526
locate_indexed_files command, 1-521
locate_large_dirs command, 1-526
locate_large_files command, 1-528
locate_stream_files command, 1-531
Locating an object, 1-841
Locating indexed files, 1-521
(lock_type) command function, 1-55
(locked) command function, 1-56
Locking

files, 1-681
regions, 1-423

Locks
identifying, 1-843

Log files, 1-751
start_logging command, 1-751
stop_logging command, 1-760

Logging in, 1-534
remotely, 1-103

Logging out, 1-538
Logical expressions in command lines, 1-13
Logical records

comparing, 1-159
login command, 1-534
logout command, 1-538
(ltrim) command function, 1-57

M
-M compiler option, 1-113
machine debugger mode, 1-261

PL/I syntax in, 1-265
Macros, 1-839
-main compiler argument, 1-150
-map binder argument, 1-47
.map suffix, 1-56
-mapcase compiler argument, 1-579, 1-591,

1-88, 1-98, 1-117, 1-129, 1-149, 1-155,
1-428

pl1 command, 1-598
OpenVOS Commands Reference Manual (R098) Index-15

Index
-mapping_rules compiler argument, 1-86,
1-92, 1-115, 1-126, 1-146, 1-152, 1-409,
1-427, 1-573, 1-574, 1-578, 1-590

displaying default with display_error
command, 1-86, 1-578, 1-590

Maps, bind, 1-56
(master_disk) command function, 1-58
(max) command function, 1-59
-max_heap_size binder argument, 1-44,

1-60
max_heap_size binder control file

directive, 1-66
-max_program_size binder argument, 1-45,

1-59
max_program_size binder control file

directive, 1-66
-max_stack_size binder argument, 1-45
max_stack_size binder control file

directive, 1-66
Maximum command limits, 1-498
Maximum heap size, specifying, 1-60
Memory pool

start_process command, 1-759
memory_reference debugger-request

argument, 1-255, 1-261, 1-262, 1-263,
1-267

Merging files, 1-741
(message) command function, 1-60
Message files, 1-7, 1-684, 1-814
Message libraries, 1-7, 1-284, 1-486, 1-687

adding entries, 1-7
defining path names, 1-687
deleting path names, 1-285
listing path names, 1-486

Message queue, 1-214
Messages

as external variables, 1-54
at task completion, 1-39, 1-619, 1-796
broadcasting, 1-351
compilation errors, 1-592
displaying, 1-351
error, 1-329
send_message command, 1-661
sending, 1-662
system, 1-351
tape information, 1-236, 1-289, 1-541, 1-710

Micro-jiffies, B-7
(min) command function, 1-62
(mod) command function, 1-63
Modifying print requests, 1-792
Module default command limits, 1-498, 1-807
(module_info) command function, 1-64
(module_name) command function, 1-67

Modules
current, 1-304
keep, 1-242, 1-255
listing, 1-487
object, 1-121, 1-352
processing, 1-304
program, 1-54
source, 1-85, 1-100, 1-112, 1-145, 1-198,

1-426, 1-589
mount_tape command, 1-236, 1-540, A-4
move_device_reservation

command, 1-550
move_dir command, 1-552

and expiration dates, 1-553
pipe files, 1-553
specifying links in, 1-555

move_file command, 1-558
and expiration dates, 1-559
pipe files, 1-560
specifying links in, 1-561

Moving
directories, 1-553
files, 1-553, 1-558

mp_debug command, 1-564
mp_debug requests

exclude_process, 1-566
help, 1-568
include_process, 1-566
list_processes, 1-566
mp_login, 1-566
quit, 1-568
restart, 1-567
start_process, 1-567
stop, 1-568
suspend_process, 1-567
use_process, 1-567

Multivolume tape files, 1-707

N
(name_string) command function, 1-68
National Language Support, 1-110, 1-338, 1-731

character sets, 1-413
reading a tape, 1-639
writing a tape, 1-846

Nested links, 1-466
-nesting compiler argument, 1-581, 1-592,

1-89, 1-95, 1-118
Nesting levels

in OpenVOS C programs, 1-89
in OpenVOS Pascal programs, 1-581
in OpenVOS PL/I programs, 1-592
in OpenVOS Standard C programs, 1-118
Index-16

Index
Network gateways, 1-484
Network limits, B-4
Network, X.25, 1-105
nls_edit_form command, 1-569
-no_backup compiler argument, 1-571
-no_dynamic_tasking binder

argument, 1-47
-no_edit compiler argument, 1-571
no_include source-mode request, 1-256
-no_optimize compiler argument, 1-96,

1-154
-no_pl1_template compiler

argument, 1-572
Noninteractive processes, 1-37, 1-757
Nonprinting characters, 1-617, 1-794
Nonstandard labels, 1-719
Notify messages, 1-662
number debugger-request argument, 1-248

O
-O compiler option, 1-113, 1-122, 1-817
-o compiler option, 1-113, 1-817
.obj suffix, 1-3, 1-54, 1-67, 1-91, 1-121, 1-151,

1-430, 1-581, 1-593
Object libraries, 1-7, 1-284, 1-486, 1-687

adding entries, 1-7
defining path names, 1-687
deleting path names, 1-285
listing path names, 1-486

Object listings, 1-153, 1-430
Object modules, 1-430

binding, 1-54
common, 1-627
creating, 1-200
displaying information about, 1-352
external references, 1-3
performance information, 1-625

(object_name) command function, 1-69
Objects, locating, 1-841
Offline systems, 1-503
One-way direct queues, 1-215
One-way server queues, 1-214
(online) command function, 1-70
Online help, 1-456
Online systems, 1-503
Open options, 1-309, 1-359, 1-667, 1-691
OpenVOS

analyzing, 1-19
Operands in command lines, 1-13
Operators

in command lines, 1-13
order of evaluation, 1-15
precedence in command lines, 1-13

Optimization level, specifying, 1-597
-optimization_level compiler

argument, 1-581, 1-593
Optimization levels

cc command, 1-122, 1-123
checking uninitialized variables, 1-116,

1-149, 1-430, 1-585
default, 1-96
display debugger request, 1-253
ftServer modules, 1-95, 1-153, 1-584, 1-596
-no_optimize compiler argument, 1-87,

1-96, 1-154, 1-428, 1-434, 1-579,
1-585, 1-591, 1-597

profile command requirements, 1-97,
1-154, 1-434, 1-585, 1-597

set debugger request, 1-258
specifying, 1-96, 1-154, 1-434, 1-585
-table compiler argument, 1-96, 1-154,

1-434, 1-585, 1-597
-optimization_level compiler

argument, 1-90, 1-149, 1-430
and checking uninitialized variables, 1-90

-optimize compiler argument, 1-579, 1-591,
1-87, 1-149, 1-428

Optimized code
debugging, 1-244, 1-253, 1-258

Options to the cc command, 1-121
Organization statements, 1-750
Organization, files, 1-208
.out suffix, 1-758, 1-33, 1-38, 1-40
Output

directing, 1-292
redirecting, 1-334

Overwriting files, 1-403

P
-P compiler option, 1-113
Packing files, 1-191

copying a directory, 1-184, 1-187
moving a directory, 1-552
moving a file, 1-559
restoring an object, 1-654

Page faults, 1-628, 1-704
Paging partitions, 1-211, 1-323
Parameters

mount_tape command, A-4
set_tape_drive_params

command, 1-389, A-4
set_tape_file_params

command, 1-389, A-4
set_tape_mount_params

command, 1-389, A-4
OpenVOS Commands Reference Manual (R098) Index-17

Index
Parentheses, in command lines, 1-1, 1-13
Partial display of files, 1-764, 1-765
pascal command, 1-576, 1-581

-check_uninitialized compiler
argument, 1-585

-pascal compiler argument, 1-408, 1-572
pascal debugger mode, 1-250
.pascal suffix, 1-581
Passing data, 1-697
Passwords

changing, 1-536
logging in, 1-535
verifying system access, 1-832

Path names
add_library_path command, 1-6
change_current_dir

command, 1-132
create_dir command, 1-205
(current_dir) command

function, 1-22
(current_module) command

function, 1-23
delete_library_path

command, 1-284
(directory_name) command

function, 1-30
(home_dir) command function, 1-45
link command, 1-465
list_library_paths

command, 1-485
maximum length, B-5
(path_name) command function, 1-71
(posix_path) command function, 1-73
(process_dir) command

function, 1-75
(referencing_dir) command

function, 1-81
set_library_paths command, 1-686
set_line_wrap_width

command, 1-689
(vos_path) command function, 1-106
where_command command, 1-839
where_path command, 1-841
(where_path) command function, 1-108

(path_name) command function, 1-71
PC. See Program counter system
Performance information

CPU time, 1-629
execution coverage, 1-629
frequency of statement execution, 1-629,

1-633
page faults taken, 1-629
profile command, 1-625

(person_name) command function, 1-72
Pipe files

attributes, 1-697
copying, 1-182
limits, B-5
move_dir command, 1-553
move_file command, 1-560
set_pipe_file command, 1-697

PL/I data types, 1-747
pl1 command, 1-588

-check_uninitialized compiler
argument, 1-598

-define compiler argument, 1-594
-mapcase compiler argument, 1-598
-production_table compiler

argument, 1-598
-table compiler argument, 1-598

-pl1 compiler argument, 1-408, 1-572
pl1 debugger mode, 1-250
.pl1 suffix, 1-593
-pl1_template compiler argument, 1-408,

1-574
.pm suffix, 1-55, 1-78

See also Program modules
Ports

attached file types, 1-490
attaching, 1-35
attributes, 1-491
default output, 1-33, 1-287
detaching, 1-287, 1-288, 1-538
displaying information, 1-489
explicit attachment, 1-543
I/O, 1-658
implicit attachment, 1-544
limits, B-5
listing attachments, 1-490
reattaching, 1-287

position source-mode request, 1-256
position_tape command, 1-601, 1-604,

1-834
POSIX

changing signal behavior, 1-446
checking for compliance, 1-137
verifying the validity of a directory tree’s

ACLs, 1-824
(posix_path) command function, 1-73
posixpath command, 1-604
Precision of floating-point arithmetic, 1-14
Predefined preprocessor variables

c, 1-92
cc, 1-126
cobol, 1-152
fortran, 1-431
Index-18

Index
pascal, 1-583
pl1, 1-595

-prefix compiler argument, 1-407, 1-571
Prefix operators, in command lines, 1-13
Prelogin processes, 1-510
preprocess_file command, 1-606
Preprocessing

access requirements, 1-610
binder, 1-44
files, 1-607

Preprocessor statements, 1-594, 1-607
Preprocessor symbols

limits, B-5
Preprocessor variables, 1-92, 1-102

IA-32, 1-92, 1-102, 1-126, 1-152, 1-431,
1-583, 1-595

Primary user, 1-482
print command, 1-614
Print queues, 1-109, 1-362, 1-494, 1-614

default, 1-361
display_print_status

command, 1-363
Print requests, modifying, 1-792
Printer information, 1-363, 1-494
Printers

directing output to, 1-333
Printing, 1-614

canceling, 1-109
deferred, 1-794
deferring, 1-616
entering print requests, 1-614
footers, 1-616
headers, 1-616
listing requests, 1-494
queue priority, 1-618, 1-796
wrapping, 1-618, 1-796

Priority
batch process, 1-38
of login process, 1-536
of processes, 1-699
queue, 1-38

Priority levels
of batch requests, 1-789
setting for processes, 1-758

Privileged processes, 1-327, 1-535, 1-758, 1-789
batch, 1-38

Process address space
setting highest boundary of, 1-58
specifying size of, C-5

Process control, 1-665
(process_dir) command function, 1-75
(process_info) command function, 1-77
(process_type) command function, 1-78

Processes
assigning devices, 1-649
batch, 1-37, 1-39, 1-108
creating, 1-534
current command limits, 1-808
debugging multiple, 1-564
initial command limits, 1-808
interactive, 1-509, 1-536
kernel, 1-509
listing, 1-508
maximum command limits, 1-809
maximum number, B-5
memory pool for, 1-759
noninteractive, 1-39, 1-757
prelogin, 1-510
priority, 1-38, 1-536, 1-699, 1-758, 1-789
privileged, 1-327, 1-535, 1-758, 1-789
scheduler limits, B-5
setting code and data size of, 1-59
slave, 1-564
starting, 1-759
states, 1-566
stopping, 1-761
suspending, 1-739
system, 1-510
terminating, 1-538

Processing
deferred, 1-790
tapes, 1-290

Processing module, 1-304
-processor binder argument, 1-45

displaying default with display_error
command, 1-45

-processor compiler argument, 1-578, 1-590,
1-86, 1-92, 1-101, 1-115, 1-125, 1-146,
1-152, 1-409, 1-427, 1-431, 1-572,
1-582, 1-595

displaying default with display_error
command, 1-86, 1-578, 1-590

-produce_symtab compiler argument, 1-409
Production symbol tables, 1-87, 1-149
-production_table compiler

argument, 1-579, 1-584, 1-591
Production tables, 1-87, 1-122, 1-149
-production_table compiler

argument, 1-87, 1-97, 1-148, 1-153,
1-428

effect on debug command, 1-87, 1-148,
1-579, 1-591

pl1 command, 1-598
profile command, 1-622

and compare_files command, 1-627
and display_program_module

command, 1-627
OpenVOS Commands Reference Manual (R098) Index-19

Index
binding for, 1-626
combined and differential mode, 1-628
combined mode, 1-626
compilation requirements, 1-625
differential mode, 1-627
example of, 1-11
executing program modules for, 1-626
non-differential, non-combined mode, 1-630
preparing to use, 1-625
-profile compiler argument, 1-628
uncombined, non-differential mode, 1-626
using with add_profile command, 1-11

-profile compiler argument, 1-579, 1-591,
1-88, 1-149, 1-428

profile command, 1-628
.profile suffix, 1-10, 1-623
-profile_alignment_faults binder

argument, 1-48
Profiles

add_profile command, 1-10
profile command, 1-622

Program counter (PC) system, 1-15
illustration of, 1-452

Program counter system, 1-448
Program modules, 1-54

analyzing, 1-19
analyzing relationship to OpenVOS, 1-20
displaying header, 1-372
displaying pseudo-assembly code, 1-370
maximum size, B-5
naming, 1-55
See also Optimization levels
selecting page to display, 1-370
specifying in analyze_pc_samples

command, 1-16
specifying maximum size, 1-45
target, 1-450

Prompts
displaying, 1-640
setting, 1-703, 1-724
tape mounting, 1-544, 1-546

propagate_access command, 1-634
Protecting files, 1-675, 1-681, 1-695, 1-705

Q
-q compiler options, 1-113
Queue files, 1-214

message, 1-214
one-way direct, 1-215
one-way server, 1-214
two-way direct, 1-215
two-way server, 1-214

Queues
batch, 1-38, 1-106, 1-301, 1-477, 1-789
maximum length, B-5
print, 1-109, 1-363, 1-494, 1-614
priority, 1-618, 1-789, 1-796

quit source-mode request, 1-257
(quote) command function, 1-79

R
RAM usage, 1-701
(rank) command function, 1-80
Raw files, 1-617
Read only buffers, 1-401
read_tape command, 1-637
Reading tape files, 1-637
ready command, 1-640
Ready messages, 1-640, 1-703
Record indexes, 1-202

deleted, 1-202
Record mapping, 1-233
Records

deleted, 1-202
dumping, 1-396
length, B-7
limits, B-6
size of, 1-208
specifying number of, 1-208

Recreating indexes
copying a directory, 1-184, 1-187
copying a file, 1-191
moving a directory, 1-555
moving a file, 1-561

-recursive compiler argument, 1-430
Recursive subroutines, 1-430
Reference modifier

definition of, 1-249
-references_kernel binder

argument, 1-48
(referencing_dir) command

function, 1-81
Region locking, 1-423
region_load_point binder control file

directive, 1-70
Registers and debugging, 1-257, 1-262
-registers compiler argument, 1-90
Registration files, 1-537
regs source-mode request, 1-257
relational_expression

debugger-request argument, 1-265,
1-270
Index-20

Index
Relative files, 1-213
maximum number of blocks with

extents, 1-220
maximum number of records, 1-219

-relocatable binder argument, 1-49
Remote logins, 1-103

initiating, 1-103
terminating, 1-538

remove_access command, 1-642
remove_default_access

command, 1-644
rename command, 1-646
Renaming, 1-646

copy_dir command, 1-184
copy_file command, 1-191
directories, 1-647
files, 1-647
links, 1-647
move_dir command, 1-553
move_file command, 1-560

Replacement references
embedded, 1-773

Replacing directories, 1-553
request_list debugger-request

argument, 1-248, 1-251, 1-255
reserve_device command, 1-649, 1-650

canceling, 1-108
reset_eof command, 1-650
Restarting a sleeping process, 1-739
.restore suffix, 1-656
restore_object command, 1-653
Restoring

objects, 1-500, 1-829
saved objects, 1-655, 1-829

Restrictions on binding external variables, 1-584
retain binder control file directive, 1-71
-retain_all binder argument, 1-49
return source-mode request, 1-257
Reusing file space, 1-202, 1-233
(reverse) command function, 1-82
Rewinding tapes, 1-601, 1-604, 1-834
Rings, write, 1-542
Root directory, 1-519
(rtrim) command function, 1-83

S
SAE files. See Statically-allocated extents (SAE)

files
SAE indexes. See Statically-allocated extents

(SAE) indexes
Safety switches, 1-705
Save files, 1-829
Save tapes, 1-500, 1-829

save_object command, 1-658
Saving objects, 1-500

to tape or disk, 1-659, 1-829
Scrolling, 1-727
(search) command function, 1-84
-search compiler argument, 1-44
Search lists, 1-7, 1-285, 1-486, 1-687, 1-839
section binder control file directive, 1-72
-segmentation compiler argument, 1-151
send_message command, 1-661
Sending messages, 1-662
Separate-key indexes, 1-227, 1-683
Sequential files, 1-211

maximum record byte offset, 1-219
Server queues, 1-214
set command, 1-664
set macro statement, 1-15
set source-mode request, 1-258

and optimized code, 1-258
set_cpu_time_limit command, 1-665
set_default_open_options

command, 1-667
set_dir_limits command, 1-669
set_dir_type command, 1-672
set_expiration_date command, 1-669,

1-672, 1-675
preventing file deletion with, 1-280

set_external_variable
command, 1-677

set_file_allocation command, 1-679
set_implicit_locking command, 1-681
set_index_flags command, 1-683
set_language command, 1-684
set_library_paths command, 1-686,

1-689
set_open_options command, 1-691
set_owner_access command, 1-309,

1-358, 1-667, 1-691, 1-694
set_pipe_file command, 1-697
set_priority command, 1-699
set_ram_file command, 1-701
set_ready command, 1-703
set_safety_switch command, 1-705

allows file editing, 1-706
preventing file deletion with, 1-280
preventing file truncation with, 1-706

set_second_tape command, 1-707
set_tape_drive_params

command, 1-389, 1-709, A-4
set_tape_file_params command, 1-389,

1-541, 1-712, A-4
set_tape_mount_params

command, 1-389, 1-717, A-4
OpenVOS Commands Reference Manual (R098) Index-21

Index
set_terminal_parameters
command, 1-721

argument order processing, 1-729
(terminal_name) command

function, 1-721
set_text_file command, 1-731
set_time_zone command, 1-734
Setting breakpoints, 1-244, 1-250, 1-268
Setting tape

drive parameters, 1-709
file parameters, 1-712
mount parameters, 1-717

Shared external variables, 1-54
Shared libraries, 1-50, 1-51, 1-75, 1-368

creating, 1-64
listing, 1-461, 1-483
naming conventions, 1-63, 1-370
setting breakpoints, 1-251

Shared static region
definition of, 1-807

Shared variables, 1-74
Shared virtual memory databases

create_data_object
command, 1-201, C-1

high_water_mark bind directive, 1-66
in program module, C-2
outside program module, C-3

Shift modes, 1-210, 1-338, 1-414
-short_integer compiler argument, 1-430
-short_logical compiler argument, 1-430
Shorthand files, 1-403
-show_include compiler argument, 1-120
-show_macros compiler argument, 1-89,

1-120
-silent compiler argument, 1-580, 1-592,

1-88, 1-101, 1-150, 1-429
simplified_chinese character set, 1-177,

1-210, 1-731
-size binder argument, 1-58, C-5
size binder control file directive, 1-72
Size limits for text files, 1-404
Slave processes, 1-564
sleep command, 1-738
Sleeping processes, restarting, 1-739
(software_purchased) command

function, 1-85
sort command, 1-740
Sort control files, 1-745
.sort_exc suffix, 1-742
Sort keys, 1-742
-sort_into_by_alignment compiler

argument, 1-409, 1-574

Sorting
files, 1-741
statistics, 1-742

Source listings, 1-153, 1-432
Source modules, 1-85, 1-112, 1-145, 1-426,

1-589
expanded, 1-100, 1-198

source source-mode request, 1-258
and recursive procedures, 1-258

source_path source-mode request, 1-259
Spaces in command lines, 1-13
Specifying

alignment, 1-46
heap space size, 1-44
kernel loadable programs, 1-47
load point, 1-44, 1-59
maximum heap size, 1-60
maximum program size, 1-45
maximum stack size, 1-45
process address space size, C-5
stack fence size, 1-45
stack size, 1-46
target module, 1-46

Spell checker, emacs command, 1-413
Spooler requests, 1-614

canceling, 1-110
spooler_configuration.v1.tin file,

-pass_thru argument, 1-619
Spoolers, 1-362, 1-364
Stack fences, 1-45

size, 1-60
Stack frames

limits, B-6
Stack size, 1-46

maximum, 1-45
-stack_fence_size binder argument, 1-45,

1-60
stack_fence_size binder control

directive, 1-73
-stack_size binder argument, 1-46
stack_size binder control directive, 1-73
Stacks

controlling growth of, 1-57
definition of, 1-807

Standard deviation of transaction execution
times, 1-31

Star names, 1-190
start source-mode request, 1-259
start_logging command, 1-751
start_process command, 1-757

memory pool, 1-759
start_up command macro, 1-759, 1-812
Starting processes, 1-757
Index-22

Index
Static external variables
reading, 1-437

Static region
definition of, 1-807

Static tasks
definition of, 1-47
multiple, 1-59
setting fence size, 1-59
setting stack size, 1-59
single, 1-59
specifying stack fence size, 1-60

Statically-allocated extents (SAE)
files

creating, 1-215
recovering from failures, 1-218

indexes, 1-230
Statistics

binder, 1-49
compiler, 1-88, 1-119, 1-150, 1-429, 1-580,

1-592
PC sampler, 1-25
preprocessor, 1-101
profile, 1-632
sorting, 1-742

-statistics binder argument, 1-49
-statistics compiler argument, 1-580,

1-592, 1-88, 1-101, 1-119, 1-150, 1-429
Status codes, 1-329
Status lines, 1-662, 1-724
step source-mode request, 1-260
stop_logging command, 1-760
stop_process command, 1-761
Stopping processes, 1-761
Storage system management, 1-322
-store_args compiler argument, 1-90,

1-120, 1-593
Storing objects, 1-500

on tape or disk, 1-659
StrataDOC, 1-456
Stream files, 1-212, 1-423

64-bit, 1-212
converting, 1-173
converting from fixed files, 1-238
converting to fixed, 1-239
maximum record byte offset, 1-219

Stream64 files, 1-1, 1-213
(string) command function, 1-86
Subprocesses, 1-537

logging into, 1-536
-subroutines_are_functions binder

argument, 1-49
Subsequent processes

logging into, 1-536
(substitute) command function, 1-90

(substr) command function, 1-91
substring debugger-request argument, 1-248
Substrings, 1-2
Subsystems, 1-536

logging in to, 1-536
Suffixes

.batch, 1-40

.bind, 1-64

.c, 1-91, 1-121

.cobol, 1-151

.dd, 1-742, 1-776

.error, 1-98, 1-130, 1-155, 1-435, 1-586,
1-599, 1-777

.ex_c, 1-100

.fortran, 1-430

.kp, 1-78, 1-242

.list, 1-95, 1-130, 1-153, 1-432, 1-583,
1-596

.map, 1-56

.obj, 1-3, 1-54, 1-67, 1-91, 1-121, 1-151,
1-430, 1-581, 1-593

.out, 1-33, 1-38, 1-40, 1-758

.pascal, 1-581

.pl1, 1-593

.pm, 1-55, 1-78

.profile, 1-10, 1-623

.restore, 1-656

.sort_exc, 1-742

.tdm_out, 1-771

.tin, 1-775
-suppress_diag compiler argument, 1-86,

1-114
Suppressing warning messages, 1-580
Suspending a process, 1-739
symbol source-mode request, 1-260
Symbol tables, 1-49, 1-87, 1-118, 1-148, 1-259,

1-428, 1-578, 1-584, 1-591
synonym binder control file directive, 1-73
System

dictionaries, 1-402
listing, 1-502
listing modules, 1-487
messages, 1-351, 1-662
performance, 1-508
processes, 1-510
registration files, 1-537
usage, 1-382

(system_info) command function, 1-92
(system_name) command function, 1-94
-system_programming compiler

argument, 1-89, 1-118, 1-581, 1-593
OpenVOS Commands Reference Manual (R098) Index-23

Index
T
Tab settings, 1-725
-table binder argument, 1-49
-table compiler argument, 1-578, 1-584,

1-591, 1-87, 1-96, 1-97, 1-118, 1-122,
1-148, 1-153, 1-154, 1-428

pl1 command, 1-598
tail_file command, 1-764
Tape drive parameters, A-1

setting, 1-709
Tape drives, 1-500, 1-707

cartridge, 1-236
Tape file formats

ANSI value, 1-715
IBM value, 1-715

Tape file parameters, A-1
setting, 1-712

Tape files
reading, 1-637
writing, 1-845

Tape labels, 1-236, 1-541, 1-542
Tape marks

definition of, 1-719
Tape mount parameters, A-1

setting, 1-717
Tape mounting

automatic, 1-500
explicit, 1-500

Tape parameter values, 1-388, 1-393, 1-710,
1-718, A-1

Tape processing
access rights, 1-541, 1-545, 1-718
copying tapes, 1-195
dismounting tapes, 1-289
listing tapes, 1-500, 1-504
mounting tapes, 1-540
position_tape command, 1-601,

1-604, 1-834
reading tapes, 1-637
set_second_tape command, 1-707
set_tape_file_params

command, 1-712
set_tape_mount_params

command, 1-717
setting tape defaults, 1-709
verify_save command, 1-816, 1-829
writing tapes, 1-845

Tapes
automatic mounting, 1-501, 1-544
backing up, 1-500
contents, 1-504
copying, 1-195
dismounting, 1-289, 1-290

disposition at closing, 1-710
dumping, 1-397
explicit mounting, 1-543
I/O, 1-637, 1-709, 1-712, 1-717, 1-845
I/O ports, 1-388, 1-540
implicit mounting, 1-196, 1-504, 1-544
initializing, 1-235
labels, 1-236, 1-541, 1-542
listing contents, 1-504
mounting, 1-540
multivolume tape files, 1-707
port attachment, 1-544
processing, 1-389, 1-637, 1-709, 1-712,

1-717, 1-845
rewinding, 1-544, 1-601, 1-604, 1-710,

1-834
save, 1-500, 1-829
translation mode, 1-236, 1-541, 1-718
unloading, 1-289, 1-542, 1-543, 1-710

tar tape format, 1-714, 1-719
-target_module binder argument, 1-46
Targets of links, 1-184, 1-466, 1-474
task_status source-mode request, 1-260
.tdm_out suffix, 1-771
temacs command, 1-767
(terminal_name) command function, 1-97

set_terminal_parameters
command, 1-721

Terminal parameters, 1-729
audible keys, 1-727
break, 1-725
break action, 1-727
continue, 1-724
cursor, 1-726
display of display forms, 1-726
escape character, 1-724
insert/overlay mode, 1-728
interrupt key, 1-727
inverse video, 1-725
invoking window manager, 1-728
line length, 1-723
pause, 1-724
prompt, 1-724
reuse of terminal memory pages, 1-727
scroll screen, 1-727
setup name, 1-724
status line, 1-724
system message, 1-724
tabs, 1-725
terminal type, 1-724, 1-729
type ahead lines, 1-727
use of <RETURN> key, 1-728
use of CANCEL key, 1-728
window terminal, 1-727
Index-24

Index
Terminal types, 1-506
(terminal_info) command function, 1-96
Terminals

virtual, 1-104
Terminating processes, 1-538
Text buffers, 1-401
Text editors

edit command, 1-400
emacs command, 1-411
line_edit command, 1-462
temacs command, 1-767
vemacs command, 1-821

Text files
default character set, 1-338, 1-731
editing, 1-400
indexing, 1-229
preprocessing, 1-606
reading from tape, 1-639
setting attributes, 1-177, 1-731
shift mode, 1-338, 1-731
size limit, 1-404
unformatted, 1-774
writing to tape, 1-846

Text substitution, 1-770
text_data_merge command, 1-770
(time) command function, 1-98
Time zones, 1-734

codes, 1-734
Time zones supported in OpenVOS, 1-734
.tin suffix, 1-775
trace source-mode request, 1-260
Transactions

definition of, 1-18
measuring standard deviation of execution

time, 1-31
(translate) command function, 1-100
translate_links command, 1-778
Translation mode, tapes, 1-236, 1-541, 1-718
(trunc) command function, 1-101
truncate_file command, 1-781

extents, 1-781
-truncate_to compiler argument, 1-117,

1-129
Truncating files, 1-559
Two-way direct queues, 1-215
Two-way server queues, 1-214
-type_checking compiler argument, 1-91,

1-93, 1-116, 1-127
Types of commands, 1-456

U
-U compiler option, 1-113, 1-818
-u compiler option, 1-114

unbundle command, 1-783
$undefine preprocessor statement, 1-607
Undefined access, 1-5, 1-307, 1-445
Unformatted text files, 1-774
(unique_string) command function, 1-102
UNIX tape formats

cpio, 1-714, 1-719
cpioc, 1-714, 1-719
tar, 1-714, 1-719

Unlabeled tapes, 1-715, 1-719
unlink command, 1-786
Unlinking links, 1-786
(unquote) command function, 1-103
Unreachable code

preventing elimination of, 1-96, 1-124,
1-597

Unshared variables, 1-74
update_batch_requests

command, 1-788
update_print_requests

command, 1-792
update_process_cmd_limits

command, 1-799
and list_process_cmd_limits

command, 1-498
Updating file indexes, 1-683
USB devices

displaying information, 1-393
use_abbreviations command, 1-497,

1-812
use_message_file command, 1-814
User dictionaries, 1-413
User information, displaying, 1-508
User loads, 1-508
User registrations, 1-700
User tape parameters, 1-388, A-1
user_dbcs character set, 1-177, 1-210, 1-731
(user_name) command function, 1-104

V
Value files, 1-770
variable debugger-request argument, 1-249
variable_arg_count directive, 1-73
Variables

checking uninitialized, 1-116
external, 1-54, 1-437, 1-677
shared, 1-74
unshared, 1-74

variables directive, 1-73
vcc command, 1-816
vcpp command. See cpp command, 1-198
vemacs command, 1-821
(verify) command function, 1-105
OpenVOS Commands Reference Manual (R098) Index-25

Index
verify_posix_access command, 1-824
verify_save command, 1-829
verify_system_access command, 1-832
Version 1 extended names, 1-35, 1-62
Version 2 extended names, 1-35, 1-62
-version binder argument, 1-46
Virtual terminals, 1-104
visibility directive, 1-75
(vos_path) command function, 1-106
vospath command, 1-834
vsleep command. See sleep

command, 1-738
vsort command. See sort command, 1-740

W
-W compiler option, 1-114, 1-818
-w compiler option, 1-114
Waking up a sleeping process, 1-739
walk_dir command, 1-836
Watchpoints

clearing, 1-252
displaying information about, 1-256
setting, 1-260

where source-mode request, 1-261
where_command command, 1-839
where_path command, 1-841
(where_path) command function, 1-108
who_locked command, 1-843
Window terminals

breaks, 1-727
insert/overlay mode, 1-728
invoking, 1-728
pause, 1-728
reuse of terminal memory pages, 1-727
set_terminal_parameters

command, 1-722
tab, 1-729
use of <RETURN> key, 1-728
use of CANCEL key, 1-728

Windows
edit command, 1-401
emacs command, 1-412

Word processors
edit command, 1-401
emacs command, 1-411
temacs command, 1-767
vemacs command, 1-821

Working directories, 1-132, 1-134, 1-303
Write rings, 1-542
write_tape command, 1-845
Writing files to tape, 1-845

X
-X compiler options, 1-114, 1-124
X.25 network, 1-105
-xref compiler argument, 1-578, 1-590, 1-87,

1-95, 1-119, 1-147, 1-427
-xref_format compiler argument, 1-148
Index-26

	Notice
	Preface
	Contents
	Figures
	Tables
	OpenVOS Command Functions
	(abs)
	(access)
	(after)
	(ask)
	(before)
	(break)
	(byte)
	(calc)
	(ceil)
	(command_status)
	(concat)
	(contents)
	(copy)
	(count)
	(current_dir)
	(current_module)
	(date)
	(date_time)
	(decimal)
	(directory_name)
	(end_of_file)
	(exists)
	(extended_names)
	(extended_names_version)
	(file_info)
	(floor)
	(given)
	(group_name)
	(has_access)
	(hexadecimal)
	(home_dir)
	(index)
	(iso_date)
	(iso_date_time)
	(language_name)
	(length)
	(lock_type)
	(locked)
	(ltrim)
	(master_disk)
	(max)
	(message)
	(min)
	(mod)
	(module_info)
	(module_name)
	(name_string)
	(object_name)
	(online)
	(path_name)
	(person_name)
	(posix_path)
	(process_dir)
	(process_info)
	(process_type)
	(quote)
	(rank)
	(referencing_dir)
	(reverse)
	(rtrim)
	(search)
	(software_purchased)
	(string)
	(substitute)
	(substr)
	(system_info)
	(system_name)
	(terminal_info)
	(terminal_name)
	(time)
	(translate)
	(trunc)
	(unique_string)
	(unquote)
	(user_name)
	(verify)
	(vos_path)
	(where_path)
	Date and Time Keywords

	OpenVOS User and Programming Commands
	add_entry_names
	add_library_path
	add_profile
	analyze_pc_samples
	attach_default_output
	attach_port
	batch
	bind
	break_process
	bundle
	c
	c_preprocess
	call_thru
	cancel_batch_requests
	cancel_device_reservation
	cancel_print_requests
	cc
	change_current_dir
	change_password
	check_posix
	clone_dir
	clone_file
	cobol
	compare_dirs
	compare_files
	consolidate_dir
	convert_stream_file
	convert_text_file
	copy_dir
	copy_file
	copy_tape
	cpp, vcpp
	create_data_object
	create_deleted_record_index
	create_dir
	create_file
	create_index
	create_record_index
	create_tape_volumes
	cvt_fixed_to_stream
	cvt_stream_to_fixed
	debug
	decode_vos_file
	decrypt
	delete_dir
	delete_file
	delete_index
	delete_library_path
	detach_default_output
	detach_port
	dismount_tape
	display
	display_access
	display_access_list
	display_batch_status
	display_current_dir
	display_current_module
	display_date_time
	display_default_access_list
	display_default_open_options
	display_device_info
	display_dir_status
	display_disk_info
	display_disk_usage
	display_error
	display_file
	display_file_status
	display_line
	display_notices
	display_object_module_info
	display_open_options
	display_print_defaults
	display_print_status
	display_program_module
	display_system_usage
	display_tape_params
	display_terminal_parameters
	display_usb_info
	dump_file
	dump_record
	dump_tape
	edit
	edit_form
	emacs
	encode_vos_file
	encrypt
	enforce_region_locks
	fortran
	get_external_variable
	give_access
	give_default_access
	handle_sig_dfl
	harvest_pc_samples
	help
	kill
	ldd
	line_edit
	link
	link_dirs
	list
	list_batch_requests
	list_devices
	list_dynamic_dependencies
	list_gateways
	list_library_paths
	list_modules
	list_port_attachments
	list_print_requests
	list_process_cmd_limits
	list_save_tape
	list_systems
	list_tape
	list_terminal_types
	list_users
	locate_expandable_dirs
	locate_files
	locate_indexed_files
	locate_large_dirs
	locate_large_files
	locate_stream_files
	login
	logout
	mount_tape
	move_device_reservation
	move_dir
	move_file
	mp_debug
	nls_edit_form
	pascal
	pl1
	position_tape
	posixpath
	preprocess_file
	print
	profile
	propagate_access
	read_tape
	ready
	remove_access
	remove_default_access
	rename
	reserve_device
	reset_eof
	restore_object
	save_object
	send_message
	set
	set_cpu_time_limit
	set_default_open_options
	set_dir_limits
	set_dir_type
	set_expiration_date
	set_external_variable
	set_file_allocation
	set_implicit_locking
	set_index_flags
	set_language
	set_library_paths
	set_line_wrap_width
	set_open_options
	set_owner_access
	set_pipe_file
	set_priority
	set_ram_file
	set_ready
	set_safety_switch
	set_second_tape
	set_tape_drive_params
	set_tape_file_params
	set_tape_mount_params
	set_terminal_parameters
	set_text_file
	set_time_zone
	sleep, vsleep
	sort, vsort
	start_logging
	start_process
	stop_logging
	stop_process
	tail_file
	temacs
	text_data_merge
	translate_links
	truncate_file
	unbundle
	unlink
	update_batch_requests
	update_print_requests
	update_process_cmd_limits
	use_abbreviations
	use_message_file
	vcc
	vemacs
	verify_posix_access
	verify_save
	verify_system_access
	vospath
	walk_dir
	where_command
	where_path
	who_locked
	write_tape

	Setting and Displaying Tape Parameter Values
	General OpenVOS Software Limits and Numerical Definitions
	Reducing Program Module Size When Using Shared Virtual Memory Databases
	Using create_data_object to Organize Virtual Memory
	Using Bind Directives to Organize Virtual Memory
	Using Bind Directives to Create a Shared Virtual Memory Database
	Making and Checking the Calculations
	Reacting to Application and Compiler Changes
	Using More Than One Shared Virtual Memory Region
	Example of Binder Control File Changes
	Binder Control Files Using a Created Data Object
	Changing Binder Control Files to Use SVMR
	Using high_water_mark to Adjust the Size Reserved for the SVMR

	Index

